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ABSTRACT

Human perception and experience of time is strongly affected by environmental context. When paying close attention to time,

time experience seems to expand; when distracted from time, experience of time seems to contract. Contrasts in experiences

like these are common enough to be exemplified in sayings like “time flies when you’re having fun”. Similarly, experience of

time depends on the content of perceptual experience – more rapidly changing or complex perceptual scenes seem longer in

duration than less dynamic ones. The complexity of interactions among stimulation, attention, and memory that characterise

time experience is likely the reason that a single overarching theory of time perception has been difficult to achieve. In the

present study we propose a framework that reconciles these interactions within a single model, built using the principles of

the predictive processing approach to perception. We designed a neural hierarchical Bayesian system, functionally similar to

human perceptual processing, making use of hierarchical predictive coding, short-term plasticity, spatio-temporal attention, and

episodic memory formation and recall. A large-scale experiment with ∼ 13,000 human participants investigated the effects

of memory, cognitive load, and stimulus content on duration reports of natural scenes up to ∼ 1 minute long. Model-based

estimates matched human reports, replicating key qualitative biases including differences by cognitive load, scene type, and

judgement (prospective or retrospective). Our approach provides an end-to-end model of duration perception from natural

stimulus processing to estimation and from current experience to recalling the past, providing a new understanding of this

central aspect of human experience.

Introduction

The ability to estimate temporal properties of the world, such as how much time has elapsed since you started reading this

paper, is key to complex cognition and behaviour. Despite being a core topic of interest since the very beginning of psychology,

the cognitive and neural processes that underlie human time perception remain largely unknown. Human perception of time is

affected by many factors; experience on the scale of seconds is most prominently influenced by the content, complexity, and rate

of change of experience1–4 and whether attention can and is being directed toward the task of monitoring time5–7. Specifically,

increasing cognitive load (by requiring attention to additional tasks beyond tracking time) has been reported to decrease the

apparent duration of an interval when a person is simultaneously and actively attending to time (prospective time), while

apparent duration is increased by cognitive load when reflecting on the duration of an interval after it has occurred (retrospective

time; comprehensively reviewed in7 and Figure 1). Differences in time perception based on this interaction between cognitive

load and prospective vs. retrospective duration judgements has led to suggestions that different mechanisms underlie the

different scenarios: when actively attending to time (prospective time) the process is largely "attention" driven; conversely,

when reflecting on a period of time after it has occurred (retrospective time) the process is largely driven by "memory"5, 7–9.

Reflecting these different approaches, models of time perception and episodic memory have developed largely independently

since diverging several decades ago (approach in10 versus11, for example), precluding a unified account of time perception.

To address this problem, here we present a single model of human time perception and episodic memory that integrates the

influences on human time estimation of stimulus, attention, and whether the observer estimates duration prospectively or

retrospectively. We validate model performance by showing that model-based estimates of naturalistic videos between 1 and 64

seconds match duration reports obtained from ∼ 13,000 human participants regarding the same videos, for each of the key

manipulations: knowingly attending to time (prospective judgements) or not (retrospective judgements), attending to only a

single or multiple concurrent tasks (cognitive load), and for different types of natural stimulation (busy city scenes, less busy
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scenes on a university campus or leafy surrounds, or in a quiet office of cafe).

The present model is based on the proposal that the primary function of human perception is the classification of objects

and events in the world and that estimating time can be accomplished simply by tracking the behaviour of neural networks that

implement perceptual classification. It was recently demonstrated4 that tracking salient events in the activity of an artificial

image classification network while it processed videos of natural scenes (from 1-64 seconds in duration) can provide a basis for

estimates of duration. In that study, model-based estimates replicated key features of human duration estimates of the exact same

videos, including biases related to scene type (busy city scenes estimated as longer that quiet office scenes, for example; see

also12, 13). The model displayed conceptual similarities with the predictive processing account of perception wherein perception

is proposed to operate as a function of both sensory predictions and current sensory stimulation, with perceptual content

understood as the brain’s “best guess” (Bayesian posterior) of the causes of current sensory input given the prior expectations or

predictions14–18. However, this previous model4 had only very simple “memory”, in the form of content-less tokens marking

the occurrence of salient events in perception. Because it lacked the ability to form content-specific memories of an episode,

it was incapable of estimating time in retrospect. In order to resolve how human retrospective judgements of time might be

accomplished, we extended on the core aspects of this previous model to provide the ability to record episodes of perceptual

content, making use of both episodic and semantic memory concepts. Basing our approach on a predictive-processing account

that allows for interactions between sensory input, attention, and previous experience, we provide a unified model of episodic

memory and time perception.
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Figure 1. Relationship between prospective and retrospective duration judgments and their interaction with cognitive load

(adapted from7). Duration judgement ratio is reported duration divided by physical duration. Error bars indicate standard error

of the mean. Increasing cognitive load decreases reported duration in a prospective timing task, but increases reported duration

in a retrospective timing task.

A predictive processing model of human episodic memory and time perception

Predictive processing neural architecture for perception

According to (Bayesian) predictive processing theories, the brain is constantly updating its internal representations of the state

of the world with new sensory information x0
t (at time t) through the process of hierarchical probabilistic inference14, 17, 19, 20.

The resulting ‘top-down’ generative model is used to predict new states and simulate the outcome of prospective actions21.

Comparing predicted against actual sensory signals gives rise to prediction errors ξ n
t which, in most instantiations of predictive

processing, are assumed to flow in a ‘bottom-up’ direction from the sensory periphery (n = 0), towards higher hierarchical

levels n ∈ {1,2, ..}. Numerous connections with neurophysiology have been made over the years, including proposals viewing

predictive processing as the fundamental function of canonical microcircuits in the cortex22, or as the result of the interplay

between competing oscillatory bands23, 24, as well as providing theoretical explanations for a wide range of cognitive and

perceptual effects such as hallucinations25, autism26 and schizophrenia27. In addition, this framework is uniquely qualified for

studying the relation between perceptual change and human perception of time4, as it provides a working explanation of the

complex interplay between prior beliefs, sensory-based information and learning.

In this study, we define a predictive processing model that relies on feed-forward deep neural networks for the bottom-up

flow of information (see inference model in Figure 2) and a novel stochastic process to account for the top-down flow of
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predictions (see generative model in the same figure). Unlike famous approaches that use neural networks to implement

inference via amortization28, 29, here neural activations of each hierarchical layer n represent single samples of the random

variable xn
t , rather than its distribution parameters. Hence, existing, pre-trained, feed-forward neural networks can be used to

propagate bottom-up sensory signals or, in this case, to approximate the inference P(xn
t |x

n−1
t ).
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Figure 2. Probabilistic graphical representation of the predictive processing model described in the text. The random

variables xn
t ,z

n
t correspond to different hierarchical representations of the input, continuous and categorical respectively, the

variables µn
t,i,σ

n
t,i are the parameters of the Gaussian component i and the variables Kn

t represent the number of components at

time t. All solid-line arrows represent conditional dependencies: black arrows denote dependencies between random variables

within the same simulation time step, red arrows highlight dependencies between variables with distributions that evolve over

different time scales and gray arrows denote dependencies across different time steps.

The structure of the generative model (solid arrows in Figure 2) can be best described using the three major perceptual

principles that it was designed to account for. First, humans are able to segregate raw sensory information into different

categories of concepts based on similarity (often called taxonomic relations) and access these categories linguistically, answering

for instance questions such as what does an object X look like? Likewise, the model presented here generates categorical

hierarchical latent representations of the sensory signals it receives, in the form of probability distributions, that classify the

current (continuous) neural states and create new predictions. Second, humans can associate sensory experiences with context

and with other experiences over time (often called contiguity relations), and answer questions such as do I expect to see object

X under the current circumstances? Our model also maintains state transition statistics, taking into account the hierarchy of the

categorical representations and recent experiences. Finally, humans are able to maintain the general concept of an object X,

without being continuously surprised after seeing a particular instance (e.g. a paper sketch) of this object. To account for this

ability, each categorical representation in the model consists of a slowly-changing baseline distribution as well as a second,

short-term bias.

To implement the first principle, the (continuous) random variable xn
t follows a mixture of Gaussians, where the parameters

of the individual Gaussian components N
(

µn
t,i,Σ

n
t,i

)

update over time with recursive Bayesian estimation. At each simulation

time-step and layer n, a single component is selected, then used to sample a prediction x̄n
t , and finally updated according to the

prediction error ξ n
t . Hence,

xn
t ∼

K

∑
i=1

zn
t,iN

(

µn
t,i,Σ

n
t,i

)

where zn
t,i =

{

1, if i selected at time t.

0, otherwise.
(1)

The selected component is indicated by the (discrete) random variable zn
t = {z

n
t,i|i = 1,2, ...,K} which allows the categoriza-

tion of the model’s (both sensory and inner) states. Given a current observation xn
t , the value of zn

t can be inferred from

argmaxi N
(

xn
t |µ

n
t,i,Σ

n
t,i

)

. In addition, to cover the second principle, the tuple (xn
t ,z

n
t ) is treated as a partially-observable hierar-

chical hidden Markov model over time t, with a discrete state-space and continuous observations. Apart from the previous and
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current higher order states, which are used to satisfy the Markovian property, the categorical variable zn
t is also conditioned on

the last surprising state that the system recorded. For now, we will assign the symbol en
τ to represent this state and later in

the text we will see that en
τ corresponds to the last recorded event in episodic memory. Taking all together, zn

t can be drawn

from P(zn
t |z

n
t−1,z

n+1
t ,en

τ). Finally, to address the third principle we propose an extension to the classical Kalman filter30 that

takes into account the differences between short- and long-term learning. Based on this proposal, each Gaussian component

maintains two states, a short-term state (µn
t,i,Σ

n
t,i) and a baseline state (µ̃n

t,i, Σ̃
n
t,i). Hence, the update process of each component

becomes two-fold. The short-term states update according to

µn
t,i =

{

µn
t−1,i +K ·ξ n

t , if i selected.

µn
t−1,k + kback ·

(

µ̃n
t−1,i−µn

t−1,i

)

, otherwise.
, Σn

t,i =

{

(

1.0−K
)

·
(

Σn
n,t,i +Q

)

, if i selected.

Σn
t−1,k + kback ·

(

Σ̃n
t−1,i−Σn

t−1,i

)

, otherwise.
(2)

where K =
Σn

t,i+Q

Σn
t,i+R2 is the Kalman gain, Q and R are free noise parameters and kback is a parameter determining how quickly the

short-term state converges back to its baseline, in the absence of new information. The update of the baseline states is given by

µ̃n
t,i = µ̃n

t−1,i + kbase ·
(

µn
t−1,i− µ̃n

t−1,i

)

and Σ̃n
t,i = Σ̃n

t−1,i + kbase ·
(

Σn
t−1,i− Σ̃n

t−1,i

)

. (3)

where kbase determines how quickly the baseline adapts to new information. By keeping this parameter low, the baseline updates

at a slower pace and thus it is less prone to short-term biases.

The next neural activation pattern of each layer n is predicted from the distribution

x̂n
t ∼ P

(

xn
t ,z

n
t,i|z

n
t−1,z

n+1
t ,en

τ

)

= P
(

xn
t |z

n
t

)

P
(

zn
t |z

n
t−1,z

n+1
t ,en

τ

)

= N
(

xn
t |µ

n
t ,Σ

n
t ,z

n
t

)

P
(

zn
t |z

n
t−1,z

n+1
t ,en

τ

)

(4)

through ancestral sampling (sequential sampling of random variables each conditioned to the previous one). New feed-forward

activations in layer n are then compared and yield the prediction error ξ n
t = x̂n

t − xn
t . Finally, the corresponding surprise can be

calculated as the negative logarithm of model evidence for this layer and this time step

− logP
(

xn
t |z

n
t−1,z

n+1
t ,en

τ

)

=− log
K

∑
i=1

P
(

xn
t |z

n
t = zi

)

P
(

zn
t = zi|z

n
t−1,z

n+1
t ,en

τ

)

(5)

Splitting and merging categories Humans are able to rearrange taxonomic relations in their memory, which often involves

learning new concepts or combining two existing ones into a single. To capture this effect, the predict-update mechanism

described so far can be also seen as a high-dimensional online clustering method based on a mixture of Gaussians. A typical

approach to obtain the number of clusters in these methods is via splitting and merging existing components over time31, 32.

Here, two components i and j at time t are merged iff

DJS

(

N(µ̃n
t,i, Σ̃

n
t,i),N(µ̃n

t, j, Σ̃
n
t, j)

)

< Tmerge (6)

where DJS is the Jensen-Shannon divergence and Tmerge > 0 is a threshold constant (hyper-parameter). In addition, the short-term

state of a component i is split from its baseline representation if

DKL

(

N(µ̃n
t,i, Σ̃

n
t,i),N(µn

t,i,Σ
n
t,i)

)

> Tsplit (7)

where DKL is the Kullback–Leibler divergence and Tsplit > Tmerge, with Tsplit another threshold constant. In this case, DKL was

chosen over the symmetric DJS, as the baseline N(µ̃n
t,i, Σ̃

n
t,i) can be considered the true distribution of the representation of the

component i and, thus, the equation (7) measures the amount of information lost when N(µn
t,i,Σ

n
t,i) is used instead of this true

baseline. In contrast, equation (6) measures the similarity between two hitherto independent representations.

Finally, the Bayesian model described here can also be viewed as the semantic memory of an agent33, which maintains

generalized (statistical) information about different concepts in the world, including taxonomic and contiguity relations. Rather

than equating semantic memory to either the generative or inference models of the brain, we view this fundamental memory

system as a knowledge storage that is involved in the processing of both top-down and bottom-up signals34 (see Supplementary

Tables 2 and 3 for more details on how our model relates to mammalian memory systems). The learning process followed

is recursive and allows the creation of new categorical components without the need to use the same observation twice for

training. However, as past observations are discarded, it lacks the ability of off-line methods to reach solutions that are optimal

for all previously seen data. This issue highlights the need for the second type of memory modeled here, that can maintain

almost intact information about surprising past observations (episodes) and use this information later to improve the predictive

performance of the model.
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Episodic memory formation based on perceptual surprise
Episodic memory refers to the brain’s ability to store information related to specific past first-person experiences in the form of

events and mentally relive these events either voluntarily or due to intrinsic (free recall) or extrinsic (cued recall) stimulation.

Evidence suggests that the criteria used to determine which parts of the current experience deserve more to be encoded involve

attention35 and prediction error36–38. In the context of our model, a neural event at time t and layer n is classified as salient (or

surprising) when it is very unlikely according to the current state of the system. In other words, an event is classified as salient

if the generative model is not able to predict xn
t well enough. That is, iff

− logPevidence

(

xn
t

)

>− logT n
t ⇐⇒ Pevidence

(

xn
t

)

< T n
t (8)

where Pevidence

(

xn
t

)

= P
(

xn
t |z

n
t−1,z

n+1
t ,en

τ

)

and T n
t ∈ (0,1) is a threshold describing the tolerated level of surprise. In a later

section, we will see that this threshold can be dynamic and defines the level of attention the system pays to each hierarchical layer

over time. When T n
t is exceeded, the tuple (zn

t ,x
n
t ) is registered as a node en

τ+1 (τ being the current number of episodic nodes in

layer n) to a weighted, directed and acyclic graph, shown on the left hand side of Figure 2. The value of P
(

xn
t |z

n
t−1,z

n+1
t ,en

τ

)

is

assigned as the weight of this node, while en
τ+1 also has a direct connection to its preceding node en

τ and the current node in

layer n+1. The complete graph of episodic nodes represents the full episodic memory of the system, and provides enough

information to be partially or fully retrieved in the future. The overall process of memory formation is depicted in Figure 3.

Figure 3. Diagram of the processes involved in episodic memory formation. At each time step, the neural state xn
t is clustered

using online Gaussian mixtures and prior information. An episodic event is generated when surprise of observing xn
t exceeds

the threshold of equation (8).

Relation to prospective timing The inequality (8) holds mainly at times when instances of surprise occur in the system, thus

detecting the presence of new, salient events. Through this mechanism, new episodic memories are formed only when their

contents provide non-redundant information that could not otherwise be predicted. In4 it was claimed that the accumulation

of events of rapid perceptual change provided an intuitive and useful proxy for perceptual surprise and belief updating and

therefore could be used as the basis for human subjective time perception. As these two cognitive processes (surprise/belief

updating and time perception) share the same criteria for salient event detection across time and model hierarchy, we propose

that the same saliency-detection mechanism can be shared in both cases. Hence, following the current notation, the duration of

an event can be estimated prospectively as a function of the number of all recorded nodes during this event, i.e.

prospective duration judgement = f (τ1
end− τ1

start,τ
2
end− τ2

start, . . . ,τ
N
end− τN

start) (9)

where τn
start/end represents the number of episodic nodes in layer n that have been recorded at the (objective) beginning and the

end of the target event respectively. After comparing different degree polynomials against human behaviour, we argue that the

function f () can be approximated by a simple linear combination of the number of nodes (see Figure 7 and related discussion

below).

Episodic memory recall and retrospective timing
Information retrieval from specific episodic memories in humans can occur either spontaneously or triggered by a specific task

and it is facilitated by the semantic memory39. For instance, when asked to report the time of an event retrospectively, one

needs to retrieve as much information related to this event as possible and fill any remaining gaps with statistical information, in
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order to accurately approximate the rate of perceptual change that originally occurred during this event. In this model, episodic

recall is initially triggered from a single node eN
0 drawn from the episodic memory structure depicted on the left-hand side of

Figure 2. The tree defined by all nodes connected to eN
0 in lower layers contains the complete amount of information that has

been saved for the corresponding episode. In a single recall, the process followed is summarized in Algorithm 1.

Algorithm 1: Tree construction during episodic memory recall

1 Create a tree Tr(eN
0 ) with root node eN

0 (the red node in Figure 4).

2 Append to Tr(eN
0 ) all nodes en connected to eN

0 , where n < N, with probability ∼ Bern
(

1−Pevidence(e
n)
)

.

3 For each en
i ∈ Tr(eN

0 ) with component zn
k,t = en

i , estimate the most likely number of children using the distribution of

children recorded so far during this component as a prior Pchil.(z
n
k,t).

4 If the estimated number is greater than the current number of children, append more nodes en−1
j to Tr(eN

0 ), sampled from

P(en−1
j |e

n−1
j−1 ,e

n
i )≈ P(zn−1

t |zn−1
t−1 == en−1

j−1 ,z
n
t == en

i ,e
n
i ) (solid green nodes).

5 While ∃ en
i ∈ Tr(eN

0 ) with n > 1 to which step 5 has not been applied yet, append k blank nodes en−1
j to Tr(eN

0 ), where k

is either sampled from Pchil.(z
n
k,t) if en

i is known, or from Pchil.(n) otherwise. (nodes with green dashed outline).
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Figure 4. Algorithm of the steps required for episodic memory recall and retrospective duration judgements. Solid circles

represent nodes with an assigned value to the categorical variable zn
t either from the episodic (black) or the semantic memory

(green). Circles with the dashed outline represent nodes whose component has not been determined during recall.

The tree Tr(eN
0 ) represents the salient events that occurred during eN

0 and have been currently retrieved from memory.

Counting the overall nodes per layer provides an approximation of the amount of salient change in each layer during this

episode, and, therefore, also an approximation of the corresponding sense of the episode’s duration. To maintain consistency

in notation, let τ̃n
tree be the number of nodes in each layer n of the tree. Whereas the nodes added in steps 1-2 of algorithm 1

are the only ones taken from episodic memory, alone they do not provide enough information, as they can only be fewer or

equal in number to the nodes originally registered. Instead, the remaining nodes added in steps 3-5 contribute prior (semantic)

information and thus fill any memory gaps.

Duration judgements of past events can be obtained in a similar fashion to the prospective case via the process of episodic

recall. Given a past event represented with a node eN
0 , the task here is to retrieve the maximum possible amount of information

related to eN
0 and estimate the original number of salient features during this event. Hence,

retrospective duration judgement = f (τ̃1
tree, τ̃

2
tree, . . . , τ̃

N
tree) (10)

It is worth noting that the same function f () can be used in both prospective and retrospective judgements as the task of

mapping recorded salient events to durations remains the same in both cases.

Attention, effort and cognitive load
Two factors that affect human accuracy in forming and recalling episodic memories, and subsequently performing duration

judgements, are the level of attention that is paid during episode formation, and the level of effort put into recall. Intuitively,

effort maps onto the idea that a specific portion of an episode may not be immediately recallable and describes how persistent

the model should be in trying to retrieve that specific piece of memory rather than moving on without it. Here, attention and

effort are represented through a single free parameter each, which is fitted to our experimental results.

To capture the effects of attention over time, the value T n
t of the surprise threshold − logT n

t defined in equation (8) tends to

decay over time to the value 1, by obeying the equation

T n
t = 1−T n

t−1 + c−1e−
Dn

c −N
(

0,σ
)

(11)
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where Dn indicates the number of simulation iterations since the last time the threshold in layer n was reset, c is a decaying

time constant (free parameter) and σ indicates the level of Gaussian stochastic noise that corrupts this decay. If this threshold is

exceeded, then T n
t ← 0 and thus − logT n

t ←+∞. In addition, the level of recall effort (represented by the letter ε) is defined as

the number of attempts to retrieve information for eN
0 , i.e. the number of times that the distribution Bern

(

1−Pevidence(e
n)
)

is

sampled to determine whether each node of the complete recorded episodic experience will be recalled. Our model is built on

the assumption that both attention and effort are modulated by cognitive load. Therefore, the influence of different levels of

cognitive load on duration estimation can be fully represented by different combinations of c and ε .

Results

Human experiment
We used the online platform Amazon Mechanical Turk (MTurk) to recruit 12,827 participants. Each participant watched a

single video (1 - 64 seconds in duration) of a natural scene such as walking around a city, walking in the countryside or a leafy

campus, or in a quiet office or a cafe (the same video stimuli were also used in4, 12; in these previous studies, each participant

viewed a large number of videos) and reported the duration in seconds (see Figure 9). Half the participants were not informed

that they would need to estimate the video duration until after they had viewed it (retrospective task group) while half were

told before the trial began (prospective group). Within each group, participants completed either a low or high cognitive load

trial. In the prospective group, the low-load condition required that participants estimate video duration. For the retrospective

low-load condition, participants were requested to use the cues in the video to estimate what time of day the video was taking

place (note that this task instruction was given prior to the video being viewed). For both groups, the high-load condition

added the requirement that participants should determine whether the person recording the video was by themselves or with

another person (there was never another person traveling with the person recording the video, though strangers could certainly

appear). Participants were excluded from further analysis if they reported that they guessed they would need to estimate the

duration when doing the retrospective condition, or if they reported that they had been explicitly counting in any condition.

The results for participants who reported they were counting (11% of participants) are presented in Supplementary Material

(Supplementary Figure 10). For further details on the experimental procedure see Methods.

Figure 5Ai-Aiv show the overall duration estimation results for each task (prospective/retrospective) and cognitive load

(low/high). Our participants were capable of producing sensible duration estimates over the full 1-64 second range, with

reports broadly following the scalar property/Weber’s law in each case (across-participant variance in estimates was roughly

proportional to duration). There was some evidence of overestimation for the short intervals, compared with previous results

of prospective judgements made regarding the same stimuli wherein participants completed ∼ 60 trials rather than a single

trial (see Figure 3a in4). However, there was less evidence for underestimation of longer intervals, making the present data

inconsistent with Vierordt’s law/regression to the mean. The overestimation of shorter trials was likely due to the lower bound

of report being limited to 0 seconds in duration, with no such corresponding upper limit for longer trials. Consequently, these

results are consistent with the idea that Vierordt’s law/regression to the mean effects in human reports about time are the result

of sequential decision processes rather than anything inherent to time perception itself40, 41.

Figure 5B shows the mean duration judgement ratio (subjective versus physical duration) for all combinations of task

(prospective/retrospective) and cognitive load (low/high). Reassuringly, the previously reported task-by-cognitive load in-

teraction7 is apparent in our data (compare Figure 1 and Figure 5B), though in our data it is of a smaller magnitude and is

shifted towards overestimation rather than underestimation. This shift towards overestimation was likely due to our experiment

using more dynamic stimuli which are known to result in longer duration estimates4, 12, 42 (see also Figure 5C). Furthermore,

the task-by-load interaction in our data becomes less straightforward when broken down by the different scene types that

were used as stimuli (City, campus and outside, and office/cafe) (Figure 5C). First, regardless of task and load, the degree of

duration overestimation was reduced particularly for the Office and cafe scenes (for City scenes mean duration judgement

ratio is 1.327± 0.867, for Campus & outside scenes: 1.313± 0.832 and for Office & cafe scenes: 1.124± 0.735 were the

overall means and standard deviations respectively). This pattern broadly replicates that seen in the previously reported results

for different experiments using these same stimuli4, 12. Of greater interest, the nature of the task-by-load interaction also

qualitatively changes with scene type. While the interaction for the City scene data was broadly similar to the overall pattern

(Figure 5B), this was not the case for reports about the Office and cafe scenes. For these scenes, there was a general shift

towards prospective being longer than retrospective reports, regardless of cognitive load, reversing the relationship seen for

reports regarding the Campus and outside scenes.

Computational model
We used the exact same trials as were completed by human participants and presented in the results above as input to our model.

Initially, to acquire semantic statistics of all natural scenes used, the model was exposed to 34 different 200-frame-long videos,

including all scene types. Then, the same resulting semantic memory was used as the initial point for all model-based trials.
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Figure 5. Human duration estimates according to task (pro/retrospective), cognitive load (low/high), and presented video

scene (City, Campus and outside, or Office and cafe). Ai-iv Human duration estimation for task-cognitive load combination.

The black curves represent the mean, the red is the median, and the gray is the standard deviation across all trials. B The mean

duration judgement ratio (report versus physical duration) across all trials for each task-cognitive load combination. Broken

lines/open markers indicate results from retrospective judgements, solid lines/filled markers indicate results from prospective

judgements (compare with Figure 1). C as for B, but separated by scene type (City, Campus & outside, Office & cafe). The

gray numbers denote the number of participants in each case, black (red) markers are means (medians).

The method to produce duration estimates was similar for trials from prospective and retrospective tasks. For trials completed

by human participants as prospective, estimates were based on the model response to the initial input of the presented trial.

Trials completed by human participants as retrospective were modelled based on model-recalled episodes of the presented trial.

For both cases, the difference in cognitive load was accounted for by fitting the parameters c (for the effect of attention) and ε
(for effort), described above in section Attention, effort and cognitive load. The parameters c and ε were not required to be the

same for prospective and retrospective cases and, therefore, the model acted as four ‘super-participants’ each undergoing all

trials of the four variants of the task.

Duration judgements of the past and present replicate human behaviour

Initially, we trained a single linear regression model to map salient event accumulations to seconds on the prospective

accumulation data and used it to produce time estimates for all four variants of the experiment. Figure 6Ai-iv depicts the

model-produced estimates for each combination of task and cognitive load. Overall, the model was able to produce consistent

estimates, with longer videos judged as longer in all cases. The variance of all reports was proportional to the reported duration,

satisfying Weber’s law, while, as expected, the variance of the retrospective estimates was greater. Although overestimated,

prospective model reports were highly accurate without any signs of regression to the mean. The lack of this effect, which is

evident in our previous modeling approaches4, can be attributed to the fact that the regression model here was trained under a

wider range of example durations including two sets of parameters representing high and load cognitive load. Retrospective

reports were also overestimated but less accurate, indicating the need for both prospective and retrospective data to be used for

training the regression function f defined in equations (9-10) (see also below and Figure 7 for results under different training

regime). Compared to human results, the variability of the model-estimates was substantially lower in all cases, especially in

prospective estimates.

Interestingly, the overall behaviour of the model (shown in Figure 6B) replicates the interaction of task and cognitive load

demonstrated both in previous work7 (Figure 1) and our human results in Figure 5B, with duration estimates for prospective

estimates decreasing with increased cognitive load while retrospective estimates increase with increasing cognitive load.
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Figure 6. Model duration estimates in seconds or accumulated salient events by task (pro/retrospective) and cognitive load

(high/low) for the same trials performed by human participants. Ai-iv Model duration estimates for task-cognitive load

combination. The black curves represent the mean, the red is the median, and the gray is the standard deviation across all trials.

Estimates in seconds were obtained from a single linear model trained on objective video durations and the number of episodic

nodes recorded for each trial. B The mean duration judgement ratio (estimate versus physical duration) over all trials for each

task-cognitive load interaction, using the same linear model. Broken lines/open markers indicate results from retrospective

judgements, solid lines/filled markers indicate results from prospective judgements. C The rate of accumulated salient events

over time (per second) in the different network layers, across all scene types and separated by task and cognitive load. Note that

the human data replicated from Figure 5C is in seconds and therefore is not meaningfully positioned on the y-axis - it is

depicted for the purpose of comparing the task/load interaction in different scenes.

The role of stimulus content in duration reports

As in previous work4, rather than looking at the model-based estimates made following the regression of accumulated salient

events into seconds, we can also inspect the accumulations directly. In our conception, these accumulations directly underlie

the ‘sense of duration’ and the translation into reports in seconds is used only to enable comparison with human data. Looking

at the same breakdown by task and cognitive load as depicted in Figure 6B, but in accumulated salient changes (Figure 6C)

rather than in seconds, and separated by hierarchical layer in the network, we see that the task/load interaction varies by layer.

While the clear cross-over interaction seen in Figure 6B is present in each of the lower and middle layers of the network (layers

input through conv4), the interaction qualitatively changes at higher network layers (layer conv5 through output).

Most notable about these different interaction patterns is the remarkable similarities between the patterns observed in

specific layers, and the patterns from human data in specific scenes. In the case of humans (Figure 5C) we see the clear

cross-over task/load interaction for duration reports made about the dynamic city, while the interaction in reports made about

other scenes is significantly different. In Figure 6C we place those interaction patterns from the human results (in blue) next to

the layers of the model that are qualitatively best matched. These results suggest that duration estimation may be based on

the activity in specific layers of the network for specific contexts; i.e., that humans may rely more on information captured in

specific hierarchical levels of representation of an episode, given the context of this episode. For instance, the representations of

the first convolutional layer (conv1) seem to be used in highly dynamic videos of someone walking around a busy city, a higher

convolutional layer (conv3) in videos of medium information flow (walking around a university campus and outside), while

more static videos seem to map to the last hidden layer of the network (fc7).

To further investigate this apparent relationship between network layer and scene type, we examined model duration

estimation when accumulated salient events in only one layer of the network hierarchy were taken into account. Figure 7A

shows that taking into account the single layer (identified as most similar in Figure 6C above); conv1 for City scenes, conv3

for Campus and outside, fc7 for Office and cafe scenes), estimation performance increases and becomes more similar to the

human results than that shown in Figure 6A wherein the regression was trained on all accumulation in all network layers. The

best performing estimates were found for regressions trained to map between the accumulated salient events in a specific layer
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and physical duration using a 2nd degree polynomial (solid black line in Figure 7A); however, note that even a linear model

(broken blue line) performs well. Moreover, the interaction between task and cognitive load by scene is much more consistent

with that seen in the human results (Figure 5C) when the regression (linear in this case) is trained only on the appropriate single

layer accumulation (Figure 7C) compared to when it is trained on accumulation in all layers (Figure 7B).

Overall, these results show that it is possible to train a simple linear model, using only a single layer per scene type as input

(only two parameters x 3 scene types = 6 parameters in total) and real durations as the target, that can replicate the complex

pattern of interactions between task, cognitive load, and scene-type that we found in human duration estimates for these same

naturalistic video inputs. Assuming such a simple scenario, an interesting direction of investigation then becomes how the

appropriate layer is selected. In Supplementary Material we explore several possibilities for layer selection based on network

behaviour in different layers in different contexts (i.e. scene types). These approaches include variability of accumulation in a

layer, uniqueness of components for a given memory episode across layer, and accuracy of recall across layer (Supplementary

Figure 12). All three approaches exhibit differences across network layer and therefore may provide potential foundations for

a decision process that selects the specific network layer from which to estimate duration, given a specific context. Further

research on this topic is required.
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Figure 7. A: Model duration estimates for each task (pro/retrospective) and cognitive load (high/low) combination, using

linear and polynomial regression trained on a single layer of salient event accumulations for different scene types, including

layer conv1, conv3 and fc7 for trials that correspond to city, campus & outside and office & cafe respectively. In each figure

panel, the solid black line shows the results for regression mapping between accumulated salient events and physical duration

using a 2nd degree polynomial and the grey line indicates ±1 standard deviation for estimates given by the 2nd degree

polynomial regression. The blue, orange, green, red broken lines indicate the results of the same regression using 1st, 4th, 6th,

and 8th degree polynomials. B-C: Relation between prospective and retrospective mean duration judgement ratio (MDJR) for

different levels of cognitive load separated by scene type, via a single linear model using accumulated salient events in all

layers (B) or just the layers described in A (C).

The role of effort in memory recall

The next question we investigated is whether, according to our model, the amount of effort that humans spend to recall episodic

memories affects their re-experienced sense of duration for these events. Recall effort here is defined as a mechanism that

increases the chances of recorded salient events to be retrieved and used as branches of the tree structure shown in Figure 4

(black nodes). The more effort is devoted, the more particular components zn
k,t will be part of the recalled experience. Hence,

more specific priors Pchil.(z
n
k,t) will be used in the recall process over the general prior Pchil.(n), to estimate the number of

children nodes per recalled node, and deeper in the tree structure Tr(eN
0 ) (see Algorithm 4). To assess the how this mechanism

affects the rate of recalling events, we ran a series of simulations over the complete set of human trials, where the system

received the same video frames as humans and then it produced memory recalls for ε ∈ {1,2, ...,70}. As with all simulation

results presented here, Pchil.(z
n
k,t) was approximated as the average number of children nodes of the component zn

k,t in a single
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given trial, since only one trial was shown to each subject. In contrast, Pchil.(n) was obtained from the distribution of children

nodes n− 1 for all components in layer n, after running simulations for 3300 frames including all scene types. Figure 8A

illustrates the resulting mean values and distributions for all layers of the network. These were 1.2±0.59 children nodes for

the convolutional layers (conv1-5) and 2.9±2.67 nodes for the fully connected layers (fc6-7 and output), more than twice the

values of the former type of layers.
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Figure 8. A: Distribution of children nodes recorded per layer over all components of this layer, used to calculate Pchil.(n). B:

Rate of recalling events in different layers of the model and for different levels of effort ε , defined as the number of recall

attempts. The coloured lines represent the mean. Standard error was not included in this plot as it overlaps with the mean.

The overall effect of ε in the rate of recalling events can be seen in Figure 8B. As expected, the layers that are more sensitive

to changes in ε are the lower convolutional ones, since recall is a recursive process that originates from the top (most contextual)

layer and has a cumulative effect as it proceeds. For these low layers, high values of ε resulted in higher number of recalled

events, and therefore longer time estimations. Interestingly, this relation was not monotonic and it was maintained for very

different levels of attention (e.g. c = {13,90}).
Overall, the model’s behaviour displays the importance of effort in modelling the human biases found in the current study.

It predicts that higher effort should generally lead to greater overestimation of the duration of recalled episodes and that visual

episodes which are rich in content should be more overestimated. Further analysis in the supplementary section 1 predicts that

the level of effort affects the relationship between cognitive load and the perception of duration, both in the past and present.

Discussion

In this work we present a predictive processing model of episodic memory and time perception. Using this model, we were

able to reproduce the characteristic patterns of human duration judgement biases (estimated from ∼ 7000 human participants,

from an initial pool of ∼ 13,000) in prospective and retrospective timing tasks, using as input only on the rate of salient events

detected within a hierarchical perceptual processing network. With a single computational process that estimates duration both

during ongoing perceptual input and based on recalled memory of those events, our model reconciles divergent approaches and

experimental findings in the time perception literature under a single predictive processing framework to account for differences

in human duration perception observed across tasks, cognitive load, attention, and stimulus content.

The subjective timescale of time perception and episodic memory

Our model shows that the dynamics of human perception could update over two distinct timescales; short-term and semantic

memory systems follow the rate of changes in the real world (right-hand side of Figure 2), whereas the episodic memory system

follows the subjective rate of captured salient events in a given hierarchical representation (left-hand side of Figure 2). We argue

that human perception of duration (in all cases) resides entirely in the latter, hidden temporal structure and, therefore, has no

direct connection to the physical passage of time. This approach follows from the intuitive basis that human perception of time

is characterised more by its common deviations from veridicality, rather than acting like a clock that attempts to track elapsing

physical time (e.g.10, 43). Without a direct connection to physical time, human tasks that involve subjective duration reports

must rely either on episodic memory formation (prospective time) or recall (retrospective time) processes. To communicate

estimates of duration or relate subjective time to the physical world (like timing how long it may take to walk to your nearby

bus stop), the brain need only employ a read-out network that learns to map the length of a memory to a standard unit, such

as seconds. The emergent human-like performance in Figure 6B and Figure 7 using a linear model as the function f (.) of

equations (9-10) supports this view and highlights the potential simplicity of this read-out process, which could be performed

by even single task-, content- and unit-specific neuronal cells (see also Supplementary Figure 12).
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It is worth stressing the difference between our proposal and proposals of mechanisms that involve the direct (or indirect)

tracking of physical time. As with any other dimensions of experience, the human brain constantly receives redundant

time-related information. For example, photoreceptor cells in the retina are driven by light, and low-level neural dynamics

are governed by physical time as neurons are bound by electrophysiological constraints. However, most of the information

received by the retina is lost in the pathways of the visual cortex; according to predictive processing, sensory information is

propagated only or largely in the case that it cannot be predicted by the brain’s model of the hidden causes of sensory input
14. Contemporary interpretations show that this mechanism optimizes energy efficiency in terms of information processing

and storage17, 20, while it has been argued that it even constitutes a fundamental requirement of (biological) self-organized

systems to achieve homeostatic control, or life44–46. Here we view time as simply one more source of observations that the

brain needs to reconcile with its internal model of the world. Indeed, our proposal takes time perception one step further

from the physical world than other sensory modalities, as the cognitive architecture described in Figure 2 does not require

an explicit representation of time, or indeed any ‘time sensors’ (compare, e.g., vision). Instead, through the processes of

event segmentation and episodic memory management, salient temporal information is encoded in a parsimonious fashion and

remains available for most time-related tasks. Exceptions to this basis for temporal processing might include pattern timing

tasks for short intervals, where neural network states, analogous to photoreceptor cells for vision, can be more resourceful47, 48.

Time perception and episodic event segmentation

Perceived time in our model is determined by the frequency of occurrence of salient events over network layers for an epoch.

These events can be interpreted as episode boundaries (at each layer) – the changes in content, with the relevant content type

defined relative to network layer (more complex content at higher layers). In this way, our model provides a method for event

segmentation in defining memory episode extent.

The relationship between time perception and memory segmentation goes back at least decades (e.g.49–52), though a

formal description of event segmentation in episodic memory has only taken a prominent position more recently (e.g. event

segmentation theory53, 54). Extensive work in both humans55–59 and animals60, 61 has identified (changes in) hippocampal

activity as related to human reported (annotated) event boundaries and, more precisely, demonstrated the key role that (lateral)

entorhinal cortex plays in the temporal arrangement of events for episodic memory58, 59, 61. It has been suggested that activity

reflecting event segmentation is based on prediction error62–65, placing the determination of event segmentation firmly within a

predictive processing framework, in line with that demonstrated here. Predictive processing has the distinct advantage over

alternative modelling approaches that a definition of salient event (or event boundary) is possible without involving controversies

about whether the processes that define time perception and episodic memory formation are related more to dynamics (or

intensity) of external stimulation, or to internal states such as attention or task-specific context5, 66 - instead, salience is always

defined as a continual trade-off between stimulation and expectation. Consequently, while our model accommodates the

powerful and well-established intuition that change in perceptual stimulation underlies subjective time1, 2, 4, the context of

stimulation and prior knowledge of similar scenarios are also fundamental for determining what constitutes salience (see also

section Predictive processing neural architecture for perception).

Hierarchy of temporal processing

Previous studies have highlighted the hierarchical nature of temporal processing in the brain, with the timescale of processing

at lower cortical levels (e.g. primary sensory cortices) being shorter and more archetypal than processing at higher cortical

areas (e.g. superior temporal sulcus and frontal eye field56, 67, 68). Beyond hierarchy alone, episodic memory is nested with

more complex events comprised of smaller-scale and less complex events that provide internal structure to events as defined at

the highest level (partonomic hierarchy65). The tree-based structure (see Figure 4) of our model is nested in its configuration

and the perceptual classification network at the core of the network exhibits a hierarchical distribution of representational

complexity (nodes in lower layers are selectively responsive to basic image features like edges, while nodes in higher layers are

responsive to complex whole-object like features) – a feature shared with biological perceptual processing69, 70. The depth and

distribution of representational complexity across our model hierarchy allows us to reproduce the differences in human duration

report in different contexts – dynamic city scenes versus more static office scenes. Furthermore, we demonstrate that time

perception may be accomplished by accumulating salient events in only some portion of the neural hierarchy, relevant to the

ongoing context at the time (Figures 6C and 7B and C). This possibility is consistent with previous findings that the temporal

dynamics of salient event transitions can be detected within the region of the brain relevant to the temporal scale of that event.

For example, neural dynamics related to event boundaries in basic stimulus properties such as motion are detectable in lower

level sensory areas like human MT55, 56, 71 while higher complexity events will be detectable in the dynamics of higher cortical

regions56. A context-related cortical specificity for salient events is also consistent with the finding that only the accumulation

of salient events within the relevant sensory areas (ventral visual areas when watching silent videos) can reproduce human

reports of subjective duration13. While structurally equipped to produce many properties of episodic memory, our present

model was developed explicitly to address human time perception. Further work is required to determine the depth to which our
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model (or modelling approach more generally) reproduces the many other known features of human episodic memory (see65).

Interval timing via non-temporal Bayesian inference

Our process of episodic recall recursively estimates the number of children nodes for each recalled event (see step 3 of

Algorithm 1). This process can be instantiated as a form of Bayesian inference over the duration of events, wherein new

observations of the number of nodes for which an event can be parent updates the model’s prior knowledge. It is worth noting

that the mechanism of prospective timing proposed here is also consistent with this interpretation and could support inference, if

prior semantic knowledge is combined with the current number of recorded (or recalled) events. Although the simulation results

of the Prospective task presented here are based only on current accumulations, as prior knowledge would have a negligible

effect on single-trial experiments, this recursive inference process could potentially account for other known effects in the time

perception literature, such as effects generally seen as regression to the mean of estimation40, 41, 72. In addition, the Bayesian

treatment of accumulated events allows for more sources of information to be integrated during estimations. This may be

particularly important for very small intervals where more rhythmic mechanisms might be expected to provide meaningful

information for duration related tasks48. This proposal might be evidenced in various simple ways, such as finding differences

in Vierordt’s law/regression to the mean in a retrospective timing task, when episodic memory recall is manipulated. Finally,

the accumulation of salient events defined by the thresholding mechanism in equation (8) can be seen as an approximation of

the amount by which the system’s prior beliefs P(zn,µn,Σn) update under a specific period of time. This view allows us to

define an analytical form of perceptual change using tools from information geometry, such as the Fisher’s information metric

between belief states73, and connects the fundamental and timeless notion of information to human perception of time, under

the Bayesian framework.

Further study required

Like any mathematical model of a biological process, the present implementation is accompanied by a number of limitations.

Since raw neural activation xn
t , and not prediction errors ξ n

t , is what propagates to higher layers in the network, the system

can maintain the effect of a new sensory event for an unrealistic amount of time. Hence, the dynamical behaviour of the

neural activity here should not be confused with biological neural activity, a fact that precludes predictions at that low level of

description. This issue could potentially be counterbalanced by the existence of short-term plasticity in equations (2-3) that

quickly reduces prediction errors, if ξ n
t is thought to represent neural activation. However, more investigation is required to

assess this relation.

In addition, the network presented here accounts for only visual experiences. It does not currently have the ability to

integrate information from different sensory modalities, to parse higher level visual information (such as the type of room of

the current environment), to perform basic spatial navigation, nor to pay attention to only a specific part of a given stimulus.

Nevertheless, given the nature of our predictive processing approach, and previous findings demonstrating the similar structure

of neural activity related to event transitions in different sensory modalities (combinations of modalities)56, we anticipate that

our approach is readily extendable to incorporate these additional features under a broader active inference approach21.

Finally, our human ability to reconstruct past experiences is considered closely intertwined to our ability to create completely

fictitious scenarios, which either could have happened, or might happen in the future74, 75. These two abilities are often referred

to together as mental time travel76. Research in this field indicates a strong connection between recalling past experiences,

semantic memory and imagining the outcomes in potential future scenarios77, 78, an undoubtedly crucial aspect of our decision

making21, 79. The mechanism for episodic memory recall presented here can readily encompass the notion of imagination,

if the selected root node of the tree structure Tr(.) is not taken from existing episodic memory, but it is simply filled by a

component zn
i , as in the case of the blank nodes depicted in Figure 4. Under this small modification, the recall mechanism

would trigger the generation of a tree where all remaining nodes are fulfilled based on prior (semantic) beliefs. Thus our model

presents a platform with the necessary components to investigate a wide range of theories related to memory and time such as

imagination80, dreaming81, 82, and hallucinations83, based only on such variations of how the episodic tree is constructed or

recalled. Such a platform would likely prove highly valuable for both psychological and neuroscientific work on these topics,

but also for the expanding fields of deep neural networks and reinforcement learning84.

Methods

Human experiment
Experimental procedure The human experiment was conducted using the online platform Amazon Mechanical Turk (MTurk).

The participants were asked to watch a single video using the full scale of their home computer monitor and then answer to a

series of questions including a report of the perceived duration of this video. Each participant completed a single trial that lasted

from 1 to 64 seconds. Any visual information regarding the real duration of the video was removed from all trials, apart from

a description of the video using the expression ‘very short’, applied to all video durations. 50% of the participants were not

aware that the experiment involved duration judgements before the final questionnaire (see the description of the tasks bellow).
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The platform The large number of participants required for this experiment (one participant per trial) makes it impracticable

for a typical lab setting. Amazon’s Mturk platform provides a satisfactory alternative approach85. It maintains a large and

diverse worldwide pool of about 500,000 potential subjects, with a large portion of this pool shown to be a good representation

of the general population of the United States86.

The tasks The task comprised a single trial with four different variations, one of which was randomly assigned to each

participant. These task variants were designed to allow for two different levels of cognitive load, as well as prospective and

retrospective duration judgements. Trials comprised three successive screens. In screen 1, participants were told they will see a

very short video and then, they will be asked a number of questions regarding the instructions given in Figure 9. In screen 2, the

selected video was automatically played without any controls or further instructions and, once finished, the screen 3 spawned

automatically with the corresponding questionnaire.

Is English your first language?

1-64 seconds Did you suspect (or know) that we will ask you something about the

duration of the video? Yes/No

Yes/No

If yes, were you counting inside your head during the video?

How did you find the initial description of the task?

Was the person recording the video travelling alone? 

How long do you think the video lasted for (in seconds)?

What time of the day was the video taking place

(just the hour from 0 to 24)?

Yes/No

Yes/No

Yes/No

Completely clear/..

(high load

cases)

prospective variant retrospective variant

Low

cognitive

load

High

cognitive

load

Screen 1

Screen 2 Screen 3

Were you counting inside your head during the video? (Please be 

honest, this will NOT affect your HIT performance.)

Instruction 1

Tell us how long you think the duration of the video was.

Note: Please try not to count inside your head while

watching the video.

Instruction 2

To the best of your ability, use the cues in the video to

determine whether the person recording the video is

traveling by themselves or with another person.

Instruction 1

To the best of your ability, use the cues in the video to

estimate approximately what time of day the video was

taking place.

Instruction 2

To the best of your ability, use the cues in the video to

determine whether the person recording the video is

traveling by themselves or with another person.

Figure 9. The main steps of the trials including instructions the video and the final questionnaire, for the four variants of the

task.

Participants Using the MTurk platform, we recorded data of 12,827 unique individuals who performed one of the four

variations of the experiment. Subjects were based in the United States, Canada, Australia, New Zealand, the EU and India and

they received a reward of US$0.25 per trial. Subjects were anonymous, over 18 years of age, they reported to have normal

or corrected-to-normal eyesight and they provided their consent by agreeing to the terms and conditions approved by the

University of Sussex’s research ethics committee (C-REC).

Out of the total number of participants, the results presented here excluded subjects who (1) were in the retrospective

condition but reported that they realized during the trial that they would need to respond about duration, or (2) reported after the

trial that they found the experiment instructions either ‘completely unclear’ or ‘somewhat unclear’. To reduce the effect of
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the uncontrollable factors in the environment of the experiment, participants were also removed if (3) the video playback was

different from the desired real duration for that trial, due to slow internet connectivity or any other factors. In particular, each

trial was rejected if either

playback time− real duration

playback time
≥ 1.2 or playback time− real duration≥ 0.8 seconds (12)

Furthermore, although participants of the prospective variant of the experiment were instructed to try not to count in seconds

during the trial, when they were asked in the final questionnaire they reported they could not resist counting. Counting was also

reported by a small group of participants of the retrospective variant, who suspected they will be asked about the duration of the

video. All these participants were also removed from the main sample.

After the exclusions (1-3), the sample comprised 8072 participants and, after removing 933 who reporting counting,

the remaining sample comprised 7139 participants. Removing outliers for the reported durations (any duration such that

report≤ real time
10 or report≥ 10×real time) left the final sample used for the results throughout this manuscript, which comprised

n = 6977 non-counting participants (and trials). Outliers were also removed from the group of counting participants (n = 809)

in order to produce the Supplementary Figure 10. Finally, we also recorded which participants were native English speakers, as

well as the screen and web browser sizes, to ensure the trials were run in a wide field of view. An overview of the demographics

of the final sample can be seen in Supplementary Figure 11. The resulting dataset can be found in the repository 1.

Computational model implementation

As an implementation of the inference model p(xn
t |x

n−1
t ), as depicted in Figure 2, we used a well-studied convolutional

network defined by Krizhevsky and colleagues87. Deep convolutional networks have hierarchical structure that resembles the

human/primate visual cortex69, 70, 88, 89 have been shown to perform very well in visual classification tasks87, 90. This network

was pre-trained to classify natural images into 1000 different categories of objects and animals91. It comprises 9 neuron layers

of which 5 hidden layers are connected with convolutions (conv1-5) and 3 layers with all-to-all connections (fc6-7 and output).

To predict the next activation pattern of each layer n, the method of ancestral sampling was used. Instead of sampling

from the joint distribution described in equation 4 directly, the algorithm initially samples from z∼ P
(

zn
t |z

n
t−1,z

n+1
t ,en

τ

)

. As

the variable zn
t is discrete, this distribution is approximated by a table that tracks the number of transitions to different values

of zn
t over time. Then, z is used to condition x ∼ p(xn

t |z) = N
(

µn
t,z,Σ

n
t,z

)

. To approximate the model evidence for each

Gaussian component, needed for equation (5), the multivariate Gaussian probability density function is used instead. Finally, to

approximate the initial covariance matrix Σn
i for each new component i, the overall covariance Σn

i for the layer n is tracked and

used.

Parameter tuning The hyper-parameters related to the generative model (Table 1) were obtained via optimization with

the double objective of (1) reducing the average surprise ∑
3600
t=0 ∑

8
n=1− logP

(

xn
t |z

n
t−1,z

n+1
t ,en

τ

)

and (2) maximizing clustering

accuracy in the components of the output layer z8. As a dataset, a 120-second video in an office environment was manually

labeled, in order to capture the most prominent object per frame. The optimization method used was the multi-objective

Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES)92. The parameters for the attention and recall mechanisms

were tuned following the principles of clow prosp < chigh prosp < cretrospective and εlow load < εhigh load, such that the overall relation

between tasks and cognitive load levels, shown in Figure 5B, is approximated.

Generative model parameters

kback kbase Q R Tsplit Tmerge Tplastic σ

0.1 0.2 0.0002 2.0 1.5 0.1 0.5 0.02

Attention parameters Recall parameters

clow prosp chigh prosp clow retro chigh retro r σrecall εlow load εhigh load

46 52 90 90 0.1 0.1 1 70

Table 1. Model hyper-parameters

Finally, the programming language used throughout the modeling implementation is Python 3.7 and the machine learning

library TensorFlow 1.14. The source code can be found on the repository 2. The analysis of the results was also performed in

Python 3.7. The scripts used for the analysis of the human data can be found on the repository that contains the human dataset,

while the scripts that perform analysis of the model behaviour, along with the resulting dataset of the computational model are

included in the repository of the model’s source code.

1Human dataset: https://github.com/zfountas/prospective-retrospective-dataset
2Source code of the model: https://github.com/zfountas/prospective-retrospective-model
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Supplementary Material

1 Further analysis for the effect of recall effort
Figure 8B of the main text illustrates that the relation between effort and accumulated events over time is consistent across

different levels of attention and it is non-monotonic. An explanation for this complex behaviour can be summarised as follows.

In high layers, where a small number of events occurs in a single episode leaving minimal prior knowledge for individual

components zn
k,t , the distribution Pchil.(z

n
k,t) is closer to the real number of recorded events. That is, when trying to recall how

many salient events happened during a memory, the richer this memory is in high-level contextual information, the more biased

the recall will be by the actual experience. On the other hand, the estimated Pchil.(z
n
k,t) has large variance in low layers, since

individual components are more likely to be used multiple times. Indeed, when ε = 1, only the ∼ 5% of the overall recalled

events corresponded to nodes from the original episode with particular components zn
k (black nodes in Figure 4), while when

ε = 70, the overall accuracy increased to more than ∼ 57%. In addition, the rate of recalled events showed an initial tendency

to approach the real number of recorded events, indicated by the bars on the right-hand side of the sub-figures in Figure 8.B.

This changed when ε > 7, where the first components of the convolutional layers were recalled, leading to a massive increase

in recalled events in these layers.

To further examine how recall effort interacts with attention, and affects the difference between the model’s prospective and

retrospective duration judgments, we ran simulations where low and high cognitive load trials were represented by different

values of the attention decay time constant c, used in equation (11). Low values of c cause the surprise threshold to decay faster,

hence denoting higher attention. Additionally, ε was set to 1 in trials with low cognitive load while, in the opposite case, it

was either also 1 or raised to 70. Clearly, when clow = chigh and if there is no effort difference, the rate of recalling events, and

therefore duration judgements, is identical in both cases. When attention is considered higher in low cognitive load cases,

i.e. clow < chigh, the slope between duration judgements resembles the one found in human prospective judgements shown in

Figure 5.B. The opposite slope (found in human retrospective judgements) can be achieved when higher effort is used in high

cognitive load trials. This interplay between attention and effort was robust for a wide range of values of c. In fact, the effect of

effort was significantly more visible in low layers of the network revealing the mechanism that leads to the different patterns of

Figure 6.

For more information and a visualization of the model’s behaviour, see Supplementary Figure 13

Cognitive load

Counting Not counting Both

Figure 10. Interaction in human duration reports tasks (pro/retrospective) and cognitive load for participants that reported they

were counting (A), not counting (B), or both cases together (C), having excluded the rejected trials as described in methods.

20/23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2020. ; https://doi.org/10.1101/2020.02.17.953133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.953133
http://creativecommons.org/licenses/by-nc/4.0/


Figure 11. Demographics of the human participants including geographic location and first language.
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Figure 12. Statistical properties of the model related to episodic memory recall, per scene type and cognitive load level. The

episodic memory model shows unique patterns for the 3 different scene types, although no single feature is clearly suitable by

itself or superior to alternative solutions to directly select the network layers conv1, conv3 and fc7 as the source of information

when estimating time in the corresponding scene types, as shown in Results. A: Standard deviation of recalled events per

second. Regardless of cognitive load, lower hierarchical layers show far greater variability and, thus, are more affected by the

prior of the overall number of events usually recorded. B: Number of unique components (different types of events) captured in

single episodes. Here, there is a similar overall pattern with A, although more individual components are recorded in cases of

high cognitive load. In addition, when comparing different scene types, the unique number of captured components is

negatively correlated with the standard deviation of the recalled events. C: Accuracy of recalls measured as the number of

episodic nodes (events) recalled with components assigned divided by the number of all events recalled in each episode. In

cases of low cognitive load only very high-level events can be recalled accurately and estimation is based almost entirely on

prior knowledge.
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Figure 13. Effects of attention on salient event accumulation and recall per layer, for the prospective and retrospective tasks

respectively. In accumulation and recall with low effort, small differences between clow and chigh are enough to replicate human

behaviour. However, under a high amount of effort, attention needs to be either significantly lower, in which case human results

can be replicated even when clow = chigh, or clow should become significantly lower. A: Slope between the number of events

using low- and high-load hyper parameters. B: The error between the resulting slopes of the computational model and the

slopes resulting from human time judgements. The green dots represent the points in the parameter space that were selected

and used in 5.
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Model Distributions Associated trainable parameters

Generative
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Table 2. Probability distributions and corresponding parameters associated with each of the two memory types (semantic in

green and episodic in orange) at time t.

Symbol Parameter description Training method

At() Transition probabilities table Event counter

Kn
t Number of components per layer Splitting and merging Eq. 6-7

V All episodic nodes Episodic formation Eq. 8

µn
t,i,Σ

n
t,i Statistics of Gaussian component i Kalman filter with short-term plasticity Eq. 2-3

θn Neural network weights and biases Back propagation

W (en
τ) Weights of episodic nodes Assignment of Pevidence(x

n
t ) value when event originally recorded.

µch,k,σch,k
Number of children nodes for

component k Calculated recursively after every new episodic node.

µn
ch,σ

n
ch

Number of children nodes for

layer n

Table 3. Parameters of the model that can be trained recursively in real-time, along with the training method used.
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