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Abstract. Haplotype Inference is a challenging problem in bioinformatics that
consists in inferring the basic genetic constitution of diploid organisms on the
basis of their genotype. This information allows researchers to perform asso-
ciation studies for the genetic variants involved in diseases and the individual
responses to therapeutic agents.

A notable approach to the problem is to encode it as a combinatorial problem
(under certain hypotheses, such as the pure parsimony criterion) and to solve
it using off-the-shelf combinatorial optimization techniques. The main methods
applied to Haplotype Inference are either simple greedy heuristic or exact meth-
ods (Integer Linear Programming, Semidefinite Programming, SAT encoding)
that, at present, are adequate only for moderate size instances.

We believe that metaheuristic and hybrid approaches could provide a better
scalability. Moreover, metaheuristics can be very easily combined with prob-
lem specific heuristics and they can also be integrated with tree-based search
techniques, thus providing a promising framework for hybrid systems in which
a good trade-off between effectiveness and efficiency can be reached.

In this paper we illustrate a feasibility study of the approach and discuss
some relevant design issues, such as modeling and design of approximate solvers
that combine constructive heuristics, local search-based improvement strategies
and learning mechanisms. Besides the relevance of the Haplotype Inference
problem itself, this preliminary analysis is also an interesting case study because
the formulation of the problem poses some challenges in modeling and hybrid
metaheuristic solver design that can be generalized to other problems.
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1 Introduction

A fundamental tool of analysis to investigate the genetic variations in a population
is based on haplotype data. A haplotype is a copy of a chromosome of a diploid
organism (i.e., an organism that has two copies of each chromosome, one inherited
from the father and one from the mother). The haplotype information allows to
perform association studies for the genetic variants involved in diseases and the
individual responses to therapeutic agents. The assessment of a full Haplotype Map
of the human genome is indeed one of the current high priority tasks of human
genomics [21].

Instead of dealing with complete DNA sequences, usually the researchers are
focusing on Single Nucleotide Polymorphisms (SNPs), which are the most common
mutations among haplotypes. A SNP is a single nucleotide site (allele) where exactly
two (out of four) different nucleotides occur in a large percentage of the population.

The haplotype collection is not an easy task: in fact, due to technological lim-
itations it is currently infeasible to directly collect haplotypes in an experimental
way, but rather it is possible to collect genotypes, i.e., the conflation of a pair of
haplotypes. Moreover, instruments can only identify whether the individual is ho-
mozygous (i.e., the alleles are the same) or heterozygous (i.e., the alleles are different)
at a given site. Therefore, haplotypes have to be inferred from genotypes in order
to reconstruct the detailed information and trace the precise structure of human
populations. This process is called Haplotype Inference and the goal is to find a set
of haplotype pairs so that all the genotypes are resolved.

The main approaches to solve the Haplotype Inference are either combinatorial
or statistical methods. However, both of them, being of non-experimental nature,
need some genetic model of haplotype evolution, which poses some hypotheses to
constrain the possible inferences to the ones compatible with Nature. In the case
of the combinatorial methods, which are the subject of the present work, a reason-
able criterion is the pure parsimony approach [8], which searches for the smallest
collection of distinct haplotypes that solves the Haplotype Inference problem. This
criterion is consistent with current observations in natural populations for which
the actual number of haplotypes is vastly smaller than the total number of possible
haplotypes.

Current approaches for solving the problem include simple greedy heuristic [4]
and exact methods such as Integer Linear Programming [3, 8, 9, 14], Semidefinite
Programming [11, 13] and SAT models [16, 17]. These approaches, however, at
present are adequate only for moderate size instances.

To the best of our knowledge, the only attempt to employ metaheuristic tech-
niques for the problem is a recently proposed Genetic Algorithm [22]. However, also
the cited paper does not report results on real size instances. Anyway, we believe
that metaheuristic approaches could be effective to this problem since they could
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provide a better scalability.
In this work we make a preliminary conceptual analysis on the use of meta-

heuristics for the Haplotype Inference problem. We start introducing the Haplotype
Inference problem in Section 2 and then we present two possible local search models
for the problem (Section 3) highlighting the possible benefits and drawbacks of each
model. Section 4 contains the description of metaheuristic approaches that, in our
opinion, could be adequate for Haplotype Inference. In Section 5 we consider the
role of constructive techniques in the hybridization with metaheuristics and, finally,
in Section 6 we discuss our proposals and outline future developments.

2 The Haplotype Inference problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of length
m that corresponds to a chromosome with m sites. Each value in the string belongs
to the alphabet {0, 1, 2}. A position in the genotype is associated with a site of
interest on the chromosome (e.g., a SNP) and it has value 0 (wild type) or 1 (mutant)
if the corresponding chromosome site is a homozygous site (i.e., it has that state on
both copies) or the value 2 if the chromosome site is heterozygous. A haplotype is a
string of length m that corresponds to only one copy of the chromosome (in diploid
organisms) and whose positions can assume the symbols 0 or 1.

2.1 Genotype resolution

Given a chromosome, we are interested in finding an unordered1 pair of haplotypes
that can explain the chromosome according to the following definition:

Definition 1 (Genotype resolution). Given a chromosome g, we say that the pair
〈h, k〉 resolves g, and we write 〈h, k〉 ⊲ g (or g = h ⊕ k), if the following conditions
hold (for j = 1, . . . ,m):

g[j] = 0 ⇒ h[j] = 0 ∧ k[j] = 0 (1a)

g[j] = 1 ⇒ h[j] = 1 ∧ k[j] = 1 (1b)

g[j] = 2 ⇒ (h[j] = 0 ∧ k[j] = 1) ∨ (h[j] = 1 ∧ k[j] = 0) (1c)

If 〈h, k〉⊲g we indicate the fact that the haplotype h (respectively, k) contributes
in the resolution of the genotype g writing h E g (resp., k E g). We extend this
notation to set of haplotypes and we write H = {h1, . . . , hl} E g, meaning that
hi E g for all i = 1, . . . , l.

1In the problem there is no distinction between the maternal and paternal haplotypes.
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Conditions (1a) and (1b) require that both haplotypes must have the same value
in all homozygous sites, while condition (1c) states that in heterozygous sites the
haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the haplo-
type values at a given site are predetermined in the case of homozygous sites, whereas
there is a freedom to choose between two possibilities at heterozygous places. This
means that for a genotype string with l heterozygous sites there are 2l−1 possible
pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are 〈(0110), (0011)〉 and 〈(0010), (0111)〉.

After these preliminaries we can state the Haplotype Inference problem as follows:

Definition 2 (Haplotype Inference problem). Given a population of n individu-
als, each of them represented by a genotype string gi of length m we are inter-
ested in finding a set R of n pairs of (not necessarily distinct) haplotypes R =
{〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 ⊲ gi, i = 1, . . . , n. We call H the set of haplo-
types used in the construction of R, i.e., H = {h1, . . . , hn, k1, . . . , kn}.

Of course, from the mathematical point of view, there are many possibility in
constructing the set R since there is an exponential number of possible haplotypes for
each genotype. However, the knowledge about the biological phenomenons should
guide the selection of the haplotypes used by constraining it through a genetic model.

One natural model to the Haplotype Inference problem is the already mentioned
pure parsimony approach that consists in searching for a solution that minimizes the
total number of distinct haplotypes used or, in other words, |H|, the cardinality of
the set H. A trivial upper bound for |H| is 2n in the case of all genotypes resolved
by a pair of distinct haplotypes.

It has been shown that the Haplotype Inference problem under the pure parsi-
mony hypothesis is APX-hard [14] and therefore NP-hard.

2.2 Compatibility and complementarity

It is possible to define a graph that express the compatibility between genotypes,
so as to avoid unnecessary checks in the determination of the resolvents.2 Let us
build the graph G = (G,E), in which the set of vertices coincides with the set of the
genotypes; in the graph, a pair of genotypes g1, g2 are connected by an edge whether
they are compatible, i.e., one or more common haplotypes can resolve both of them.
For example, the genotypes (2210) and (1220) are compatible, whereas genotypes
(2210) and (1102) are not compatible. The formal definition of this property is as
follows.

2In some cases, also a graph representing incompatibilities between genotypes can provide useful

information.
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Definition 3 (Genotypes compatibility). Let g1 and g2 be two genotypes, g1 and
g2 are compatible if, for all j = 1, . . . ,m, the following conditions hold:

g1[j] = 0 ⇒ g2[j] ∈ {0, 2} (2a)

g1[j] = 1 ⇒ g2[j] ∈ {1, 2} (2b)

g2[j] = 2 ⇒ g2[j] ∈ {0, 1, 2} (2c)

The same concept can be expressed also between a genotype and a haplotype as
in the following definition.

Definition 4 (Compatibility between genotypes and haplotypes). Let g be a geno-
type and h a haplotype, g and h are compatible if, for all j = 1, . . . ,m, the following
conditions hold:

g[j] = 0 ⇒ h[j] = 0 (3a)

g[j] = 1 ⇒ h[j] = 1 (3b)

g[j] = 2 ⇒ h[j] ∈ {0, 1} (3c)

We denote this relation with h 7→ g. Moreover with an abuse of notation we indicate
with h 7→ {g1, g2, . . . } the set of all the genotypes that are compatible with haplotype
h.

Observe that the set of compatible genotypes of a haplotype can contain only
mutually compatible genotypes (i.e., they form a clique in the compatibility graph).

Another interesting observation is the following. Due to the resolution definition,
when one of the two haplotypes composing the pair, say h, has been selected, then
the other haplotype can be directly inferred from h and the genotype g thanks to
the resolution conditions.

Proposition 1 (Haplotype complement). Given a genotype g and a haplotype h 7→
g, there exists a unique haplotype k such that h ⊕ k = g. The haplotype k is called
the complement of h with respect to g and is denoted with k = g ⊖ h.

Proof. The existence and uniqueness of k is a direct consequence of Conditions (1a)–
(1c).

3 Local Search models for Haplotype Inference

We start our conceptual analysis of metaheuristic approaches for Haplotype Inference
with the basic building blocks of local search methods. Indeed, in order to apply
this class of methods to a given problem we need to specify three entities, namely
the search space, the cost function and the neighborhood relation, that constitute
the so-called local search model of the problem.
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In the following subsections we consider some natural choices for the search space
and the cost function, and we try to envisage their benefits and drawbacks on the
basis of the general experience on different problem domains. Instead, the discussion
of the possible neighborhood relations is provided in the next section together with
the general strategies for tackling the problem.

3.1 Search space

As the search space for the Haplotype Inference problem we could either adopt a
complete or incomplete representation as explained below.

Complete representation: This search space is based on a straightforward en-
coding of the problem. In this representation we consider, for each genotype
g, the pair of haplotypes 〈h, k〉 that resolves it. Therefore in this representation
all the genotypes are fully resolved at each state by construction. The search
space is therefore the collection of sets R defined as in the problem statement.

Notice that, thanks to complementarity w.r.t. a genotype just one haplotype
can be selected to represent a pair of resolvents. Moreover, since the pair is
unordered, the haplotype pair 〈h, k〉 is equal to 〈k, h〉, therefore we can break
this symmetry by selecting the haplotype h as the representative for the state
if h ≺ k, where the symbol ≺ indicates the lexicographic precedence of the two
strings, otherwise we select k as the representative.

Incomplete representation: In the incomplete representation, instead, we deal
with sets of haplotypes that are the elements of the set H. An element h ∈ H

is a potential resolvent of a genotype g, and it actually resolves it only whether
its companion k, so that 〈h, k〉 ⊲ g, also belongs to H. As a consequence, in
this representation not necessarily all the genotypes have a resolvent and the
search space is the powerset P(

⋃

n

i=1
Ai), where Ai = {h|∃k〈h, k〉⊲gi} is the set

of all potential resolvents of a genotype gi of the problem. This formulation is
an incomplete representation of the problem, since the genotype resolution is
only potential and a solution of the problem must be constructed on the basis
of the haplotypes selected in a given state.

The complete representation is in general more adequate for hybridization with
constructive methods since it maintains the feasibility (i.e., the resolution of all
genotypes) at every state of the search. For example it makes it possible to employ
local search in a GRASP-like manner [20] or to hybridize it with more informed
strategies making use problem-specific knowledge.

On the other hand, in some problem domains, this type of representation could
constrain too much the search so that it is difficult to explore different areas of the
search space because of the impossibility to relax feasibility constraints. For this
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reason, sophisticated metaheuristic approaches must be employed to improve the
effectiveness of methods based on this representation.

Moreover, this formulation makes the neighborhood design more difficult since
the search can move only from and to fully resolved sets of genotypes. A possibility
to deal with this complication could be the fine-grain hybridization with declarative
neighborhood formulations that explicitly encode the feasibility constraints (e.g.,
those expressed through Constraint Programming or Integer Linear Programming).

On the contrary, the incomplete representation does not guarantee feasibility
at every search step since in a given state it is not mandatory to resolve all the
genotypes. As a consequence, it commonly happens that in this kind of search
spaces a great part of the search effort focuses in uninteresting areas of the search
space just to pursue a feasible solution.

Nevertheless, this representation permits more freedom to explore different areas
of the search space and a higher degree of flexibility. For example, it allows an easier
design of neighborhood relations.

3.2 Cost function

As for the cost function we identify different components related either to optimality
or to feasibility of the problem.

A natural component is the objective function of the original problem, that is
the cardinality |H| of the set of haplotypes employed in the resolution.

f1 = |H| (4)

In the incomplete representation, however, we must also include the so-called
distance to feasibility, which can simply be measured as the number of genotypes
not resolved in the current solution.

f2 = |{g|g is not resolved from haplotypes in H}| (5)

Moreover in both formulations we might want to include some heuristic measure
related to the potential quality of the solution. To this respect, a possible measure
could be the number of genotypes resolved by each haplotype.

f3 =
∑

h∈H

|{g|g can be resolved by haplotype h}| (6)

Components f1 and f2 have to be minimized in the cost function whereas, in
contrast, f3 must be maximized. To simplify the formulation we prefer to deal only
with minimization components, therefore we consider the function f ′

3
= n|H| − f3

(n|H| is an upper bound on function f3) as the component to be included in the
cost function.
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The cost function F is then the weighted sum of the three components:

F = α1f1 + α2f2 + α3f
′

3 (7)

in which the weights α1, α2 and α3 must be chosen for the problem at hand to reflect
the trade-offs among the different components.

Notice that α2 can be zero in the case of the complete representation of the
search space. Conversely, α2 must be a value much greater than the possible values
of the other components in the case of the incomplete representation in order to
reflect the importance of feasibility.

4 Metaheuristic approaches

In this section we discuss some possible metaheuristic approaches to tackle the prob-
lem and we emphasize their strengths and weaknesses.

In the following discussion we will assume states encoded with the incomplete
formulation, even if most of the considerations holds also for the complete formu-
lation. Indeed, the difference between the two is that the latter is associated to a
cost function in which the distance from a feasible solution is not considered, as all
states are feasible.

In general, the problem can be solved either by trying to solve it for a given
cardinality k = |H|, progressively decreased during search, or by trying to mini-
mize |H| while searching at the same time a set of haplotypes that resolve all the
genotypes. The first approach is often preferred over the former as it can be easily
reduced to a sequence of feasibility problems (see, for example, the case of graph
coloring problem family [10]). Nevertheless, this method might require a very high
execution time, because a quite long series of feasibility problems has often to be
solved. In the next subsections we detail some promising formulations, using either
of the mentioned approaches, which can be effectively employed by metaheuristic
strategies such as Tabu Search, Iterated local search, Variable neighborhood search,
etc. [2]. Indeed, the choice of the actual metaheuristic is in general orthogonal with
respect to the formulation.

4.1 Iterative minimization of the number of haplotypes

This approach is based on the classical method of iteratively solving the problem
by decreasing values of k = |H|. Hence, the problem is reduced to find k different
haplotypes such that all the genotypes can be resolved. A solution to the problem is
represented by a set of distinct haplotypes. Neighborhoods can be defined in many
ways; in the following we discuss what we believe are the most promising ones.
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4.1.1 Hamming neighborhoods

As it is often the case with solutions encoded as boolean variables, also in this
case we can consider a neighborhood based on Hamming distance. In particular, a
good trade-off between exploration and execution time is the 1-Hamming distance
neighborhood w.r.t. each haplotype in the current solution. The exploration of such
a neighborhood has a time complexity of O(nk), where k is the number of haplotypes
and n the number of sites per haplotype. Besides its low time complexity, this
neighborhood has the advantage of making it very easy to generate more complex
neighborhoods just by concatenating 1-Hamming distance moves. The drawback of
this choice relies in its local character of exploring neighboring solutions, that might
not help search escape from areas in which it has been attracted.

4.1.2 Deletion/insertion

A complementary neighborhood structure is the one that does not pose restrictions
on the distance among solutions. The neighborhoods based on deletion/insertion
consist in deleting an haplotype in the solution and inserting a new one. The crite-
ria upon which haplotypes are deleted and inserted define the actual neighborhood;
moreover, the way the neighborhood is explored represents another degree of free-
dom.

The most general neighborhood relation would be to try the move deletion/in-
sertion for all the possible combinations, i.e., for each haplotype in the solution, try
to substitute it with each possible new haplotype and check the corresponding cost
function. Since the number of haplotypes with n sites is 2n, this choice is in general
not feasible. A more practical solution, instead, consists of choosing the new haplo-
type among the ones stored in a kind of candidate set of given cardinality. Among
the possible ways of generating the candidate set we may distinguish between ran-
dom and heuristically generated. The general neighborhood relation can thus be
defined as follows:

N(s) = {M |M = N(s) \ s′ ∪ z, s′ ∈ N(s), z ∈ C} (8)

where s is the current solution and C the candidate set. Both the elements and
cardinality of C can be kept constant or varied during search. Since the complexity
of enumerating all the neighborhood is O(|H| · |C|), an efficient balance between
exploration and time complexity has to be set.

4.1.3 A hybrid strategy: Iterated local search

The characteristics of the previous described neighborhoods can be combined in
a single metaheuristic such as Iterated local search [15]. This local search meta-
heuristic uses the first neighborhood (1-Hamming) with a local search metaheuristic
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(e.g., hill climbing, tabu search, etc.) until stagnation, then a run of another local
search method with the insertion/deletion neighborhood is performed in order to
move away from the attractor (perturbation phase). The strategy is described in
algorithm 1.

Algorithm 1 Two neighborhoods Iterated Local Search

s0 ← GenerateInitialSolution()
s∗ ← LocalSearch(s0) with 1-Hamming neighborhood
while termination conditions not met do

s′ ← LocalSearch(s∗) with I/D neighborhood {perturbation phase}
s∗

′

← LocalSearch(s′) with 1-Hamming neighborhood
s∗ ← ApplyAcceptanceCriterion(s∗, s∗

′

, history)
end while

4.2 Minimization and feasibility approach

The second approach for tackling the Haplotype Inference problem defines a search
strategy that tries to minimize |H| and resolve all the genotypes at the same time.
In such a case, it is possible that some genotypes are not resolved during search,
therefore also states which are infeasible w.r.t. the original problem formulations are
explored during search. We will illustrate two possible strategies for implementing
metaheuristics based on this problem formulation.

4.2.1 Dynamic local search

The core of a possible local search strategy for this model strongly relies on an ef-
fective penalty mechanism that should be able to guide the search toward ‘good’
(i.e., at low values of |H|) and feasible (i.e., all genotypes are resolved) states. A
very effective technique for achieving such a search guidance is what is usually called
Dynamic local search [10], in which the cost function is composed of two (or more)
components, each with a weight that is dynamically varied during search. In formu-
las, referring to the cost functions defined in section 3.2:

F = w1f1 + w2f2 (9)

= w1|H|+ w2|{g|g is not resolved from haplotypes in H}|

The coefficients w1 and w2 are varied during search by trying to explore feasible
states with |H| as low as possible. Effective techniques for achieving this goal can be
inspired by Guided local search, as discussed in [2] and, more in general, Dynamic

11



local search strategies described in [10]. The high level description of this meta-
heuristic is reported in algorithm 2. A very effective scheme used for weight update
is the shifting penalty method, that, in this case, can be implemented as follows.
First of all, w1 and w2 have to be initialized in such a way that the contribution
of w2f2 (feasibility) is higher than the optimization contribution of w1f1. Then,
during search, if the set of haplotypes resolve all the genotypes for K consecutive
iterations, w2 is reduced (by a small random factor γ > 1), otherwise it is increased
(by a comparable value).

Algorithm 2 Dynamic Local Search for Haplotype Inference problem

s← GenerateInitialSolution()
while termination conditions not met do

s← LocalSearch(s)
Update(weights w1, w2)

end while

4.2.2 Adaptive constructive approach

Another very promising approach, which deals with both complete and incomplete
representation of the search space, is inspired by Strategic oscillation [6] and Squeaky
wheel search [12]. The idea is to expand and reduce the set of haplotypes in solution
by trying to minimize the combined cost function F defined above. The difference
between dynamic local search is that the focus of this algorithm is based on the
selection of elements to be deleted and to be inserted, i.e., the critical decision is
on the delete and insert sets. Several effective techniques can be employed, such
as the already mentioned Strategic oscillation and Squeaky wheel search; moreover,
some incomplete iterative constructive heuristics could be effectively applied, such
as Incomplete dynamic backtracking [19].

As an example, we briefly discuss one of the possible implementations of such
a strategy for tackling the Haplotype Inference problem. In this implementation,
haplotypes are added one at a time and we use a probabilistic criterion for accepting
the new haplotype. As shown in algorithm 3, we start with an empty set of haplo-
types and we incrementally add one element at a time. The criteria upon which the
candidate set is built and the new haplotype is chosen can be based on heuristics or
randomness or both. The new element is always added to the current solution if it
decreases the cost function (i.e., the overall quality of the solution increases); even
if it does not improve the current solution, it can be added anyway in a simulated
annealing fashion.

When the cardinality of |H| reaches its maximum value (parameter of the algo-
rithm) some haplotypes are removed from the solution and the insertion restarted
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on this smaller set. As one can easily see, there are many choices a designer has
to make and the implementation and comparison of these techniques is subject of
ongoing work.

Algorithm 3 Adaptive constructive metaheuristic for the Haplotype Inference prob-
lem

s← ∅ {Initial solution is an empty set}
while termination conditions not met do

s′ ← s ∪ h′, h′ ∈ C {Choose haplotype to add from the candidate set}
∆← F (s′)− F (s)
if ∆ < 0 then

s← s′

else
With probability p(∆, history): s← s′

end if
if |H| > maxCard then

Delete q haplotypes from s

end if
end while

5 Constructive procedures for initial solutions

Constructive heuristics produce often an important contribution to the effectiveness
of the metaheuristic. Initial sets of haplotypes can be constructed on the basis of
several heuristics. For instance, variations of the Clark’s algorithm and the other
rule-based methods described in [7] can be employed. Moreover, some SAT/Con-
straint Programming-based techniques can be used to reduce the search space for
the initial solution construction.

One critical factor the designer has to take into account is whether to prefer
small |H| over number of resolved genotypes or viceversa. In the first case, a better
choice would be to start from an empty set, while in the second a complete set
(corresponding to the complete formulation) would be preferable. Furthermore,
constructive procedures should also be employed for generating the candidate sets,
as this could make the search more effective.

6 Discussion and future work

We have presented a feasibility study on the application of metaheuristics to the
Haplotype Inference problem. The main purpose of this work was to point out
critical design issues about the problem in order to guide future developments and
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to foster further research on metaheuristic approaches to this problem. Indeed,
we believe that the Haplotype Inference problem could become a relevant problem
subject of application of metaheuristic techniques. However, besides the relevance
of the Haplotype Inference problem itself, this preliminary analysis has posed some
challenges in modeling hybrid metaheuristic solver design that can be generalized to
other problems.

The result of this analysis is in some sense a roadmap of the work that has still
to be done. The first steps consist in implementing the described metaheuristic
solvers for the problem and evaluating them on some benchmarks. To this respect
we plan to use a set of publicly available datasets (simulated or extracted from
the HapMap project), which are provided by J. Marchini at the website http:

//www.stats.ox.ac.uk/∼marchini/phaseoff.html.
Afterwards, we will investigate the ways in which domain specific knowledge can

be integrated in the metaheuristics. As an example, it is possible to easily construct
(in)compatibility relations between genotypes and it will be interesting to exploit
this information to make the search more effective. Other ways to integrate domain
specific information is through the hybridization with constructive techniques or
with other search paradigms (e.g., Constraint Programming [1]).

Finally, in future work we intend also to take into consideration different kind of
metaheuristics such as population-based algorithms (e.g., Ant-Colony Optimization
[5] or Memetic algorithms [18]).

Some of the metaheuristics described in this paper have been already imple-
mented and subject of ongoing testing. We are currently designing and implementing
advanced metaheuristics for the complete and incomplete formulation.

Appendix: Further observations on the problem

To the best of our knowledge, there have been no attempts to exploit structural
properties of the problem which can be deduced from compatibility graphs, or other
problem representations. In this section, we present a reduction procedure that
starts from a set of haplotypes in the complete representation and tries to reduce its
cardinality by exploiting compatibility properties of the instance. Other heuristics
based on graph representation of the problem are subject of ongoing work.

6.1 Haplotype cardinality reduction

Let us illustrate this property with an example. Consider the following set of geno-
types, which corresponds to the compatibility graph in Figure 1.
g1 : (2210212) g3 : (1212122) g5 : (1202201)
g2 : (2112110) g4 : (1222122)
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Figure 1: Compatibility graph

Now consider the following set of haplotypes that resolves all the genotypes
g1, . . . , g5. The set consists of 8 distinct haplotypes; genotypes currently resolved by
a given haplotype are denoted by bold typeface in the resolvent list (i.e., we write g
if g D h ∈ H).

g1 ⊳

{

a = (1110110) 7→ {g1,g2, g3, g4}

b = (0010010) 7→ {g1}

g2 ⊳

{

c = (0111110) 7→ {g2}

a = (1110110) 7→ {g1,g2, g3, g4}

g3 ⊳

{

d = (1111101) 7→ {g3, g4}

e = (1010110) 7→ {g1,g3, g4}

g4 ⊳

{

f = (1101101) 7→ {g4,g5}

p = (1010101) 7→ {g3,g4}

g5 ⊳

{

f = (1101101) 7→ {g4,g5}

q = (1000001) 7→ {g5}

Notice that the haplotype a = (1110110), resolving g1, is compatible also with
genotypes g2, g3 and g4 and, as a matter of fact, it resolves g2. This configuration
is depicted in the bipartite graph of Figure 2 (dashed edges between genotypes
represent genotype compatibility) in which the haplotypes are represented by square
nodes, the compatibility between haplotypes and genotypes is represented by solid
edges and a bold edge represents the current resolution of a genotype by a haplotype.
We will call this graph extended (compatibility) graph. The constraint on genotypes
resolution is mapped onto the extended graph by imposing that every genotype
node must have (at least) two bold edges. The goal of the reduction procedure is to
try to decrease the number of distinct haplotypes, i.e., the number of square nodes
while satisfying the resolution constraint. The intuition behind the procedure is
that a possible way of reducing the haplotype number is to resolve a genotype by
a haplotype that is compatible, but not currently resolving it, i.e., changing an arc
from solid to bold. Of course, this move must be followed by repairing moves in the
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Figure 2: Haplotype resolution graph

graph so that the state is still feasible.These moves consists in adding one or more
haplotypes and relinking some nodes.

From the situation described above, we can use the resolvent of g1 to resolve g3

or g4, however the situation is different in the two cases. For example, if we use the
resolvent a of g1 to resolve g3, then the situation will become:

g3 ⊳

{

a = (1110110) 7→ {g1,g2,g3, g4}

r = (1011101) 7→ {g3, g4}

As an effect of the reduction, the total number of haplotypes employed in the
solution has been decreased by 1, since now haplotypes d and e resolving g3 are
replaced by a, which was already a member of the haplotype set, and a new haplotype
r (see Figure 3).

Instead, if we use the resolvent a to resolve g4 we obtain the following situation
(see Figure 4):
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Figure 3: The haplotype resolution graph after the reduction of g3

g4 ⊳

{

a = (1110110) 7→ {g1,g2,g3,g4}

s = (1001101) 7→ {g4}

Differently from the previous reduction, in this case the number of haplotypes
in the solution has not changed. The reason of this is that the haplotype f was
already shared between the resolutions of g4 and g5, therefore the reduction operation
removes one haplotype but it introduces also a new one, leaving the total number
of haplotypes unchanged.

The situation of the example can be generalized in the following proposition.

Proposition 2 (Haplotype local reduction). Given n genotypes G = {g1, . . . , gn}
and the resolvent set R = {〈h1, b〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 ⊲ gi. Suppose there
exist two genotypes g, g′ ∈ G such that:

g ⊳

{

h 7→ {g, g′, . . .}

k 7→ {g, . . .}
, g′ ⊳

{

h′ 7→ {g′, . . .}

k′ 7→ {g′, . . .}
(10)

and h 6= h′, h 6= k′, h′ E A, k′ E B.
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Figure 4: The haplotype resolution graph after the reduction of g4

The replacement of 〈h′, k′〉 with 〈h, g′ ⊖ h〉 in the resolution of g′ is a correct
resolution that employs a number of distinct haplotypes according to the following
criteria:

• if |A| = 1 and |B| = 1, the new resolution uses at most one less distinct
haplotype;

• if |A| > 1 and |B| = 1 (or symmetrically, |A| = 1 and |B| > 1), the new
resolution uses at most the same number of distinct haplotypes;

• in the remaining case the new resolution uses at most one more distinct hap-
lotype.

Proof. The proof of the proposition is straightforward. The resolution is obviously
correct because h is compatible with g′ and g′ ⊖ h is the complement of h with
respect to g′.

Concerning the validity of the conditions on the cardinality, let us proceed by
cases and first consider the situation in which g′ ⊖ h does not resolve any other
genotype but g′.

18



If |A| = |B| = 1, then h′ and k′ are not shared with other genotype resolutions
so they will not appear in the set H after the replacement, therefore since in the
new resolution h is shared between g and g′ the cardinality of H is decreased by
one.

Conversely, if one of the sets |A| or |B| consists of more than a genotype and the
other set of just one genotype, there is no guarantee of obtaining an improvement
from the replacement. Indeed, since one of the two haplotypes is already shared with
another genotype there is just a replacement of the shared haplotype with another
one in the set H.

Finally, when |A| > 1 and |B| > 1 both h′ and k′ are shared with other genotypes
therefore the replacement introduces the new haplotype g′ ⊖ h in the set H.

Moving to the situation in which g′ ⊖ h resolves also other genotypes, the same
considerations apply; additionally, given that g′ ⊖ h is already present in H, the
number of distinct haplotypes employed in the resolution is decreased by one. For
this reason the estimation of the changes of |H| is conservative.

Note 1. Perhaps some additional observation could be made in the case of homozy-
gous genotypes g ⊳ 〈h, k〉.

A preliminary experimental analysis on the application of the haplotype local
reduction shows that the results achieved are very promising.
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