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A Preliminary Examination of End Effects in Polyelectrolyte 
Theory: The Potential of a Line Segment of Charge 
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ABSTRACT: The potential, ICT, of a line segment of charge is calculated in the Debye-Huckel approximation. 
We determine ICT as a function of segment length and the position of the test charge. If the test charge is 
near the line segment and the length of the line segment of charge is large relative to the screening length, 
qT is well approximated by the electrostatic potential of an infinite line of charge. When the test charge is 
far from the line segment, qT reduces to the point charge limit. 

Recently, considerable attention has been devoted to 
elucidating the properties of the line of charge model of 
polyelectrolyte The infinitely long line of 
charge model has been employed to calculate the colligative 
properties of dilute polyelectrolyte the diffu- 
sion constant of a mobile ion in the presence of a polye- 
l e c t r ~ l y t e , ~ , ~  and the expansion parameter, 2, of the ex- 
cluded volume theory.6 We note, however, that real po- 
lyions are of finite size; as such, it would be quite useful 
to  determine the magnitude of end effects on the elec- 
trostatic potential arising from a finite line of charge. 
Hence, a partial motivation of the present work is to de- 
termine when the replacement of the potential of the line 
segment of charge by that of an infinite line is justified and 
when it is not. We also note that the line segment of 
charge may perhaps be a plausible model for low molecular 
weight DNA and helical poly(g1utamic acid) a t  low to 
moderate ionic strengths. Thus, this paper is a preliminary 
step toward understanding the dependence of polyelec- 
trolyte behavior on chain length. 

If the length of the line segment of charge is large rel- 
ative to the screening length and if the test charge is near 
the source, it seems intuitively reasonable that the elec- 
trostatic potential should be well approximated by the 
infinite line of charge result. However, when the test 
charge is far from the line segment of charge, the line 
segment should appear as a point charge. In the context 
of the Debye-Huckel approximation, verification of the 
above conjectures will be presented in what follows. 

Consider a uniformly charged line segment of length L 
immersed in bulk solvent. It is assumed that each infin- 
itesmal piece interacts with the test charge via a screened 
Coulomb potential. For discussions concerning the ap- 
plicability of an effective charge density and counterion 
condensation, we refer to the l i t e r a t ~ r e . ’ - ~ , ~ - ~  

Let the line segment of charge lie on the z axis, in the 
cylindrical coordinate system (r,O,z), and let one end of the 
line segment be located at  z = 0. Whereupon, the poten- 
tial, #T, felt at a point r = (r,B,z) by a test charge is given 
by 

@ L exp(-K[r2 + ( z  - z ’ ) ~ ] ~ / ~ )  
(1) 

[ r2  + ( z  - ~ ’ ) ~ ] 1 ’ 2  
1c~(r) = K J  dz‘ 

*Address correspondence to this author at the Department of 
Chemistry, Louisiana State University, Baton Rouge, LA 70803. 

with @ 5 charge per unit length of the line segment and 
D2 --= bulk dielectric constant. K-’ is the Debye screening 
length and is defined by 

Here, e is the protonic charge. The summation extends 
over all the ionic species ‘‘2’ in solution; Ci is the concen- 
tration of species “i’’ in ions per cm3; p i  is the valence of 
the ith species. kg is Boltzmann’s constant, and T is the 
absolute temperature. 

It is convenient to define the dimensionless interaction 
energy !bd; $‘d is related to $T through the relation J/d = 

The test charge can either be positioned between the two 
ends of the line segment, i.e., 0 5 z I L,  or below or above 
an end of the segment, i.e., z < 0 or z > L. By symmetry, 
it is obvious that the two latter situations are physically 
equivalent. 

t-le!bT/kB? 5 = JePl/kBTD2. 

Let z” = z - z’, it then follows from eq 1 that 

Similarly when z < 0 
1cdb = &”’“’ dz!/ expj-K[r2 + z”2]1/21 

[r2 + 2”2]1 /2  

expj-K[r2 + z ’ ’ ~  
I (4) [r2 + ~ ” 2 ] 1 / 2  

i‘z’ dz 

While it is apparent from eq 3 and 4 that the potential 
$d must vary continuously from the 0 I z 5 L case to that 
when z < 0, we find it conceptually useful to examine the 
two situations separately. As the 0 I z I L configuration 
is most closely related to the infinite line result, it is treated 
first. 

At this juncture, a few qualitative observations on cer- 
tain limiting forms of +d are necessary. First of all, it must 
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$d = $(Kr,K(L - 2)) + $(Kr,KZ); 0 5 Z 5 L 

we need merely elucidate the behavior of $(Kr,KL‘) to un- 
derstand the properties of $d. In what follows, the reported 
values of $(Kr,KL’) were determined numerically. 

If we let KL‘- m with Kr fixed, eq 5b becomes 

exp(-[K2r2 + z’2]1/2] 

[2 r2  + z’2]1/2 $(Kr,m) = L” dz’ (ea) 

$(Kr,m) = KO(Kr) (6b) 

Here, KO is a modified Bessel function of the second kind.1° 
$(Kr,m) is the dimensionless interaction energy of a test 
charge and half-line of charge. 

In Figure 1 we plot $(Kr,KL)/$(Kr,m) as a function of Kr; 
each curve represents a fixed value of KL. When 
$(Kr,KL)/+(Kr,a) = 1, the interaction energy of the test 
charge and line segment of length L is equivalent to that 
of the half-line of charge. As the ratio $(Kr,KL)/$(Kr,m) 
decreases, the less the interaction energy resembles that 
of the half-line of charge. For a fixed value of KL, the 
smaller the ratio of r is to the screening length (i.e., small 
Kr) the closer the ratio $(Kr,KL)/$(Kr,m) is to unity. Bas- 
ically, as r - 0 the test charge probes that part of the 
interaction energy, common to line segments and half-lines, 
responsible for the short range type of divergence discussed 
earlier. An analytical demonstration that 

lim $(Kr,KL)/$(Kr,m) = 1 
K-0 

K,L fixed 

is presented below. 
Let us rewrite $(Kr,KL) in eq 5b by 

L exp(-K[r2 + z ’ ~ ] ~ / ~ )  
$(Kr,KL) = 1 dz‘ ( 7 4  

0 [rz + z’2]1/2 

Setting t 2  = r2 + z ’ ~  

\ 1 

01 I I I I I 
0 1 2 3 

Kr 

Figure 1. The ratio $(Kr ,KL) /$ (KT ,m)  is plotted as a function of 
Kr. KL is fixed along a given curve. 

be recognized that there are two kinds of divergences in 
the potential of an infinite line of charge. One type arises 
only when K = 0 and r is finite and is due to the long range 
nature of unscreened electrostatic interactions; Le., at  zero 
salt, a test charge interacts strongly with the entire infinite 
line of charge. Thus, there is a uniform, infinite back- 
ground potential. This particular effect is eliminated at  
finite K .  The second kind of divergence is due to a short 
range effect and occurs as r - 0. I t  is a result of the 
interaction of the test charge with those parts of the line 
of charge having z components of position near those of 
the test charge. The potential is proportional to -In r and 
is independent of K for sufficiently small r. It is precisely 
the short range part of the interaction energy that the line 
segment and infinite line of charge have in common. 
Parenthetically, we note that the “Gaussian Pillbox” me- 
thod of electrostatics gives the short range part of the 
potential of an infinite line of charge in a salt free solu- 
tion.’l Consequently, we restrict our discussion to nonzero 
values of K .  

Provided that K # 0, we can rewrite eq 3 as 
+d = $(KrJ(L - 2)) + $(Kr,KZ) ( 5 4  

where 

As expected, there are three characteristic lengths that 
determine $d: Kr, K(L - z ) ,  and K Z .  Physically, $(Kr,KZ) is 
the interaction energy of a test charge with that portion 
of the line segment of charge lying on the negative z axis. 
In a similar fashion, $(Kr,K(L - z ) )  is the interaction energy 
of the test charge and the part of the line segment along 
the positive z axis. Since 

lim $(Kr,KL) - -In r (ref 12)  (74  
K-0 

K,L fixed 

lim KO(Kr) - -In Kr 
K i - 0  

K fixed 

Consequently, it follows immediately from eq 7c, 6b, and 
8 that 

lim $(Kr,KL)/$(Kr,a) = 1 (9) 
K-0 

K,L fixed 

Note that for Kr fixed, larger values of KL result in ratios 
of +(Kr,KL)/$(Kr,m) closer to unity; i.e., the longer the length 
of the line segment relative to the range of the interaction, 
the more closely the potential resembles that of the 
half-line of charge. 

In the limit Kr - 03, it  is trivially demonstrated thatlo 

For the convenience of the reader, in Figure 2 we plot 
KO(Kr) as a function of Kr. 

Upon moving the test charge further and further away 
from the line segment of charge, $d, defined in eq 5a, 
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1 2 3 
K r  

Figure 2. The modified Bessel function, KO(Kr), is plotted as a 
function of Kr. 

should approach the point charge limit. 
Define $, by 

By hypothesis Kr >> KL,  thus we can neglect the variation 
of the integrand with z ,  therefore 

$, - e - K r / r  @(Kr) (1lc) 

In Figure 3, R,  = $,I@ is plotted as a function of Kr; K L  
is fixed along a given curve. Observe that $ r / ~  5 1. The 
physical origin of this inequality is explained below. For 
a given total charge, the lines of flux from a point charge 
are more concentrated t,han those of the line segment of 
charge. As the charge density decreases as L increases for 
a fixed total charge, Q, one finds, a t  fixed Kr and Q, the 
ratio R,  to be a decreasing function of KL.  Finally, it is 
an immediate consequence of eq 7c and 1'Hospital's rule 
that  

lim $,,/a - 0 
K F O  

x,L fixed 

The behavior of the potential, $db, given in eq 4, is 
qualitatively different if the test charge lies below (or 
above) an end of the line segment (the z < 0 or z > L case). 
Notice that there is no singularity at r = 0; an essential 
feature of the line of charge is entirely absent. Moreover 
the potential more rapidly approaches the point charge 
limit than $d (eq 3) does. This is clearly demonstrated in 
Figure 4 where we plot 
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I I I I I I 

K I  

Figure 3. The ratio L - ' $ ( K r , K L ) / @ ( K T )  is given as a function of 
Kr. KL is constant along each curve. 

0 
0: 

Figure 4. The quantity Ro = L-l($(Kr,K(L + 121)) - $ ( K ? , K I Z I ) } / @ ( K ( P  

+ z ~ ) ' / ~ )  is presented as a function of Kr. On any particular curve, 
the values of KZ and K(L + z )  are constant x d  are denoted by the 
quantity ( K ) z ) , K ( L  + 121)). 

as a function of Kr. Ro is the ratio of the potential of a line 
segment of charge to that of a point charge located at  
(O,O,z). It is easy to show that 
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lim Ro = 1 
K F m  

and 

Macromolecules 

Z 
lim Ro = -eKZ{E1(Kz) - &(K(L + Iz l ) ) )  
K M  L (14) 

where E l ( x )  is the exponential integral.1° 
In Figure 4, K Z  = 0.4 on the solid lines, KZ = 1.0 on the 

dashed lines, and KZ = 4.0 on the dot-dashed lines. Along 
each curve, the value of K L  is fixed. For a given Kr and K Z ,  

the smaller KL is, the more point-like the line segment 
appears, Le., Ro is closer to unity. If K L  is fixed, the be- 
havior of the curves in Figure 4 is a consequence of the fact 
that Ro must be a nondecreasing function of the distance 
between the test charge and the line segment. As the test 
charge moves further from the line segment, the more 
closely #db resembles the potential of a point charge. Thus, 
when Kr = 0, if K Z ~  > K Z ~  

R O ( u  = O , K Z * )  > RO(Kr = O , K Z ~ )  at fixed KL (15) 

In fact, 
RO(Kr = O , K Z ,  = 0) = 0 

Holding KL constant, a given radial displacement of the 
test charge results in a proportionately larger increase in 
the distance from the line segment when KZ is small than 
when KZ is large. This implies that if K Z ~  < K Z ~  and KL is 
fixed 

dRO(Kr,KZ1) dRo(Kr,KZZ) 
2 a Kr a Kr I 0 where K Z ~  5 KZ? 

Therefore, since the slope of the K Z ~  curve is greater than 
or equal to the slope of the K Z ~  curve, it follows from eq 
15 that the two curves must cross once. This is clearly seen 
in Figure 4. 

At this juncture, a few words concerning the utility of 
the numerical results are appropriate. We have examined 
the relationship of the Debye-Huckel potential of a line 
segment to the limiting cases of the line and point charge. 
Knowledge of both +d (eq 3) and #db (eq 4) is necessary 
in the calculation of the electrostatic part of the salt ex- 
clusion coefficient, Ale, for a solution containing both 
simple salt and line segments of charge.13 Comparison of 
Ale for a line segment with those of the infinite line and 
point charge should yield the following result: At very low 
ionic strength, Ale for the line segment should be quite 
close to the equivalent point charge salt exclusion coeffi- 
cient. At moderate ionic strengths, Ale of the line segment 
should be reasonably well approximated by the infinite line 
of charge salt exclusion coefficient. 

The replacement of the actual polyelectrolyte by an 
infinite line of charge is central to the development of the 
Manning the0ry.l For line segments of charge in the 
Debye-Huckel approximation, our work shows where this 

replacement is justified and where it is not. Furthermore, 
it is a straightforward matter on the basis of eq 3 and eq 
7a to calculate the colligative properties of a system con- 
sisting of line segments of charge in the presence of excess 
salt. 

In the calculation of many polyelectrolyte properties, 
$d is required. For example, the dependence on simple salt 
concentration of the surface potential of short segment 
DNA can be related to the variation of the 1 imA $d with 
K .  However, recent work by Soumpa~i s ’~  and one of us15 
demonstrates the importance of the three-dimensional 
character of the charge distribution in the calculation of 
the potential. The presence of low dielectric, salt excluding 
regions may exert a comparable influence to that of end 
effects on the properties of linear charged molecules. 
Moreover, the use of the Debye-Huckel approximation 
may, in itself, lead to an incorrect treatment of end effects. 
We believe, however, that the qualitative conclusions of 
this work will emerge unscathed from a more exact 
treatment, the solution of the nonlinear Poisson-Boltz- 
mann equation for a finite cylinder of charge. Such a study 
is planned in the near future. 

Although the current work has in it all the limitations 
implicit in the Debye-Huckel theory, it is nevertheless a 
useful reference system and provides a preliminary step 
toward understanding the dependence of polyelectrolyte 
behavior on chain length. Clearly, much work remains to 
be done. 
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