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Abstract—Dysphagia, commonly referred to as abnormal swallowing, affects millions of people annually. If not diagnosed
expeditiously, dysphagia can lead to more severe complications, such as pneumonia, nutritional deficiency, and dehydration. Bedside
screening is the first step of dysphagia characterization and is usually based on pass/fail tests in which a nurse observes the patient
performing water swallows to look for dysphagia overt signs such as coughing. Though quick and convenient, bedside screening only
provides low-level judgment of impairment, lacks standardization, and suffers from subjectivity. Recently, high resolution cervical
auscultation (HRCA) has been investigated as a less expensive and non-invasive method to diagnose dysphagia. It has shown strong
preliminary evidence of its effectiveness in penetration-aspiration detection as well as multiple swallow kinematics. HRCA signals
have traditionally been collected and investigated in conjunction with videofluoroscopy exams which are performed using barium
boluses including thin liquid. An HRCA-based bedside screening is highly desirable to expedite the initial dysphagia diagnosis and
overcome all the drawbacks of the current pass/fail screening tests. However, all research conducted for using HRCA in dysphagia
is based on thin liquid barium boluses and thus not guaranteed to provide valid results for water boluses used in bedside screening.
If HRCA signals show no significant differences between water and thin liquid barium boluses, then the same algorithms developed
on thin liquid barium boluses used in diagnostic imaging studies, it can be then directly used with water boluses. This study
investigates the similarities and differences between HRCA signals from thin liquid barium swallows compared to those signals
from water swallows. Multiple features from the time, frequency, time-frequency, and information-theoretic domain were extracted
from each type of swallow and a group of linear mixed models was tested to determine the significance of differences. Machine
learning classifiers were fit to the data as well to determine if the swallowed material (thin liquid barium or water) can be correctly
predicted from an unlabeled set of HRCA signals. The results demonstrated that there is no systematic difference between the
HRCA signals of thin liquid barium swallows and water swallows. While no systematic difference was discovered, the evidence of
complete conformity between HRCA signals of both materials was inconclusive. These results must be validated further to confirm
conformity between the HRCA signals of thin liquid barium swallows and water swallows.
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I. INTRODUCTION

Swallowing is the systematic, complex series of events
during which food and liquid are transferred from the mouth
to the stomach [1]. Oropharyngeal swallowing requires precise
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biomechanical and neurological coordination of over 30 pairs
of muscles, numerous peripheral nerves, and displacement of
structures to guarantee adequate and safe passage of materials
through the upper aerodigestive tract [2]. Oropharyngeal dys-
phagia (OPD), also known as difficulty swallowing, frequently
occurs in the setting of a variety of illnesses, injuries, and
disorders that disrupt this coordination. These include neuro-
logical conditions (e.g., stroke, Parkinson’s disease, multiple
sclerosis, ALS), injuries (e.g., traumatic brain injury, maxillo-
facial fractures), head and neck cancer, chronic or degenerative
illness (e.g., scleroderma, systemic organ disease) iatrogenic
etiologies (e.g., cardiothoracic procedures), and others. [2]–
[4]. Patients with OPD are at elevated risk for aspiration.
Aspiration is the entry of gravity-dependent foreign material
through the larynx and into the trachea (i.e., below the true
vocal folds). Patients with OPD who aspirate are seven times
more likely to develop pneumonia versus individuals who
do not [5]. More than half of individuals who reside in
an institution, such as an assisted living facility or skilled
nursing facility, experience OPD [6], [7]. With elderly patients,
dysphagia often contributes to other adverse and complicating
conditions, including weight loss, nutritional deficiency, dehy-
dration and others [6], [8].

Bedside observation (screening) of the patient’s swallow-
ing is frequently the first step in comprehensive swallowing
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assessment. This is typically performed by nursing or other
medical staff. OPD screening involves non-instrumental pass-
fail procedures that are completed via the administration of
water boluses. During these trials, the screener notes the
presence or absence of overt signs of dysphagia, such as
coughing or choking. [9]. Examples of formalized bedside
swallowing screening protocols include the Toronto Bedside
Swallow Screening Test [10], the Yale Swallow Protocol [11],
and the modified Mann Assessment of Swallowing Ability
[12]. In screens solely dependent on the presence of cough
after swallowing, reduced sensitivity plagues the process,
particularly in the case of “silent” aspiration which occurs in
up to 89% of people who exhibit aspiration during imaging
tests [13], [14]. Silent aspiration occurs without overt clinical
indicators of aspiration (e.g., coughing, choking, “wet” vocal
quality) [4]. In the case of screen failure and/or inconclusive
results (i.e., an absence of overt signs of aspiration, though
clinical concern remains for silent aspiration) , the patients are
generally referred to a speech-language pathologist (SLP) for a
swallowing assessment. Additional assessment via diagnostic
imaging tests such as videofluoroscopic swallowing study
(VFSS) and fiberoptic endoscopic evaluation of swallowing
may also be required [15].

VFSS is also known as a modified barium swallow study
and is completed by administering trials of a barium sulfate
suspension of various consistencies. During these trials, a
series of real-time radiographic video images of the oral
cavity and the upper aerodigestive tract is captured during
the swallow. VFSS is considered the gold standard for dys-
phagia diagnosis and is the most available imaging study
for OPD; however, for certain patients it may be delayed
due to accessibility, undesirable, unfeasible, or completely
unavailable, leaving them undiagnosed or incorrectly diag-
nosed. This diagnostic barrier leaves the patient vulnerable to
dysphagia-related complications [16], [17]. Therefore, there is
a high demand for a widely accessible dysphagia assessment
utility that can perform accurate screening and provide insight
regarding underlying swallowing physiology [18]–[21].

High resolution cervical auscultation is an emerging method
that has recently been utilized as a less expensive and non-
invasive swallowing screening and assessment tool compared
with traditional diagnostic imaging tests. HRCA involves the
use of neck sensors (i.e., a 3-dimensional accelerometer to
record vibrations and a contact microphone) to record sound
induced by the swallowing process. Raw HRCA signals are
subject to movement, coughing, speaking, or external vibra-
tions [22], [23]. Unlike VFSS, the noisy nature of HRCA sig-
nals makes their visual interpretation by clinicians extremely
difficult due the presence of other signal components originat-
ing from different physiological processes such as coughing
and head movement. On the other hand, advanced signal
processing and machine learning techniques have produced
several sets of preliminary evidence confirming the precision
of automatic interpretation of HRCA signals in the detection
of swallowing kinematic events and airway protection during
swallowing [15], [24]–[28]. For instance, HRCA has been
shown to accurately track the hyoid bone throughout the
duration of a swallow without assistance or supervision from

human experts, with similar accuracy to these experts [27],
[29]. Further, this technology has demonstrated the ability to
reliably detect upper esophageal (UES) opening and closure,
and laryngeal vestibule (LV) closure and reopening [16], [17],
[28], [30].

The levels of accuracy and reliability in measurement and
detection that HRCA has attained have been confirmed via
machine learning based techniques utilizing VFSS tests which
require the use of a contrast agent (i.e., barium sulfate sus-
pension). Conversely, bedside swallow screening protocols are
completed with water and using a barium suspension for this
purpose is clinically unrealistic. In order to establish HRCA’s
reliability as a screening tool in the clinical context, it must
demonstrate the same level of accuracy and insight for water
as it does for barium.

The machine learning algorithms trained using HRCA sig-
nals to perform the kinematic analysis in swallowing are called
supervised-learning algorithms. This means the algorithms
need reference data to be trained. The references must be
created using barium swallows, because simultaneous VFSS
recordings are needed to complete analysis of kinematics and
penetration/aspiration. One way to achieve HRCA water-based
bedside screening is to train machine learning algorithms
using HRCA signals from the correctly rated barium swallows
and test those algorithms on HRCA signals from water-based
swallows. However, HRCA bedside screening performed using
water can only be used as a reasonable adjunct if there are no
significant HRCA signal differences between water and barium
swallows.

An HRCA bedside screening performed using water has
the potential for numerous advantages over other screening
protocols and/or subsequent diagnostic testing. HRCA screen-
ing will not incur a significant training burden on caregivers,
which may range from nurses to SLPs. Specific education
may be conducted during usual departmental trainings, and
will include sensor placement and familiarity with the analysis
app. Given these potential advantages, this study investigates
whether HRCA signals show different patterns when using
thin liquid barium swallows in comparison to water swallows
in the same participants. We hypothesize that HRCA signals
will not exhibit significant variations between water and thin
liquid barium swallows given the close values of the viscosity
properties of both materials. To test this hypothesis, identical-
volume water and thin-liquid consistency barium swallows
were collected from healthy participants. Tests of statistical
significance were performed to check for HRCA signal fea-
ture differences between the two types of swallows. Finally,
classification models were trained to differentiate between the
two types of swallows based on HRCA signal features. If the
hypothesis is correct, the classification models will confirm
there is no significant variation between the two groups.

II. METHODS AND PROCEDURES

A. Participants and Study Protocol

This study was approved by the institutional review board
of the University of Pittsburgh and all participants were pro-
vided written informed consent prior to enrollment. Water and
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barium swallows were performed by 36 healthy community
dwelling adults (19 males, 17 females, age 66 ± 8). Par-
ticipants reported no history of swallowing-related disorders,
head and neck surgery, or known neurological diagnoses. Each
participant performed 5 water swallows (3 mL by spoon, 1
centipoise viscosity) and 5 swallows (3 mL by spoon) of
reconstituted Varibar thin (40% w/v, Bracco Diagnostics Inc.,
Monroe Twp., NJ) whose viscosity is below 15 centipoise
under identical conditions of administration, as a part of
a larger study protocol [31], [32]. Trials with water were
all completed prior to initiation of videofluoroscopy with
barium to avoid the washout (order) effect resulting from
using thinner consistency like water after thicker consistency
like thin barium. A research SLP administered the boluses
to participants for each swallow and the participants were
instructed, “Hold this liquid in your mouth and wait until I
tell you to swallow.” All swallows were performed in the head
neutral position. In total, 185 swallows were included in this
analysis (90 barium and 95 water), after excluding swallows
with corrupted or unclear VFSS data.

B. Data Acquisition

For the purposes of this study, we considered swallow
trials using two different types of materials: water and thin
liquid barium. During water swallows, only HRCA signals
were collected. During thin liquid barium swallows, HRCA
signals were collected simultaneously with VFSS. A standard
fluoroscopy machine (Precision 500D, GE Healthcare, LLC,
Waukesha, WI) was used for the thin liquid barium swal-
lows with a pulse rate of 30 PPS. A frame grabber card
(AccuStream Express HD, Foresight Imaging, Chelmsford,
MA) was used to capture and digitize the video output of
the fluoroscopy machine at a rate of 73 FPS. The same
HRCA collection equipment was utilized for both types of
swallows and used the same hardware configuration described
in in prior studies [28], [33]. A contact microphone (model
C411L, AKG, Vienna, Austria) and a tri-axial accelerometer
(ADXL 327, Analog Devices, Norwood, Massachusetts) were
attached to the subjects’ anterior neck. The accelerometer was
placed over the cricoid cartilage at midline, a location that has
been shown to produce optimal signal quality [34]. The main
accelerometer axes were perpendicular to the coronal plane
(anterior-posterior), parallel to the cervical spine (superior-
inferior), and parallel to the axial-transverse plane (medial-
lateral). The microphone was placed lateral to midline from
the suprasternal notch towards the right side of the larynx.
Resultant signals were hardware bandpass filtered from 0.1 to
3000 Hz [16], [17]. The signals were then digitized at 20kHz
utilizing a National Instruments 6210 DAQ.

National Instruments’ LabView was used to synchronize
streaming from all sensors and the fluoroscopy machine and
to save the streams into a hard drive. Two separate programs
were implemented in LabView to record either thin liquid
barium swallows with VFSS and fluoro-free water swallows.
The first program recorded continuously from the HRCA
sensors and the fluoroscopy machine with complete end-to-
end synchronization. This guaranteed alignment of swallowing

Fig. 1: Placement of the tri-axial accelerometer and contact
microphone

segments for both VFSS videos and HRCA signal recordings
for thin liquid barium swallows, using the VFSS images to
confirm the onset and offset of each swallow. The second pro-
gram recorded only output from the HRCA sensors for water
swallows with an extra functionality that was used to capture
the approximate onset and offset of the swallow. A pushbutton
was programmed to create an onset-offset timestamp when
pressed and released. This button was pressed/held by a trained
researcher, when the command “Swallow,” was given by the
administering SLP. The button was subsequently released upon
completion of the swallow, denoting approximate swallow
offset. The water swallow segments captured at least the entire
duration of actual swallows. Information on average duration
of swallows for thin liquid barium and water are summarized
in table III.

C. VFSS image analysis

The onset and offset of thin liquid barium swallows were
identified via visual inspection and analysis of the VFSS
frames. The onset was defined as the frame during which
the bolus head passes the ramus of the mandible. Offset
was defined as the frame in which the hyoid bone completes
all motion associated with swallowing and returns to resting
position [28]. Three expert raters identified the onset and
offset of the thin liquid barium swallows in VFSS videos.
All expert raters established a priori intra- and inter-rater
reliabilities with ICCs over 0.99 using VFSS images that were
not included in the dataset under investigation. Additionally,
all raters were blinded to participant demographics/history and
co-judge ratings to reduce sources of scoring bias.

D. Signal Preprocessing

All collected signals were downsampled to 4kHz, which
retains signal quality while smoothing out any unwanted
movement or physiological events that occur during swallow-
ing (e.g. coughing) [16], [35], [36]. The onset and offset of
swallows in HRCA signals were calculated based on the onset
and offset frames annotated in VFSS videos through using
the appropriate sampling conversion. The baseline noise of
each sensor, also known as zero-input response of the sensor,
was modeled using an auto-regressive model. This model was
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TABLE I: Summary of Features

Time Domain Features
Standard deviation Measure of a signal variance around its mean
Skewness Measure of the asymmetry of a signal about its mean
Kurtosis Describes the tailedness/peakness of a signal relative to normal distribution

Information-Theoretic Domain Features
Lempel-Ziv Complexity Measure of the randomness of a signal
Normalized Entropy rate Measure of the degree of regularity of a signal distribution

Frequency Domain Features
Peak frequency (Hz) The frequency of maximum power
Spectral centroid (Hz) The center of mass of the frequency spectrum of a signal
Bandwidth (Hz) The frequency range of a signal

Time-Frequency Domain Features
Wavelet entropy Measure of the disorderly behavior for non-stationary signal

TABLE II: Descriptive Measures Employed in This Study to Assess Classifier Performance

Classifier Performance Measures Actual Material: Predictive Values

Barium Water

Predicted Material: Barium Correct barium classification (A) Incorrect barium classification (B) Barium predictive value = A
A+B

Water Incorrect water classification (C) Correct Water classification (D) Water predictive value = D
C+D

Sensitivities Barium sensitivity = A
A+C

Water sensitivity = D
B+D

Overall accuracy = A+D
A+B+C+D

then used to generate finite impulse response (FIR) filters to
remove noise from each part of the HRCA signal (three axes of
acceleration and sound signals from the microphone) [36]. All
three acceleration signals were individually processed using
a fourth order least-squares splines algorithm to reduce low-
frequency components produced by participant head move-
ment [37], [38]. Lastly, all signals were denoised using a 10th

order Meyer wavelet to reduce any remaining noise [39].

E. Feature Extraction

For a better representation of HRCA signals, nine features
were extracted in 4 domains: time, frequency, time-frequency,
and information-theoretic. All nine features were extracted
from each of the four recorded signals: swallowing sounds
from the microphone (MIC), anterior-posterior acceleration
(AP), superior-inferior acceleration (SI), and medial-lateral
acceleration (ML) to investigate the similarities and differences
between the HRCA signals of water and thin liquid barium
swallows. These nine features were selected based on prior
studies demonstrating their utility for this type of swallowing
analysis [18], [33], [40]–[42]. They are summarized in table
I.

F. Data Analysis

In order to determine whether HRCA signals are different
between water and thin liquid barium swallows, linear mixed
models have been created for each HRCA signal feature across
all 4 signals. The linear mixed models show the statistical
significance of each of the features in differentiating between
water and thin liquid barium swallows. In other words, the
more statistically significant features, the less similar HRCA
signals are between water and thin liquid barium swallows.
Multiple supervised classifiers were created and tested to

determine if HRCA signal features can be used to accurately
predict whether a random, unlabeled swallow was of water or
thin liquid barium. Three classifiers were tested, including a
linear support vector machine (SVM), K-means clustering with
two clusters, and a Naı̈ve-Bayes classifier. The analyzed data
consisted of 36 total features and 9 unique features from the 4
separate signals. Each classifier employed principal component
analysis (PCA) with 8 principal components. Dimensionality
reduction to eight principal components consistently explained
greater than 97% of the variability of the input data.

The total number of swallows available for analysis was lim-
ited, so a validation strategy was applied. Holdout validation
is employed using a train-test split of 70%-30%. The holdout
validation strategy is repeated 2,000 times by random selection
of through randomly choosing the train and test splits across
the data each time for each iteration. The training and testing
data is fully randomized for 2,000 trials. The classification
accuracies are averaged over all trials to obtain true accuracy
measures .

In medical diagnostic applications, sensitivity (true posi-
tives over true positives and false negatives) and specificity
(true negatives over true negatives and false positives) are
routinely utilized. This study consists of two distinct output
classes, rather than a direct positive and negative outcome.
This study introduces distinct accuracy measures which are
used in analysis. Overall accuracy (accurate classifications
over all swallows), sensitivity to barium (accurate barium
classifications over all barium swallows), sensitivity to water
(accurate water classifications over all water swallows), barium
predictive value (accurate barium classifications over all bar-
ium classifications), and water predictive value (accurate water
classifications over all water classifications). The performance
measures employed in this study are illustrated in table II.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JTEHM.2021.3134926, IEEE Journal
of Translational Engineering in Health and Medicine

IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 5

All statistical analysis was performed in SAS (SAS Institute,
Inc., Cary, North Carolina) and all supervised classifiers were
implemented and tested in MATLAB (The MathWorks, Inc,
Natick, Massachusetts).

III. RESULTS

This analysis included feature data only from those par-
ticipants who completed both water and thin liquid barium
swallows as part of the study protocol. The analyzed data
consisted of 185 total swallows, with 90 barium swallows
and 95 water swallows from a total of 19 participants. HRCA
signals collected for water swallows were significantly longer
than barium swallows, as noted in Table III. Figure 2 illustrates
each axis of the raw HRCA signals for a single participant.

TABLE III: Relationship Between Quantity, Mean, and
Standard Deviation of Duration for Barium and Water

Swallows

Descriptive Statistic Barium Water
Number of Swallows 90 95
Mean 1.103 seconds 1.468 seconds
Standard Deviation 0.242 seconds 0.375 seconds

The HRCA signals were summarized at the participant level.
The descriptive statistics for all HRCA signal features (mean
± standard deviation), are depicted in Table IV.

The null hypothesis proposed in this study states that there
is no statistically significant difference between the HRCA
signals of a water swallow and a barium swallow. A rejection
of the null hypothesis proposes there is a significant difference
in corresponding HRCA signal features for barium and water
swallows. The linear mixed models use a confidence level
of 0.95 (α=0.05). A p-value less than the significance level
of 0.05 indicates a clear rejection of the null hypothesis for
the corresponding HRCA signal feature. The linear mixed
models demonstrated that 28 HRCA signal features exhibited
no systematic bias or difference between water and barium
swallows. However, 8 HRCA signal features exhibited sta-
tistically significant differences between water and barium
swallows. Table V depicts only the HRCA signal features that
exhibit statistically significant differences between water and
barium swallows. Table VI depicts the relationship between
HRCA axis and the number of statistically significant features,
while table VII depicts the relationship between the domain
of HRCA signals and the number of statistically significant
features.

With or without dimensionality reduction using PCA, none
of the classifiers demonstrated high overall accuracy, sensitiv-
ity, or predictive values. Low accuracy demonstrates the clas-
sifiers cannot properly differentiate the HRCA signal features
between a water swallow and a barium swallow. Dimensional-
ity reduction had no effect on the K-means classifier, marginal
effect on the Naı̈ve Bayes classifier, and greatly reduced all
performance measures, with the exception of water sensitivity,
for the SVM classifier.

Without PCA, the SVM classifier had the highest overall
accuracy, while exhibiting similar measures for barium and

water sensitivity and predictive value. The Naı̈ve-Bayes and K-
means classifiers made correct predictions approximately 50%
of the time. The barium sensitivity for these two classifiers is
significantly lower than the water sensitivity. The predictive
value for barium and predictive value for water are nearly
equal with performance similar to the overall accuracy.

Using PCA for dimensionality reduction, all three classifiers
performed similarly. Naı̈ve-Bayes and K-means performed
similarly with and without PCA. Each classifier was only
able to make a correct prediction around half the time. The
barium sensitivity for all three classifiers is significantly lower
than the water sensitivity. The predictive value for barium and
predictive value for water are nearly equal with performance
similar to the overall accuracy.

Table VIII and Table IX illustrate all five performance mea-
sures for all three classifiers without dimensionality reduction
and with dimensionality reduction using principal component
analysis, respectively.

IV. DISCUSSION

The results indicate that there are no significant differences
between 28 of 36 the HRCA signal features of swallows
using 3mL water or 3mL of thin barium liquid, indicating that
signals obtained during bedside screening with water would
predict signal features performance that would be collected
during a VFSS study. This finding supports the efficacy of
HRCA as an accurate OPD screening tool.

This study investigated the differences in HRCA signals
between thin liquid barium swallows and water swallows by
utilizing linear mixed models created for all 36 HRCA signal
features. Each linear mixed model operated with the null
hypothesis that there is no difference between HRCA signals
of a thin liquid barium swallow and a water swallow. The
results showed that the null hypothesis is rejected for 8 of
36 features and not rejected for 28 of 36 features. The 8
features with rejected null hypothesis are depicted in Table
V, with the frequency of rejected features for each axis and
domain represented in Table VI and Table VII, respectively.
Four of these features emanate from swallowing sounds alone.
All the swallows analyzed in this study derive from healthy
participants. As healthy swallows ordinarily do not involve
aspiration or produce noise, such as choking or coughing, it is
expected that amplitude of swallowing sounds will be minimal.
Conceivably, differences in swallowing sounds between thin
liquid barium swallows and water swallows from a small
sample size may be expected. A larger sample size may
minimize this finding.

As for the domain, significant findings were present in
half (2) of the information-theoretic features and half (4) of
the time-frequency features. These six features account for
three quarters of all HRCA features with significant results.
Table IV shows that the Lempel-Ziv complexity is lower, the
normalized entropy rate is higher, and the wavelet entropy
is higher for all 4 axes (MIC,AP,SI,ML) of water swallows
compared with barium. Lempel-Ziv complexity is a measure
of the predictability of a signal [36], [40]. A larger value
of the normalized entropy rate feature, as employed in this
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Fig. 2: Comparison of Swallowing Sounds and SI, AP, and ML Acceleration Between a Barium Swallow and Water Swallow
for a Single Participant

(Blue = Barium || Orange = Water)

TABLE IV: Descriptive Statistics (Mean and Standard Deviation) of All HRCA Features For MIC, AP, SS, and ML Axes for
Both Barium and Water Swallows

Extracted Features MIC AP SI ML

Time Domain Barium Water Barium Water Barium Water Barium Water

Standard Deviation 0.011 ± 0.014 0.012 ± 0.010 0.010 ± 0.016 0.011 ± 0.015 0.022 ± 0.028 0.024 ± 0.025 0.010 ± 0.011 0.012 ± 0.012

Skewness -0.543 ± 0.743 -0.825 ± 1.124 -0.185 ± 1.167 -0.002 ± 0.509 -0.140 ± 0.776 -0.029 ± 0.47 0.301 ± 0.831 0.315 ± 0.648

Kurtosis 18.646 ± 17.230 28.804 ± 21.839 13.989 ± 36.581 6.024 ± 13.319 8.274 ± 8.543 8.046 ± 7.883 10.332 ± 16.147 7.936 ± 9.468

Information-Theoretic Domain

Lempel-Ziv Complexity 0.251 ± 0.057 0.199 ± 0.055 0.224 ± 0.214 0.213 ± 0.199 0.152 ± 0.053 0.145 ± 0.059 0.114 ± 0.031 0.107 ± 0.026

Normalized Entropy Rate 0.909 ± 0.038 0.936 ± 0.022 0.862 ± 0.199 0.891 ± 0.148 0.956 ± 0.010 0.964 ± 0.011 0.961 ± 0.009 0.966 ± 0.009

Frequency Domain

Peak Frequency (Hz) 9.541 ± 10.085 7.345 ± 8.221 12.741 ± 28.258 0.966 ± 0.409 4.875 ± 4.398 5.118 ± 4.923 2.206 ± 2.671 1.885 ± 1.059

Spectral Centroid (Hz) 63.399 ± 28.587 62.152 ± 28.025 45.395 ± 61.979 25.257 ± 31.512 15.701 ± 18.241 12.667 ± 11.05 35.708 ± 78.885 24.891 ± 39.199

Bandwidth (Hz) 87.298 ± 35.314 86.102 ± 35.349 78.578 ± 69.379 57.405 ± 51.251 33.635 ± 30.592 23.339 ± 15.294 78.019 ± 113.267 57.977 ± 80.418

Time-Frequency Domain

Wavelet Entropy 1.300 ± 0.478 1.720 ± 0.488 0.211 ± 0.153 0.238 ± 0.16 0.509 ± 0.410 0.842 ± 0.59 0.420 ± 0.459 0.610 ± 0.567

TABLE V: Depiction of Rejected HRCA Features and
Corresponding P-Value

Rejected Feature P-Value
MIC Lempel-Ziv Complexity 0.0005
MIC Normalized Entropy Rate 0.0043
MIC Wavelet Entropy 0.0060
MIC Kurtosis 0.0089
SI Wavelet Entropy 0.0146
SI Normalized Entropy Rate 0.0291
ML Standard Deviation 0.0387
AP Normalized Entropy Rate 0.0395

study, demonstrates more regularity in the signal. Wavelet
entropy indicates the degree of order in a signal [43]. A
higher wavelet entropy demonstrates more disordered signal.

TABLE VI: Relationship Between Axis of HRCA Signal and
the Number of Rejected Features

Axis of Rejected Feature Number of Features
MIC 4
AP 1
SI 2
ML 1

TABLE VII: Relationship Between Domain of HRCA Signal
and the Number of Rejected Features

Domain of Rejected Feature Number of Features
Time 2
Information-Theoretic 4
Frequency 0
Time-Frequency 2
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TABLE VIII: Performance Measures of Classifiers to Detect Swallow Material Using HRCA Signal Features of Barium and
Water Swallows Without Dimensionality Reduction

Classifier Overall Accuracy Barium Sensitivity Water Sensitivity Barium Predictive Value Water Predictive Value
SVM 63.186% 61.263% 65.041% 63.125% 63.813%
Naı̈ve Bayes 58.853% 29.519% 87.139% 69.924% 56.267%
K-Means 50.980% 31.252% 70.004% 57.515% 48.989%

TABLE IX: Performance Measures of Classifiers to Detect Swallow Material Using HRCA Signal Features of Barium and
Water Swallows With Dimensionality Reduction Using PCA

Classifier Overall Accuracy Barium Sensitivity Water Sensitivity Barium Predictive Value Water Predictive Value
SVM 52.415% 28.565% 75.414% 54.765% 52.250%
Naı̈ve Bayes 53.371% 24.109% 81.588% 57.284% 52.686%
K-Means 51.078% 30.798% 70.634% 57.444% 49.198%

The thin liquid barium swallows were segmented by expert
raters using frame-by-frame VFSS. This method of precise
segmentation ensures that the signal duration of a barium
swallow contains information from onset to offset of swallow
only. Conversely, water swallows were segmented based on
verbal cue and visual observation of swallowing behavior of
the participant. Using a pushbutton integrated in the collection
program, a trained operator determined the onset of water
swallows when the command of “swallow” is verbally initiated
by the researcher and the offset when the participant is deemed
to complete the swallow by visual observation. Considering
the differences in swallow duration for thin liquid barium
versus water swallows, this is a likely explanation for this
feature difference. The HRCA signals from the analyzed water
swallows are significantly longer. Given that the viscosity of
water is comparable to the viscosity of Varibar thin and the
trials are conducted in the same systematic, protocol-driven,
controlled environment, true swallow duration (from onset to
offset) for each material is presumably equivalent. Thus, there
are more non-swallow signals present in the segments water
swallows. This extra time will add an increased number of
small movements and sounds, consequently affecting these
features.

Whether or not PCA for dimensionality reduction was em-
ployed, the overall accuracy of the classifiers was nearly 50%.
With the null hypothesis stating that there is no difference
between barium and water swallows, this accuracy metric
provides support to accept the null hypothesis. However,
barium sensitivity was generally low, and water sensitivity was
high. As defined in table II, a barium swallow was correctly
classified infrequently while a water swallow was correctly
classified frequently.

To better distinguish the predictability of barium and water
swallows, predictive value is an appropriate, alternative char-
acteristic. Predictive value is the ratio of correct classifica-
tions for a given material to all classifications for the given
material . For example, barium predictive value estimates the
likelihood that the classified swallow was truly completed with
barium when a barium swallow was predicted. Barium and
water predictive values for the 3 classifiers, with and with-
out dimensionality reduction, are nearly equal, approximately

50%. These performance measures, along with the overall
accuracy of the classifiers at approximately 50%, demonstrate
an unlabeled set of HRCA signals will essentially be predicted
randomly as either performed with barium or water. This
metric demonstrates there is no significant difference between
the HRCA signals of a barium swallow and a water swallow.

V. CONCLUSIONS

This study investigated whether there are statistically sig-
nificant differences in HRCA signal features between water
and thin liquid barium swallows. The purpose of this analysis
was part of a preliminary determination as to the feasibility
and clinical relevance of using an HRCA based system as a
potential method for enhanced bedside swallowing screening
and/or an adjunct to clinical swallowing assessment, extending
access of screening and diagnostic OPD capabilities to under-
served patients. These results indicate no significant difference
between HRCA signals of barium and water swallows. Of
note, though there is no systematic difference between the
HRCA signals of a barium swallow and water swallow, there is
insufficient evidence to confirm similarity between the HRCA
signals. HRCA signals between both materials do not exhibit
differences significant enough to rule out similarity; however,
the analyzed data cannot confirm the hypothesis that there is no
difference between the HRCA signals of a thin liquid barium
swallow and a water swallow. Replication with a larger data
set is necessary to sort these remaining questions.

The dataset utilized for analysis and classification consisted
of fewer than 100 swallows per material and fewer than 20
participants. Even with utilization of holdout validation for
more accurate classification, it is not feasible to conclusively
state that these materials are similar, with respect to HRCA
signals. analyzed dataset cannot conclusively confirm similar-
ity. To further test the hypothesis and determine which HRCA
signal features exhibit similarity or difference, more data must
be collected and analyzed to determine whether there is a clear
correlation between the HRCA signals of a barium swallow
and water swallow.
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“Establishing Reference Values for Temporal Kinematic Swallow Events
Across the Lifespan in Healthy Community Dwelling Adults Using
High-Resolution Cervical Auscultation,” Dysphagia, pp. 1–12, May
2021.

[20] ——, “Characterizing Swallows From People With Neurodegenerative
Diseases Using High-Resolution Cervical Auscultation Signals and
Temporal and Spatial Swallow Kinematic Measurements,” Journal of
Speech, Language, and Hearing Research, vol. 64, no. 9, pp. 3416–
3431, Sep. 2021.

[21] C. Donohue, Y. Khalifa, S. Perera, E. Sejdić, and J. L. Coyle, “Charac-
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