
A Preliminary Performance Comparison of Five Machine 
Learning Algorithms for Practical IP Traffic Flow 

Classification

Nigel Williams, Sebastian Zander, Grenville Armitage 
Centre for Advanced Internet Architectures (CAIA)  

Swinburne University of Technology 
Melbourne, Australia 

+61 3 9214 {4837, 4835, 8373} 

{niwilliams,szander,garmitage}@swin.edu.au 

  

ABSTRACT 
The identification of network applications through observation of 

associated packet traffic flows is vital to the areas of network 

management and surveillance. Currently popular methods such as 

port number and payload-based identification exhibit a number of 

shortfalls. An alternative is to use machine learning (ML) 

techniques and identify network applications based on per-flow 

statistics, derived from payload-independent features such as 

packet length and inter-arrival time distributions. The 

performance impact of feature set reduction, using Consistency-

based and Correlation-based feature selection, is demonstrated on 

Naïve Bayes, C4.5, Bayesian Network and Naïve Bayes Tree 

algorithms. We then show that it is useful to differentiate 

algorithms based on computational performance rather than 

classification accuracy alone, as although classification accuracy 

between the algorithms is similar, computational performance can 

differ significantly. 

Categories and Subject Descriptors 
C.2.3 [Computer-Communication Networks]: Network 

Operations - Network monitoring; C.4 [Performance of 

Systems]: Measurement Techniques 

General Terms: Algorithms, Measurement 

Keywords: Traffic Classification, Machine Learning 

1. INTRODUCTION 
There is a growing need for accurate and timely identification 

of networked applications based on direct observation of 

associated traffic flows. Also referred to as ‘classification’, 

application identification is used for trend analyses (estimating 

capacity demand trends for network planning), adaptive network-

based Quality of Service (QoS) marking of traffic, dynamic 

access control (adaptive firewalls that detect forbidden 

applications or attacks) or lawful interception. 

Classification based on well-known TCP or UDP ports is 

becoming increasingly less effective – growing numbers of 

networked applications are port-agile (allocating dynamic ports as 

needed), end users are deliberately using non-standard ports to 

hide their traffic, and use of network address port translation 

(NAPT) is widespread (for example a large amount of peer-to-

peer file sharing traffic is using non-default ports [1]).  

Payload-based classification relies on some knowledge about 

the payload formats for every application of interest: protocol 

decoding requires knowing and decoding the payload format 

while signature matching relies on knowledge of at least some 

characteristic patterns in the payload. This approach is limited by 

the fact that classification rules must be updated whenever an 

application implements even a trivial protocol change, and 

privacy laws and encryption can effectively make the payload 

inaccessible. 

Machine learning (ML) [2] techniques provide a promising 

alternative in classifying flows based on application protocol 

(payload) independent statistical features such as packet length 

and inter-arrival times. Each traffic flow is characterised by the 

same set of features but with different feature values. A ML 

classifier is built by training on a representative set of flow 

instances where the network applications are known. The built 

classifier can be used to determine the class of unknown flows. 

Much of the existing research focuses on the achievable 

accuracy (classification accuracy) of different machine learning 

algorithms. The studies have shown that a number of different 

algorithms are able to achieve high classification accuracy. The 

effect of using different sets of statistical features on the same 

dataset has seen little investigation. Additionally, as different (in 

some cases private) network traces have been used with different 

features, direct comparisons between studies are difficult.  

There have been no comparisons of the relative speed of 

classification (computational performance) for different 

algorithms when classifying IP traffic flows. However, within a 

practical IP traffic classification system, considerations as to 

computational performance and the type and number of statistics 

calculated are vitally important. 

In this paper we attempt to provide some insight into these 

aspects of ML traffic classification. We define 22 practical flow 

features for use within IP traffic classification, and further reduce 

the number of features using Correlation-based and Consistency-

based feature reduction algorithms. We confirm that a similar 

level of classification accuracy can be obtained when using 

several different algorithms with the same set of features and 

training/testing data. We then differentiate the algorithms on the 

basis of computational performance. Our key findings are: 

• Feature reduction greatly reduces the number of 

features needed to identify traffic flows and hence 

greatly improves computational performance  

• While feature reduction greatly improves performance it 

does not severely reduce the classification accuracy.  

• Given the same features and flow trace, we find that 

different ML algorithms (Bayes Net, Naïve Bayes Tree 

and C4.5) provide very similar classification accuracy.  

ACM SIGCOMM Computer Communication Review 7 Volume 36, Number 5, October 2006



• However, the different algorithms show significant 

differences in their computational performance (build 

time and classification speed). 

The paper is structured as follows. Section 2 summarises key 

machine learning concepts. Section 3 discusses related work, 

while Section 4 outlines our approach, including details on 

algorithms, features and datasets. Section 5 presents our main 

findings and in Section 6 we conclude and discuss future work. 

2. MACHINE LEARNING 

2.1 Machine Learning Concepts 
We use machine learning algorithms to map instances of 

network traffic flows into different network traffic classes. Each 

flow is described by a set of statistical features and associated 

feature values. A feature is a descriptive statistic that can be 

calculated from one or more packets – such as mean packet length 

or the standard deviation of inter-arrival times. Each traffic flow 

is characterised by the same set of features, though each will 

exhibit different feature values depending on the network traffic 

class to which it belongs.  

ML algorithms that have been used for IP traffic classification 

generally fall into the categories of being supervised or 

unsupervised. Unsupervised (or clustering) algorithms group 

traffic flows into different clusters according to similarities in the 

feature values. These clusters are not pre-defined and the 

algorithm itself determines their number and statistical nature. For 

supervised algorithms the class of each traffic flow must be 

known before learning. A classification model is built using a 

training set of example instances that represent each class. The 

model is then able to predict class membership for new instances 

by examining the feature values of unknown flows. 

2.2 Feature Reduction 
As previously stated, features are any statistics that can be 

calculated from the information at hand (in our case packets 

within a flow). Standard deviation of packet length, Fourier 

transform of packet inter-arrival times and the initial TCP window 

size are all valid features. As network flows can be bi-directional, 

features can also be calculated for both directions of the flow.  

In practical IP classification tasks we need to decide which 

features are most useful given a set of working constraints. For 

instance calculating Fourier transform statistics for thousands of 

simultaneous flows may not be feasible. In addition, the 

representative quality of a feature set greatly influences the 

effectiveness of ML algorithms. Training a classifier using the 

maximum number of features obtainable is not always the best 

option, as irrelevant or redundant features can negatively 

influence algorithm performance.  

The process of carefully selecting the number and type of 

features used to train the ML algorithm can be automated through 

the use of feature selection algorithms. Feature selection 

algorithms are broadly categorised into the filter or wrapper 

model. Filter model algorithms rely on a certain metric to rate and 

select subsets of features. The wrapper method evaluates the 

performance of different features using specific ML algorithms, 

hence produces feature subsets ‘tailored’ to the algorithm used. 

2.3 Evaluation Techniques 
Central to evaluating the performance of supervised learning 

algorithms is the notion of training and testing datasets. The 

training set contains examples of network flows from different 

classes (network applications) and is used to build the 

classification model. The testing set represents the unknown 

network traffic that we wish to classify. The flows in both the 

training and testing sets are labelled with the appropriate class a-

priori. As we know the class of each flow within the datasets we 

are able to evaluate the performance of the classifier by 

comparing the predicted class against the known class. 

To test and evaluate the algorithms we use k-fold cross 

validation. In this process the data set is divided into k subsets. 

Each time, one of the k subsets is used as the test set and the other 

k-1 subsets form the training set. Performance statistics are 

calculated across all k trials. This provides a good indication of 

how well the classifier will perform on unseen data. We use k=10 

and compute three standard metrics:  

• Accuracy: the percentage of correctly classified 

instances over the total number of instances. 

• Precision: the number of class members classified 

correctly over the total number of instances classified as 

class members. 

• Recall (or true positive rate): the number of class 

members classified correctly over the total number of 

class members. 

In this paper we refer to the combination of accuracy, 

precision and recall using the term classification accuracy.  

We use the term computational performance to describe two 

additional metrics: build time and classification speed. Build time 

refers to the time (in seconds) required to train a classifier on a 

given dataset. Classification speed describes the number of 

classification that can be performed each second. 

2.4 Sampling Flow Data  
System memory usage increases with the number of instances 

in the training/testing set [3], as does CPU usage. As the public 

trace files used in this study contain millions of network flows, 

we perform flow sampling to limit the number of flows and 

therefore the memory and CPU time required for training and 

testing (see Section 4.3).  

We sample an equal number of traffic flows for each of the 

network application classes. Thus class prior probabilities are 

equally weighted. Although this may negatively impact 

algorithms that rely on prior class probabilities, it prevents 

algorithms from optimising towards a numerically superior class 

when training (leading to overly optimistic results). Furthermore, 

this allows us to evaluate the accuracy of ML algorithms based on 

feature characteristics without localising to particular trace-

dependent traffic mixes (different locations can be biased towards 

different traffic classes). 

3. RELATED WORK 
The Expectation Maximization (EM) algorithm was used by 

McGregor et al. [4] to cluster flows described by features such as 

packet length, inter-arrival time and flow duration. Classification 

of traffic into generic groups (such as bulk-transfer, for instance) 

was found to be achievable.  

Dunnigan and Ostrouchov [5] use principal component 

analysis (PCA) for the purpose of Intrusion Detection. They find 

that network flows show consistent statistical patterns and can be 

detected when running on default and non-default ports.  

We have proposed an approach for identifying different 

network applications based on greedy forward feature search and 

EM in [6]. We show that a variety of applications can be 

separated into an arbitrary number of clusters. 

ACM SIGCOMM Computer Communication Review 8 Volume 36, Number 5, October 2006



Roughan et al. [7] use nearest neighbour (NN) and linear 

discriminate analysis (LDA) to map different applications to 

different QoS classes (such as interactive and transactional).  

They demonstrated that supervised ML algorithms are also able to 

separate traffic into classes, with encouraging accuracy.  

Moore and Zuev [3] used a supervised Naive Bayes classifier 

and 248 flow features to differentiate between different 

application types. Among these were packet length and inter-

arrival times, in addition to numerous TCP header derived 

features. Correlation-based feature selection was used to identify 

‘stronger’ features, and showed that only a small subset of fewer 

than 20 features is required for accurate classification.  

Karagiannis et al. [8] have developed a method that 

characterises host behaviour on different levels to classify traffic 

into different application types.  

Recently Bernaille et al. [9] used a Simple K-Means clustering 

algorithm to perform classification using only the first five 

packets of the flow. 

Lim et al. [10] conducted an extensive survey of 33 algorithms 

across 32 diverse datasets. They find that algorithms show similar 

classification accuracy but quite different training performance 

(for a given dataset and complementary features). They 

recommend that users select algorithms based on criteria such as 

model interpretability or training time. Classification speed of the 

algorithms was not compared. 

4. EXPERIMENTAL APPROACH 
As the main focus of this study is to demonstrate the benefit of 

using computational performance as a metric when choosing an 

ML algorithm to implement, we use a single dataset and fixed 

algorithm configurations. varying only the feature set used in 

training. 

In the following sections we detail the machine learning and 

feature selection algorithms used in the paper. The IP traffic 

dataset, traffic classes, flow and feature definitions are also 

explained. 

4.1 Machine Learning Algorithms 
We use the following supervised algorithms that have been 

implemented in the Weka [20] ML suite: 

• Bayesian Network  

• C4.5 Decision Tree  

• Naïve Bayes  

• Naïve Bayes Tree  

The algorithms used in this study are simple to implement and 

have either few or no parameters to be tuned. They also produce 

classifications models that can be more easily interpreted. Thus 

algorithms such as Support Vector Machines or Neural Networks 

were not included. 

The algorithms used in this investigation are briefly described 

in the following paragraphs, with extended descriptions in 

Appendix A. 

Naive-Bayes (NBD, NBK) is based on the Bayesian theorem 

[11]. This classification technique analyses the relationship 

between each attribute and the class for each instance to derive a 

conditional probability for the relationships between the attribute 

values and the class. Naïve Bayesian classifiers must estimate the 

probabilities of a feature having a certain feature value.  

Continuous features can have a large (possibly infinite) number of 

values and the probability cannot be estimated from the frequency 

distribution. This can be addressed by modelling features with a 

continuous probability distribution or by using discretisation. We 

evaluate Naive Bayes using both discretisation (NBD) and kernel 

density estimation (NBK). Discretisation transforms the 

continuous features into discrete features, and a distribution 

model is not required. Kernel density estimation models features 

using multiple (Gaussian) distributions, and is generally more 

effective than using a single (Gaussian) distribution. 

C4.5 Decision Tree (C4.5) creates a model based on a tree 

structure [12]. Nodes in the tree represent features, with branches 

representing possible values connecting features. A leaf 

representing the class terminates a series of nodes and branches. 

Determining the class of an instance is a matter of tracing the path 

of nodes and branches to the terminating leaf.  

Bayesian Network (BayesNet) is structured as a combination 

of a directed acyclic graph of nodes and links, and a set of 

conditional probability tables [13]. Nodes represent features or 

classes, while links between nodes represent the relationship 

between them. Conditional probability tables determine the 

strength of the links. There is one probability table for each node 

(feature) that defines the probability distribution for the node 

given its parent nodes. If a node has no parents the probability 

distribution is unconditional. If a node has one or more parents 

the probability distribution is a conditional distribution, where the 

probability of each feature value depends on the values of the 

parents. 

Naïve Bayes Tree (NBTree) is a hybrid of a decision tree 

classifier and a Naïve Bayes classifier [14]. Designed to allow 

accuracy to scale up with increasingly large training datasets, the 

NBTree model is a decision tree of nodes and branches with 

Naïve Bayes classifiers on the leaf nodes. 

4.2 Feature Reduction Algorithms 
We use two different algorithms to create reduced feature sets: 

Correlation-based Feature Selection (CFS) and Consistency-based 

Feature selection (CON). These algorithms evaluate different 

combinations of features to identify an optimal subset. The 

feature subsets to be evaluated are generated using different 

subset search techniques. We use Best First and Greedy search 

methods in the forward and backward directions, explained 

below. 

Greedy search considers changes local to the current subset 

through the addition or removal of features. For a given ‘parent’ 

set, a greedy search examines all possible ‘child’ subsets through 

either the addition or removal of features. The child subset that 

shows the highest goodness measure then replaces the parent 

subset, and the process is repeated. The process terminates when 

no more improvement can be made.  

Best First search is similar to greedy search in that it creates 

new subsets based on the addition or removal of features to the 

current subset. However, it has the ability to backtrack along the 

subset selection path to explore different possibilities when the 

current path no longer shows improvement. To prevent the search 

from backtracking through all possibilities in the feature space, a 

limit is placed on the number of non-improving subsets that are 

considered. In our evaluation we chose a limit of five.  

The following brief descriptions of the feature selection 

algorithms are supplemented by additional details in Appendix B. 

Consistency-based feature subset search [15] evaluates 

subsets of features simultaneously and selects the optimal subset. 

The optimal subset is the smallest subset of features that can 

ACM SIGCOMM Computer Communication Review 9 Volume 36, Number 5, October 2006



identify instances of a class as consistently as the complete 

feature set. 

Correlation-based feature subset search [16] uses an 

evaluation heuristic that examines the usefulness of individual 

features along with the level of inter-correlation among the 

features. High scores are assigned to subsets containing attributes 

that are highly correlated with the class and have low inter-

correlation with each other. 

To maintain a consistent set of features when testing each of 

the algorithms, wrapper selection was not used (as it creates 

algorithm-specific optimised feature sets). It is recognised that 

wrapper-generated subsets provide the upper bound of accuracy 

for each algorithm, but do not allow direct comparison of the 

algorithm performance (as features are different). 

4.3 Data Traces and Traffic Classes 
Packet data is taken from three publicly available NLANR 

network traces [17], which were captured in different years and at 

different locations. We used four 24-hour periods of these traces 

(auckland-vi-20010611, auckland-vi-20010612, leipzig-ii-

20030221, nzix-ii-20000706). As mentioned in Section 2.4 we 

use stratified sampling to obtain flow data for our dataset. 1,000 

flows were randomly and independently sampled for each class 

and each trace. The traces were then aggregated into a single 

dataset containing 4,000 flows per application class. This is 

referred to as the ‘combined’ dataset. 10-fold cross-validation is 

used to create testing and training sets (see Section 2.3). 

We chose a number of prominent applications and defined the 

flows based on the well-known ports: FTP-Data (port 20), Telnet 

(port 23), SMTP (port 25), DNS (port 53) and HTTP (port 80). 

We also include the multiplayer game Half-Life (port 27015). The 

chosen traffic classes account for a large proportion (up to 75%) 

of the traffic in each of the traces. The choice of six application 

classes creates a total of 24,000 instances in the combined dataset. 

A drawback of using anonymised trace files is the lack of 

application layer data, making verification of the true application 

impossible. As we use default ports to obtain flows samples, we 

can expect that the majority of flows are of the intended 

application. We accept however that a percentage of flows on 

these ports will be of different applications. Despite this the 

number of incorrectly labelled flows is expected to be small, as 

port-agile applications are more often found on arbitrary ports 

rather than on the default port of other applications (as found for 

peer-to-peer traffic in [1]). Therefore the error introduced into the 

training and testing data is likely to be small. 

4.4 Flow and Feature Definitions 
We use NetMate [18] to process packet traces, classify packets 

to flows and compute feature values. Flows are defined by source 

IP and source port, destination IP and destination port and 

protocol.  

Flows are bidirectional and the first packet seen by the 

classifier determines the forward direction. Flows are of limited 

duration. UDP flows are terminated by a flow timeout. TCP flows 

are terminated upon proper connection teardown (TCP state 

machine) or after a timeout (whichever occurs first). We use a 600 

second flow timeout, the default timeout value of NeTraMet (the 

implementation of the IETF Realtime Traffic Flow Measurement 

working group’s architecture) [19]. We consider only UDP and 

TCP flows that have at least one packet in each direction and 

transport at least one byte of payload. This excludes flows 

without payload (e.g. failed TCP connection attempts) or 

‘unsuccessful’ flows (e.g. requests without responses).  

When defining the flow features, the ‘kitchen-sink’ method of 

using as many features as possible was eschewed in favour of an 

economical, constraint-based approach. The main limitation in 

choosing features was that calculation should be realistically 

possible within a resource constrained IP network device. 

Thus potential features needed to fit the following criteria: 

• Packet payload independent 

• Transport layer independent 

• Context limited to a single flow (i.e. no features 

spanning multiple flows) 

• Simple to compute 

The following features were found to match the above criteria 

and became the base feature set for our experiments: 

• Protocol  

• Flow duration  

• Flow volume in bytes and packets  

• Packet length (minimum, mean, maximum and standard 

deviation)  

• Inter-arrival time between packets (minimum, mean, 

maximum and standard deviation).  

Packet lengths are based on the IP length excluding link layer 

overhead. Inter-arrival times have at least microsecond precision 

and accuracy (traces were captured using DAG cards [17]). As the 

traces contained both directions of the flows, features were 

calculated in both directions (except protocol and flow duration). 

This produces a total of 22 flow features, which we refer to as the 

‘full feature set’. A list of these features and their abbreviations 

can be found in Appendix C.  

Our features are simple and well understood within the 

networking community. They represent a reasonable benchmark 

feature set to which more complex features might be added in the 

future. 

5. RESULTS AND ANALYSIS 
Our ultimate goal is to show the impact of feature reduction on 

the relative computational performance of our chosen ML 

algorithms. First we identify significantly reduced feature sets 

using CFS and Consistency subset evaluation. Then, having 

demonstrated that classification accuracy is not significantly 

degraded by the use of reduced feature sets, we compare the 

relative computational performance of each tested ML algorithm 

with and without reduced feature sets. 

5.1  Feature Reduction 
The two feature evaluation metrics were run on the combined 

dataset using the four different search methods. The resulting 

reduced feature sets were then used to train and test each of the 

algorithms using cross-validation as described in Section 2.3. We 

obtain an average accuracy across the algorithms for each of the 

search methods. We then determine the ‘best’ subset by 

comparing the average accuracy against the average accuracy 

across the algorithms using the full feature set.  

Figure 1 plots the average accuracy for each search method 

using Consistency evaluation. The horizontal line represents the 

average achieved using the full feature set (94.13%). The number 

of features in the reduced feature subset is shown in each bar. 

ACM SIGCOMM Computer Communication Review 10 Volume 36, Number 5, October 2006



M
e
a
n
 A
c
c
u
ra
c
y

M
e
a
n
 A
c
c
u
ra
c
y

Be
st 
Fir
st 
Ba
ck
wa
rd

Be
st 
Fir
st 
Fo
rw
ard

Gr
ee
dy
 Ba
ck
wa
rd

Gr
ee
dy
 Fo
rw
ard

8
0

8
5

9
0

9
5

1
0
0

92.57 93.14

82.7

93.14

8 9 9 9

94.13

 
Figure 1: Consistency-generated subset accuracy according 

to search method  

A large reduction in the feature space is achieved with 

relatively little change in accuracy. Two search methods (greedy 

forward, best first forward) produced an identical set of nine 

features. This set also provided the highest accuracy, and was thus 

determined to be the ‘best’ Consistency selected subset. The 

features selected are detailed in Table 1, referred to as CON 

subset in the remainder of this paper.  

CFS subset evaluation produced the same seven features for 

each of the search methods. This is therefore the ‘best’ subset by 

default. We refer to this as the CFS subset, shown in Table 1. 

Table 1: The best feature subsets according to feature 

reduction method 

CFS subset fpackets, maxfpktl, minfpktl, 

meanfpktl, stdbpktl, minbpktl, 

protocol  

CON subset fpackets, maxfpktl, meanbpktl, 

maxbpktl, minfiat, maxfiat, minbiat, 

maxbiat, duration 

 

The ‘best’ feature sets chosen by CFS and Consistency are 

somewhat different, with the former relying predominantly on 

packet length statistics, the latter having a balance of packet 

length and inter-arrival time features. Only maxfpktl and fpackets 

are common to both reduced feature sets. Both metrics select a 

mixture of features calculated in the forward and backward 

directions.  

The reduction methods provided a dramatic decrease in the 

number of features required, with the best subsets providing 

similar mean accuracies (CFS: 93.76%, CON: 93.14%). There 

appears to be a very good trade-off between feature space 

reduction and loss of accuracy. 

5.2 Impact of Feature Reduction on 
Classification Accuracy 

We examine the impact that feature reduction has on 

individual algorithms, in terms of accuracy, precision and recall, 

using the feature sets obtained in Section 5.1. Cross-validation 

testing is performed for each of the algorithms using the full 

feature set, the CFS subset and the CON subset. We obtain the 

overall accuracy and mean class recall/precision rates across the 

classes after each test. These values provide an indication as to 

the overall performance of the algorithm as well as the 

performance for individual traffic classes. Figure 2 compares the 

accuracy for each ML algorithm when using the CFS subset, 

CON subset and the full feature set.  

A
c
c
u
ra
c
y
 (
%
)

C4
.5

Ba
ye
s N
et

NB
D

NB
K

NB
Tre
e

5
0

6
0

7
0

8
0

9
0

1
0
0 ALL CFS CON

 
Figure 2: Accuracy of algorithms using CFS subset, CON 

Subset and All features. 

The majority of algorithms achieve greater than 95% accuracy 

using the full feature set, and there is little change when using 

either of the reduced subsets. NBK does not perform as well as in 

[3], possibly due to the use of different traffic classes, features 

and equally weighted classes. 

Figure 3 plots the relative change in accuracy for each of the 

algorithms compared to the accuracy using all features. The 

decrease in accuracy is not substantial in most cases, with the 

largest change (2-2.5%) occurring for NBD and NBK when using 

the CON subset. Excluding this case however, both subsets 

produce a similar change, despite the different features used in 

each. 
R
e
la
ti
v
e
 C
h
a
n
g
e
 i
n
 A
c
c
u
ra
c
y
 (
%
)

Ba
ye
sN
et

C4
.5

NB
D

NB
K

NB
Tre
e

-3
-2

-1
0

1
2

3

CFS CON

 
Figure 3: Relative change in accuracy depending on 

feature selection metric for each algorithm compared to using 

full feature set 

Examining the mean class recall and precision rates for each of 

the algorithms showed a similar result to that seen with overall 

accuracy. The mean rates were initially high (>0.9) and remained 

largely unchanged when testing using the reduced feature sets. 

Although the classification accuracies for each of the 

algorithms were quite high, they do not necessarily indicate the 

best possible performance for each algorithm, nor can any wider 

generalisation of accuracy for different traffic mixes be inferred. 

They do however provide an indication as to the changes in 

classification accuracy that might be expected when using 

reduced sets of features more appropriate for use within 

operationally deployed, high-speed, IP traffic classification 

systems. 

Despite using subsets of differing sizes and features, each of 

the algorithms achieves high accuracy and mean recall/precision 

rates, with little variation in performance for the majority of 

algorithms. An interesting implication of these results is that, 

given our feature set and dataset, we might expect to obtain 

similar levels of classification accuracy from a number of 

ACM SIGCOMM Computer Communication Review 11 Volume 36, Number 5, October 2006



different algorithms. Though ours is a preliminary evaluation, a 

more extensive study [10] reached similar conclusions. 

5.3 Comparing Algorithm Computational 
Performance 

It is clearly difficult to convincingly differentiate ML 

algorithms (and feature reduction techniques) on the basis of their 

achievable accuracy, recall and precision. We therefore focus on 

the build time and classification speed of the algorithms when 

using each of the feature sets. Computational performance is 

particularly important when considering real-time classification of 

potentially thousands of simultaneous networks flows. 

Tests were performed on an otherwise unloaded 3.4GHz 

Pentium 4 workstation running SUSE Linux 9.3. It is important to 

note that we have measured the performance of concrete 

implementations (found in WEKA) as opposed to theoretically 

investigating the complexity of the algorithms. This practical 

approach was taken to obtain some tangible numbers with which 

some preliminary performance comparisons could be made.  

Figure 4 shows the normalised classification speed for the 

algorithms when tested with each of the feature sets. A value of 1 

represents the fastest classification speed (54,700 classifications 

per second on our test platform). 

N
o
rm
a
lis
e
d
 C
la
s
s
if
ic
a
ti
o
n
 S
p
e
e
d

NB
K

NB
Tre
e

Ba
ye
s N
et

NB
D

C4
.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ALL CFS CON

 
Figure 4: Normalised classification speed of the algorithms 

for each feature set 

Although there was little separating the results when 

considering accuracy, classification speed shows significant 

differences. C4.5 is the fastest algorithm when using any of the 

feature sets, although the difference is less pronounced when 

using the CFS subset and CON subset. Using the smaller subsets 

provides noticeable speed increases for all algorithms except 

C4.5.  

There are a number of factors that may have caused the 

reduction of classification speed for C4.5 when using the smaller 

subsets. It appears that decreasing the features available during 

training has produced a larger decision tree (more tests and 

nodes), thus slightly lengthening the classification time. The 

difference is relatively minor however, and in the context of a 

classification system benefits might be seen in reducing the 

number of features that need to be calculated. 

Figure 5 compares the normalised build time for each of the 

algorithms when using the different feature sets. A value of 1 

represents the slowest build time (1266 seconds on our test 

platform). 

N
o
rm
a
lis
e
d
 B
u
ild
 T
im
e

NB
K

NB
D

Ba
ye
s N
et

C4
.5

NB
Tre
e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ALL CFS CON

 
Figure 5: Normalised build time for each algorithm and 

feature set 

It is immediately clear that NBTree takes substantially longer 

to build than the remaining algorithms. Also quite clear is the 

substantial drop in build time when using the reduced feature sets 

(though still much slower than the other algorithms). 

Figure 6 provides a closer view of the algorithms excluding 

NBTree. Higher values represent lengthier build time.  

N
o
rm
a
lis
e
d
 B
u
ild
 T
im
e

NB
K

NB
D

Ba
ye
s N
et

C4
.5

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

ALL CFS CON

 
Figure 6: Normalised build time for each algorithm and 

feature set except NBTree 

Moore and Zuev [3] found that NBK classifiers could be built 

quickly, and this is also the case here. NBK builds quickly as this 

only involves storing feature distributions (classification is slow 

however as probability estimates must be calculated for all 

distinct feature values). Bayes Net and NBD have comparable 

build times, while C4.5 is slower.  

Overall the reduced feature sets allow for large decreases in 

the time taken to build a classifier. The different mix of features 

within the reduced subsets now appear to have some impact – the 

subset relying predominantly on packet length features (CFS 

subset) builds much faster than the subset using a mixture of 

packet lengths and inter-arrival times (CON subset).  

One explanation for this behaviour is that there are many more 

possible values for inter-arrival times compared to packet length 

statistics (packet length statistics are more discrete). This 

produces a wider distribution of feature values that requires finer 

quantisation when training, with the increased computation 

leading to longer build times. 

These preliminary results show that when using our features, 

there is a large difference in the computational performance 

between the algorithms tested. The C4.5 algorithm is significantly 

faster in terms of classification speed and appears to be the best 

suited for real-time classification tasks. 

 

ACM SIGCOMM Computer Communication Review 12 Volume 36, Number 5, October 2006



6. CONCLUSIONS AND FUTURE WORK 
Traffic classification has a vital role in tasks as wide ranging 

as trend analyses, adaptive network-based QoS marking of traffic, 

dynamic access control and lawful interception. Traditionally 

performed using port and payload based analysis, recent years 

have seen an increased interest in the development of machine 

learning techniques for classification. 

Much of this existing research focuses on the achievable 

accuracy (classification accuracy) of different machine learning 

algorithms. These experiments have used different (thus not 

comparable) datasets and features. The process of defining 

appropriate features, performing feature selection and the 

influence of this on classification and computation performance 

has not been studied. 

In this paper we recognise that real-time traffic classifiers will 

operate under constraints, which limit the number and type of 

features that can be calculated. On this basis we define 22 flow 

features that are simple to compute and are well understood 

within the networking community. We evaluate the classification 

accuracy and computational performance of C4.5, Bayes 

Network, Naïve Bayes and Naïve Bayes Tree algorithms using 

the 22 features and with two additional reduced feature sets.  

We find that the feature reduction techniques are able to 

greatly reduce the feature space, while only minimally impacting 

classification accuracy and at the same time significantly 

increasing computation performance. When using the CFS and 

Consistency selected subsets, only small decreases in accuracy 

(on average <1%) were observed for each of the algorithms. We 

also found that the majority of algorithms achieved similar levels 

of classification accuracy given our feature space and dataset, 

making differentiation of them using standard evaluation metrics 

such as accuracy, recall and precision difficult. 

We find that better differentiation of algorithms can be 

obtained by examining computational performance metrics such 

as build time and classification speed. In comparing the 

classification speed, we find that C4.5 is able to identify network 

flows faster than the remaining algorithms. We found NBK to 

have the slowest classification speed followed by NBTree, Bayes 

Net, NBD and C4.5. 

Build time found NBTree to be slowest by a considerable 

margin. The remaining algorithms were more even, with NBK 

building a classifier the fastest, followed by NBD, Bayes Net and 

C4.5. 

As this paper represents a preliminary investigation, there are a 

number of potential avenues for further work, such as an in-depth 

evaluation of as to why different algorithms exhibit different 

classification accuracy and computational performance. In a 

wider context, investigating the robustness of ML classification 

(for instance training on a data from one location and classifying 

data from other locations) and a comparison between ML and 

non-ML techniques on an identical dataset would also be 

valuable. We would also like to explore different methods for 

sampling and constructing training datasets. 

7. ACKNOWLEDGEMENTS 
This paper has been made possible in part by a grant from the 

Cisco University Research Program Fund at Community 

Foundation Silicon Valley. We also thank the anonymous 

reviewers for their constructive comments. 

8. REFERENCES 
[1] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, “Is P2P 

dying or just hiding?”, In Proceedings of Globecom, 

November/December 2004. 

[2] T. M. Mitchell, “Machine Learning”, McGraw-Hill 

Education (ISE Editions), December 1997. 

[3] A. W. Moore, D. Zuev, “Internet Traffic Classification Using 

Bayesian Analysis Techniques”, in Proceedings of ACM 

SIGMETRICS, Banff, Canada, June 2005. 

[4] A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow 
Clustering Using Machine Learning Techniques”, Passive & 

Active Measurement Workshop, France, April 2004. 

[5] T. Dunnigan, G. Ostrouchov, “Flow Characterization for 
Intrusion Detection”, Technical Report, Oak Ridge National 

Laboratory, November 2000. 

[6] S. Zander, T.T.T. Nguyen, G. Armitage, “Automated Traffic 
Classification and Application Identification using Machine 

Learning”, in Proceedings of IEEE LCN, Australia, 

November 2005. 

[7] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-
Service Mapping for QoS: A statistical signature-based 

approach to IP traffic classification”, in Proceedings of ACM 

SIGCOMM Internet Measurement Workshop, Italy, 2004. 

[8] T. Karagiannis, K. Papagiannaki, M. Faloutsos, “BLINC: 
Multilevel Traffic Classification in the Dark”, in 

Proceedings of ACM SIGCOMM, USA, August 2005. 

[9] L. Bernaille, R. Teuxeira, I. Akodkenou, A. Soule, K. 
Salamatian, “Traffic Classification on the Fly”, ACM 

SIGCOMM Computer Communication Review, vol. 36, no. 

2, April 2006. 

[10] T. Lim, W. Loh, Y. Shih, “A Comparison of Prediction 

Accuracy, Complexity, and Training Time of Thirty-three 

Old and New Classification Algorithms”, Machine Learning, 

volume 40, pp. 203-229, Kluwer Academic Publishers, 

Boston, 2000. 

[11] G. H. John, P. Langley, “Estimating Continuous 
Distributions in Bayesian Classifiers”, in Proceedings of 

11th Conference on Uncertainty in Artificial Intelligence, pp. 

338-345, Morgan Kaufman, San Mateo, 1995. 

[12] R. Kohavi and J. R. Quinlan, Will Klosgen and Jan M. 

Zytkow, editors, “Decision-tree discovery”, in Handbook of 

Data Mining and Knowledge Discovery, pp. 267-276, 

Oxford University Press, 2002. 

[13] R. Bouckaert, “Bayesian Network Classifiers in Weka”, 

Technical Report, Department of Computer Science, 

Waikato University, Hamilton, NZ 2005. 

[14] R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes 
Classifiers: a Decision-Tree Hybrid”, in Proceedings of 2nd 

International Conference on Knowledge Discovery and Data 

Mining (KDD), 1996. 

[15] M. Dash, H. Liu, “Consistency-based Search in Feature 
Selection”, Artificial Intelligence, vol. 151, issue 1-2, pp. 

155-176, 2003. 

[16] M. Hall, “Correlation-based Feature Selection for Machine 
Learning”, PhD Diss. Department of Computer Science, 

Waikato University, Hamilton, NZ, 1998. 

[17] NLANR traces: http://pma.nlanr.net/Special/ (viewed August 
2006). 

[18] NetMate, http://sourceforge.net/projects/netmate-meter/ 
(viewed August 2006). 

ACM SIGCOMM Computer Communication Review 13 Volume 36, Number 5, October 2006



[19] N. Brownlee, “NeTraMet & NeMaC Reference Manual”, 
University of Auckland, http://www.auckland. 

ac.nz/net/Accounting/ntmref.pdf, June 1999. 

[20] Waikato Environment for Knowledge Analysis (WEKA) 

3.4.4, http://www.cs.waikato.ac.nz/ml/weka/ (viewed August 

2006). 

9. APPENDIX 

9.1 Appendix A: Machine Learning 
Algorithms 

9.1.1 Naïve Bayes  
Naive-Bayes is based on the Bayesian theorem [11]. This 

classification technique analyses the relationship between each 

attribute and the class for each instance to derive a conditional 

probability for the relationships between the attribute values and 

the class. We assume that X is a vector of instances where each 

instances is described by attributes {X1,...,Xk} and a random 

variable C denoting the class of an instance. Let x be a particular 

instance and c be a particular class. 

Using Naive-Bayes for classification is a fairly simple process. 

During training, the probability of each class is computed by 

counting how many times it occurs in the training dataset. This is 

called the prior probability P(C=c). In addition to the prior 

probability, the algorithm also computes the probability for the 

instance x given c. Under the assumption that the attributes are 

independent this probability becomes the product of the 

probabilities of each single attribute. Surprisingly Naive Bayes 

has achieved good results in many cases even when this 

assumption is violated. 

The probability that an instance x belongs to a class c can be 

computed by combining the prior probability and the probability 

from each attribute’s density function using the Bayes formula: 

( ) ( | )

( | )
( )

i i

i

P C c P X x C c

P C c X x
P X x

= = =
= = =

=

∏
 .             (1) 

The denominator is invariant across classes and only necessary 

as a normalising constant (scaling factor). It can be computed as 

the sum of all joint probabilities of the enumerator: 

( ) ( ) ( | )j jj
P X x P C P X x C= = =∑ .                (2) 

Equation 1 is only applicable if the attributes Xi are qualitative 

(nominal). A qualitative attribute takes a small number of values. 

The probabilities can then be estimated from the frequencies of 

the instances in the training set. Quantitative attributes can have a 

large number (possibly infinite) of values and the probability 

cannot be estimated from the frequency distribution. This can be 

addressed by modelling attributes with a continuous probability 

distribution or by using discretisation. We evaluate Naive Bayes 

using both discretisation (NBD) and kernel density estimation 

(NBK). Discretisation transforms the continuous features into 

discrete features, and a distribution model is not required. Kernel 

density estimation models features using multiple (Gaussian) 

distributions, and is generally more effective than using a single 

(Gaussian) distribution. 

9.1.2 C4.5 Decision Tree 
The C4.5 algorithm [12] creates a model based on a tree 

structure. Nodes in the tree represent features, with branches 

representing possible values connecting features. A leaf 

representing the class terminates a series of nodes and branches. 

Determining the class of an instance is a matter of tracing the path 

of nodes and branches to the terminating leaf. C4.5 uses the 

‘divide and conquer’ method to construct a tree from a set S of 

training instances. If all instances in S belong to the same class, 

the decision tree is a leaf labelled with that class. Otherwise the 

algorithm uses a test to divide S into several non-trivial partitions. 

Each of the partitions becomes a child node of the current node 

and the tests separating S is assigned to the branches.  

C4.5 uses two types of tests each involving only a single 

attribute A. For discrete attributes the test is A=? with one 

outcome for each value of A. For numeric attributes the test is 

A≤θ where θ is a constant threshold. Possible threshold values are 
found by sorting the distinct values of A that appear in S and then 

identifying a threshold between each pair of adjacent values. For 

each attribute a test set is generated. To find the optimal partitions 

of S C4.5 relies on greedy search and in each step selects the test 

set that maximizes the entropy based gain ratio splitting criterion 

(see [12]).  

The divide and conquer approach partitions until every leaf 

contains instances from only one class or further partition is not 

possible e.g. because two instances have the same features but 

different class. If there are no conflicting cases the tree will 

correctly classify all training instances. However, this over-fitting 

decreases the prediction accuracy on unseen instances.  

C4.5 attempts to avoid over-fitting by removing some structure 

from the tree after it has been built. Pruning is based on estimated 

true error rates. After building a classifier the ratio of 

misclassified instances and total instances can be viewed as the 

real error. However this error is minimised as the classifier was 

constructed specifically for the training instances. Instead of using 

the real error the C4.5 pruning algorithm uses a more conservative 

estimate, which is the upper limit of a confidence interval 

constructed around the real error probability. With a given 

confidence CF the real error will be below the upper limit with 

1-CF. C4.5 uses subtree replacement or subtree raising to prune 

the tree as long as the estimated error can be decreased. 

In our test the confidence level is 0.25 and the minimum 

number of instances per leaf is set to two. We use subtree 

replacement and subtree raising when pruning.  

9.1.3 Bayesian Networks  
A Bayesian Network is a combination of a directed acyclic 

graph of nodes and links, and a set of conditional probability 

tables. Nodes represent features or classes, while links between 

nodes represent the relationship between them.  

Conditional probability tables determine the strength of the 

links. There is one probability table for each node (feature) that 

defines the probability distribution for the node given its parent 

nodes. If a node has no parents the probability distribution is 

unconditional. If a node has one or more parents the probability 

distribution is a conditional distribution where the probability of 

each feature value depends on the values of the parents. 

Learning in a Bayesian network is a two-stage process. First 

the network structure Bs is formed (structure learning) and then 

probability tables Bp are estimated (probability distribution 

estimation).  

We use a local score metric to form the initial structure and 

refine the structure using K2 search and the Bayesian Metric [20]. 

An estimation algorithm is used to create the conditional 

probability tables for the Bayesian Network. We use the Simple 

Estimator, which estimates probabilities directly from the dataset 

[13]. The simple estimator calculates class membership 

probabilities for each instance, as well as the conditional 

ACM SIGCOMM Computer Communication Review 14 Volume 36, Number 5, October 2006



probability of each node given its parent node in the Bayes 

network structure. 

There are various other combinations of structure learning and 

search technique that can be used to create Bayesian Networks. 

9.1.4 Naïve Bayes Tree  
The NBTree [14] is a hybrid of a decision tree classifier and a 

Naïve Bayes classifier. Designed to allow accuracy to scale up 

with increasingly large training datasets, the NBTree algorithm 

has been found to have higher accuracy than C4.5 or Naïve Bayes 

on certain datasets. The NBTree model is best described as a 

decision tree of nodes and branches with Bayes classifiers on the 

leaf nodes. 

As with other tree-based classifiers, NBTree spans out with 

branches and nodes. Given a node with a set of instances the 

algorithm evaluates the ‘utility’ of a split for each attribute. If the 

highest utility among all attributes is significantly better than the 

utility of the current node the instances will be divided based on 

that attribute. Threshold splits using entropy minimisation are 

used for continuous attributes while discrete attributes are split 

into all possible values. If there is no split that provides a 

significantly better utility a Naïve Bayes classifier will be created 

for the current node. 

The utility of a node is computed by discretising the data and 

performing 5-fold cross validation to estimate the accuracy using 

Naïve Bayes. The utility of a split is the weighted sum of the 

utility of the nodes, where the weights are proportional to the 

number of instances in each node. A split is considered to be 

significant if the relative (not the absolute) error reduction is 

greater than 5% and there are at least 30 instances in the node. 

9.2 Appendix B: Subset Evaluation Metrics 

9.2.1 Consistency 
The consistency-based subset search algorithm evaluates 

subsets of features simultaneously and selects the optimal subset. 

The optimal subset is the smallest subset of features that can 

identify instances of a class as consistently as the complete 

feature set. 

To determine the consistency of a subset, the combination of 

feature values representing a class are given a pattern label. All 

instances of a given pattern should thus represent the same class. 

If two instances of the same pattern represent different classes, 

then that pattern is deemed to be inconsistent. The overall 

inconsistency of a pattern p is: 

pp cnpIC −=)(      (3) 

where np is the number of instances of the pattern and cp the 

number of instances of the majority class of the np instances. The 

overall inconsistency of a feature subset S is the ratio of the sum 

of all the pattern inconsistencies to the sum of all the pattern 

instances nS: 

s

p

n

pIC
SIR

∑
=

)(
)( .    (4) 

The entire feature set is considered to have the lowest 

inconsistency rate, and the subset most similar or equal to this is 

considered the optimal subset. 

9.2.2 Correlation-based Feature Selection 
The CFS algorithm uses an evaluation heuristic that examines 

the usefulness of individual features along with the level of inter-

correlation among the features. High scores are assigned to 

subsets containing attributes that are highly correlated with the 

class and have low inter-correlation with each other. 

Conditional entropy is used to provide a measure of the 

correlation between features and class and between features. If 

H(X) is the entropy of a feature X and H(X|Y) the entropy of a 

feature X given the occurrence of feature Y the correlation 

between two features X and Y can then be calculated using the 

symmetrical uncertainty:  

)(

)|()(
)|(

YH

YXHXH
YXC

−= .                (5) 

The class of an instance is considered to be a feature. The 

goodness of a subset is then determined as: 

ii

ci

subset

rkkk

rk
G

)1( −+
=                  (6) 

where k is the number of features in a subset, 
cir
the mean 

feature correlation with the class and 
iir the mean feature 

correlation. The feature-class and feature-feature correlations are 

the symmetrical uncertainty coefficients (Equation 5). 

9.3 Appendix C: Table of Features 
 

Feature Description Abbreviation 

Minimum forward packet length minfpktl 

Mean forward packet length meanfpktl 

Maximum forward packet length maxfpktl 

Standard deviation of forward packet length  stdfpktl 

Minimum backward packet length minbpktl 

Mean backward packet length meanbpktl 

Maximum backward packet length maxbpktl 

Standard deviation of backward packet length  stdbpktl 

Minimum forward inter-arrival time minfiat 

Mean forward inter-arrival time meanfiat 

Maximum forward inter-arrival time maxfiat 

Standard deviation of forward inter-arrival 

times 

stdfiat 

Minimum backward inter-arrival time minbiat 

Mean backward inter-arrival time meanbiat 

Maximum backward inter-arrival time maxbiat 

Standard deviation of backward inter-arrival 

times 

stdbiat 

Protocol protocol 

Duration of the flow duration 

Number of packets in forward direction fpackets 

Number of bytes in forward direction fbytes 

Number of packets in backward direction bpackets 

Number of bytes in backward direction bbytes 

 

ACM SIGCOMM Computer Communication Review 15 Volume 36, Number 5, October 2006


