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Abstract—Cloud computing has transformed the means of
computing in recent years with several benefits over traditional
systems, like scalability and high availability. However, there
are still some opportunities, especially in the area of resource
provisioning and scaling [13]. Since workload may fluctuate a lot
in certain environments, over-provisioning is a common practice
to avoid abrupt Quality of Service (QoS) drops that may result
in Service Level Agreement (SLA) violations, but at the price
of an increase in provisioning costs and energy consumption.
Workload prediction is one of the strategies by which efficiency
and operational cost of a cloud can be improved [13]. Knowing
demand in advance allows the previous allocation of sufficient
resources to maintain QoS and avoid SLA violations [1]. This
paper presents the advantages and disadvantages of three work-
load prediction techniques when applied in the context of cloud
computing. Our preliminary results compare ARIMA, MLP, and
GRU under different cloud configurations to help administrators
choose the more appropriate and efficient predictive model for
their specific problem.

Index Terms—workload prediction, cloud computing, resource
efficiency

I. INTRODUCTION

Cloud computing has evolved at a rapid pace and has
become popular in today’s enterprise. The adoption of cloud
computing has been motivated by the prominent scalability,
availability and the promise for lower infrastructure costs
[13]. Large-scale component-based enterprise applications that
leverage cloud resources expect Quality of Service (QoS) guar-
antees in accordance with Service Level Agreements (SLA)
between the customer and service providers. In the context of
cloud computing, auto-scaling strategies promise to ensure the
QoS properties to applications, while making efficient use of
resources. Despite the perceived advantages of auto-scaling,
getting the full potential of auto-scaling is difficult due to
several challenges arising from the need to accurately estimate
the use of resources due to the unpredictable variation of
customer’s workload patterns. Many papers explored strategies
to better adapt environments to applications using learning al-
gorithms from experiences [13] [17] [20] [24]. They stated that
predictive models could be applied over workload behaviors to
accurately allocate the resources that are necessary to satisfy
QoS policies and SLA [1].

Workload prediction algorithms belong to a regression prob-
lem, which means that variables are estimated over time [8].
Thus, the learning phase in a Machine Learning algorithm
does not require a robust infrastructure to run as opposed to

classification problems, which need high-priced infrastructure
to compute a massive collection of data. Amiri et al. [1] have
surveyed studies related to workload prediction in clouds. The
works account for similar problems in complexity, but they are
unware of performance metrics and model’s accuracy, which
are essentials for QoS and SLA maintanance.

This work presents a trade-off analysis among the state-of-
the-art workload prediction techniques for cloud applications.
To compare the algorithms we implemented the most popular
Machine Learning-driven models that are broadly adopted in
recent studies [1]: ARIMA, MLP and GRU.

II. BACKGROUND

A. Workload prediction characterization
In computer science, the workload is the amount of work

performed by a computer in a given period demanded for some
application. The collection of this information makes possible
to map the application’s behavior and apply prediction tech-
niques to discover future behaviors and forecast infrastructure
demands. In the cloud computing, the application prediction
is an essential step for the efficient resources management [1].

Fig. 1. Different levels of predictions by Amiri and Mohammad-Khanli [1]

Amiri and Mohammad-Khanli [1] researched the concept
of ’workload’ and they found that it is interpreted in different
ways in the literature as it is shown in Figure 1.
In some papers such as Liang et al. [15] and Kumar et al.
[13], they consider the application’s workload is equivalent to
the number of requests for the application. In this approach,
the future number of requests is the output of the prediction
method.
The case of Jiang et al. [12] the workload is interpreted as the
future demand of Virtual Machines (VMs). For Garg et al. [7]
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the resource utilization of VMs are considered as workload.
They assumed that each application is capsulated inside one
VM.

In the application performance prediction, Manvi and Kr-
ishna Shyam [16] mentioned the values of throughput and
response time are predicted based on the resource allocated for
it. In this situation, the primary goal is to determine the best
resource allocation to obtain the desired performance level.

Leitner et al. [14] predict SLA parameters of applications.
They usually predict SLA violation of the application ac-
cording to its workload or the resources allocated for it. In
other words, data which refer to both typical QoS data (e.g.,
response times, availability, system load) and process instance
data (e.g., customer identifiers, ordered products) could be
used for prediction. Finally, host load prediction is used by
Yang et al. [25] with the focus to improve resource utilization
in the cloud.

This section presented different workload characterization
in different literatures. The next session describes some cloud
applications characteristics.

B. Cloud computing and Web applications

Singh and Chana [21] assume that cloud computing supports
different types of applications. The applications may be indi-
visible with multiple workflows applications, such as map re-
duce applications, adaptive data stream, scientific applications,
homogenous and heterogeneous scientific workflows, elastic
and scalable applications, data intensive, network intensive and
computation intensive, applications with multi-tier workloads.

The architecture of some cloud applications such as Web
sites, E-commerce, are mostly designed with multiple tiers
for flexibility and software reusability, these development
approach has been remodeled to support the scalability de-
manded [10].

For Nanda et al. [19] modern web applications usually have
three major components, a web server, an application server,
and a database server. They are usually connected in a three-
tier architecture so that resources can be allocated to each tier
independently.

The demands from users for these services can vary widely
based on factors such as the time-of-day and unexpected events
that can trigger crowds, for example, some promotions even
holidays.

Huang et al. [10] mentions, that capacity planning is a
classic method to determine the number of resources for the
given QoS requirement. However, the authors also explain
that capacity planning is a long-term and almost static de-
cision, and the resources are determined by the maximum
Web application request rate in the target period to avoid
excessive penalty. The maximum application request rate can
be estimated according to a prediction model or historical data
[10].

As mentioned by Kumar et al. [13] the workload predic-
tion is one of the possibilities by which the efficiency and
operational cost of a cloud can be improved. Therefore, the
following section describes some approaches for application
prediction.

III. WORKLOAD-AGNOSTIC PREDICTION TAXONOMY

There are several research efforts to discover approaches
to find the application’s behavior. Based on this Amiri and
Mohammad-Khanli [1] proposed a general taxonomy for mod-
els of the application prediction. According to the authors,
prediction models could be divided into four groups. These
groups include table-driven methods, control theory, queuing
theory and machine learning techniques as it is shown in
Figure 2.

A. Table-driven methods

In table-driven methods, the application behavior is recorded
in a table for different values of the workload intensity and
different amounts of resources allocated to it [1]. Interpolation
is a method of constructing new data points, and it is used to
obtain values not recorded in the table. This approach has
some limitations, like low scalability due to the number of
applications, different states of the resources allocation and
different types of workloads [3]. The table building is time-
consuming and demands several experiments to fill the table.
So this method is considered obsolete as mentioned by Amiri
and Mohammad-Khanli [1].

B. Control-theory

In control models, the goal is to control resources shared
between cloud applications [1]. The control theory has a
mechanism for dealing with unpredictable changes, and dis-
turbances in systems using feedback [26].

This kind of systems can be divided into two groups,
open loop control and closed group control systems [1]: In
open loop control systems, the performance of the application
(output) depends on allocated resources (the input signal) and
the output does not affect the input to control the resources
allocated to the application. In closed-loop control systems,
there is a feedback loop that compares the application per-
formance with the desirable performance. So, the controller
adjusts resources allocated according to its performance goal.

A standard closed-loop control based on Zhu et al. [26],
refer to the system being controlled as the target system, which
has a set of metrics of interest (referred to as measured output)
and a set of control knobs (referred to as control input).

Furthermore, as mentioned by Zhu et al. [26] there are some
limitations to this approach such as the nonlinearity inter-
relationships in computing systems which makes the modeling
harder to understand and to apply in practice. Also, imposes
a limitation on how fast workloads or system behavior can
change. There are problems with the time granularity, making
it impossible to design controllers that respond to changes at
shorter time scales as required in modern systems.

C. Queuing theory

The Queuing Network (QN) model can be used to predict
the performance of the application and modeling the relation-
ship between the workload and the performance criteria [1].
In the QN each server is allocated to the application as a
queuing system as mentioned by Urgaonkar et al. [23], which
investigate this approach with multitier Internet applications.
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Fig. 2. The taxonomy of prediction methods based on Amiri and Mohammad-Khanli [1]

The jobs go from one queue and arrive at another queue.
These models have parameters such as the requests arrival rate
and the average resources requirements of requests that should
be specified [23].

The open QN the jobs could be external. Thus, the number
of jobs in the system varies with time [9]. In the closed
QN, there is a constant population in the network and no
external sources. There is a few related works in this approach
for workload prediction. It is possible that the method was
replaced for more straightforward implementation. In the re-
search of Amiri and Mohammad-Khanli [1] there is not much
information about new researches in this scenario.

D. Machine learning techniques
The recently proposed approaches are based on Machine

Learning (ML) techniques. The ML based methods predict
the application behavior in different dimensions. They are not
only used to predict the future behavior of resources [12] but
also are used to predict SLA Violation [14], the application
performance, resources allocation and the execution time of
jobs [1].

There are some problems which cannot be achieved through
specific algorithms. However, if there is historical data avail-
able, it is possible to predict or derive tasks using ML tech-
niques [8]. In other words, based on the application behavior
over time as input data, can be build ML models that output
a prediction for the future application behavior [1].

Considering this context, this section outlines some se-
lected ML approaches for application forecasting, including
a summary of its theoretical base, specific constraints and
requirements as well. The challenges for accurate predictions
are interaction with varying number of clients and high non-
linearity in workload. So, the ML approach is widely being
adopted for establishing more accurate prediction models, mo-
tivated by the power of working with non-linearity workloads,
consequently promoting promising results [13]. Therefore,
based on the above statements we chose the ML techniques
to explore in our work.

IV. MACHINE LEARNING-CENTRIC CLASSIFICATION

This session depict three well known machine learning
techniques that showed promising results in related work
under similar scenarios as the one explored in this paper [13],

[17], [20], [24]. They will be compared to each other in our
preliminary experiments in Section V-C.

The first method is called ARIMA, which gives non-
stationary time series prediction, which stands for Auto Re-
gressive Integrated Moving Average and has successfully been
applied to many fields, such as finance [3].

The second was inspired by the structure of biological
neural networks [8] called artificial neural networks (ANN).
The ANN or MLP(Multi Layer Perceptron) has a feedforward
behavior, so it forms a directed acyclic graph. According to
Russel and Norvig [22], neural networks are composed of
nodes or units connected by directed links, the properties of
the network are determined by its topology and the properties
of the neurons.

The last approach RNN (Recurrent Neural Network) has
the same building process as ANN. Nonetheless, the RNNs
has connections between units form a directed cycle, so
they can remember important things about the input they
received, which enables them to be precise in predicting what
is coming next, it is usually adopted for spoken language
understanding, natural language processing (NLP), [5], [2].
In our experiments, we implemented the model GRU (Gated
Recurrent unit) proposed by Cho et al. [5].

V. PRELIMINARY EVALUATION

In our preliminary evaluation, we compare three ML work-
load prediction techniques from the literature that are obtain-
ing the more promising results in similar problems, namely
ARIMA, MLP, and GRU, under different cloud configurations.

A. Experimental Environment

The experiments were performed on a machine equipped
with an Intel Core I7-6500U processor with 2.50 GHz clock
speed with 16 GB of memory. We used Python 2.7 and an
interactively environment to implement and execute all tech-
niques used in this paper (Google Colaboratory). The scripts,
source code and workload traces used in our experiments are
available in https://github.com/dionatrafk/workload prediction
for reproducibility purposes.

To define the benchmark used in our experiments we
analyzed the characteristics of the benchmarks that are used in
related work, such as [13] and choose the NASA HTTP traces,
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obtained from [11]. NASA HTTP contains two separated two-
month long traces containing all HTTP requests to the NASA
Kennedy Space Center WWW server in Florida. The traces are
stored in ASCII files with one line per request. To prepare the
data for the different intervals, we used the sum operation. We
added the number of requests received in every time interval
of interest.

According to Diaz et al. [6] a major challenge in designing
ML systems is to determine the best structure and parameters
for the network given the data for the ML problem at hand.
These hyperparameters are chosen based on heuristic rules
and are manually fine-tuned to accelerate the discovery of
configurations yielding high accuracy, which is a very time-
consuming process. Therefore, in our preliminary evaluation,
MLP and GRU algorithms were implemented with their stan-
dard parameters and not fine-tuned to each executed dataset. In
order to compare techniques, the executions were performed
splitting the dataset, using about 60% for the training phase,
and the other 40% used for the test phase.

For the three parameters required by the ARIMA technique
ARIMA(p, d, q), we applied a methodology called Hyper-
parameter Tuning using grid search [18] that estimates the
best configuration by iterative trial and error from reviewing
diagnostics. This methodology executes the ARIMA model
varying the parameters in a range of 0 to 10 and gives us
the best Hyperparameters for a dataset and time interval.
Table I presents the used parameters for each of the evaluated
configurations.

TABLE I
HYPERPARAMETERS USED IN EXPERIMENTS

Interval(min) ARIMA(p,d,q) MLP and GRU
1 (0, 1, 2) Batch size: 140
5 (2, 0, 1) Epoch: 150

10 (0, 1, 1) Input layer: 32
15 (0, 2, 1) Hidden layer: 16
20 (1, 0, 2) Output layer: 1
25 (4, 0, 1) Dropout: 20%
30 (2, 0, 2)
35 (4, 0, 1)
40 (8, 0, 1)
45 (2, 0, 2)
50 (2, 0, 1)
55 (10, 0, 2)
60 (10, 0, 2)

B. Accuracy Metrics
The following metrics measure the quality of an estimator.

They are always non-negative, and values closer to zero are
better [20].

1) Mean squared error (MSE): To compute the MSE, we
first take the square of the difference between the actual and
predicted values of every record. We then take the average
value of these squared errors. If the predicted value of the ith

record is Pi and the actual value is Ai, divided by n which
correspond a number of observations, then the MSE is the
equation 1:

MSE =

∑n
i=1(Pi −Ai)

2

n
(1)

It is also common to use the square root of the MSE called
Root Mean Square Error (RMSE) [20].

C. A comparison among the prediction techniques
Table II shows prediction accuracy results obtained from

executions with different time intervals for each technique.
Since a smaller RMSE value means a better overall prediction,
we can clearly observe that accuracy tend to get worse with
increasing intervals. Its also noticeable that ARIMA obtained
slightly better results when compared to MLP and GRU in
this experiment.

TABLE II
RMSE PREDICTION ACCURACY

Interval(min) MLP GRU ARIMA
1 16,26 16,51 14,27
5 54,34 53,04 47,86
10 96,6 94,26 86,98
15 136,36 132 135,08
20 181,07 172,3 168,39
25 207,65 199,19 191,03
30 249,55 242,86 237,73
35 280,32 271,64 263,43
40 339,86 323,98 316,6
45 390,47 368,25 360,48
50 418,97 403,8 380,1
55 493,72 465,63 439,89
60 544,08 521,66 493,90

An explanation for ARIMA results is that, as explained
earlier, the algorithm was tuned with hyperparameters for
better configurations in every dataset. MLP and GRU tech-
niques were performed with fixed configurations in all of the
execution tests as shown in table I and still have the possibility
of improvement by further adjusting the hyperparameters.
Nevertheless, both prove a high capacity for generalization
and adaptation in the workloads at different time intervals, as
we can see in the detailed plots, being more flexible to apply
in different contexts and having a shorter execution time.
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Fig. 3. Predictions with 15-minute (Zoom in) time intervals

The line graphs show a more detailed view of the predictions
for 15 (Figure 3) and 60 minutes (Figure 4) confirming that
all three techniques coped with the no-linearity of our test
workload.
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Fig. 4. Predictions with 60-minute time intervals

During the execution of the experiments, we found dif-
ferences in the execution time between the techniques. MLP
and GRU performed the compilation, training and test phase
in seconds, regardless of the time interval of the dataset.
In the other hand, ARIMA needs to be updated every time
a prediction is made, since the current values need to be
included in the time series to provide the forecast for the next
time interval. Thus, depending on the prediction functionality
needed, the execution time can represent a significant overhead
the resource management strategy.

ARIMA showed to be more dependent on the number
of samples than MLP and GRU. GRU demonstrated better
results among neural networks, although in the execution of
experiments, was observed that has a relation between the
number of training samples and the batch size parameter,
then, for good performance, it would be interesting have
enough samples that are compatible with the size of the batch
size defined in the model. ARIMA also showed to be more
dependent on the number of samples than MLP and GRU,
that need fewer samples to provide accurate forecasts.

During the executions, the MLP model has not suffered
direct influence between the number of samples and the batch
size as it does with the GRU. It was noticed that MLP and
GRU need fewer samples to provide accurate forecasts.

Based on our preliminary experiments and the above find-
ings concerning flexibility of use, execution time, sensitivity
to the number of samples and accuracy, we recommend the
utilization of GRU in scenarios similar to the one evaluated
in this work.

VI. RELATED WORKS

In this section, we analyze the current state-of-the-art related
to workload prediction. As mentioned in section II-A there are
already several research efforts for other problem domains,
tailored for their specific workload characteristics. Some of
them make use of simple statistical predictors, others are
already applying machine learning techniques and improving
algorithms to train them for their specific problem. In the next
paragraphs, we present the more relevant contributions that

have similarities to what we did in this paper for the prediction
of cloud computing applications.

Jitendra and Singh present a workload prediction in the
cloud using an artificial neural network (ANN) and an adaptive
differential evolution [13]. Their ML technique is trained with
HTTP Requests using an evolutionary approach to minimize
the effect of the initial solution choice. Evolutionary algo-
rithms explore the space in multiple directions using a set of
solutions [13]. The ML techniques learn and extract patterns
from the workload, which can be further utilized to improving
resource scaling decisions. Their implementation resulted in
better results when compared with traditional ML approaches
such as the training with back propagation.

Messias et al. [17] build a model that combines time series
prediction models with a genetic algorithm to autoscale Web
applications hosted in the cloud infrastructure. The forecasts
are based on five models: naive model (Naive); autoregressive
model (AR); autoregressive-moving-average model (ARMA);
autoregressive integrated moving average model (ARIMA);
and extended exponential smoothing model (ETS) [17]. Be-
cause none of these methods achieves the best result in all
cases, the authors use a genetic algorithm (GA) to combine
the benefits of each individual forecasting method and increase
forecast accuracy. To evaluate the proposal they used three logs
extracted from real web servers.

Prevost et al. [20] introduces a novel framework that
combines workload prediction and stochastic state transition
models. The goal of this work is to obtain an optimal resource
allocation in the cloud by minimizing the energy consumed
while maintaining the required performance levels. They used
ANN and AR to forecast the application workload in cloud
data centers. The authors show that both models can ade-
quately predict future workloads, but the relative RMSE values
for the Linear AR predictor obtained more accurate results
then ANN. Although they compare a wide range of time
intervals, varying from 1s to 90s, they are all relatively short,
and longer intervals would probably favor ANN, that can better
handle non-linear workloads.

Calheiros et al. [4] presents the implementation of a cloud
workload prediction module for Software as a service (SaaS)
providers and its impact on cloud applications QoS. The
predicted load is used to dynamically provision VMs in an
elastic cloud environment. Their prediction technique is based
on the ARIMA model. The system was evaluated with real
traces of requests to the web servers from the Wikimedia
Foundation. The authors justified this choice based on their
experiments, were ARIMA had better accuracy results than the
more complex ANN models, because the used workloads were
more linear. To evaluate the impact of accuracy concerning
efficiency in resource utilization and QoS of user requests,
the experiments were performed via simulation using the
CloudSim toolkit, which contains a discrete event simulator
and classes that enable users to model cloud environments.
In their workload context, the simulation achieves an average
accuracy of 91 percent, which results in minimal impact on
the QoS.

Yang et al. [24] proposed an auto-scaling mechanism for
virtual resources at different levels in service clouds. Since
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the workload trend in this case is linear for a relatively short
period, they need a method which can quickly adjust its
model to cope with workload variations. An LR prediction
model was proposed and compared to two versions of ARMA:
Mean (The predicted workload is the mean workload over the
workloads in the window) and Max (The predicted workload
is the maximum workload over the workloads in the window).
LR obtained better results in their scenario. Because none
of the techniques was better for all configurations, authors
recommend that the length of the sliding window should be
used to choose the best technique for a specific situation. In
their experiments, the authors conclude that their approach
reduces the final cost of the resources and generates less SLA
violation.

Although all the works motioned above showed very good
results for the scenarios they were tuned for, we were inter-
ested to verify the efficiency of the above core prediction
techniques in a more realistic scenario, with longer time
intervals and a more dynamic, less linear workloads, like it
is the case in modern cloud applications. Thats the reason we
chose to compare the above techniques to each other under the
same conditions in this paper, analyzing also some tradeoffs
regarding accuracy, like training efforts and execution time.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigate how predictive models for
workload forecasting can be used as an alternative to resource
overprovisioning to reduce provisioning costs and energy
consumption still maintaining QoS levels and avoiding SLA
violations. Three workload prediction techniques are analyzed,
and their advantages and disadvantages are presented when
applied in the context of cloud computing. Our preliminary
results compare ARIMA, MLP, GRU under different cloud
configurations to help administrators choose the more appro-
priate and efficient predictive model for their specific problem.

Our preliminary experiments show that for short time inter-
vals all the compared techniques achieved good predictions.
A disadvantage about ARIMA is that the model needs to be
updated and recalculate for each new time series before the
next forecast. This can be time consuming and may com-
promise its application in certain environments. Both neural
network techniques, MLP and GRU, need fewer samples to
give precise forecasts in all of the tested configurations. Based
on the RMSE metric, GRU achieved a slightly better accuracy
and is our recommendation for cloud scenarios with similar
workload characteristics as the ones used in this work.

As future work we plan to investigate how hyperparameters
can be further tuned to improve MLP and GRU results and
how this tuning affects the tradeoff of each predictive model
and consequently the conclusions of our comparative study.
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