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Abstract

Background: A prostate cancer diagnosis is based on biopsy sampling that is an invasive, expensive procedure,

and doesn’t accurately represent multifocal disease.

Methods: To establish a model using plasma miRs to distinguish Prostate cancer patients from non-cancer controls,

we enrolled 600 patients histologically diagnosed as having or not prostate cancer at biopsy. Two hundred ninety

patients were eligible for the analysis. Samples were randomly divided into discovery and validation cohorts.

Results: NGS-miR-expression profiling revealed a miRs signature able to distinguish prostate cancer from non-

cancer plasma samples. Of 51 miRs selected in the discovery cohort, we successfully validated 5 miRs (4732-3p, 98-5p,

let-7a-5p, 26b-5p, and 21-5p) deregulated in prostate cancer samples compared to controls (p≤ 0.05). Multivariate and

ROC analyses show miR-26b-5p as a strong predictor of PCa, with an AUC of 0.89 (CI = 0.83–0.95;p < 0.001). Combining

miRs 26b-5p and 98-5p, we developed a model that has the best predictive power in discriminating prostate cancer

from non-cancer (AUC = 0.94; CI: 0,835-0,954).

To distinguish between low and high-grade prostate cancer, we found that miR-4732-3p levels were significantly higher;

instead, miR-26b-5p and miR-98-5p levels were lower in low-grade compared to the high-grade group (p≤ 0.05).

Combining miR-26b-5p and miR-4732-3p we have the highest diagnostic accuracy for high-grade prostate cancer

patients, (AUC = 0.80; CI 0,69-0,873).

Conclusions: Noninvasive diagnostic tests may reduce the number of unnecessary prostate biopsies.

The 2-miRs-diagnostic model (miR-26b-5p and miR-98-5p) and the 2-miRs-grade model (miR-26b-5p and miR-4732-3p)

are promising minimally invasive tools in prostate cancer clinical management.
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Background
Prostate cancer (PCa) is a leading cause of male cancer-

related mortality in the United States, with an estimated

of more than 175,000 diagnosed men and more than 32,

000 deaths from the disease in 2019 [1]. PCa is a re-

markably heterogeneous disease with tumors ranging

from indolent to very aggressive [2].

A significant challenge in PCa clinical management is

posed by the inability of the current diagnostic tests,

such as serum Prostate-specific antigen (PSA) testing,

digital rectal examination (DRE), to diagnose prostate

cancer accurately and to discern between indolent and

aggressive disease [3–6]. Although Magnetic Resonance

Imaging has recently been demonstrated to identify PCa

patients and particular clinically significant cancer accur-

ately, it still presents concerns about health care systems

resources to ensure quality, reproducibility, accessibility,

cost-effectiveness, and adequate training [7, 8].

Owing to inherent limitations of serum PSA screening,

including lack of specificity, this has led to PCa overdi-

agnosis and overtreatment [3, 5]. Therefore identifica-

tion of aggressive versus indolent tumors and predicting

PCa outcomes remain a significant clinical challenge [9,

10]. Several promising alternative tissue-based assays are

being developed based on the molecular characterization

of primary and metastatic prostate tumors that show im-

proved sensitivity and specificity over PSA [4]. However,

these assays are based on biopsy sampling, an invasive,

expensive procedure, and does not accurately represent

multifocal diseases.

Recent studies have demonstrated that aberrant ex-

pressions of miRs are closely associated with the devel-

opment, invasion, metastasis, and prognosis of various

cancers, including prostate cancer [11].

While most miRs are found at the intracellular level,

many have been observed outside the cells, including in

various body fluids [12, 13].

This study aimed to investigate the hypothesis that

changes in circulating miRs represent potentially useful

minimally invasive biomarkers for the diagnosis of pros-

tate cancer.

Methods
Patients

Our analyses involved consecutive prospectively col-

lected cohorts of patients followed-up in the Urology’s

division at S. Andrea University-Hospital scheduled for

prostate biopsy based on abnormal digital rectal examin-

ation or an elevated PSA. The enrollment period started

in 2015 and ended in 2018. Twelve cores TRUS prostate

biopsy was performed in all enrolled patients as de-

scribed previously [14, 15]. Patients were randomly se-

lected using closed envelops in three groups: Discovery

cohort, Validation 1, and Validation 2.

We used a discovery cohort (37 PCa, 33 Benign pros-

tate hyperplasia, BPH) to screen the plasma abundance

of miRs, a validation cohort 1 (45 PCa, 45 BPH) to test

results reproducibility, and then a validation cohort 2

(45 PCa, 65 BPH) to further test reproducibility in a

consecutive randomized population. Samples were col-

lected at the time of the biopsy.

The institutional ethics committee board authorized

this study at S. Andrea University-Hospital Rome, Italy

(Aut. #5176/2013). Written informed consent was ob-

tained from all patients enrolled. The workflow of the

discovery and validation approach is summarized in

Fig. 1.

RNA extraction and NGS

Briefly, aliquots of 200ul of plasma samples were thawed

on ice, and 1 ml of QIazol Lysis Reagent (Qiagen) was

added to the samples and incubated at room

temperature for 5 min. Synthetic spike-in RNAs oligos

were added to samples as a control for extraction and

subsequent steps. RNA was eluted in 35 ul of nuclease-

free water. Before use, RNA concentration in each sam-

ple was assayed with an ND-1000 spectrophotometer

(NanoDrop). Its quality was assessed with the Agilent

2100 Bioanalyzer with Agilent RNA 6000 nano kit

(Agilent Technologies, Santa Clara, CA, USA).

Indexed libraries were prepared from 1 μg/ul purified

RNA with TruSeq Stranded Total RNA (Illumina) Li-

brary Prep Kit according to the manufacturer’s instruc-

tions. Libraries were quantified using the Agilent 2100

Bioanalyzer (Agilent Technologies) and pooled. Each

index-tagged sample was present in equimolar amounts,

with a final concentration of the pooled samples of

2bnM. The pooled samples underwent cluster gener-

ation and sequencing using an Illumina HiSeq 2500

System (Illumina) in a 2 × 100 paired-end (RNA-seq)

format. Genomix4Life s.r.l performed NGS analysis.

(Baronissi SA, Italy).

Droplet digital PCR analysis

miRs analysis was performed by Droplet Digital PCR

(BioRad) using miRCURY LNA™ miRNA PCR Assays ac-

cording to the manufacturer’s instructions. Briefly, 1.5 ul

RNA was reversely transcribed to cDNA with miRCURY

LNA™ Universal RT microRNA PCR, cDNA synthesis

kit II in a 10 ul reaction mixture, according to manufac-

turer’s protocol (Qiagen). cDNA was diluted 80X and 20

ul of the reaction mixture containing 8ul of the RT

product, 12 ul of Digital PCR supermix™ (Bio-Rad), and

0.25 or 0.5 or 1 ul of miRcury LNA miRNA PCR Assays

(Qiagen) and DEPC water were loaded into a plastic

cartridge with 70ul of QX100 Droplet Generation oil

and then placed into the QX100 Droplet Generator

(Bio-Rad). The droplets generated from each sample
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were transferred to a 96-well PCR plate (Eppendorf,

Germany). PCR amplification was carried on a T100

thermal cycler (Applied Biosystems) at 95 °C for 10 min,

followed by 40 cycles of 95 °C for 30 s and 56 or 58 °C

for 1 min, then one cycle of 98 °C for 10 min, ending at

4 °C. The plate was then loaded on Droplet Reader (Bio-

Rad) and read automatically. A no template control (no

cDNA in PCR) and negative control for each reverse

transcription reaction (RT-neg) were included in every

assay run. Absolute quantification of each miR was cal-

culated from the number of positive counts per panel

using the Poisson distribution. The quantification of the

target miRNAs was presented as the number of copies/

ul of reaction. Raw sequence files (fastq files) underwent

a quality control analysis using FASTQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Small

RNA-Seq data were analyzed using iSmaRT [16] with

standard parameters, using miRBase v21 as a reference

track. Only miR showing a raw expression value > 50

raw-reads in at least one sample were considered for

further analysis. Differentially expressed miRs were iden-

tified using DESeq2 [17]. A cutoff of | FC | ≥ 2 and

FDR ≤ 0.001 was used to select differentially expressed

miR between PCa vs. BPH samples. Raw data are avail-

able in GEO with accession number GSE118038.

Statistical analysis

Differences in miRs levels between sample groups were

assessed using the Mann Whitney test. For comparison

of more than 2 groups, one-way ANOVA or Kruskal-

Wallis tests were used as appropriate. Pearson 2 test

was used to compare qualitative variables represented as

frequencies.

Each miR’s potential to distinguish prostate cancer

groups and controls was investigated using ddPCR

values in a Receiver Operating Characteristic (ROC)

curve analysis.

Using multiple logistic regression with the enter

method, the statistical significant variables as assessed in

univariate analysis were entered and investigated as pre-

dictors of prostate cancer presence vs. absence and in a

separate model comparing Gleason Grade Group 3

(Gleason score ≥ 4 + 3) vs. Gleason Grade Group 1–2

(Gleason score ≤ 3 + 4) among men with a cancer diag-

nosis at biopsy. The predictive miRs-based model’s per-

formance characteristics were assessed by calibration

plots. The x-axis represents the predicted probability,

and the y-axis represents the observed accuracy of the

biopsy. Decision curves were generated to compare the

net benefit of the miRs-based test. Decision curves en-

able the reader to understand graphically if the miRs-

Fig. 1 Flow diagram of discovery and validation approaches
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based test is beneficial for diagnosing PCa or a high-

grade PCa. A range of probabilities is beneficial and

gives us a quantification of the benefit. Data are

presented as median with interquartile range and

mean ± standard deviation. Odds ratios and 95% CI were

calculated for the parameters in each group using PCa

negative and Gleason 3 + 4 as the reference group.

Statistically significant P values were set at *p < 0.05,

**p < 0.001, NS non-significant. All tests were two-sided.

The statistical analysis was performed using GraphPad

Prism5 or SPSS statistical software.

Results
Cohort description and study design

The clinicopathological characteristics of training, valid-

ation1, and validation2 cohorts are described in Table 1

and Fig. 1.

Of the 600 patients enrolled in the study, 290 patients

were suitable for the analysis (Fig. 1).

For the discovery cohort, we selected a total of 70 pa-

tients that underwent 12-core transrectal ultrasound

(TRUS) biopsy, of which 48% had cancer at the diagno-

sis. The average of the clinical features was: age 67.15

(IR 55/75), PSA 7.8 ng/ml (IR 4.1/13.4), and the TRUS

volume 53.5 ml (IR 29/86). Among all cancer patients,

58% showed a high-grade (Gleason score ≥ 4 + 3, Epstein

group ≥III) cancer. Due to a bias in participants’ sam-

pling, there was a significant difference in age and TRUS

volume between prostatic cancer and control patients in

the discovery cohort (Table 1).

For validation cohort1, we enrolled 90 patients that

underwent 12-core TRUS biopsy, of which 50% had can-

cer at the diagnosis. The average of the clinical features

was: age 68 (IR 61/75), PSA 8.78 ng/ml (IR 5.2/11.2),

and the TRUS volume 51.8 ml (IR 35/67). Among all

cancer patients, 73% showed a high-grade (Gleason

score ≥ 4 + 3, Epstein group ≥III) cancer (Table 1).

For validation cohort 2, we enrolled a consecutive

series of 110 patients that underwent 12-core TRUS bi-

opsy, of which 41% had cancer at the diagnosis. The

average of the clinical features was: age 69 (IR 44/80),

PSA 7 ng/ml (IR5.12/11.7), and the TRUS volume 55 ml

(IR 35/74). Unlike the training and cohort 1 set, only

30% of patients in the validation cohort 2 showed high-

grade (Gleason score ≥ 4 + 3, Epstein group ≥III) cancer,

reflecting the trend seen in an unselected patient popu-

lation (Table 1).

NGS analysis of circulating miRNAs in PCa

In the discovery phase, we aimed to explore the potential

of plasma miRs as a diagnostic tool for PCa exploiting

an NGS high-throughput analysis using Illumina HiSeq

2500 sequencing system.

The analysis revealed that plasma-derived from PCa

patients showed a significant alteration in miRs expres-

sion compared to controls (Fig. S1 in the Supplement).

PCa patients displayed overexpression of 34 and

downregulation of 17 miRs compared to BPH samples

(Fold Change ≥2, FDR ≤0.001) (Fig. S1, Table S1).

Cluster analysis identified two main clusters (C1 and 2)

described in Table S1 in the Supplement.

Validation of candidate miRNAs by droplet digital PCR

For validation, all miRs discovered in the NGS analysis

with Fold Change ≥2 and FDR ≤0.001, were analyzed in

validation cohort1 (Table 1), using droplet digital PCR

(dDPCR).

We successfully confirmed the downregulation in PCa

samples of five miRs (miRs-98-5p, let-7a-5p, −26b-5p,

−30c-5p and − 21-5p) and the upregulation of one miR

(miR-4732-3p) compared to controls (p-value≤0.05).

These results indicate that dysregulated miRs can

discriminate between PCa and BPH (Figs. 2, 3 A-F). Im-

portantly, no statistically significant differences in PSA

concentration were observed between PCa and controls

(Figs. 2, 3 G).

Logistic regression analysis demonstrated that miR-

26b-5p is a strong, PSA independent predictor for PCa

presence in univariate and multivariate analysis (univari-

ate: p = 0.0001, CI 0.00–0.002; multivariate: P = 0.0001,

CI 0.00–0.48) (Table 2 left panel).

To better control the sampling bias, the robustness of

our miRs signature’s predictive performance was

assessed through validation cohort 2, derived from a

consecutive population (Table 1). We confirmed the sig-

nificant differences between tumors and controls of all

miRs previously identified except for miR-30c. (Fig. 4).

On multivariate analysis, miR-26b-5p resulted in an

independent predictor of PCa (Table 2 right panel). Re-

sults from the different cohorts were coherent, support-

ing their consistency.

ROC analysis for each identified miR confirmed the

excellent diagnostic accuracies of miR-26b-5p in detect-

ing PCa, with an AUC 0.89 (CI 0.83–0.95 p < 0.0001),

and all miRs tested showed higher diagnostic power with

respect to PSA (Fig. 5).

Based on the results from the validation cohort 2, the

diagnostic performance of combining two or more miRs

was assessed. A ROC model, including the combination

of miR-26b-5p and miR-98-5p, showed the best predict-

ive power in discriminating PCa from BPH patients, with

an AUC of 0.944 (Fig. 6a).

Analyzing the calibration plots, our model demon-

strates the agreement between observed and predicted

probabilities for the diagnosis of PCa (Fig. S2A in

Supplement).
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The decision curve strongly supported that using our

novel and noninvasive two-miRs based model represents

the best strategy in diagnosing PCa. Remarkably, the

model has a higher net benefit than both treat-all (blue

line) and treat-non (red line) for the threshold probabil-

ities between 0 and 90%. (Fig. 6b).

Given the different outcomes between low- and high-

grade PCa, the possibility of identifying its grade is fun-

damental in PCa diagnosis and management.

To this aim, we evaluated the expression of our identi-

fied miRs in high-grade PCa (Gleason score ≥ 4 + 3, Ep-

stein group ≥III) vs. No-Cancer+Low Grade Cancer

(Gleason score ≤ 3 + 4, Epstein group ≤II).

Results showed that miR-4732-3p levels were signifi-

cantly higher in the high-grade group compared to the

No-Cancer+Low Grade group. In comparison, miR-26b-

5p and miR-98-5p levels were considerably higher in the

No-Cancer+Low Grade group than the high-grade group

(Fig. S3 in Supplement). No statistically significant dif-

ference was found for PSA and miRs let7a-5p, −30c, and

− 21-5p in the high-grade group compared to No-

Cancer/Low-grade group.

Also, the multivariate logistic analysis showed that

miR-26b-5p was an independent predictor of the pres-

ence of a high-grade PCa (Table 3).

ROC analysis showed that miR-26b-5p and miR-4732-

3p had the highest diagnostic accuracies for high-grade

prostate cancer patients with an AUC of 0.78 (CI 0.69–

0.87; p = 0.0001) and 0.73 (CI 0.60–0.87; p = 0.002), re-

spectively (Fig. S4).

A ROC model, including the combination of plasma

miR-26b-5p and miR-4732-3p, showed the best predict-

ive power in diagnosing high-grade PCa patients, dis-

playing an AUC of 0.80 (Fig. 6c and Table S2 in

Supplement). Analyzing the calibration plots, our model

demonstrates the agreement between observed and pre-

dicted probabilities for the diagnosis of high-grade PCa

(Fig. S5 in Supplement). The decision curve strongly

supported that the use of our novel and noninvasive

two-miRs based model represents the best strategy in

Fig. 2 Differential levels of miRs and PSA in PCa patients versus controls in plasma samples from validation cohort 1. Abbreviations: PCA,Prostate

Cancer; BPH,Benign prostate Hyperplasia; PSA,Prostate Specific Antigen. All data were expressed as copies/ μL of reaction or ng/ml as described.

The horizontal blue line in the middle of each box indicates the median.Whereas the top and bottom black line 75th and 25th percentiles,

respectively, Mann-Witney U test; ** indicates p value < 0.001; *** indicates p value < 0.0001; for all comparisons (BPH versus PCa)
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Fig. 3 ROC curve analysis of selected miRs in plasma samples from validation cohort 1. Abbreviations: AUC, Area under the ROC Curve; P, p value

Table 2 Univariate and Multivariate analysis according to cancer status in Validation1 and 2 cohorts

Validation cohort 1 Validation cohort 2

Variables Univariate Multivariate Univariate Multivariate

Odds ratio (CI) p Odds ratio (CI) p Odds ratio (CI) p Odds ratio (CI) p

AGE 1.06(1.00–1.11) .036 1.04(0.93–1.17) .47 1.05(.99–1.11) .68

PSA .97(0.87–1.07) .54 1.05(1.00–1.11) .52

miR-26b-5p .0001(.00–.002) .0001 .0001(.00–.48) .0001 .11(.001–.109) <.0001 .011(.001–.11) .0001

miR-30c .98(0.95–1.01) .14 .984(.96–1.101) .27

miR-21-5p .99(0.99–1.00) .21 .99(.99–1.00) .29

miR-98-5p .77(0.54–1.10) .160 .68(.43–1.09) .11

miR-4732-3p 6.60(2.46–17.37) .0001 1.82(.55–6.04) .33 1.53(1.01–2.33) .04 .98(0.59–1.69) .94

Let7a-5p .99(.98–1.00) .117 .99(.97–1.00) .16

Abbreviations CI, Confident Interval, p p value, PSA Prostate Specific Antigen. Data are presented as odds ratio (CI). Empty cells correspond to variables that were

not measured. Baseline variables that achieved a level of significance of p < .05 in the univariate analysis were entered into multivariate models
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the high-grade diagnosis of PCa (Fig. 6d). Notably, the

model has a higher net benefit than both treat-all (blue

line) and treat-non (red line) for the probabilities thresh-

old between 0 and 40%. (Fig. 6d).

Discussion
In PCa, diagnosis and tumor aggressiveness are some of

the major challenges for its clinical management. Al-

though PSA screening aided early detection and screen-

ing, its levels poorly correlate with tumor aggressiveness

or dissemination, and they are not useful in predicting

responsiveness or relapse.

Diagnostic accuracy, particularly in terms of risk strati-

fication, initial staging, and active surveillance is one of

the main issues in this field.

Circulating miRs profiles are a promising strategy for

cancer diagnosis [18, 19], particularly in PCa, where

minimally invasive, sensitive, and specific biomarkers are

needed.

This study describes two novel panels of miRs derived

from an in-depth analysis of patients’ plasma samples,

one specific for diagnosing and one for grading PCa,

respectively.

Previous investigations demonstrated the potential

diagnostic value of circulating miRs as biomarkers for

PCa [20–26]. The resulting miRs from this study were

found to be modulated in different tumors.

Specifically, miR-98-5p was downregulated in lung

cancer tissue compared to adjacent cancer-free tissue

[27] and in the serum of lung cancer patients compared

to controls [28].

Additionally, Wang et al. observed this downregulation

was positively correlated with lymph node metastasis,

worse TNM stage, and a decrease in patients’ overall

survival. Similarly, miR-98-5p was reported to be down-

regulated in melanoma patients and metastatic melan-

oma compared to cancer-free controls [29].

MiR-98-5p was also observed to be downregulated in

esophageal squamous cell carcinoma [30].

Some studies have also reported decreased serum let-7a,

miR 26b-5p, 30c-5p levels in prostate cancer [31–33].

No data are available, to date, for miR-4732-3p.

The candidates’ miRs were selected in the discovery

cohort in which we analyzed the entire MIRnome

exploiting NGS technology. We first wanted to test the

extremes (i.e., patients with known prostate cancer

Fig. 4 Differential levels of miRs and PSA in PCa patients versus controls (BPH) in plasma samples from validation cohort 2. Abbreviations: PCa,

Prostate Cancer; BPH,Benign prostate Hyperplasia; PSA,Prostate Specific Antigen. All data were expressed as copies/ μL of reaction or ng/ml as

described. The horizontal blue line in the middle of each box indicates the median. Whereas the top and bottom black line 75th and 25th

percentiles, respectively, Mann-Witney U test; ** indicates p value < 0.001; *** indicates p value < 0.0001; for all comparison (BPH versus PCa)
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predominantly with high grade and stage and a tumor

size > 2.5 cm vs. patients with known benign prostate

hyperplasia with a negative biopsy result with at least 5 y

of follow-up). This allowed us to identify a miRs signa-

ture that clearly distinguished the two conditions.

The first validation cohort confirmed a signature of 6

miRs with high predictive power in diagnosing PCa.

Most importantly, each identified miR showed a predict-

ive power superior and independent from PSA.

Since data driven from the first validation may tend

not to reflect a real population (i.e., with a reasonable in-

cidence of 30% of PCa and a 60% of high-grade tumors),

we used a second validation cohort derived from a con-

secutive population.

Notably, dysregulated miRs were consistent through

the second validation cohort, except for miR-30c that

lacked statistical significance.

Based on these results, we first developed a test able to

diagnose PCa. Among all the miRs identified in the ana-

lysis, we discovered and demonstrated that the combin-

ation of 2 miRs (mir-26b-5p and miR-98-5p) had the

best predictive power (AUC 0.944) in diagnosing PCa.

Test performance was highlighted by the analysis of

the decision curve, that showed a diagnostic accuracy

that results in a higher net benefit in both groups treat-

all and treat-non for the probabilities threshold between

0 and 90%, strongly supporting the use of our novel

two-miRs based model as the best strategy in the diag-

nosis of PCa.

We developed a two miR-based test (miR-26b-5p and

miR-4732-3p) to identify PCa grade (Low vs. High). A

ROC model, including the combination of these two

miRs, showed the best predictive power (AUC 0.80) in

diagnosing high-grade PCa patients. Furthermore, this

Fig. 5 ROC curve analysis of selected miRs in plasma samples from validation cohort 2 according to cancer status. Abbreviations: AUC, Area

under the ROC Curve; P, p value; PSA, Prostate Specific Antigen
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model’s performance assessment showed a higher net

benefit than both treat-all and treat- non, for the prob-

abilities threshold between 0 and 40%.

Our study’s strengths are the large number of miRs

analyzed in the discovery cohort, the large selection of

miRs candidates in two independent validation cohorts,

and the use of dDPCR to confirm identified miRs.

Due to their low abundance in the plasma and the lack

of an adequate normalization method, we have exploited

the dDPCR technique’s ability to obtain absolute quanti-

fication of circulating miRs levels without the need for a

reference gene. Furthermore, compared to real-time

PCR, dDPCR shows lower variations; thus, it can better

achieve statistically significant discrimination between

tumors and controls. We must also acknowledge the

important limitations of our study. This is a small

single-center study with a limited number of patients af-

fected by PCa and by high-grade cancer, which reduced

a robust evaluation of the relationship between miRs

and PCa grading in our series. The study results depend

upon the enrolled population, and our patient’s charac-

teristics may differ from what has been observed in

other countries. However comparing the three cohorts

of patients we found no significant differences (data not

shown) in term of age, PSA value and prostate volume.

Furthermore in all cohorts prostate cancer patients were

significantly older and presented as expected smaller

prostate volume confirming the validity of our cohorts

[14, 15]. Our cohort characteristics describe an Italian

pre-screening community, as shown by the high

Fig. 6 Decision Curve Analysis of the 2-miRs model in the Validation cohort 2. a. Roc model 2-miRs based according to cancer status in validation

cohort 2. b. Decision curve analysis for the 2-miR model based according to cancer status in validation cohort 2. The straight red line at y = 0

represents a strategy of performing a biopsy in no patients and the blue line represents the strategy of performing a biopsy in all patietns. The

area of the graph for which a risk calculator has a greater net benefit than both the ‘biopsy none’ and ‘biopsy all lines is where it has greatest

clinical applicability. c. Roc model 2-miRs based according to High grade tumor status in validation cohort 2. d. Decision curve analysis for the 2-

miRs model based according to grade tumor status in validation cohort 2. The straight red line at y = 0 represents a strategy of performing a

biopsy in no patients and the blue line represents the strategy of performing a biopsy in all patietns. The area of the graph for which a risk

calculator has a greater net benefit than both the ‘biopsy none’ and ‘biopsy all lines is where it has greatest clinical applicability
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prevalence of high-grade PCa, which is undoubtedly rep-

resentative of our geographical region. It may differ from

racially diverse northern European, North American,

South American, and Asian populations. Our cohort is

entirely Caucasian, with no Africans and Hispanics. Our

academic hospital operated under the Italian National

Care System that never supported screening programs

for prostate cancer.

Furthermore, it is assumable that our patients’ popula-

tion had limited access to prostate cancer centers and

screening programs in the past. Another possible limita-

tion derives from using a biopsy cohort without confirm-

ation from radical prostatectomy specimens or follow-up

data and a pre-biopsy MRI recently recommended by

the EAU guidelines. However, when we started our

study in 2015, MRI was not considered a recommended

test in the first set of prostate biopsies. So far, we have

no data on pre-biopsy MRI lesion, PIRADS score, or

prostate volume and local stage. To overcome some of

these limitations, a multicenter study is ongoing evaluat-

ing the role of our miRs in patients with a PIRADS score

three at MRI and in patients with locally advanced dis-

ease, as shown by MRI.

Notwithstanding all these limitations, in our study, we

observed that NGS-miR-expression profiling revealed a

miRs signature able to distinguish prostate cancer from

non-cancer plasma samples. Significantly, combining

miRs 26b-5p and 98-5p, we developed a model that has

the best predictive accuracy (94%) in discriminating

prostate cancer from non-cancer. Combining miR-26b-

5p and miR-4732-3p, we have a good diagnostic accur-

acy (80%) for high-grade prostate cancer patients. Our

results for high-grade prostate cancer could be partially

related to small numbers of patients enrolled in our trial

but at this stage they still represent the same accuracy

for the detection of clinically significant prostate cancer

as suggested by the current series on MRI [6]. If our re-

sults are confirmed in the ongoing multicenter trial,

these new biomarkers could be used as adjunctive

markers for prostate cancer diagnosis and importantly,

to spare unnecessary biopsy. These new biomarkers’

possible role in patients with a PIRADS 3 on MRI is also

under evaluation and could further increase our findings’

clinical application. Our results represent an accurate

option to identify patients at risk of prostate cancer and

particularly of clinically significant cancer in patients

with no pre-biopsy MRI.

Conclusions
We developed and evaluated two different two mir-

based tests’ clinical feasibility to diagnose prostate can-

cer, respectively. The finding suggests that both tests

could be promising biomarkers in patients with PCa.
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