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A Preliminary Study of Smithport Plain Bottle 

Morphology in the Southern Caddo Area

Robert Z. Selden, Jr.

This study expands upon a previous analysis of the Clarence H. Webb collection, which resulted in the iden-

tification of two discrete shapes used in the manufacture of the base and body of Smithport Plain bottles. The 
sample includes the Smithport Plain bottles from the Webb collection, and four new bottles: two previously 

repatriated specimens in the Pohler Collection, and two from the Mitchell site (41BW4) to test whether those 

specimens align morphologically with the Belcher Mound or Smithport Landing specimens. Results indicate 

significant allometry and a significant difference in Smithport Plain body and base shapes for bottles produced 
at the Smithport Landing and Belcher Mound sites in northwest Louisiana. The Pohler and Mitchell specimens 

do not differ significantly from those found at Smithport Landing or Belcher Mound. Analysis of the aggregated 
sample indicates some significant relationships between bottle shape and size, bottle shape and type, and bottle 
shape and site, highlighting assemblage-level and type-specific variability. The test of morphological disparity 
by period indicates a gradual trend toward standardization, and the test of morphological integration indicates 

that Caddo bottles are significantly integrated, meaning that those discrete traits used to characterize their 
shape (rim, neck, body, and base) vary in a coordinated manner. The iterative development of this research 

design can lead to substantive theoretical gains that augment discussions of decorative components and motifs 

as well as ceramic technological attributes.

Defined	 as	 “a	 vessel	with	 a	 spheroid	 or	 oval	
body, surmounted by a slender, cylindrical neck,” 

Caddo	 bottles	 were	 initially	 seen	 as	 a	 somewhat	
homogenous ceramic form (Harrington 1920:187); 

some	 with	 shapes	 and	 motifs	 so	 similar	 to	 be	
deemed	 the	 work	 of	 a	 single	 maker	 (Harrington	
1920:188). In a more recent study, Caddo bottles 

were	found	to	be	more	symmetrical	than	bowls	and	
ollas	(Selden,	Jr.	2017);	however,	additional	work	is	
needed	to	identify	whether—and	to	what	extent—
this holds true across a broader range of vessel 

shapes and types. Caddo vessel shapes are variable 

among	groups	and	through	time,	reflecting	stylistic,	
functional, and social change (Perttula 2010). Caddo 

potters elevated local ceramic production to high art, 

and “had no superiors short of the Pueblo country” 

(Swanton	1942:239),	leading	some	analysts	to	posit	
that Caddo bottles rest at the apex of Native Ameri-

can ceramic technology (Gadus 2013). A division 

of the Caddo bottle category has been proposed for 

northeast Texas that segregates bottle forms into 

27	shapes,	each	with	distinct	 temporal	and	spatial	
distributions (Perttula 2015:Figure 2), and novel 

deployments of geographic information systems are 

aiding	in	the	refinement	of	their	probable	geographic	
extents (McKinnon 2011).

This effort capitalizes on the quiddity of Caddo 

bottle shape for a small sample (n = 8) of Smith-

port Plain bottles previously posited to exhibit 

morphological differences (Selden Jr. 2018a; Suhm 

and Jelks 1962; Webb 1959). Three-dimensional 

(3D)	meshes	for	the	Webb	Collection	and	four	new	
samples	from	one	site	and	one	collection	were	used	
to	 test	 whether	 a	 significant	 difference	 in	 shape	
exists	for	Smithport	Plain	bottles	by	site,	followed	
by a test for allometry. The Smithport Plain bottles 

were	 subsequently	 examined	 as	 part	 of	 the	 ag-

gregated sample of Caddo bottles to demonstrate 

morphological variability, allometry, morphologi-

cal disparity, and morphological integration among 

the types (Table 1 and Figure 1).

Taxonomic	definitions	for	Caddo	ceramics	in-

tegrate semiotic and morphological attributes, and 

each type is characterized by a broad range of ves-

sel	shapes	that	often	include	bottles,	bowls,	carinat-
ed	bowls,	ollas,	as	well	as	other	shapes	(Suhm	and	
Jelks 1962; Suhm et al. 1954). The Smithport Plain 

type	was	defined	by	Webb	(1959)	at	the	Smithport	
Landing	site	(16DS4)	in	northwest	Louisiana	and	
is believed to range in age from the Formative to 

Early Caddo periods (ca. AD 800–1200) (Webb 

1963). All Caddo bottles used in this analysis fall 
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Figure 1. Locations of Allen Plantation, Hatchel, Belcher Mound, Crenshaw Mound, Frank Nor-
ris Farm, Gahagan Mound, George C. Davis, Haley Place, Mustang Creek Mound (also known 
as T. N. Cole), Paul Mitchell (Mitchell), specimens from the Pohler Collection (Clark County, 
Arkansas), and Smithport Landing.

Table 1. Caddo bottles used in this analysis.__________________________________________________________________________

Specimen Site Name Trinomial Context Museum Type
__________________________________________________________________________

256	 Belcher	Mound	 16CD13	 Burial	5	 LSUMNH	 Taylor	Engraved
267 Belcher Mound 16CD13 Burial 5 LSEM Belcher Engraved

269	 Belcher	Mound	 16CD13	 Burial	5	 NSU	 Belcher	Engraved
271	 Belcher	Mound	 16CD13	 Burial	5	 LSUMNH	 Taylor	Engraved
361	 Belcher	Mound	 16CD13	 Burial	9	 NSU	 Belcher	Engraved
363	 Belcher	Mound	 16CD13	 Burial	10	 NSU	 Belcher	Engraved
404	 Belcher	Mound	 16CD13	 Burial	11	 NSU	 Hickory	Engraved
405	 Belcher	Mound	 16CD13	 Burial	11	 NSU	 Smithport	Plain
430	 Belcher	Mound	 16CD13	 Burial	12	 NSU	 Smithport	Plain
775	 Belcher	Mound	 16CD13	 Burial	15	 NSU	 Belcher	Engraved
784	 Belcher	Mound	 16CD13	 Burial	15	 LSUMNH	 Keno	Trailed
787	 Belcher	Mound	 16CD13	 Burial	15	 LSUMNH	 Taylor	Engraved
788	 Belcher	Mound	 16CD13	 Burial	15	 NSU	 Belcher	Engraved
803	 Belcher	Mound	 16CD13	 Burial	15	 LSUMNH	 Belcher	Engraved
805	 Belcher	Mound	 16CD13	 Burial	15	 NSU	 Belcher	Engraved
845	 Belcher	Mound	 16CD13	 Burial	17	 NSU	 Belcher	Engraved
852	 Belcher	Mound	 16CD13	 Burial	17	 NSU	 Keno	Trailed
897	 Belcher	Mound	 16CD13	 House	6	 NSU	 Belcher	Engraved
997	 Belcher	Mound	 16CD13	 Burial	24	 NSU	 Belcher	Engraved
1054 Belcher Mound 16CD13 Burial 26 LSEM Taylor Engraved
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Table 1. Caddo bottles used in this analysis. (Continued)
__________________________________________________________________________

Specimen Site Name Trinomial Context Museum Type
__________________________________________________________________________

1073	 Belcher	Mound	 16CD13	 House	6	 NSU	 Belcher	Engraved
95	 Smithport	Landing	 16DS4	 Burial	1	 NSU	 Smithport	Plain
96	 Smithport	Landing	 16DS4	 Burial	1	 NSU	 Hickory	Engraved
152	 Smithport	Landing	 16DS4	 Burial	10	 NSU	 Smithport	Plain
No	#	 Smithport	Landing	 16DS4	 Unknown	 NSU	 Hickory	Engraved
142	 Allen	Plantation	 16NA6	 Unknown	 NSU	 Hickory	Engraved
955	 Gahagan	Mound	 16RR1	 Mound	A	 NSU	 Hickory	Engraved
956	 Gahagan	Mound	 16RR1	 Mound	A	 LSUMNH	 Hickory	Engraved
HFE1	 Haley	Place	 3MI1	 Unknown	 LSEM	 Hickory	Engraved
HFE2	 Haley	Place	 3MI1	 Unknown	 LSEM	 Hickory	Engraved
HFE3	 Haley	Place	 3MI1	 Unknown	 LSEM	 Hickory	Engraved
HFE4	 Haley	Place	 3MI1	 Unknown	 LSEM	 Hickory	Engraved
HFE5	 Haley	Place	 3MI1	 Unknown	 LSEM	 Hickory	Engraved
55-1-8*	 Crenshaw	Mound	 3MI6	 Unknown	 CNO	 Hickory	Engraved
2002-01-18*	 Unknown	 Pohler	Coll	 Unknown	 CNO	 Smithport	Plain
 (Clark County, AR)

2002-01-20*	 Unknown	 Pohler	Coll	 Unknown	 CNO	 Hickory	Engraved
 (Clark County, AR)

2002-01-23*	 Unknown	 Pohler	Coll	 Unknown	 CNO	 Hickory	Engraved
 (Clark County, AR)

2002-01-27*	 Unknown	 Pohler	Coll	 Unknown	 CNO	 Smithport	Plain
 (Clark County, AR)

FS7	 Hatchel	 41BW3	 Unknown	 TARL	 Hickory	Engraved
6-2-67 Paul Mitchell 41BW4  TARL Smithport Plain

6-2-78 Paul Mitchell 41BW4  TARL Smithport Plain

6-2-132	 Paul	Mitchell	 41BW4	 Unknown	 TARL	 Hickory	Engraved
341-427 Paul Mitchell 41BW4 Burial 9 TARL Hickory Engraved

341-464 Paul Mitchell 41BW4 Burial 21 TARL Hickory Engraved

2015-1 George C. Davis 41CE19 Burial F-154 TARL Hickory Engraved

7	 Frank	Norris	Farm	 41RR2	 Unknown	 TARL	 Hickory	Engraved
2	 Mustang	Creek	Mound	 41RR3	 H.	O.	#568	 TARL	 Hickory	Engraved
__________________________________________________________________________
The	bottle	without	a	number	(Webb	Collection)	is	assumed	to	have	come	from	the	Smithport	Landing	site	in	fragments.	The	
bottle	was	later	reassembled,	but	a	number	was	never	assigned.	*	=	repatriated	to	the	Caddo	Nation	of	Oklahoma.	NSU	=	
Northwestern	State	University	(Williamson	Museum);	LSUMNS	=	Louisiana	State	University	Museum	of	Natural	Science;	
CNO = Caddo Nation of Oklahoma; TARL = Texas Archeological Research Laboratory; LSEM = Louisiana State Exhibit 
Museum.

under the Native American Graves Protection and 

Repatriation Act (NAGPRA), excepting those 

found in House 6 at the Belcher Mound site (see 

Table 1). The Caddo Nation of Oklahoma granted 

permission	to	scan	the	collections	with	the	provi-
sion that any scan data used in the analysis must 

not	include	the	texture	(color)	file.	Full-resolution	
scan	data	were	forwarded	to	the	Caddo	Nation	of	
Oklahoma	with	the	texture	applied.	This	provides	
them	with	an	accurate	3D	 record	of	 each	vessel,	
and	a	means	of	viewing	a	collection	of	bottles	that	
is curated across numerous repositories.

Geometric Morphometrics in Archeology

Analyses	of	artifact	shape	are	neither	new	or	
novel (Okumura and Araujo 2018), and it is not 

surprising that geometric morphometrics (GM) 

(sensu Corti (1993)) has captivated analysts of 

material culture due to the substantive contribution 

of morphology to lithic (Fox 2015; Thulman 2012; 

Wilczek et al. 2015) and ceramic typologies (Gir-

rulat 2006; Topi et al. 2017; Wilczek et al. 2014), 

additional	categories	of	material	culture	(Chitwood	
2014; Ros et al. 2014; Windhager et al. 2012), and 
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novel applications (Barceló 2010; Lenardi and 

Merwin	2010).	The	earliest	study	of	artifacts	was	
an analysis of irregular shapes by elliptic Fourier 

analysis (EFA) (Gero and Mazzullo 1984), and the 

adoption of the method by the archaeological com-

munity	has	grown	to	include	an	impressive	array	
of applications (Figure 2).

EFA has been employed at an increasing rate 

in lithic and ceramic analyses (Cardillo et al. 2010; 

Costa	 2010;	 Fox	 2015;	 Ioviţă	 2009,	 2010,	 2011;	
Ioviţă	and	McPherron	2011;	Smith	et	al.	2014;	Wil-
czek	 et	 al.	 2014),	 where	 new	 approaches	 advance	
archeological applications. Creative research designs 

are	also	being	developed	to	address	challenges	with	
incomplete specimens in the archeological record 

(Byrne et al. 2016; Rezek et al. 2011; Smith 2010; 

Smith and DeWitt 2016; Smith and Goebel 2018). 

These advancements have aided in the development 

of	 a	 useful	 suite	 of	 protocols	 applicable	 to	 wide-
ranging research questions.

The	 recent	 fluorescence	 of	 landmark-based	
applications has been driven by advances in an-

thropology	 (Bookstein	 et	 al.	 2004;	 Elewa	 2010;	
Richtsmeier et al. 1992; Slice 2007) and a variety 

of other research domains (Adams et al. 2004, 2013; 

Bookstein 1982, 1991, 2016; Jensen 2003; MacLeod 

2017; Marcus et al. 1996; Rohlf 1990, 1999; Rohlf 

and Marcus 1993; Rohlf and Slice 1990; Zelditch 

et	al.	2004)	that	articulate	with	the	rise	of	the	Pro-

crustes paradigm (Adams et al. 2013:8). Archaeo-

logical	applications	have	included	two-dimensional	
(2D) analyses of Clovis technology in North Amer-

ica (Buchanan and Collard 2010; Buchanan et al. 

2011; Buchanan et al. 2015; Buchanan et al. 2013; 

Eren et al. 2015), Fishtail or Fell projectile points 

in South America (Castiñeira et al. 2011; Loponte et 

al.	2015),	bifacial	points	from	the	Umbu	Tradition	
in Brazil (Okumura and Araujo 2013, 2014, 2017), 

lanceolate	 points—ayampitin—from	 Argentina	
(Rivero and Heider 2017), the size and shape of 

projectile points from southern Patagonia (Charlin et 

al. 2014; Charlin and González-José 2012), bifacial 

tools	from	southern	Poland	(Serwatka	2015),	Final	
Palaeolithic	large	tanged	points	(Serwatka	and	Riede	
2016), Paleoindian point types from Florida (Thul-

man 2012) and the Southern High Plains (Buchanan 

et al. 2007), ceramics from Casas Grandes (Topi 

et	al.	2017),	flake	morphology	(Picin	et	al.	2014),	
and reduction effects (de Azevedo et al. 2014). All 

of these studies capitalize on the morphological 

variation that occurs in a single plane (Buchanan and 

Collard 2010; Velhagen and Roth 1997).

For research designs that incorporate questions 

associated	with	more	complex	geometry,	3D	land-

mark-based approaches may be more appropriate. 

Examples from the literature include the develop-

ment of novel tools and applications (Lycett et al. 

2006) that cover a broad range of artifact categories 

including projectile points (Shott 2011; Shott and 

Trail 2010), bifaces (Archer and Braun 2010; Archer 

et al. 2015; Archer et al. 2016), percussive tools 

(Caruana	et	al.	2014),	flake	scars	(Sholts	et	al.	2012),	
flake	 tools	 (Archer	 et	 al.	 2017),	 handaxes	 (Lycett	
2009; Lycett et al. 2010; Lycett and von Cramon-

Taubadel 2013; Lycett et al. 2016; Wang et al. 2012), 

and Caddo ceramics (Selden Jr. 2017, 2018a; Selden 

Jr. et al. 2014). This study adduces the variation that 

occurs	within	a	single	plane	(widest	vessel	profile)	
for	 a	 sample	 of	Caddo	 bottles;	 however,	 3D	 data	
were	 required	 to	 identify	 the	 widest	 profile.	Ad-

ditionally, a variety of landmark and semilandmark 

configurations	are	in	development	that	provide	for	a	
more robust analysis of 3D morphology associated 

with	specific	elements	of	vessel	morphology.

Methods

Bottles	were	scanned	with	a	Creaform	GoSCAN	
50 at a 0.8 mm resolution or a Creaform GoSCAN20 

at 0.5 mm resolution depending on their size. Scan-

ner	 calibration	was	 optimized	 prior	 to	 each	 scan,	
with	 positioning	 targets	 required	 for	 increased	
accuracy.	 Shutter	 speed	was	 reconfigured	 in	 each	
instance;	clipping	planes	were	established	to	reduce	
the	amount	of	superfluous	data	collected	during	each	
scan.	Following	data	collection,	 resolution	for	 the	
GoSCAN	50	meshes	was	increased	to	0.5	mm,	and	
meshes	from	both	scanners	were	transferred	to	VX-

model	where	the	final	mesh	was	rendered	following	
application of the clean mesh	 function.	 This	 was	
used to remove isolated patches, self-intersections, 

spikes, small holes, singular vertices, creased edges, 

narrow	 triangles,	 outcropping	 triangles,	 narrow	
bridges, and non-manifold triangles prior to export 

as	an	ASCII	stl	file.	The	stl	functions	as	a	backup,	
and	the	ply	was	subsequently	imported	to	Geomagic	
Design X (Dx).

Prior to pursuing the mixed-method analysis 

employing	 data	 from	 two	 different	 scanners,	 two	
meshes	 of	 the	 same	 object—produced	 with	 the	
Creaform	 GoSCAN	 50	 and	 GoSCAN	 20—were	
imported to a computer-aided inspection program 

(Geomagic Control X) in an effort to identify any 
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significant	 deviations	 that	 may	 exist	 between	 the	
meshes prior to the GM analysis (Figure 2). The 

tolerance	level	for	the	inspection	was	selected	using	
the highest resolution of the GoSCAN 20 (0.1 mm). 

Small areas of the rim exhibited minor differences 

while	the	remainder	of	the	vessel	was	at	or	below	the	
arbitrary	0.1	mm	tolerance;	thus,	results	fell	within	
an acceptable error range.

The	histogram	shown	in	Figure	2	illustrates	the	
Gaussian distribution for the number of errors over 

the	whole	deviation.	The	graph	is	split	into	six	seg-

ments: 1-Sigma at 31 percent from the average to the 

maximum deviation in each direction, 2-Sigma at 69 

percent from the average to the maximum deviation 

in each direction, and 3-Sigma at 93.3 percent from 

the average to the maximum deviation in each direc-

tion. The average (AVG) is the sum of all deviations 

divided by the number of all deviations, and the 

RMS is the square root of all squared deviations 

divided by the number of all deviations (sometimes 

referred to as the effective deviation). In tolerance 

(In Tol) and out tolerance (Out Tol) percentages 

indicate the percentage of deviations in or out of a 

given tolerance, and over tolerance (Over Tol) and 

under	tolerance	(Under	Tol)	percentages	indicate	the	
percentage of deviations over (positive direction) or 

under (negative direction) the tolerance range by the 

mesh normal of the reference mesh.

Figure 2. Results of 3D compare for the GoSCAN 50 and GoSCAN 20 meshes of bottle 41BW4 341-464 
indicating that 99.6905 percent of the vessel falls within the arbitrary 0.1 mm tolerance.
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Alignment and Reference Geometry

Following	 transfer	 to	Dx,	each	mesh	was	sub-

jected to an additional quality check to eliminate non-

manifold poly-vertices, folded poly-faces, dangling 

poly-faces, small clusters, small poly-faces, non-

manifold poly-faces, crossing poly-faces, and small 

tunnels. Due to the paucity of homologous landmarks 

on cultural artifacts (Lycett 2009), reference geometry 

was	constructed	around	each	vessel	in	a	manner	that	
yielded	a	replicable	configuration	of	nine	landmarks,	
and	46	equidistant	semilandmarks	along	the	widest	
vessel	 profile,	with	notable	 similarities	 to	previous	
landmark	configurations	used	by	Girrulat	(2006:Fig-

ure 4), Selden Jr. et al. (2014:Figure 5), Selden, Jr. 

(2018a:Figure 3), and Topi et al. (2017:Figure 4), all 

of	which	largely	follow	Birkhoff	(1933).
The	 first	 component	 of	 reference	 geometry	

added,	and	the	principal	assumption,	was	a	refer-
ence	vector.	A	sampling	ratio	of	100	percent	was	
used to apply the reference vector on a revolving 

axis,	after	which	a	reference	point	was	added	by	
projecting it atop the mesh surface at the location 

where	 the	 reference	 vector	 exits	 the	 base	 of	 the	
vessel.	A	 reference	 plane	was	 inserted	 using	 the	
pick multiple points function, by adding a series of 

10 points around the circumference of the bottle’s 

base. Each element of reference geometry (vector, 

point,	and	plane)	was	 then	used	 in	an	 interactive	
3-2-1	alignment	where	 the	vessel	was	aligned	 to	
a	global	origin,	orienting	 it	 in	3D	space	where	 it	
sat upright atop a planar surface (assumed to be 

the	intent	of	the	maker).	Following	alignment,	the	
reference	plane	and	point	were	deleted.

The	widest	 profile	 is	 defined	 as	 the	 location	
on	a	mesh	that	lies	farthest	from	that	point	where	
the	 reference	 vector	 exits	 the	 vessel	 base	 while	
oriented atop the planar surface. To identify that 

location,	 a	 mesh	 sketch	 was	 generated	 with	 the	
planar method using the plane at the base of the 

vessel	to	identify	and	sketch	the	widest	vessel	cir-
cumference. By using the plane located at the base 

of	the	vessel	for	the	sketch,	the	point	at	which	the	
reference vector exits the mesh remains linked to 

the remainder of the reference geometry. A circle 

was	then	sketched	using	the	vector	as	the	center,	
extending	outward	until	the	whole	of	the	vessel	fit	
within.	Using	the	mesh	sketch,	a	cylinder	(surface)	
was	extruded	around	the	vessel.	The	accuracy	ana-

lyzer	in	Dx	was	then	used	to	identify	the	point	on	
the	vessel	with	the	lowest	deviation	from	the	ex-

truded	surface,	and	a	plane	(MPlane)	was	inserted	

coplanar	 to	 the	vector	and	oriented	 to	 the	widest	
point,	bisecting	the	vessel	along	the	widest	profile.

Using	 the	MPlane	 as	 the	 basis	 for	 a	 second	
mesh	sketch,	a	spline	with	15	interpolation	points	
was	sketched	on	one	rim.	Above	that	sketch,	a	hori-
zontal	 line	was	added	where	both	 the	 spline	and	
horizontal line determine the horizontal tangent of 

the	rim.	A	vertical	line	was	subsequently	added	that	
bisected the rim at the location of the tangent. This 

operation	was	repeated	for	the	opposing	rim.	The	
addition	of	this	added	step	was	necessary	because	
surface scanners are unable to collect data from the 

interior of the bottles, so the spline needed to be cut 

in a replicable location. Since the Smithport Plain 

bottles exhibit slightly inverted-to-vertical rims, 

the	preceding	step	was	extended	to	include	an	addi-
tional	measure.	A	line	was	drawn	between	each	rim	
tangent, then a second from the intersection of the 

line	and	reference	vector	to	a	point	10	mm	down	
the	vector,	where	a	horizontal	line	(parallel	with	the	
rim	peaks)	was	inserted	to	intersect	with	both	exter-
nal	walls	of	the	bottle	(Selden,	Jr.	2018a:Figure	3).	
It	 is	at	 this	 intersection	 that	 the	final	mesh	sketch	
was	 cut	 to	 discriminate	 between	 the	 neck	 and	
rim. While this step admittedly appears odd in the 

context of a comparison of bottle shapes that all 

exhibit direct rims, it is of considerable import for 

inter-type	 comparisons	 where	 other	 bottle	 types	
exhibit differing rim morphologies (i.e., everted, 

etc.) (Selden, Jr. 2018b).

Using	 the	 MPlane	 as	 the	 basis	 for	 a	 third	
sketch,	a	spline	was	populated	for	the	entirety	of	
the	silhouetted	profile.	That	spline	was	split	at	the	
location of the horizontal tangent on each rim, 

and the remaining sections that continued into the 

bottle	interior	were	deleted.	The	second	split	was	
added at the intersection of the spline and reference 

vector	(center	of	base).	Four	additional	splits	were	
subsequently added at the juncture of the base/

body and body/neck on each side of the vessel at 

the points of highest curvature. The point of high-

est	curvature	used	to	split	the	spline	was	identified	
using the curvature function in Dx, and does not 

represent an arbitrary location.

Landmarks and Semilandmarks

A total of nine landmarks and 46 semiland-

marks segregated each bottle into four discrete 

components	corresponding	with	the	rim,	neck,	body,	
and base (Table 2 and Figure 3). Landmarks and 

semilandmarks	were	populated	along	the	spline,	and	
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numbering	always	began	on	that	side	of	the	profile	
determined	 to	 include	 the	widest	 point.	Divisions	
between	 each	 component	 articulate	with	 those	 of	
the	 spline	 splits,	where	 landmarks	were	placed	 at	
each	point	 in	Table	2,	with	a	series	of	equidistant	
semilandmarks	between	them.

While	 sliding	 semilandmarks	 were	 an	 early	
consideration of this research design, the decision 

to use equidistant semilandmarks rather than sliding 

semilandmarks	was	based	upon	results	from	an	ear-
lier iteration of the Webb collection analysis (Selden, 

Jr. 2018a:Figure 3). In the study of the Webb col-

lection,	the	first	landmark	and	sliding	semilandmark	
configuration	 did	 not	 split	 the	 spline	 between	 the	
neck	and	rim,	and	when	mean	shapes	were	generated	
for each type, an anomaly, from the everted rims of 

Belcher	Engraved	bottles	in	that	case,	was	added	to	
the	otherwise	direct	or	tapered	necks	of	the	Hickory	

Table 2. Landmarks used in this analysis.
__________________________________________________________________________

Landmark	 Location	 Definition__________________________________________________________________________

Point01	 Rim	peak	 Horizontal	tangent	of	rim	curvature	on	widest	side	of	vessel
Point06 Rim/Neck Point of highest curvature (everted rim) or intersection of horizontal

	 	 line	10	mm	below	rim	tangents	(direct	rim)
Point15 Neck/Body Point of highest curvature

Point24 Body/Base Point of highest curvature

Point28 CenterBase Intersection of vector and external surface of the 3D mesh

Point32 Body/Base Point of highest curvature

Point41 Neck/Body Point of highest curvature

Point50 Rim/Neck Point of highest curvature (everted rim) or intersection of horizontal 

	 	 line	10	mm	below	rim	tangents	(direct	rim)
Point55 Rim peak Horizontal tangent of rim curvature__________________________________________________________________________

Figure 3. Spline splits for discrete components (rim, neck, body, and base) used in the GM analysis (left) 
segregated by landmarks (blue), with equidistant semilandmarks (white) populated between (right).
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Engraved and Smithport Plain bottles. Given that 

the use of sliding semilandmarks could potentially 

influence	the	results	of	this	analysis	by	introducing	
a	morphological	attribute	to	specimens	where	one	
does	not	exist,	they	were	abandoned.

Analysis

Landmarks and equidistant semilandmarks 

were	exported	as	x,	y,	and	z	coordinate	data	from	
Dx.	Those	data	were	aligned	to	a	global	coordinate	
system (Kendall 1981, 1984; Slice 2001), achieved 

through generalized Procrustes superimposition 

(Rohlf and Slice 1990) performed in R 3.5.0 (R De-

velopment Core Team 2018) using the geomorph 

library v.3.0.6 (Adams et al. 2017; Adams and 

Otárola-Castillo 2013). Procrustes superimposition 

translates, scales, and rotates the coordinate data 

to	 allow	 for	 comparisons	 among	objects	 (Gower	
1975; Rohlf and Slice 1990). The geomorph pack-

age uses a partial Procrustes superimposition that 

projects the aligned specimens into tangent space 

subsequent to alignment in preparation for the use 

of multivariate methods that assume linear space 

(Rohlf 1999; Slice 2001).

Principal components analysis (Jolliffee 2002) 

was	used	as	an	exploratory	means	of	visualizing	
shape variation among the bottles. The shape 

changes described by each principal axis are com-

monly	visualized	using	thin-plate	spline	warping	of	
a reference 3D mesh (Klingenberg 2013; Sherratt 

et al. 2014). A residual randomization permutation 

procedure	(RRPP;	n=1000	permutations)	was	used	
for all Procrustes ANOVAs (Adams and Collyer 

2015;	Collyer	and	Adams	2018),	which	has	higher	
statistical	 power	 and	 a	 greater	 ability	 to	 identify	
patterns in the data should they be present (Ander-

son	and	Ter	Braak	2003).	To	assess	whether	shape	
differs by size (allometry) and site, Procrustes 

ANOVAs	 (Goodall	 1991)	were	 run	 that	 also	 en-

list effect-sizes (z-scores) computed as standard 

deviates of the generated sampling distributions 

(Collyer et al. 2015). For the aggregated sample, 

a	 Procrustes	ANOVA	was	 run	 to	 assess	whether	
shape	 changes	 with	 size,	 and	 the	 assumption	 of	
allometric	slope	homogeneity	was	tested	with	the	
procD.allometry function using the PredLine op-

tion (Adams and Nistri 2010). Should this test not 

be	significant,	then	allometric	slopes	are	similar—
if	not	identical—across	time	and	types.

A	Procrustes	ANOVA	and	pairwise	test	was	used	
to	identify	sites	where	bottle	shapes	and	types	differ.	

The	pairwise	test	is	conceptually	similar	to	trajectory	
analysis (Adams and Collyer 2007, 2009; Collyer and 

Adams	2007,	2013)	in	that	pairwise	statistics	are	vec-
tor	lengths	between	vectors,	but	differs	in	that	a	facto-

rial model is not explicitly needed to contrast vectors 

between	point	factor	levels	nested	within	group	factor	
levels	(Adams	et	al.	2017).	Procrustes	variance	was	
used	to	discriminate	between	groups	and	to	compare	
the amount of shape variation (morphological dispar-

ity)	across	communities	(Zelditch	et	al.	2004),	which	
is estimated as the Procrustes variance using residuals 

of	linear	model	fit	(Adams	et	al.	2017).
Morphological	integration	was	assessed	for	the	

aggregated	 sample	 of	 whole	 vessels.	 Integration	
between	pairs	of	traits	was	tested	using	a	two-block	
partial least-squares (2B-PLS) analysis to evaluate re-

lationships	for	two	blocks	of	variables	collected	from	
the same specimens (Bookstein et al. 2003; Rohlf and 

Corti 2000; Wold 1966), using shape coordinates in 

all blocks of variables (Bastir and Rosas 2006; Book-

stein et al. 2003; Gunz and Harvati 2007). To assess 

whether	the	different	modules	(RIM
neck

, NECK
body

, 

and BODY
base

	 in	 particular)	 are	 integrated,	 a	 two-
sample test using effect sizes calculated as standard 

deviates in sampling distributions from the 2B-PLS 

analyses	were	used	to	determine	the	significance	and	
strength	of	integration	between	the	modules	(Adams	
and Collyer 2016).

Results

The	 mean	 consensus	 configuration	 and	 Pro-

crustes	residuals	were	calculated	using	a	generalized	
Procrustes analysis (GPA) (Figure 4). This initial 

view	of	the	data	demonstrates	the	degree	of	variabil-
ity in Caddo bottles that occurs across the sample. 

As	 an	 exploratory	measure,	GM	methods—to	 in-

clude	GPA—aid	in	clarifying	shape	differences,	and	
in the production of novel a posteriori hypotheses 

(Mitteroecker and Gunz 2009).

Principal	components	analysis	(PCA)	was	con-

ducted on scaled, translated, and rotated landmarks 

and	semilandmarks,	and	demonstrates	that	the	first	
two	PC’s	account	for	68	(PC1)	and	27	(PC2)	per-
cent of the variation in bottle shape (Table 3 and 

Figure 6). Together, PC1 and PC2 account for 95 

percent	of	shape	variation,	with	all	remaining	PCs	
representing	three	or	fewer	percent	of	the	variation	
(see	Table	3).	The	first	two	PCs	are	plotted	in	Figure	
5,	where	warp	grids	 represent	 the	shape	changes	
along PC1 and PC2. This plot indicates that shape 
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Figure 4. Results of generalized Procrustes analysis for Smithport Plain whole bottles. Mean consensus 
configuration shown in black; samples in gray.

Figure 5. Results of PCA summarizing shape variation in the whole bottle sample.
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changes	associated	with	PC1	articulate	most	read-

ily	with	base	and	body	shape,	and	shape	changes	
associated	 with	 PC2	 articulate	 with	 base,	 body,	
and neck shape.

A	Procrustes	ANOVA	was	used	to	test	for	sig-

nificant	allometry.	Results	of	the	ANOVA	indicate	
significant	allometry	in	the	sample	(RRPP	=	1000,	
Rsq = 0.59427, Pr(>F) = 0.0075), indicating that 

Smithport	Plain	bottle	shapes	change	with	size.	A	
Procrustes	ANOVA	was	used	to	test	for	a	signifi-

cant difference in bottle shape by site, and results 

indicate	that	there	is	not	a	significant	difference	in	
bottle shape by site (RRPP = 1000, Rsq = 0.40907, 

Pr(>F) = 0.537).

Bottle base and body morphology

Two	Smithport	Plain	bottles,	 specimen	num-

bers 405 and 430, from Burials 11 and 12 at the 

Belcher Mound site are missing the upper portions 

of the neck and rim, and therefore could not be 

included	 in	 the	 analysis	 of	whole	 vessels.	Using	
a subset of the same constellation of landmarks 

and equidistant semilandmarks from the analysis 

of	 whole	 vessels	 (landmarks/semilandmarks	 15-
41),	these	two	samples	were	added	for	an	analysis	
of bottle base and body morphology. The mean 

consensus	 configuration	 and	Procrustes	 residuals	
were	calculated	using	a	GPA	for	the	base	and	body	
sample (Figure 6).

Table 3. Results of PCA.

 SD PV CP

PC1 0.106 0.683 0.683

PC2 0.066 0.268 0.951

PC3 0.023 0.033 0.985

PC4 0.014 0.013 0.997

PC5 0.007 0.003 1.000

SD = standard deviation; PV = proportion of variance; CVE = cumulative pro-
portion. 

Figure 6. Results of generalized Procrustes analysis for Smithport Plain base and body sample. Mean con-
sensus configuration shown in black; samples in gray.
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PCA	was	conducted	on	scaled,	translated,	and	
rotated landmarks and semilandmarks, and demon-

strates	that	the	first	two	PCs	account	for	83	(PC1)	
and 15 (PC2) percent of the variation in bottle base 

and body shape (Table 4 and Figure 8). Together, 

PC1 and PC2 account for 98 percent of the varia-

tion	for	base	and	body	shape,	with	each	remaining	
PC	representing	less	than	two	percent	of	the	varia-

tion	 (see	Table	 4).	The	first	 two	PCs	 are	 plotted	
in	Figure	7,	where	warp	grids	represent	the	shape	

changes along PC1 and PC2. The plot indicates 

that	shape	changes	associated	with	PC1	articulate	
most	readily	with	a	tall,	pear-shaped	body	and	nar-
row	base	at	the	maximum,	and	a	shorter,	globular	
body	and	wide	base	at	the	minimum.	For	PC2,	the	
maximum	 values	 articulate	 with	 a	 pear-shaped	
body	that	is	widest	near	a	broad	base,	and	a	shorter,	
globular	body	with	a	narrow	and	rounded	base	at	
the minimum.

Figure 7. Results of PCA summarizing shape variation in the base and body sample.

Table 4. Results of PCA.

 SD PV CP

PC1 0.142 0.826 0.826

PC2 0.061 0.150 0.976

PC3 0.020 0.017 0.993

PC4 0.009 0.003 0.996

PC5 0.006 0.002 0.998

PC6 0.005 0.001 0.999

PC7 0.004 0.001 1.000

SD = standard deviation; PV = proportion of variance; CVE = cumulative 
proportion.
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Table	5.	Results	of	advanced	Procrustes	ANOVA	and	pairwise	test
(RRPP = 1000) of Smithport Plain bottle shape by site.

 Belcher Mound Mitchell Pohler Coll Smithport Landing

Belcher Mound 0   

 0   

 1.000   

Mitchell 0.143 0  

 0.040 0  

 0.431 1.000  

Pohler Coll 0.155 0.086 0 

 0.172 -0.816 0 

 0.362 0.785 1.000 

Smithport Landing 0.280 0.147 0.203 0

 2.010 0.105 0.945 0

 0.032 0.393 0.183 1.000

Least-squares	means	distance	matrix	(top),	effect	sizes	(middle),	and	P-values	(bottom--significant	results	in	bold).	   
 

A	Procrustes	ANOVA	was	used	to	test	for	sig-

nificant	allometry.	Results	of	the	ANOVA	indicate	
that	 allometry	 is	 not	 significant	 in	 the	 base	 and	
body sample (RRPP = 1000, Rsq = 0.17667, Pr(>F) 

=	0.275).	A	second	Procrustes	ANOVA	was	used	
to	 test	for	a	significant	difference	in	bottle	shape	
by site. The advanced Procrustes ANOVA and 

pairwise	test	demonstrates	a	significant	difference	
between	Smithport	Plain	bottles	 from	the	Smith-

port Landing and Belcher Mound sites (Table 5).

Synthesis with aggregated sample

The	Smithport	Plain	bottles	were	then	added	to	
the aggregated sample (see Table 1), omitting the 

two	previously	mentioned	 incomplete	 specimens	
(405	 and	 430).	The	 aggregated	 sample	 of	whole	
vessels	(n=45)	consists	of	five	Caddo	bottle	types	
from	 12	 sites	 curated	 across	 five	 repositories	 in	
three	states,	with	iterative	analytical	improvements	
achieved	 as	 new	 samples	 are	 added.	 The	 mean	
consensus	 configuration	 and	Procrustes	 residuals	
were	 calculated	 using	 a	 GPA	 for	 the	 aggregated	
sample (Figure 8).

PCA	 was	 conducted	 on	 scaled,	 translated,	
and rotated landmarks and semilandmarks, and 

demonstrates	 that	 the	 first	 two	 PCs	 account	 for	
59 (PC1) and 20 (PC2) percent of the variation in 

bottle shape (Table 6 and Figure 9). Together, PC1 

and PC2 account for 79 percent of the variation in 

bottle	shape,	with	each	remaining	PC	representing	
≤10	percent	of	the	variation.	The	first	two	PCs	are	
plotted	 in	 Figure	 9,	 where	 warp	 grids	 represent	
the shape changes along PC1 and PC2. The plot 

indicates	that	shape	changes	associated	with	PC1	
articulate	with	 relative	differences	 in	base,	body,	
neck, and rim shapes. Differences include a sharp 

or	diffuse	angle	at	the	base	and	body	juncture,	flat	
versus slightly convex geometry, and a difference 

in	 relative	 width.	 Body	 differences	 range	 from	
globular to sub-globular, necks from everted to 

tapering, and rims from everted to slightly inverted. 

Shape	changes	associated	with	PC2	articulate	with	
differences	 in	 relative	 base	width,	 and	 a	 slightly	
carinated to globular body shape. In addition to a 

difference	in	relative	width,	the	bottle	necks	also	
range	 from	 direct	 to	 slightly	 tapering,	with	 rims	
that are vertical to slightly everted.

A	Procrustes	ANOVA	was	used	to	test	for	al-
lometry,	and	significant	allometry	was	identified	in	
this sample (RRPP = 1000, Rsq = 0.18337, Pr(>F) 

= 0.001). Plots of predicted allometric trajectories 

for period (Formative-Early and Late-Historic Cad-

do) and type factors are presented in Figure 10. The 

null hypothesis of parallel slopes is rejected by the 

homogeneity of slopes test for group allometries, 

as	 the	 allometric	 trajectories	 differ	 significantly	
by period (RRPP = 1000, Rsq = 0.03711, Pr(>F) 

= 0.010). Allometric trajectories also differ sig-

nificantly	by	type	(RRPP	=	1000,	Rsq	=	0.10182,	
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Figure 8. Results of generalized Procrustes analysis for the aggregated sample. Mean consensus configura-
tion shown in black; samples in gray.

Figure 9. Results of PCA summarizing shape variation in the aggregated sample.
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Table 6. Results of PCA.

 SD PV CP

PC1 0.093 0.592 0.592

PC2 0.055 0.205 0.797

PC3 0.038 0.100 0.897

PC4 0.026 0.045 0.942

PC5 0.018 0.022 0.964

PC6 0.013 0.011 0.975

PC7 0.010 0.007 0.982

PC8 0.008 0.004 0.986

PC9 0.007 0.004 0.990

PC10 0.006 0.003 0.993

SD = standard deviation; PV = proportion of variance; CVE = cumulative proportion.  
 

   Pr(>F) = 0.001) (see Figure 10), and the size of 

Formative-Early	bottles,	 specifically	 those	of	 the	
Hickory Engraved type, extends beyond the range 

of the Late-Historic and Smithport Plain types.

A	second	Procrustes	ANOVA	was	used	to	test	
for	 a	 difference	 in	 bottle	 shape	 by	 site,	 which	 is	
(RRPP = 1000, Rsq = 0.52213, Pr(>F) = 0.001). An 

advanced	 Procrustes	ANOVA	 and	 pairwise	 com-

parison	was	used	to	identify	those	sites	where	bottle	
assemblages	differ,	and	whether	that	difference	is	in	
magnitude, direction, or both (Table 7). Those sites 

with	bottle	samples	found	to	differ	significantly	in-

clude Belcher Mound compared to Gahagan Mound, 

Smithport Landing, Haley Place, Mitchell, and the 

Pohler Collection. In addition, Smithport Landing 

also	differs	significantly	compared	to	Haley	Place,	
and Mitchell.

A	 third	 Procrustes	ANOVA	 was	 used	 to	 test	
for	 a	 difference	 in	 bottle	 shape	 by	 type,	which	 is	
significant	 (RRPP	 =	 1000,	 Rsq	 =	 0.3907,	 Pr(>F)	
= 0.001). An advanced Procrustes ANOVA and 

pairwise	 comparison	 was	 used	 to	 identify	 which	
bottle	types	differ	and	whether	that	difference	is	in	
magnitude, direction, or both (Table 8). Those bottle 

types	 found	 to	 differ	 significantly	 include	 Keno	
Trailed compared to Belcher Engraved, Hickory En-

graved, Smithport Plain, and Taylor Engraved; also 

Belcher Engraved compared to Hickory Engraved, 

and	 Smithport	 Plain;	 and	 finally,	 Smithport	 Plain	
compared to Taylor Engraved.

A test of morphological disparity indicates 

that Hickory Engraved and Smithport Plain bottles 

display a greater range of shape variation among 

individual bottles relative to other groups, and 

differ	 significantly	 from	 the	 Belcher	 Engraved,	
Keno Trailed, and Taylor Engraved bottles (Table 

9). This indicates that the Formative-Early Caddo 

bottles may encompass a greater range of morpho-

logical variability than the Late-Historic Caddo 

bottles	 in	 the	 sample;	 an	 assertion	 that	was	 later	
confirmed	 in	 a	 subsequent	 test	 of	morphological	
disparity by period (Table 10).

The 2B-PLS analyses, each enlisting 1000 

random	 permutations,	 was	 used	 to	 test	 for	 mor-
phological	 integration	 between	 combinations	 of	
bottle components (rim, neck, body, and base). The 

results	indicate	significant	integration	between	the	
rim and neck (r

PLS
 = 0.969, P-value = 0.001), rim 

and body (r
PLS

 = 0.942, P-value = 0.001), rim and 

base (r
PLS

 = 0.663, P-value = 0.001), neck and body 

(r
PLS

 = 0.962, P-value = 0.001), neck and base (r
PLS

 

= 0.869, P-value = 0.001), and the body and base 

(r
PLS

 = 0.859, P-value = 0.001) for bottles in the 

sample	(Figure	11).	A	pairwise	test	of	morphologi-
cal	integration	was	used	to	identify	combinations	
of traits that covary. Results indicate that for this 

sample of Caddo bottles, the RIM
neck

 and RIM
base

, 

RIM
body

 and RIM
base

, and RIM
base

 and NECK
body

 

are	significantly	integrated	(Table	11).
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Figure 10. Predicted values of Caddo bottle shape from temporal (top) and type (bottom) regressions ver-
sus log(CentroidSize).
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Table 8. Least-squares mean distance matrix (top), effect sizes (middle), and P-values (bottom) for advanced 

Procrustes	ANOVA	and	pairwise	test	(RRPP	=	1000)	of	bottle	shape	by	type

 Belcher Eng HE Keno Tr Smithport Pl Taylor Eng

Belcher Engraved 0    

 0    

 1.000    

Hickory Engraved 0.114 0   

 4.499 0   

 0.002 1.000   

Keno Trailed 0.171 0.226 0  

 2.449 4.131 0  

 0.023 0.001 1.000  

Smithport Plain 0.168 0.085 0.251 0 

 4.812 1.589 4.133 0 

 0.002 0.071 0.001 1.000 

Taylor Engraved 0.046 0.085 0.176 0.130 0

 -0.738 0.932 1.931 2.021 0

 0.745 0.184 0.049 0.034 1.000

Significant	results	in	bold.

Table	9.	Pairwise	absolute	differences	between	variances	(top)	and	P-values	
(bottom) for the test of morphological disparity by type.

__________________________________________________________________________

 Belcher Eng HE Keno Tr Smithport Pl Taylor Eng__________________________________________________________________________

Belcher Engraved 0    

 1.000    

Hickory Engraved 0.009 0   

 0.004 1.000   

Keno Trailed 0.001 0.010 0  

 0.906 0.082 1.000  

Smithport Plain 0.011 0.002 0.012 0 

 0.015 0.698 0.093 1.000 

Taylor Engraved 0.001 0.008 0.002 0.009 0

 0.827 0.088 0.760 0.080 1.000__________________________________________________________________________
Significant	results	in	bold,	RRPP	=	1000.

Table	10.	Pairwise	absolute	differences	between	variances	(top)	and	
P-values (bottom) for the test of morphological disparity by time period.

 Formative-Early Late-Historic

Formative-Early 0 

 1.000 

Late-Historic 0.007 0

 0.007 1.000

Significant	results	in	bold,	RRPP	=	1000.	 	
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Figure 11. Results of 2B-PLS analyses for pairs of morphological components; (a) rim and neck, (b) rim 
and body, (c) rim and base, (d) neck and body, (e) neck and base, and (f) body and base.
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Discussion and Conclusion

This repository-based analysis of a curated 

and majority-NAGPRA collection of intact or re-

constructed Caddo bottles resulted in an improved 

characterization	of	Caddo	bottle	shapes,	while	high-

lighting similarities, differences, and a general trend 

toward	standardization	for	 the	aggregated	sample.	
Specifically,	it	resulted	in	a	test	of	Smithport	Plain	
bottle	shapes	confirming	that	discrete	morphological	
characteristics	(body	and	base)	differ	significantly	
between	 the	Belcher	Mound	and	Smithport	Land-

ing sites, supporting the morphological assertion 

initially posited by Webb (1959). The test included 

an analysis of Smithport Plain bottles from the 

Pohler	Collection	and	Mitchell	 site,	which	do	not	
differ	 significantly	 in	 shape	 from	 those	 recovered	
at the Smithport Landing or Belcher Mound sites. 

Analysis of the aggregate sample indicates al-

lometric trajectories that are not homogenous for 

Formative-Early and Late-Historic Caddo types, 

a	significant	difference	in	bottle	shape	by	site	and	
type,	 significant	 morphological	 disparity	 between	

the Formative-Early and Late-Historic Caddo types, 

and	 significant	morphological	 integration	 of	 pairs	
and suites of bottle components.

In	 the	 aggregated	 sample,	 significant	 assem-

blage-level	differences	in	bottle	shape	exist	between	
Belcher	Mound	compared	with	Gahagan	Mound	and	
Smithport	Landing,	Gahagan	Mound	compared	with	
Haley Place, Mitchell, Pohler Collection, Haley Place 

and	Smithport	Landing,	and	Mitchell	compared	with	
those from Smithport Landing (see Table 7 and Figure 

12). The results imply that bottle shapes employed 

by Formative-Early Caddo potters differ from those 

produced by Late-Caddo potters; an assertion echoed 

by the analyses of allometric trajectories (see Figure 

10) and morphological disparity (see Table 10). While 

only a small sample has been examined thus far, the 

results of morphological disparity by period highlight 

a	gradual	trend	toward	standardization,	where	bottles	
produced in the Late-Historic Caddo periods occupy 

a more restricted range of morphospace than those 

manufactured in the Formative-Early Caddo periods. 

This dynamic assertion is subject to change as more 

bottles are added to the analysis.

Figure 12. Comparison of mean bottle shapes by site for those sites found to differ significantly; (a) Belcher 
Mound (gray) and Gahagan Mound, (b) Belcher Mound (gray) and Smithport Landing, (c) Gahagan 
Mound (gray) and Haley Place, (d) Gahagan Mound (gray) and Mitchell, (e) Gahagan Mound (gray) and 
Pohler, (f) Haley Place (gray) and Smithport Landing, and (g) Mitchell (gray) and Smithport Landing.
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Significant	 type-specific	differences	 in	bottle	
shape	occur	between	Belcher	Engraved	compared	
with	Hickory	Engraved,	Keno	Trailed,	and	Smith-

port	Plain;	Keno	Trailed	compared	with	Smithport	
Plain and Taylor Engraved; Hickory Engraved 

compared	with	Keno	Trailed;	and	Smithport	Plain	
compared	with	Taylor	Engraved	(see	Table	8	and	
Figure 13). The test of morphological disparity 

indicated that Hickory Engraved and Smithport 

Plain	bottles	occupy	a	significantly	greater	range	
of morphospace than the Belcher Engraved bottles 

(see	Table	 9).	Elsewhere	 it	may	be	 the	 case	 that	
dimensional attributes are inappropriate for use 

in studies of standardization and diversity (Rice 

1991);	 however,	 the	 morphological	 disparity	 re-

sults suggest a high degree of utility in clarifying 

questions of standardization and diversity through 

the employment of morphological traits associ-

ated	with	Caddo	bottles.	This	can,	in	turn,	provide	
evidence for varying degrees of tolerance in pro-

duction,	where	a	higher	tolerance	yields	a	greater	
range of variation in shape that decreases as shapes 

become more standardized (Eerkins and Bettinger 

2001). In this sample, the tolerance for diversity 

in Caddo bottle shape is higher in the Formative-

Early Caddo period, and becomes more restricted 

through time. Results specify that the tolerance for 

variation in Caddo bottle shapes is greater in the 

case of Smithport Plain and Hickory Engraved than 

it is for Belcher Engraved.

Results from the test of morphological integra-

tion	 indicate	 that	 Caddo	 bottles	 are	 significantly	
integrated (see Figure 11), lending some support 

to	 the	hypothesis	 that	Caddo	potters	were	adher-
ing	to	a	template	of	vessel	shape	associated	with	
specific	decorative	motifs	(Early	2012).	However,	
the	 suites	of	 attributes	were	not	 found	 to	 covary	
in a predicted manner, as it is the RIM

neck
 and 

RIM
base

, RIM
body

 and RIM
base

, and RIM
base

 and 

NECK
body

	that	exhibit	significant	integration	(see	
Table 11). An important component of the ex-

panded	research	program	will	be	type-specific	tests	
of	morphological	integration	following	an	increase	
in sample size.

The	 significant	 difference	 in	 the	 production	
of Smithport Plain body and base shapes at the 

Figure 13. Comparison of mean bottle shapes by type for those types found to differ significantly; (a) 
Belcher Engraved (gray) and Hickory Engraved, (b) Belcher Engraved (gray) and Keno Trailed, (c) 
Belcher Engraved (gray) and Smithport Plain, (d) Hickory Engraved (gray) and Keno Trailed, (e) Keno 
Trailed (gray) and Smithport Plain, (f) Keno Trailed (gray) and Taylor Engraved, and (g) Smithport Plain 
(gray) and Taylor Engraved.
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Smithport	 Landing	 and	Belcher	Mound	 sites	was	
posited in the initial analysis (Selden, Jr. 2018a) 

where	the	differences	in	shape	were	seen	as	a	pos-
sible north-south transition for the combined sample 

of Hickory Engraved and Smithport Plain types. In 

comparing	these	results	with	a	recent	analysis	of	the	
Hickory Engraved sample (Selden, Jr. 2018b), it is 

evident	that	while	these	two	Formative-Early	Caddo	
types exhibit similar morphological differences over 

geographic space, the differences are dynamic and 

will	be	further	clarified	by	the	continued	and	itera-
tive	expansion	of	type-specific	analyses.	

The contribution of GM methods to questions 

of Caddo ceramic morphology holds substantial 

promise. Those results presented here provide 

a	 succinct	 preview	 of	 a	 rigorous	 and	 systematic	
research design that capitalizes on the variability 

of Caddo ceramic shapes through an analysis of 

type-specific	(Smithport	Plain)	morphology	that	is	
followed	by	an	analysis	of	the	aggregated	sample	
of Caddo bottles. Iterative improvements to this 

research	program	will	continue	as	new	specimens	
are made available and incorporated. That progres-

sion	will	include	the	addition	of	Caddo	bottles	from	
the	Bison	B	site	in	northwest	Louisiana	(Woodall	
1969)	 curated	 at	 Southern	Methodist	University,	
and an expansion of the Belcher and Taylor En-

graved	samples.	This	will	 test	whether	similarity	
in Late-Historic Caddo bottle shape is a local, re-

gional,	or	area-wide	trend.	Also	considered	will	be	
the continued analyses of morphological disparity 

between	different	temporal	periods	to	test	whether	
significant	morphological	disparity	and	allometry	
between	 the	 temporal	 periods	 varies	 elsewhere;	
and the continued use of morphological integra-

tion	to	identify	which	of	those	morphological	traits	
associated	with	Caddo	bottle	production	might	be	
said to covary. 
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