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A PRESERVATION PRINCIPLE OF EXTREMAL
MAPPINGS NEAR A STRONGLY PSEUDOCONVEX POINT

AND ITS APPLICATIONS

XIAOJUN HUANG

Introduction

Let D be a bounded domain in C and A the unit disc in C1o An extremal
mapping (respectively, a complex geodesic) tb of D is a holomorphic mapping
from A to D such that the Kobayashi metric of D at b(0) and in the
direction b’(0)(respectively, the Kobayashi distance between any two points
on th(A)) is realized by th. An obvious fact is that all complex geodesics are
extremal.

In the one dimensional case, b is extremal if and only if b gives a covering
mapping from A to D. In 1981, Lempert [Lml] systematically studied the
extremal mappings .of a strongly convex domain. He proved that every
extremal mapping of a Ck-strongly convex domain is actually a complex
geodesic and admits a Ck-2-smooth extension up to the boundary (k > 2).
As applications, he obtained the precise form of Fefferman’s mapping
extension theorem and the solutions of some types of Monge-Ampere equa-
tions [Lml], [Lm2]. In [RW], some of Lempert’s results were generalized to
bounded convex domains. For non-convex domains, the abstract nature of
the Kobayashi metric makes things more subtle. A simple investigation of the
covering mappings of an annulus indicates immediately that (1) the extremal
mappings may not be complex geodesics anymore and (2) the boundary
behavior of extremal mappings may be very complicated although the domain
is analytic and strongly pseudoconvex. In 1983, Poletskii [P] showed that the
extremal mappings of a p-pseudoconvex domain must be almost proper and
satisfy the Euler-Lagrange equations if the domain has in addition C
boundary. This result gives a very strong restriction for a holomorphic
mapping to be extremal, and was later on used in some papers to character-
ize such mappings.

One purpose of this note is to present a preservation principle for extremal
mappings near a ca-strongly pseudoconvex point. Roughly speaking, we show
that an extremal mapping with the initial point close to the bottom of a
strongly pseudoconvex hole and with the initial velocity almost parallel to the
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bottom tangent space must stay completely in the hole. In other words, we
show that extremal mappings can only wind around the strongly pseudocon-
vex boundary in the complex normal directions. As an application of this
principle, we obtain the Lipschitz-1 continuity of a complex geodesic near a
C3-strong pseudoconvex point. This improves, in some sense, a result in
[Lml] and [Ab2], where only H61der-1/2 continuity was obtained for the
complex geodesics of a Ca-strongly pseudoconvex domain. Another purpose
of this paper is to study the boundary version of a uniqueness theorem for
holomorphic self-mappings, by making use of iteration theory and the afore-
mentioned regularity results of complex geodesics, especially the Lipschitzol
continuity of an arbitrary holomorphic retract near a strongly pseudoconvex
point.
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Yull Pang and Siqi Fu for their helpful conversations. Also, he is very pleased
to thank the referee for many valuable suggestions and corrections.

1. Statement of theorems and some related observations

We first introduce the following notation.
Let D be a bounded domain in Cn with p a Ca-smooth point. We recall

that for every z D, close enough to p, there is a unique point on 0D,
denoted by 7r(z), so that distance(z, rr(z)) ((z), the distance between z
and the boundary of D. In this case, for every : T(x’)D, we use (sc)tn and
(:)nr to denote the complex tangential and complex normal components of sc
at 7r(z), respectively.
For a bounded pseudoconvex domain D in C n, we say that it has a Stein

neighborhood basis if there exists a sequence of bounded pseudoconvex
domains {Dv} in C so that Dx 33Da33D333 33D and NvD

D. It is well known that every bounded domain defined by a C plurisub-
harmonic function (in particular, every bounded Ca-strongly pseudoconvex
domain) has a Stein neighborhood basis.

THEOREM 1. Let D c c C# (n > 1) be either a pseudoconvex domain with
a Stein neighborhood basis or a pseudoconvex domain with C boundary.
Suppose that p OD is a strongly pseudoconvex point of D with at least C a

smoothness. Then for every open neighborhood V of p, there is a positive
number e such that for each extremal mapping d ofD, when 14,(O)-pl < e and
I(b’(O)),,,. < e l(b’(O))t l, then d is the complex geodesic ofD and oh(D) V.

COROLLARY 1. Let D c Cn be a C 3 strongly pseudoconvex domain. For
every e > O, there is an q > 0 such that if dp is an infinitesimal complex
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geodesic with 6(qb(-))) < 1 and Ibr()[ < /[qb’tn()[ for some z e A, then the
diameter of b(A) is less than e. Here, we recall that a holomorphic mapping
from A to D is said to be an infinitesimal complex geodesic ofD if it realizes the
Kobayashi metric ofD at any pair (b(’), d/(-)) with z A.

COROLLARY 2. Let D and p as in Theorem 1. Suppose that d is a complex
geodesic of D. If there is a sequence {’k} C A converging to 1, such that
(’k)-- P, then ’ is bounded near 1 OA. Thus d? admits a Lipschitz-1
continuous extension near 1.

THEOREM 2. Let D C 2 be either a simply connected taut domain with
a Stein neighborhood basis or a simply connected pseudoconvex domain with C
boundary. Suppose that p OD is a strongly pseudoconvex point with at least
C a smoothness. Iff is a non-identical holomorphic self-mapping of D so that

+ p)") --,z,,

then:
(1) k < 3.
(2) If k 1, then either fm} converges compactly to p or the fixed point set

off is a one dimensional holomorphic retract passing through p. In case D is
not biholomorphic to the ball, f cannot be an automorphism.

(3) If k 2, then f can not be an automorphism of D and {fm} must
converge compactly to p.

COROLLARY 3. Let D and p be as in Theorem 2. Suppose that f
Hol(D, D) is such thatf(zo) zo for some zo D andf(z) z / o((z p)2)
as z - p. Then f =- d.

We do not know whether the C2-smoothness at p suffices for Theorem 1.
However, the strong pseudoconvexity assumption for p is necessary as the
following example demonstrates.

Example 1. Let Ek be the egg domain defined by E k {(Z1, Z2): Iz 112 /
Iz212k ( l} for k >_ 2 and let p (1, 0) (we note that when k 1, g reduces
to the unit 2-ball). Then Ek is an analytic strictly convex domain with the
boundary point p of type 2k, where by a strictly convex domain we mean a
convex domain whose boundary contains no segment. For each j > 1, choose
a biholomorphism %. from A to the disk {z C1 [z[ 2 / l1 -z[ 2 ( 1} with
%.(0) 1 1/j and %.(1) 1. We then claim that bj (%., (1 %.)1/g) is a
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complex geodesic of Ek for each j. In fact, this follows easily from the
following two facts and the monotonicity property of the Kobayashi distance.

(i) Cj is a proper holomorphic mapping from A to Ek.
(ii) Let 7r be the standard proper covering mapping from Ek to the unit

2-ball Be (= El) i.e., 7r(z a, z2) (z 1, ZEk). Then 7r Cj is a complex geodesic
of BE, for "rr t1 is a biholomorphism from A to the intersection of BE with
the complex line w + wz 1 (see [Abl] for more on this matter).

Meanwhile, it is easy to see that b(0) p and

(()jr)/((tn)tn)(O) k(1 ITj(O)) 1-1/k ---) O.

However, (A) does not reduce to p as j oo. By the way, this example
also shows the importance of the strong pseudoconvexity in Corollary 1 and
Corollary 2.

Corollary 2 is obviously false for the general extremal mappings even in the
one dimensional case. Actually, all universal covering mappings of the
annulus are infinitesimal complex geodesics, but are not continuous up to
the boundary.
Theorem 2 can be viewed as a boundary version of the classical Cartan

theorem. The case (1) is the local version of the Burns-Krantz theorem (see
[BK] and [H]). For the disk in C 1, as noted in [Lm3], the exponent in
Corollary 3 can be reduced to just 1. However, the following examples show
that the situation in the higher dimensional case is different and our result is
actually quite sharp:

Example 2. Let

[ (1 2i) Z "l
o’( z1, z2) z---2i ’Zl

--2iz2 )1 2i for (Zl, Z2) B2.

Then tr Aut(B2) with tr(p) tr’(p) 1, where p (,1 0). But tr 4: id.

Example 3.
by

Let D be a bounded strongly pseudoconvex domain defined

D {(Zl, z2) C 2" [Z112 --[- h([z2[ ) < 1}

for some smoothly increasing function h(’) with h(0) 0. Denote by p the
boundary point (1, 0). Define f(z 1, z2) (z 1, z z2). Then f fixes the holo-
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morphic retract of D: {(Zl, 0): [Zl[ < 1}, and f(z) z + o([z p[) as z p,
but f id.

Example 4. Let BE {(z1, Z2) C2: Izl 2 + Iz2l < 1} be the unit 2-ball
and let p (1, 0). For every a > 0, define a holomorphic mapping fa from
D to C E by

1 + a(1 z 1 + a(1 z1) 2

Then it is easy to check that fa is a self-mapping and fa(Z) z + O(Iz p[3)
as z p. By Theorem 2, {fk} converges compactly to p.

2. Proof of Theorem 1

The purpose of this section is to present the proofs of Theorem 1,
Corollary 1, and Corollary 2. Our idea is to make use of the Cg-version of the
reflection principle to get the uniform H61der continuity of the differentials
of a sort of ’normalized’ complex geodesics on strongly convex domains. We
then apply it with the Fornaess embedding theorem and the Graham esti-
mates of the Kobayashi metric to obtain our results.

In what follows, we fix the symbol ( ,. ) for the standard Hermitian inner
product in Cn and the symbol for the corresponding euclidean norm. For
two domains D and D 2, Hol(D1, D2) stands for the set of all holomorphic
mappings from D to D2. When f Hol(D1, D2) with D D2, we denote
by fm the ruth-iterate of f defined inductively by fl f,..., fm f f,,-1.

For a bounded domain D in C n, denote by KD the Kobayashi distance and
by KD the Kobayashi metric of D (see [Kr2] for the definitions). We recall
that & Hol(A,D) is said to be a complex geodesic (respectively, an
extremal mapping)of D if

KD((7.1), (7.2)) Kzx(7.1, 7.E)

for every pair 7"1, 7"2 A [Ve] (respectively, KD(th(0), th’(0)) ra(0, 1) 1).

LEMMA 1. Let D c D2 be two bounded domains in C. If d is a complex
geodesic (respectively, an extremal mapping) ofD2 such that th(A) c D 1, then
d is also a complex geodesic (respectively, an extremal mapping) ofD 1.

Proof. This follows immediately from the monotonicity property of the
Kobayashi metric and the Kobayashi distance, r
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Let D be a Cl-smoothly bounded domain in C n. Then for every p OD,
we may define the outward unit normal vector of OD at p, denoted by u(p).
When D c c Cn is a bounded Ck-strongly convex domain (k > 2), Lempert
in [Lml] showed that a holomorphic mapping b from A to D is an extremal
mapping (or complex geodesic) of D if and only if it is proper and there
exists a (unique) Ck-2-smooth function P6" 0h R/ so that the vector
function :P()u(b()), init.ially defined on 0A, can be extended to a
holomorphic vector function b on A (which is called the dual mapping of b)
with (b’, 4) -= 1. The following lemma is an obvious consequence of this
characterization:

LEMMA 2. Let D1 C D2 be two bounded C3-strongly convex domains in C.
Suppose that OD 00D2 is a piece of hypersurface. If b Hol(A, D l) is a
complex geodesic olD so that th(0A) c ODE, then dp is also a complex geodesic
ofD 2. UI

In the next two lemmas, we assume D c c C to be a C3-strongly convex
domain.
For each a > 0,. let a denote the set of all complex geodesics th of D

which satisfy (b(0))> a. From 7 of [Lml], we see that there exist two
positive constants CO and C, depending only on D and a, so that for every
b a, the following hold:

(1.a) 1(7-1) 6(7-2)1 < C017-1 7"211/2, 16(7"1) 6(7"2)1 < C017-1 7-211/2
for any 7-1, 7"2 A;

(1.b) C) < P6 < C0.

Starting with these properties, we now prove the following:

LEMMA 3. There exist two positive constants R a.nd R2, depending only on
D and a, so that for every ch , we have R < [4) < R2.

Proof We note that = scP6()v(b()) for sc 0A. Thus by applying
the maximal principle to [b[, we see that R 2 can be chosen to be Co in (1.b).
To obtain another inequality, we suppose not and seek a contradiction. Then
there exist a_sequence .{bn} c a and a sequence {rn} C A which approaches
some 0 A, so that dn(7"n) O. By (1.a) and the Arzela-Ascoli theorem we
can assume, without loss of generality, that {b,} converges uniformly to some
b a and {tn converges uniformly to some b* Hol(A, Cn). Hence
P6, (:-14,u(bn(SC))) converges uniformly to some positive continuous
function P* defined on 0A. Now, since

and 4(:) :P6(:)v(th()),
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we see that

on

From the fact that 4 :# 0, it follows easily that P*/P4, is the boundary value
of some holomorphic function defined on h. This implies that P* Const
P6 and thus that b* and b differ by a positive constant. That is a contradic-
tion, for b*(0) limn__,oon(’rn) 0 but 4(sc0) #: 0. [3

LEMMA 4. There exists a positive constant C1, depending only on D and a,
such that for every qb a and for any z 1, z2 A, we have [b’(-1)
( C11’/’1 ’rE[ 1/2.

Proof The argument is based on a careful examination of what is called
the Ck-version of the Schwartz reflection principle.

Let S {(p, Tp(1’) OD): p OD} and Pn-1 the complex projective space of
hyperplanes in C n. Then S c C Pn-1 is a compact totally real submani-
fold. Let

B(R1, Re) {z C n" R < Izl < Re},

and denote by rr" C X B(R1, R 2) C X Pn-1 the natural projection, where
R 1, R 2 are as in Lemma 3.

mWe first find two open coverings {Ei}im= and {Ei}i= Of S such that the
following assertions hold for each i"

(1.C) E C C Jff-’i C C Cn X Pn-l"
(1.d) There exists a ck-l-diffeomorphism : > V/ C C C2n- so that

XIti(J i"1 (OD X S)) c R2n-1 C2n-1

and D’(i) 0 on i ("1 (,gD X S) for all multi-indices a with lal 1.
(1.e) Let

0 {Z --- Cn" ::]w B(R1, R2) so that 7r(z, w) /i}.

Then maxzo,dist(z, 0D) << 1.

For every b a, from Lemma 3, we can define a holomorphic mapping

Hol(A,C B(R1, R2) )
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by

Let

l(i)),O(l’-l(Ei)))
and let

U/ (7l"o)-l(Ei).
From (1.c), we see that b0 > O. Furthermore the following properties are
easy to verify:

(1.0 Let

A" dist(, U/) <

where CO is chosen as in Lemma 3. Then zr((()) c i (whenever U/ ).
(1.g) There exists a constant b > 0, independent of the choice of 4), so

that for any Zl, 2 A, if 1 ]Zl[ < bl and [zl 2[ bl, then we may
find some U/, defined as above, which contains 1 and 2.

(1.h) There exists a constant b 2 > 0, independent of the choice of (k, so
that for every A with 11 < bE, we have U iU/.

In fact, (1.f) follows easily from (1.a) and the definition of b 0, (1.h) follows
from (1.a) and (1.e), while (1.g) is a simple application of the Lebesgue
number lemma and (1.a).
We let

( )/* C1. -1 /("1, V/* {z c2n-1" V/},

and fii-- / I,J /*. Define gi: fii "-’> Vi l,.j Vi* by iozr 8()when Oi,
and by i zro 4(-1) when z t)/*. Consider fi = Ogi/z. By the argument
on Page 438 of [Lml], we can conclude, from (1.a), (1.d), and the Hardy-Litt-
lewood theorem, that fi is uniformly bounded and uniformly H61der-
continuous on I with respect to a (i.e, there is a constant C, independent
of the choice of b, so that for every b a and " z2 A, the correspond-

1/2).
1’

ng fi satisfies 1fi(1)- fi(2)1 < C11- 21
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Let

We then have the following facts:

(1.j) it is uniformly bounded on fii with respect to aa (by (1.h) and the
uniform boundedness of fi).

(1.k) 0,i/0 is uniformly H61der- continuous on fl (by (1.a) and Proposi-
tion 2.6.40 of [Abl]). Here U/* {- cl: -1 U/} and [’i U/[,J U/*.

Since Ii- gi is holomorphic and uniformly bounded on [i, it follows,
from (1.f) and the Cauchy estimates, that (’i gi)’ is uniformly bounded on
U/. Hence by (1.k), Ogi/Oz is uniformly H61der- continuous on U/. So by
(1.a), (1.d), (1.g), and the Cauchy estimates, we can now find a constant C1,
depending only on D and a, so that for every b a and for any
’1"1, ,1"2 A, we have Ith’(’l)- b’(’2)l < Cll’rl- "/"211/2. This completes the
proof. D

Remark. Let o- be the set of all complex geodesics b satisfying 6(th(0))
max,{6(b(-))}, where 6(z) is defined as the distance from z to OD. By

making use of the uniform H61der- z continuity of z- [CHL], the above
argument might also be modified to prove the following:

PROPOSITION 1. Let D c C be a Ck-strongly convex domain (k > 2). ff
k to, then there exists an open neighborhood U of A so that all elements in r
can be extended holomorphically to U; if k < to, then for any j <_ k- 2 there
exists a constant Cj so that for every dp r and ’, 2 A, it holds that
Ib<J)(-l) th<J)(,r2)l < Cjl’r ,r211/4.

Another key lemma which we need is the following version of the Fornaess
embedding theorem:

LEMMA 5. Let D be a bounded pseudoconvex domain in Cn and p OD a
strongly pseudoconvex point with at least CE-smoothness. Suppose that either D
has a stein neighborhood basis or D has a C boundary. Then there exist a
neighborhood U of p, a bounded C E-strongly convex domain l’l in C n, and a
holomorphic mapping dp from D to 12 such that

(a) can be extended holomorphically to U with dp-(dp(U )) U f ;
(b) dp(U D) fl, dp(U tlc) c tlc, and dp(U 01)) dp(U) f 01).
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Proof. When D has a Stein neighborhood basis, the lemma is Proposition
1 of [Fn]. So it suffices for us to prove the lemma in case D is a smooth
pseudoconvex domain with p being a strongly pseudoconvex point. The
argument in this situation is also a slight modification of that in [Fn]. In fact,
the only difference is in that we now have to make use of Kohn’s global
regularity result of the cLequation [Ko] on smooth pseudoconvex domains to
construct a nice bounded supporting function appeared in line 1 to line 5 of
page 533 of [Fn] (this is the only place we need the global boundary
smoothness of D). For the convenience of the reader, we present the
following details:

First, let {Wl(Z),..., Wn(Z)} be a local coordinates system on a neighbor-
hood U of p so that w(p) 0 and U tq D is defined by

p(w) Re w + Iwl 2 + o(Iw12),
j=l

Let V c c U be a very small neighborhood of p (or w 0). Choose X to be
a positive cutting function with Supp X V and X(0) X(w(p)) 1. For
a positive number e, define D {z Cn" either z D or z V with
p(w(z)) < eX(w)}. By the above discussions and (3.4.2.2) of Theorem 3.4.2 in
[Kr2], it is easy to check that when e is small enough then DE(D D) is also a
smooth bounded pseudoconvex domain. Now when Iwl < ,0 with A0 << 1,
we may assume that X(w) < 2 and p(w) > Re w + 1/2Y’.7=11w.l 2. Thus for
w D e c{Iwl < ’0}, we have

Rew <p(w)- 1/2
n

Iwl 2 < ex(w) 1/2lwl z < 2e- 1/2lwl 2

j=l

where Iwl2= ET=llWl 2. Hence, for A << 1, if we let e 1/4,2, then the
following claim holds (see Lemma 5.2.8 of [Kr2]):

Claim. Let e, A, and ,0 as above. If 1 >> ’0 > A, ’ < Iwl < 0, and
w DE, then Rew < 0.

Now, define a cutting function so(t): R --) [0, 1] with (t) 1 for Itl < X
and 0 for Itl > X’0. Here )t < A’ < X0 < A 0. It thus follows that to

Cz(:(lwl)log Wl is a well-defined C (0, 1)-form on D-; for in case (:lwl) 0,
Re Wl < 0 and thus log Wl is well defined (see page 186-187 of [Kr2] for
more details on this matter). Furthermore, it is easy to verify thit to 0.
Therefore, by a theorem of Kohn [Ko], there is a g C=(-) so that zg to.

Define f(z) with

f(z) exp(g + :(Iwl)log w,) for w O 0wl < x0}
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and

f(z) exp(g) for w D C {Iwl X0}.

By the way these objects were constructed, we can conclude that

(i) f(z) Hol(D) n C(-) (see also page 186 of [Kr2]);
(ii) for w close to 0, f(w(z)) wlf*(w) with f*(0) 4: 0.

We now shrink A o and , (thus also e) so that:

(iii) If*(w) -f*(0)l < 1/2lf*(0)l for Iwl < A0 and w e D;
(iv) Re w < 0 for w c (D {p}) t {w: Iwl < ’0}.

Therefore, we can also define the smooth (0,1)-closed form to*=
c(sC(lwl)log f- f-3 on the closure of D. Consider the similar equation
Ozg-* to*. By Kohn’s theorem, we obtain again a solution g* which is
continuous on D--- (actually smooth, but for our purpose here, all we need is
the existence of a bounded solution). Now, define

*/*(z) exp(g*f 3 + :(Iwl)log f) for w e D C {[wl < Xo}

and

*/*(z) exp(g*f 3) for w D N {w" Iwl X0}.

Then we similarly see that */*(z) Hol(D) c C(D----). Moreover, it holds, for
w 0 (or z p), that

l(W) *(z)f*-a(w(p)) wa + O(Iw13).
As in [Fn], we now change the coordinates {Wl,. ., wn} to the globally defined
functions {*/1,’", */n} on which also serve the local coordinates near p,
where */1 is as above and */. is the linear term of the Taylor expansion of

wj(z) at z =p (j > 1). Note that for z D, it still holds that

n

p(w(*/)) Re */1 + E I*/j[ 2 + 0(112) < 0.

We therefore see that Re */I(Z) < 0 for z(= p) D p. Since */l(Z) == 0 for
z D -p (by the construction of */1 and the property (iv)), and since */1 is
continuous on D, we therefore conclude that there is a small positive e0 so
that I*/l(Z) e01 > e0 for z D -p. Also, notice that */1 Hol(D) c
C() and */1 is holomorphic near p. Thus starting from such a supporting
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function, we can now obtain the in our lemma by copying the argument of
[Fn] from line 6, page 533 to line 11, page 536. r

Proof of Theorem 1. Seeking a contradiction, we suppose that there is a
sequence of extremal mappings {bk} of D so that

(])k(O) -") P’ ’[((’6(O))n
but for each k, bk(A) n V : (R) for some fixed neighborhood V of p.

Let 12, U, be as in Lemma 5 and let b bk. It is then easy to see
that

6 (o) -, ,(p)( e q) and I(’(0))tnl--.
[(’(0))n

Construct another strongly convex domain f0, which is contained in (U),
so that 0f0 N O(D) (c Of f30d(D)) is a piece of strongly convex hyper-
surface, and find a sequence of complex geodesics {Ok} Of f with Ok(O)=
b(0) and 0k(0) *’hkdk (0) (hk > 0) for each k. We claim that 0k(A) p as
k 0% thus that k(A) c f0 for k >> 1. In fact, let {trk} c Aut(A) be such
that O[ & Sk o-k t

, and I//k (7"k) I//k(0) for some
does not reduce to q as k - 0% it then follows easily from the assumptions
that, for infinitely many k, *k 1 and {’} c a for some a > 0. By a
normal family argument, we may assume, without loss of generality, that

’ - $ (see proposition 4 of [CHL]). Hence, from Lemma 4 and the
above hypotheses, we obtain ’(1) Tq’ 01). This is a contradiction [Lml].
Now, by Lemma 1, we see that Sk is also a complex geodesic of both

and (D)when k >> 1. Hence, by making use of the monotonicity property
of the Kobayashi metric and this fact, we have for k >> 1 that

and

O(D)(b(0), b’(0)) < r,D(4)k(O), b.(0)) 1

ro-kno(6(0), 6’(0)) > rD(6(0),th’(0)) 1.

Thus, (o)((0),k (0))= 1.
hk4k (0)) for Ok aOn the other hand, since r(z)(4k(0), 1, is complex

geodesic of (D), we obtain h k 1. So we can conclude that th is a
complex geodesic of 1) when k >> 1. By the uniqueness property of the
complex geodesics on strongly convex domains, we therefore have
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for k >> 1. However, from the above argument this implies that b(A) q
as k ---, oo. That is a contradiction and hence completes the proof for the
second assertion of our theorem.
To conclude the proof, we let e be small enough so that we can choose V

in the theorem to be -l(f0). Suppose that is an extremal mapping of D
with b(A) c V. Then by Lemma 1, it is also an extremal mapping for V, thus
a complex geodesic of V; for it is bilomorphic to the strongly convex domain
fZ 0. By making use of Lemma 2, we see that $ is a complex of f. Now,
by the monotonicity property for the Kobayashi distance, we have, for any
771,Z2 C A, that

KA(771,772) Kv(th(771), t(772)) Kn(@ (771), (I) t(772))
< K(D)( (771), (772)) -< Ko((771), 6(7"2)) -< Ka(771,772).

Therefore is a complex geodesic of D. El

Proof of Corollary 1. This follows easily from Theorem 1. El

Proof of Corollary 2. Let b be as in Corollary 2. Then from the argument
in Theorem 1 of [FR], we easily see that b is continuous at 1.
By the well-known estimates of the Kobayashi metric near a strongly

pseudoconvex point (see [All, for example), we may find a neighborhood U of
p and a constant C so that for every z U ( D and X Tzd’)D, we have
rD(Z, X) > ClSlnr/(z). Meanwhile, we recall that $ is also an infinitesimal
complex geodesic (see [Abl]), i.e.,

D((),’()) a(Z,1) 1/(1 I1).

Hence, from the fact that i(b(77))= 1- 1771 2 [Abl], it follows easily that
I(dp’(77))nrl < Const. near 1. To finish the proof, it now suffices to show that
1(4,’()),1 is bounded near 1. Suppose this is not the case. Then there exists a
sequence {77k} converging to 1, so that

)in I/I (4,’
goes to the infinity as k oo. Let tk be a reparametrization of b so that
k(O) qb(zk) for each k. From Theorem 1, it then follows that thk(A)(
th(A)) p. This is obviously a contradiction. El

We recall that a subset E of a bounded domain D is called a holomorphic
retract if there is an h Hol(D, D) with h2 h so that h(D) E. An
obvious observation is that for a holomorphic retract E, it holds that
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KE(Z1, Z2) KD(Z1, Z2) for any Zl, z2 E. Combining this fact with Corol-
lary 2, we have the following:

COROLLARY 4. Let D andp be as in Theorem 1. Suppose that E is a simply
connected one dimensional holomorphic retract ofD with p E, and suppose
that d is a biholomorphic mapping from A to E with dp(k) - p for some

’k -’-> 1. Then ch is Lipschtz-1 continuous near 1.

Remark. From the proof, we can actually see that Theorem 1, Corollary
1, Corollary 2, and Corollary 3 hold for all bounded domains which possess
the local embedding property in Lemma 5. In particular, we can replace D by
the bounded domain of the form D K, where D is as in Theorem 1 and K
is a compact subset of D.

Remark 2. When D has a C1-smooth plurisubharmonic defining function,
then all extremal mappings satisfy the Euler-Lagrange equation (see 5 of
[P]). This result with the reflection principle and Corollary 2 gives the
following:

PROPOSITION 2. Let D c Cn be a bounded pseudoconvex domain with a C
plurisubharmonic defining function. Let p OD be a ck-smooth strongly
pseudoconvex point (3 <_ k <_ o). Suppose that is a complex geodesic ofD. If
there exists a sequence {’m}, converging to 1, such that d(zm) - p, then ch can
be extended Ak-1 smoothly across 1 OA, where Ak-1 is the standard Zyg-
mund space of order k 1.

Proof Since the argument is standard (see [Lml] for example), we omit
the details and just sketch the idea: We can prove first the H61der continuity
of the dual mapping 4 defined from the Euler-Lagrange equation of , by
making use of the Riemann-Hilbert problem. We then can show that 4 can
at most vanish to some integer order m at 1. Thus, by applying the reflection
principle to [b, 4/(1 7")m], the regularity result of tb follows. D

3. Proof of Theorem 2

In this section, we start by proving the local version of a result of Krantz
[Kr2]. Then we use iteration theory and Lipschitz-1 continuity for holomor-
phic retracts (Corollary 3) to obtain Theorem 2. We leave the proof of a
technical lemma to the last.

LEMMA 6. Let D and p as in Theorem 1. Suppose that tr is a biholomor-
phism ofD such that tr(z) z + o([z pl g) as z p. Then tr id if either
k 2 or k 1 and D is not biholomorphic to the ball.
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Remark. By Example 2 in Section 1, we see that exponent 2 in the
theorem is necessary for the ball. In fact, even in the one dimensional case,
we have the following example.

Example 5. Let

1+ (2i- 1)z forA.tr(z) 2i+ 1-"

Then tr(1) tr’(1) 1 and tr Aut(A). However, by a direct computation,
it can be seen that an automorphism of A which has contact of order 2 with
the identity at some boundary point must be the identity.

Proof of Lemma 6. Let f, f0, (I), and U be as in the proof of Theorem
1, and let 4) be a complex geodesic of 12 with (1) (I)(p) (see [Lml]). As
argued before, we see that when ’(1) is close enough to the tangential

-lla0 4) is a complex geodesic of D.direction, then 4)(A) c 12 0 and 4)0
Hence, (r 4)0 is also a complex geodesic of D. Now when (r 0(A) is close
enough to p (we can do this by shrinking b(A) and by the continuity of tr at
p), it follows from Lemma 1 that tr 0 is also a complex geodesic of
(I)- 1(0). SO (I) O" ’t0 is a complex geodesic of f0 and therefore a complex
geodesic of f (by Lemma 2). We note that th and tr b0 coincide at 1 up
to the first order. Thus, by the uniqueness property of complex geodesics on
strongly convex domains, we can find a biholomorphism a of A so that
a(1)= 1, a’(1)= 1, and otroth0=th a. If k=2 or k= 1 and a is
elliptic (i.e, the sequence {an} is a pre-compact family), we have that
a(-) =- - and hence that tr fixes b0(A). If a is non-elliptic, then by noting
the fact that cr(th0(A)) c.b0(A), we have (P o"m o(I)-1 o am (I)(p).
Thus p is a boundary accumulation point of the automorphism sequence
{(rm}=l of D. By the Wong-Rosay theorem [Kr2], this implies that D is
biholomorphic to the ball. So when D is not biholomorphic to the ball, by
making use of the uniqueness theorem of holomorphic functions and the fact
that the union of all such 4)0(A)’s occupies an open subset of D, we see that
(r id. rq

LEMMA 7. Let D c Cn (n > 1) be a pseudoconvex domain and p OD a
C2-strongly pseudoconvex point. Assume furthermore that either D has a Stein
neighborhood basis or D has a C boundary. If f Hol(D, D) is such that
f(z) z + o([z p I) as z --. p, then for any neighborhood V ofp, there exists
a point z V D such that fk(z) Vfor k 1, 2, 3,

We assume this lemma for the moment and pass to Theorem 2.

Proof of Theorem 2. Let D, p, and f be as in the theorem. Then Case (1)
is the local version of the Burns-Krantz theorem (see [BK] and [H]). Now if
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{fn} does not converge compactly to p, then by iteration theory of holomor-
phic mappings (see [Bd] or [Abl]) and Lemma 7, we have the following
possibilities:

(i) {fn} converges compactly to some z0 e D;
(ii) Some subsequence of {fn} converges to a one dimensional holomorphic

retract h of D so that f e Aut(h(D));
(iii) f is an automorphism of D.

In view of Lemma 7, (i) cannot happen, while by Lemma 6 (iii) can occur
only when k 1 and D is biholomorphic to the ball. Hence, all we actually
have to study is the case (ii).

Since h(D) is a simply connected hyperbolic Riemann Surface (this follows
from the simple connectivity of D) and since {fn} is a precompact family, we
may conclude that f fixes some point on h(D) [Abl]. From Lemma 7, it
follows easily that p h(D). Hence, we may choose a biholomorphism 41
from A to h(D) and a sequence {rk}, converging to 1, so that k(rk) -o p as
k --, o. By Corollary 4, we see that b(1) =p and is Lipschitz-1 continuous
near 1. Since b -lo f ( Aut(A)) fixes two points on ; one is in A and
the other one is on 0A, we can easily conclude that f fixes h(D).
Now if k 2, then we let

Of1 Of2 )+

which is the sum of the eigenvalues of the Jacobian of f at b(z). We claim
that Re A(r)--2 under these assumptions. In fact, by using the Cauchy
estimates, the Lipschitz-1 continuity of b at 1, and the fact that 3(b(r))
C(1 zl), we have the following estimates for z (0, 1):

1
sup Ill(z) -zi[

1 + 16(r) )2)
as z 1. On the other hand, since Re(Mr)) is harmonic and is never larger
than 2, it follows from the Hopf lemma that Re(A(z))--2. This is a
contradiction, for from the Cartan-Carath6odory-Kaup-Wu theorem it im-
plies that f(z) -= z. The proof is now complete, rn

Proof of Lernrna 7. Let D, p, f be as in the lemma, and let E be the
inward normal vector of D at p. Denote by L the inward zr/4-cone at p, i.e,
L & {z D" the angle between and h’ is less than -/4}. We then define
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the big and small horospheres for any z0 D and R > 0 as follows (we note
that the definition is somewhat different from that in [Abl], but is more
suitable for our purpose here):

E(zo, R ) - (z D" limsup (Kn(z,w) -Kn(zo,W))< 1/21og R),
w(L)p

F(zo, R ) {z D" liminf (KD(Z,W) KD(zo,w)) < 1/21ogR}.
w(L)p

Claim 1. Let R > 0 and z0 E close to p. Then z ED(zO, R) for z E
close enough to p.

Proofof Claim 1. Let zo E be close to p and let z be in the segment zop.
Denote by B(z) the ball with center z and radius p(z)( Iz p I). We then
see that B(z)cD when z ~p. By the estimate that Kn(zo, w)>
C- log t(w) for w( L)~p (see Claim 2 for more discussions on this
matter) and some basic properties of the Kobayashi distance, we then have
for w( L) p,

KD( Z, w) Kn( zo, w) < KB(z)( z, w) Kn( zo, w)

1 (l+lz-wl/(z))_C+ 1
< -log 1- Iz-wl/i(z) -logS(w)

1 1 t(w)< -log(z) + C+ -log

where C denotes a constant, which may be different in different context.
We now use the special property for L which makes that

Iz wl

as w( L) --* p. We therefore obtain KD(Z W) KD(Zo, W) < log t(z) +
C. So for any R > 0, when z( if) is close enough to p, we have z E(zo, R).

Claim 2. Let z0 be as in Claim 1. For every small neighborhood V of p,
there exists a R > 0 such that F(zo, R) c V.

Proof of Claim 2. Let 120, 1, U and (P be as in the proof of Theorem 1.
Without loss of generality, we assume that (P-1(120)c V and ddP(p)= id.
Let z’ (P(z0), w*= (P(w), and the inward normal vector of 12 at
q(= (P(p)). Then (P(ff) is tangent to at q.
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By noting the fact that the Kobayashi distance of 12 between any two
points can be realized by a complex geodesic, we then have

Ka( z*, w* ) > inf Ka(u, w* )
u 0f 012

for any z* ff 12 0 and w* q. Let B* D 12 be a ball, which is tangent to 12 at
q and has ff as part of its diameter. Then, from a direct computation of the
Kobayashi distance for B*, we obtain

Ka(u,w* ) > KB,(U,W* ) > --1/21og6*(w*) + C.

Here C is a constant independent of the choice of u Of 0 -01, 6*(w*)
denotes the distance from w* to 012, and w*( (K))~ q. So, from the
monotonicity property of the Kobayashi distance, it follows that

KD( Z, W) KD( Zo, W) > Ka( z*, w*) Kao( z*, w*)
1

C’
1

6" *> --log6*(w*) + C- +-log (w)

>C-C’.

CThus, ifwe choose log R C- then z . F(zo, R)when z -l(f0).
This completes the argument for claim 2.

Claim 3. f(E(zo, R)) c F(zo, R).

Proof of Claim 3. This is essentially a lemma in [H]. However, for
completeness, we include a proof here.

Let zk =p + if/k( if). Then for k >> 1, f(zk) is in L and converges to
pas k-oo. Foranyz0D,R>0,and zE(zo, R), we have

inflim (Ko(f(z), w) Ko(z0, w))
w(L)p

< inflim(KD(f(z ), f(zk)) KD(Zo, f(Zo)))
k-o

< inf lim (KD( Z, Zk) KD( Z0, f(Z0) ))
k--,

< inflim(KD(Z, Zk) KD(Zk, Zo) )
k-o

+ sup lim(KD( zk, Zo) KD(Zo, f(Zk) )
1

< logR + suplim(KD(Zk,Zo) g(zo,f(z) ).
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So to complete the proof of Claim 3, we have only to show that

Ko( o, -< O.

In fact, let Yk" [0, 1] --* D be the segment joining zk and f(z,). Obviously,
when k >> 1, then / stays in D. Denote by B(a, r) the ball of center a and
radius r. We then have for every X T(1,0)r thatTk(t)

D(Yk(t), X) <_ KB(,k(t),l/(2k))(Tk(t), X) <_ CIXIk.

Here C is a constant which is independent of k and t. Hence,

KD(Zo, Zk) KD(Zo,f(zk) ) < KD(Zk,f(Zk) ) < f D(Tk(t)’7’k(t)) dt

<_ Cklf(z) Zkl
<o(1) as k oo.

This completes the argument for Claim 3.

Now, for any given V, a small neighborhood of p, by Claim 1 and Claim 2,
we can find a point z0 and R > 0, so that V3 F(z0, R)3 E(z0,R) .
From Claim 3, it follows easily that

fk(E( Zo, R)) c F( Zo, R)

for each k, since for any k, fk also satisfies the condition in Lemma 7.
Hence, every element in E(zo, R) does our job. t::l
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