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A challenge when dealing with survival analysis data is accounting for a cure fraction, meaning that some subjects
will never experience the event of interest. Mixture cure models have been frequently used to estimate both the
probability of being cured and the time to event for the susceptible subjects, by usually assuming a parametric
(logistic) form of the incidence. We propose a new estimation procedure for a parametric cure rate that relies on a
preliminary smooth estimator and is independent of the model assumed for the latency. On a second stage one can
assume a semiparametric model for the latency and estimate also the survival distribution of the uncured subject.
For the particular case of the logistic/Cox model, we investigate the theoretical properties of the estimators and
show through simulations that presmoothing leads to more accurate results compared to the maximum likelihood
estimator. To illustrate the practical use, we apply the new estimation procedure to two studies of melanoma
survival data.

Keywords: Cure models; kernel smoothing; logistic model; survival analysis

1. Introduction
There are many situations in survival analysis problems where some of the subjects will never experi-
ence the event of interest. For instance, as significant progress is being made for treatment of different
types of cancers, many of the patients get cured of the disease and do not experience recurrence or
cancer-related death. Other examples include study of time to natural conception, time to default in fi-
nance and risk management, time to early failure of integrated circuits in engineering, time to find a job
after a layoff. However, because of the finite duration of the studies and censoring, the cured subjects
(for which the event never takes place) cannot be distinguished from the ‘susceptible’ ones. We can
just get an indication of the presence of a cure fraction from the context of the study and a long plateau
(containing many censored observations) with height greater than zero in the Kaplan-Meier estimator
of the survival function. Predicting the probability of being cured given a set of characteristics is often
of particular interest in order to make better decisions in terms of treatment, management strategies or
public policies. This lead to the development of mixture cure models.

Mixture cure models were first proposed by [5] and [4]. They assume that the population is a mixture
of two groups: the cured and the susceptible subjects. Within this very wide class of models, various ap-
proaches have been considered in the literature for modelling and estimating the incidence (probability
of being uncured) and the latency (survival function of the uncured subjects). Initially, fully parametric
models with a logistic regression form of the incidence and various parametric distributions for the
latency were used in [11,15,31]. Later on, more flexible semi-parametric approaches were proposed for
the latency based on the Cox proportional hazards model [22,25] or accelerated failure time models
[17,32]. However, they still maintain the logistic regression model for the incidence. More recently,
nonparametric methods have been developed for both or one of the model components in [2,21,30].
In this wide range of models, probably the most commonly used one in practice is the logistic/Cox
mixture cure model [16,24,29].
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There have been different proposals for estimation in the logistic/Cox mixture cure model. The pres-
ence of a latent variable (the unknown cure status), does not allow for a ‘direct’ approach as in the clas-
sical Cox proportional hazards model. [15] adapted a marginal likelihood approach computed through
Monte Carlo approximations, whereas [22] and [25] computed the maximum likelihood estimator via
the Expectation-Maximization algorithm. Asymptotic properties of the latter estimators are investi-
gated in [18], while the procedure is implemented in the package smcure [7]. One concern about the
previous estimators is that they are obtained by iterative procedures which could be unstable in prac-
tice. In particular, when the sample size is small there are situations in which the EM algorithm fails
to converge (even though the smcure package can still provide without error the estimates obtained
when the maximum number of iterations is reached). Such problems are for example reported in [14].
In addition, the maximum likelihood estimator for the incidence component depends on which vari-
ables are included in the latency model (see for example the illustration in Section 7) and this instability
might in practice lead to unobserved effects (when the effect is not very strong). In particular, if the
latency model is misspecified, even the estimators of the incidence parameters suffer from induced bias
(see for example [6]).

In this paper, we introduce an alternative estimation method which applies very broadly and, in par-
ticular, for the logistic/Cox mixture cure model. Our approach focuses on direct estimation of the cure
probability without using distributional assumptions on the latency and iterative algorithms. It relies on
a preliminary nonparametric estimator for the incidence which is then ‘projected’ on a parametric class
of functions (like logistic functions). The idea of constructing a parametric estimator by nonparamet-
ric estimation has been previously proposed for the classical linear regression by [9]. Later on it was
shown to be effective also in the context of variable selection and functional linear regression [1,12].
However, its extension to nonlinear setups has been very little investigated. Here we show that in the
context of mixture cure models, even when a parametric form is assumed for the incidence, the use
of a presmoothed estimator as an intermediate step for obtaining the parameter estimates often leads
to more accurate results. Once the cure fraction is estimated, we estimate the survival distribution of
the uncured subjects. In the case of the logistic/Cox cure model, this is done by maximizing the Cox
component of the likelihood. In this step, an iterative algorithm is used to compute the estimators of the
baseline cumulative hazard and the regression parameters. This new approach is of practical relevance
given the popularity of the semiparametric logistic/Cox mixture cure model. However, the method can
be applied more in general to a mixture cure model with a parametric form of the incidence and other
type of models for the uncured subjects, such as the semiparametric proportional odds model or the
semiparametric AFT model. Our findings suggest that presmoothing has potential to improve parameter
estimation for small and moderate sample size.

The paper is organized as follows. In Sections 2 and 3 we describe the model and the estimation
procedure. Section 4 focuses on the estimation method in the case of the logistic/Cox mixture cure
model. Consistency and asymptotic normality of the estimators are shown in Section 5. Thanks to
the presmoothing, we are able to present theoretical results under more reasonable assumptions and
thus we contribute to fill a gap between unrealistic technical conditions and applications. The finite
sample performance of the method is investigated through a simulation study and results are reported
in Section 6. For practical purposes, we propose to make simple and commonly used choices for the
bandwidth and the kernel function in the presmoothing step, and we show that these choices provide
satisfactory results. The proposed estimation procedure is applied to two medical datasets about studies
of patients with melanoma cancer (see Section 7). We conclude in Section 8 with some discussion and
ideas for further research. Finally, some of the proofs can be found in Section 8, while the remaining
proofs and additional simulation results are collected in the online Supplementary Material [20].
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2. Model description
In the mixture cure model the survival time T can be decomposed as

T = BT0 + (1 − B)∞,

where T0 represents the finite survival time for an uncured individual and B is an unobserved 0-1
random variable giving the uncured status: B = 1 for uncured individuals and B = 0 otherwise. By con-
vention 0 · ∞ = 0. Let C be the censoring time and (X ′,Z ′)′ a (p+ q)-dimensional vector of covariates,
where x′ denotes the transpose of the vector x. Let X and Z be the supports of X and Z respectively.
Observations consist of n i.i.d. realizations of (Y,Δ,X,Z), where Y =min(T,C) is the finite follow-up
time and Δ = 1{T ≤C } is the censoring indicator. Since Y is finite, then necessarily P(C <∞) = 1, that
means the censoring times are finite (which makes sense given the limited duration of the studies). As
a result, censored survival times of the uncured subjects cannot be distinguished from the cured ones.

The covariates included in X are those used to model the cure rate, while the ones in Z affect
the survival conditional on the uncured status. This allows in general to use different variables for
modelling the incidence and the latency but does not exclude situations in which the two vectors X
and Z share some components or are exactly the same. Apart from the standard assumption in survival
analysis that T0 ⊥ (C,X)|Z , here we also need

B ⊥ (C,T0,Z)|X . (1)

This implies in particular that

T ⊥ C |(X,Z) (2)

(see Lemma 1 in the Supplementary Material [20]). Moreover, (1) implies

P(T =∞|X,Z) = P(T =∞|X). (3)

In addition, in the cure model context we need that the event time T0 has support [0, τ0], i.e. {T > τ0} =
{T =∞}, such that

inf
x
P(C > τ0 |X = x) > 0. (4)

(If the support of T0 given Z = z depends on z, then we let τ0 = sup τ0(z), where τ0(z) is the right
endpoint of this support.) This condition tells us that all the observations with Y > τ0 are cured. Even if
it might seem restrictive, it is reasonable when a cure model is justified by a ‘good’ follow-up beyond
the time when most of the events occur and it is commonly accepted in the cure model literature in order
for the mixture cure model to be identifiable and not to overestimate the cure rate. Since T0 ⊥ X |Z , we
have

P(T0 ≤ t |X,Z) = P(T0 ≤ t |Z), ∀t ∈ [0, τ0].

We assume a parametric model for the cure rate and we denote by π0(x) the cure probability of a
subject with covariate x, i.e

π0(x) = P(T =∞|X = x) = 1 − φ(γ0, x),

for some parametric model {φ(γ, x) : γ ∈ G} and γ0 ∈ G. The first component of X is equal to one
and the first component of γ corresponds to the intercept. In order for γ to be identifiable we need the
following condition

P (φ(γ,X) = φ(γ̃,X)) = 1 implies that γ = γ̃. (5)
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Choosing a parametric model for the incidence seems quite standard in the literature of mixture cure
models ([6,21,23]) because of its simplicity and ease of interpretability (particularly for multiple co-
variates). To check the fit of this model in practice, one can compare the prediction error with that of a
more flexible single-index model as done in [2] and for our real data application in Section 7. It is also
possible to test whether this assumption is reasonable using the test proposed in [19], but this is cur-
rently developed only for one covariate. Among the parametric models for the incidence component,
the most common example is the logistic model, where

φ(γ, x) = 1/(1 + exp(−γ′x)). (6)

We state the results in Section 5 for a general parametric model for the incidence, but then we focus
on the logistic function in the simulation study in Section 6 since it is more of interest in practice. For
the uncured subjects, we can consider a general semiparametric model defined through the survival
function

Su(t |z) = Su(t |z; β,Λ) = P(T0 > t |Z = z,B = 1) and Su(τ0 |z) = 0, (7)

where the conditional survival function Su is allowed to depend on a finite-dimensional parameter,
denoted by β ∈ B, and/or an infinite-dimensional parameter, denoted by Λ ∈ H , with B and H the
respective parameter sets. Let β0 ∈ B and Λ0 ∈ H be the true values of these parameters. As a result,
the conditional survival function corresponding to T is then

S(t |x, z) = P(T > t |X = x,Z = z) = 1 − φ(γ0, x) + φ(γ0, x)Su(t |z).

The main example we keep in mind is the Cox proportional hazards (PH) model where Λ0 is the
baseline cumulative hazard. In this case

Su(t |z) = S0(t)exp(β′0z) = exp(−Λ0(t) exp(β′0z)), (8)

where S0 is the baseline survival and β0 does not contain an intercept.

3. Presmoothing estimation approach

The estimation method we propose is based on a two step procedure. We first estimate nonparametri-
cally the cure probability for each observation and then compute an estimator of γ as the maximizer of
the logistic likelihood, ignoring the model for the uncured subjects. In the second step, we plug-in this
estimator of γ in the full likelihood of the mixture cure model and fit the latency model using maximum
likelihood estimation. In what follows, we describe in more details these two steps.

Step 1. Even though a parametric model is assumed for the incidence, we start by computing a
nonparametric estimator of the cure probability for each subject. One possibility is to use the method
followed by [21] (see also [30]), but other estimators are possible as well, as long as the conditions
given in Section 5 are satisfied. The estimator of [21] is defined as follows:

π̂(x) =
∏
t∈R

(
1 − Ĥ1(dt |x)

Ĥ([t,∞)|x)

)
, (9)

where Ĥ([t,∞)|x) = Ĥ1([t,∞)|x) + Ĥ0([t,∞)|x), Ĥ1(dt |x) = Ĥ1((t − dt, t]|x) for small dt and

Ĥk([t,∞)|x) =
n∑
i=1

K̃b(Xi − x)∑n
j=1 K̃b(Xj − x)

1{Yi ≥t ,Δi=k }, k = 0,1,
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are estimators of

Hk ([t,∞)|x) = P (Y ≥ t,Δ = k |X = x) ,

H([t,∞)|x) = H1([t,∞)|x)+H0([t,∞)|x). Here K̃b is a multidimensional kernel function defined in the
following way. If X is composed of continuous and discrete components, X = (Xc,Xd) ∈ Xc × Xd ⊂
R
pc ×Rpd with pc + pd = p, then

K̃b(Xi − x) = Kb(Xc,i − xc)1{Xd ,i=xd },

where b = bn is a bandwidth sequence, Kb(·) = K(·/b)/bpc and K(u) =
∏pc

j=1 k(u j ), with k a kernel.
Note that, one can compute this estimator with any covariate but here we only use X because of our
assumption (3). The estimator π̂(x) coincides with the Beran estimator of the conditional survival
function S at the largest observed event time Y(m) and does not require any specification of τ0. Since
Ĥ1(dt |x) is different from zero only at the observed event times, computation of π̂(x) requires only a
product over t in the set of the observed event times. Afterwards, we consider the logistic likelihood

L̂n,1(γ) =
n∏
i=1

φ(γ,Xi)1−π̂(Xi )(1 − φ(γ,Xi))π̂(Xi ),

and define γ̂n as the maximizer of

log L̂n,1(γ) =
n∑
i=1

{
[1 − π̂(Xi)] logφ(γ,Xi) + π̂(Xi) log [1 − φ(γ,Xi)]

}
. (10)

Existence and uniqueness of γ̂n holds under the same conditions as for the maximum likelihood es-
timator in the binary outcome regression model where 1 − π̂(Xi) is replaced by the outcome Bi . For
example, in the logistic model, it is required that p < n and the matrix of the variables X has full rank.

Step 2. Now we consider the likelihood of the mixture cure model. Let

fu(t |z; β,Λ) = −(∂/∂t)Su(t |z; β,Λ)

with Su(t |z; β,Λ) as defined in (7), denote an element in the model for the conditional density of T0
given Z = z, which is supposed to exist and belong to the model. Assuming non informative censoring
and that the distribution of the covariates does not carry information on the parameters β, Λ, the
likelihood criterion is then

Ln,2(β,Λ,γ) =
n∏
i=1

{φ(γ,Xi) fu(Yi |Zi; β,Λ)}Δi {1− φ(γ,Xi) + φ(γ,Xi)Su(Yi |Zi; β,Λ)}1−Δi , (11)

and we maximize it w.r.t. β and Λ for γ = γ̂n, i.e. (β̂n,Λ̂n) are the maximizers of

l̂n(β,Λ, γ̂n) =
1
n

n∑
i=1

�(Yi,Δi,Xi,Zi; β,Λ, γ̂n), (12)

over a set of possible values for β and Λ, where

�(Yi,Δi,Xi,Zi; β,Λ,γ) = Δi log fu(Yi |Zi; β,Λ)

+ (1 − Δi) log {1 − φ(γ,Xi) + φ(γ,Xi)Su(Yi |Zi; β,Λ)} .
(13)
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4. Presmoothing estimation for the parametric/Cox mixture cure
model

In the sequel we focus on the case of a Cox PH model defined in (8) for the conditional law of T0. The
criterion defined in (12) becomes

l̂n(β,Λ, γ̂n) =
1
n

n∑
i=1

Δi

{
1{Yi<τ0 }[logΔΛ(Yi) + β′Zi] −Λ(Yi)eβ

′Zi

}

+
1
n

n∑
i=1

(1 − Δi) log
{
1 − φ(γ̂n,Xi) + φ(γ̂n,Xi) exp

(
−Λ(Yi)eβ

′Zi

) }
, (14)

and has to be maximized with respect to β and Λ in the class of step functions Λ defined on [0, τ0]
(thus by definition Λ(t) = ∞ if t > τ0), with jumps of size ΔΛ at the event times. The indicator of
the event {Yi < τ0} in the first term is needed in case the distribution of the event times has a jump
at τ0 meaning that P(T0 = τ0 |Z) > 0. In such a case fu(τ0 |Z; β,Λ) = exp(−Λ(τ0)eβ

′Z ) where Λ(τ0) =
limt↑τ0 Λ(t). Otherwise, if P(T0 = τ0 |Z) = 0, then for all uncensored observations we have 1{Y<τ0 } = 1
with probability one. Thus, the presence of the indicator function can be neglected. As in [18], it can
be shown that

(β̂n,Λ̂n) = arg max
β,Λ

l̂n(β,Λ, γ̂n) (15)

exists and it is finite. Moreover, for any given β and γ, the Λn,β,γ which maximizes l̂n(β,Λ,γ) in (14),
with respect to Λ with jumps at the event times, can be characterized as

Λn,β,γ(t) =
1
n

n∑
i=1

Δi1{Yi ≤t ,Yi<τ0 }
1
n

∑n
j=1 1{Yi ≤Yj ≤τ0 } exp(β′Z j )

{
Δj + (1 − Δj)gj (Yj,Λn,β, β,γ)

} , (16)

where

gj (t,Λ, β,γ) =
φ(γ,Xj ) exp

(
−Λ(t) exp

(
β′Z j

) )
1 − φ(γ,Xj ) + φ(γ,Xj ) exp

(
−Λ(t) exp

(
β′Z j

) ) . (17)

Next, we could define

β̂n = arg max
β

l̂n(β,Λn,β,γ̂n , γ̂n) and Λ̂n =Λn,β̂n ,γ̂n
.

To compute (β̂n,Λ̂n) we use an iterative algorithm based on profiling. To be precise, we start with
initial values which are the maximum partial likelihood estimator and the Breslow estimator (as if there
was no cure fraction) and we iterate between the next two steps until convergence:

a) Compute the weights

w
(m)
j = Δj + (1 − Δj)

φ(γ̂n,Xj )Ŝ(m)
u (Yj |Z j )

1 − φ(γ̂n,Xj ) + φ(γ̂n,Xj )Ŝ(m)
u (Yj |Z j )

,

where

Ŝ(m)
u (Yj |Z j) = exp

(
−Λ̂(m)

n (Yj ) exp
(
β̂
(m)′
n Z j

) )
,
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using the estimators Λ̂(m)
n , β̂(m)

n of the previous step.
b) Using the previous weights, update the estimators for Λ and β, i.e. β̂(m+1)

n is the maximizer of

n∏
i=1

{
eβ

′Zi∑
Yk ≥Yi w

(m)
k

eβ′Zk

}Δi

and

Λ̂
(m+1)
n (t) =

n∑
i=1

Δi1{Yi ≤t ,Yi<τ0 }∑n
j=1 1{Yi ≤Yj ≤τ0 }w

(m)
j exp

(
β̂
(m+1)′
n Z j

) . (18)

The update of Λ an β in Step (b) coincides with the maximization step of the EM algorithm and the
weights w(m) correspond to the expectation of the latent variable B given the observed data and the
current parameter values. However, unlike the maximum likelihood estimation [25], we are keeping γ̂n
fixed while performing this iterative algorithm. The estimator Λ̂n seems to depend on the unknown τ0.
However, with data at hand, one could easily proceed without knowing τ0. Indeed, if there are ties at
the last uncensored observation, then τ0 is revealed by the data. On the other hand, if there are no ties,
all uncensored observations will be smaller than τ0, hence no need to know τ0.

As suggested in [25,26], we impose the zero-tail constraint, meaning that Ŝ(m)
u is forced to be equal

to zero beyond the last event. In this way, all censored observations in the plateau are assigned to the
cured group.

5. Asymptotic results for the parametric/Cox mixture cure model

We first explain why presmoothing allows for more realistic asymptotic results in semiparametric mix-
ture cure models. Next, we show consistency and asymptotic normality of the proposed estimators γ̂n,
β̂n and Λ̂n for the parametric/Cox mixture cure model when, in Step 1, we use a general nonparamet-
ric estimator π̂ of π0 that satisfies certain assumptions. Afterwards, we verify these conditions for the
particular estimator π̂ in (9). Some of the proofs can be found in Section 8 and the rest in the online
Supplementary Material [20]. The assumptions mentioned in Section 2 are assumed to be satisfied
throughout this section. In addition Var(Z) is supposed to have full rank.

5.1. A challenge with mixture cure models

To derive asymptotic results, in most of the existing literature it has been assumed that

inf
z
P(T0 ≥ τ0 |Z = z) > 0, (19)

[18,21]. In nonparametric approaches such a condition keeps the denominators away from zero. In
the parametric/Cox mixture cure model, it guarantees that the baseline distribution stays bounded on
the compact support [0, τ0]. However, condition (19) implies that infz P(Y = τ0,Δ = 1|Z = z) > 0, a
condition which is not frequently satisfied in real-data applications.

One could imagine that, instead of imposing condition (19), it could be possible to proceed as fol-
lows: first restrict to events on [0, τ∗] for some τ∗ < τ0 such that

inf
z
P(Y ≥ τ∗,Δ = 1|Z = z) > 0, (20)
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next derive the asymptotics, and finally let τ∗ tend to τ0. This idea is used, for instance, in Cox PH
model, see [13] chapter 8, or [3]. However, this idea does not seem to work for mixture cure models
without suitable adaptation. This is because it implicitly requires that β0 and Λ0 are identifiable from
the restricted data. Here, identifiability means that the true values β0 and Λ0 of the parameters maxi-
mize the expectation of the criterion maximized to obtain the estimators. Two aspects have to be taken
into account when analyzing this identifiability. The first aspect is related to the parameter identifiabil-
ity in the semiparametric model for T0 when the events are restricted to [0, τ∗]. This property is satisfied
in the common models, in particular it holds true in the Cox PH model as soon as Var(Z) has full rank.
The second aspect is the additional complexity induced by the mixture with a cure fraction. If the cure
fraction is unknown and one decides to restrict to events on [0, τ∗], the parameter identifiability is likely
lost because the events {T0 ∈ (τ∗, τ0]} and {T =∞} are not distinguishable. The usual remedy for this
is to impose (19), so that τ∗ could be taken equal to τ0.

Presmoothing allows to avoid condition (19) and thus to fill the gap between the technical conditions
and the reality of the data. This is possible because, when using the presmoothing, the conditional
probability of the event {T =∞} is identified by other means. We are thus able to prove the consistency
of β̂ and Λ̂ without imposing (19). Deriving the asymptotic normality without (19) remains an open
problem which will be addressed elsewhere.

5.2. Consistency

We first prove consistency of γ̂n and then use that result to obtain consistency of Λ̂n and β̂n. In order
to proceed with our results, the following conditions will be used.

(AC1) supx∈X | π̂(x) − π0(x)| → 0 almost surely.
(AC2) The parameters β0 and γ0 lie in the interior of compact sets B ⊂ Rq , G ⊂ Rp .
(AC3) There exist some constants a > 0, c > 0 such that

|φ(γ1, x) − φ(γ2, x)| ≤ c‖γ1 − γ2‖a, ∀γ1,γ2 ∈ G, ∀x ∈ X,

where ‖ · ‖ denotes the Euclidean distance.
(AC4) infγ∈G infx∈X φ(γ, x) > 0 and infγ∈G infx∈X φ(γ, x) < 1.
(AC5) The covariates are bounded: P (‖Z ‖ < m and ‖X ‖ < m) = 1 for some m > 0.
(AC6) The baseline hazard function λ0(t) =Λ′

0(t) is strictly positive and continuous on [0, τ0).
(AC7) With probability one, the conditional distribution function of the censoring times FC (t |x, z)

is continuous in t on [0, τ0] and there exists a constant C > 0 such that

inf
0≤t1<t2≤τ0

inf
x,z

FC(t2 |x, z) − FC (t1 |x, z)
t2 − t1

> C.

(AC1) is a minimal assumption given that we want to match φ(γ, ·) to π̂(·). (AC2) to (AC4) are mild
conditions satisfied by usual binary regression models, like for instance the logistic one, and (AC5) is
always satisfied in practice for large m.

Theorem 1. Let the estimator γ̂n be defined as in (10). Assume that (AC1)-(AC4) hold. Then, γ̂n → γ0
almost surely.

Theorem 2. Let the estimators β̂n and Λ̂n be defined as in Section 4. Assume that (AC1)-(AC7) hold.
Then, with probability one, ‖ β̂n − β0‖ → 0, where ‖ · ‖ denotes the Euclidean distance. Moreover, for
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any τ∗ ≤ τ0 satisfying (20), with probability one,

sup
t∈[0,τ∗]

��Λ̂n(t) −Λ0(t)
��→ 0.

When condition (19) is satisfied and τ∗ = τ0 in the previous Theorem, we are referring to the con-
tinuous version of Λ0, i.e. Λ0(τ0) = limt↑τ0 Λ0(t). Note that, by definition, we also have Λ̂n(τ0) =
limt↑τ0 Λ̂n(t).

5.3. Asymptotic normality

We first derive asymptotic normality of γ̂n following the approach in [8]. Theorem 2 in that paper
provides sufficient conditions for the

√
n normality of parametric estimators obtained by minimizing

an objective function that depends on a preliminary infinite dimensional estimator π̂. In our case, since
γ̂n solves

1
n
∇γ log L̂n,1(γ) = 0,

where ∇γ denotes the vector-valued partial differentiation operator with respect to the components of
γ, it follows that γ̂n minimizes the function

����1
n
∇γ log L̂n,1(γ)

���� =
�����1

n

n∑
i=1

m(Xi;γ, π̂)

����� ,
where

m(x;γ,π) =
[

1 − π(x)
φ(γ, x) − π(x)

1 − φ(γ, x)

]
∇γφ(γ, x). (21)

Hence, we only need to check that the conditions of Theorem 2 in [8] are satisfied. To do that, we need
the following assumptions which are stronger than the previous (AC1)-(AC4).

(AN1) The parameter γ0 lies in the interior of a compact set G ⊂ Rp and, for each x ∈ X, the
function γ �→ φ(γ, x) is twice continuously differentiable with uniformly bounded derivatives in
G ×X and satisfies (AC4).

(AN2) π0(·) belongs to a class of functions Π such that

∫ ∞

0

√
log N(ε,Π, ‖ · ‖∞)dε <∞,

where N(ε,Π, ‖ · ‖∞) denotes the ε-covering number of the space Π with respect to ‖π‖∞ =
supx∈X |π(x)|.

(AN3) The matrix E
[
∇γφ(γ0,X)∇γφ(γ0,X)′

]
is positive definite.

(AN4) The estimator π̂(·) satisfies the following properties:
(i) P (π̂(·) ∈ Π) → 1.
(ii) ‖ π̂(x) − π0(x)‖∞ = oP(n−1/4).
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(iii) There exists a function Ψ such that

E
∗
[
(π̂(X) − π0(X))

(
1

φ(γ0,X) +
1

1 − φ(γ0,X)

)
∇γφ(γ0,X)

]

=
1
n

n∑
i=1

Ψ(Yi,Δi,Xi) + Rn,

where E∗ denotes the conditional expectation given the sample, taken with respect to the
generic variable X . Moreover, E[Ψ(Y,Δ,X)] = 0 and ‖Rn‖ = oP(n−1/2).

Theorem 3. Let the estimator γ̂n be defined as in (10). Assume that (AN1)-(AN4) hold. Then,

n1/2 (γ̂n − γ0)
d−→ N(0,Σγ)

with covariance matrix Σγ defined in (A28) of [20].

For deriving the asymptotic distribution of β̂n and Λ̂n we assume, for simplicity, that condition (19)
is satisfied. In such case, in Theorem 2 we can take τ∗ = τ0 and obtain uniform strong consistency of
Λ̂n on the whole support [0, τ0]. We believe that, at the price of additional technicalities, asymptotic
distributional theory can be obtained also without imposing (19), as we did for the consistency in
Theorem 2. This conjecture is supported by simulations but we leave the problem to be addressed by
future research.

Theorem 4. Let the estimators β̂n and Λ̂n be defined as in Section 4. Assume that condition (19),
(AN1)-(AN4) and (AC2), (AC5)-(AC7) hold. Then,〈√

n
(
Λ̂n −Λ0

)
,
√

n
(
β̂n − β0

) 〉
→ G

weakly in l∞(Hm), where Hm is a functional space defined in Section A.1, l∞(Hm) denotes the space
of bounded real-valued functions on Hm, G is a tight Gaussian process in l∞(Hm) with mean zero and
covariance process given in (A39) of [20] and for h = (h1,h2) ∈ Hm

〈Λ, β〉(h) =
∫ τ0

0
h1(t)dΛ(t) + h′

2β.

The asymptotic variances of each component of β̂n and of Λ̂n(t) can be obtained from the covariance
process in (A39) by taking h1(t) = 0 for all t and h2 = ei (the ith unit vector) or h2 = 0 and h1(s) =
1{s≤t }. We leave the details about these covariance matrices in the Supplementary Material because
they have quite complicated expressions that require definitions of several other quantities. Even though
it could be possible in principle to estimate the asymptotic standard errors through plug-in estimators
and numerical inverse, we think that this is not feasible in practice and we do not intend to exploit it
further. Instead, we use a bootstrap procedure for estimation of the standard errors in the application
discussed in Section 7. However, the maximum likelihood estimators are not more favorable in this
regard. For example, in the logistic/Cox model, the proposed estimators of the asymptotic variance in
[18] also involve solving numerically complicated nonlinear equalitons. For this reason, bootstrap is
used in practice to estimate the standard errors even for the maximum likelihood estimators.

By considering a two-step procedure, where estimation of the incidence parameters is performed
independently of the latency model, we expect to loose efficiency of the estimators. However, this
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does not cause major concern because our purpose is to provide an alternative estimation method
that performs better than the maximum likelihood estimation with sample sizes usually encountered
in practice. Efficiency is a key concept for the asymptotics of the estimators, and in general there
is no particular need for another method since the MLE would be the best choice. However, in many
nonlinear models, like the mixture cure models, the asymptotic approximation is poor and the efficiency
becomes a less relevant purpose for real data sample sizes. Hence, we choose to trade efficiency for
better performance in a wider range of applications.

5.4. Verification of assumptions for π̂

Next we show that our assumptions (AN1)-(AN4) of the asymptotic theory are satisfied for the non-
parametric estimator π̂ defined in (9) and the logistic model in (6). For reasons of simplicity, since
we use results available in the literature only for a one-dimensional covariate, we consider only cases
with one continuous covariate. In order for assumption (AN4) to be satisfied we need the following
conditions:

(C1) The bandwidth b is such that nb4 → 0 and nb3+ξ/(log b−1) →∞ for some ξ > 0.
(C2) The support X of X is a compact subset of R. The density fX (·) of X is bounded away from

zero and twice differentiable with bounded second derivative.
(C3) The kernel k is a twice continuously differentiable, symmetric probability density function

with compact support and
∫

uk(u)du = 0.
(C4) (i) The functions H([0, t]|x), H1([0, t]|x) are twice differentiable with respect to x, with uni-

formly bounded derivatives for all t ≤ τ0, x ∈ X. Moreover, there exist continuous nondecreasing
functions L1, L2, L3 such that Li(0) = 0, Li(τ0) <∞ and for all t, s ∈ [0, τ0], x ∈ X,

|Hc(t |x) − Hc(s |x)| ≤ |L1(t) − L1(s)| , |H1c(t |x) − H1c(s |x)| ≤ |L1(t) − L1(s)|����∂Hc(t |x)
∂x

− ∂Hc(s |x)
∂x

���� ≤ |L2(t) − L2(s)|����∂H1c(t |x)
∂x

− ∂H1c(s |x)
∂x

���� ≤ |L3(t) − L3(s)| ,

where the subscript c denotes the continuous part of a function.
(ii) The jump points for the distribution function G(t |x) of the censoring times given the co-

variate, are finite and the same for all x. The partial derivative of G(t |x) with respect to x exists
and is uniformly bounded for all t ≤ τ0, x ∈ X. Moreover, the partial derivative with respect to
x of F(t |x) (distribution function of the survival times T given X = x) exists and is uniformly
bounded for all t ≤ τ0, x ∈ X.

(C5) The survival time T and the censoring time C are independent given X .

(C1) to (C5) are conditions guaranteeing the rates of convergence and the i.i.d. representation [10]. In
case of discrete covariates we also need to have only a finite number of atoms. Assumption (C5) is
needed because we are dealing with the distribution of T conditional only on the covariate X (since the
cure rate depends only on X).

Theorem 5. Under the conditions (C1)-(C5), the assumptions (AN1)-(AN4) hold true for the logistic
model and the estimator π̂(x) defined in (9).
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6. Simulation study

In this section we focus on the logistic/Cox mixture cure model and evaluate the finite sample perfor-
mance of the proposed method. Comparison is made with the maximum likelihood estimator imple-
mented in the package smcure.

We first illustrate through a brief example the convergence problems of the smcure estimator. We
consider a model where the incidence depends on four independent covariates: X1 ∼ N(0,2), X2 ∼
Uniform(−1,1), X3 ∼ Bernoulli(0.8), X4 ∼ Bernoulli(0.2). The latency depends on Z1 = X1, Z2 = X3
and Z3 = X4. We generate the cure status B as a Bernoulli random variable with success probability
φ(γ,X) where φ is the logistic function and γ = (0.6,−1,1,2.5,1.2). The survival times for the uncured
observations are generated according to a Weibull proportional hazards model

Su(t |z) = exp (−μtρ exp(β′z)) ,

and are truncated at τ0 = 14 for ρ = 1.75, μ = 1.5, β = (−0.8,0.9,0.5). The censoring times are indepen-
dent from X and T . They are generated from the exponential distribution with parameter λC = 0.22 and
are truncated at τ = 16. We generate 1000 datasets according to this model with sample size n = 100,
and we observe that smcure fails to converge in 43% of the cases. Convergence fails mainly in the γ
parameter, with only 17% of the cases failing to converge also for the β parameter (because of the unrea-
sonable γ estimators). On the other hand, there was no convergence problem in the second step of the
presmoothing approach. In addition, even among the cases where smcure converged, the presmoothing
approach showed significantly better behavior, as can be seen in Table 1.

Hence, in the cases in which smcure exhibits very poor behavior, the presmoothing is obviously
superior. Next, we focus on models for which smcure behaves reasonable (there are convergence prob-
lems in less then 3% of the cases) and show that, even in such scenarios presmoothing can lead to more
accurate results.

We consider four different models and for each of them various choices of the parameters in order
to cover a wide range of scenarios. The models are as follows.

Model 1. Both incidence and latency depend on one covariate X , which is uniform on (−1,1). We
generate the cure status B as a Bernoulli random variable with success probability φ(γ,X) where φ
is the logistic function. The survival times for the uncured observations are generated according to a
Weibull proportional hazards model

Su(t |x) = exp (−μtρ exp(βx)) ,

Table 1. Bias, variance and MSE of γ̂ and β̂ for smcure and our approach among the iterations that converged
for smcure.

presmoothing smcure
Par. Bias Var. MSE Bias Var. MSE

γ1 −0.113 0.620 0.633 0.200 8.318 8.358
γ2 −0.073 0.156 0.162 −0.388 3.085 3.236
γ3 −0.071 0.546 0.551 0.280 1.957 2.035
γ4 0.037 1.326 1.327 0.704 14.395 14.891
γ5 −0.250 8.398 8.461 1.621 36.450 36.945
β1 −0.014 0.011 0.012 −0.017 0.012 0.012
β2 0.024 0.064 0.065 0.026 0.065 0.065
β3 −0.053 0.165 0.168 −0.053 0.166 0.169
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and are truncated at τ0 for ρ = 1.75, μ = 1.5, β = 1 and τ0 = 4. The censoring times are independent
from X and T . They are generated from the exponential distribution with parameter λC and are trun-
cated at τ = 6.

Model 2. Both incidence and latency depend on one covariate X with standard normal distribution.
The cure status and the survival times for the uncured observations are generated as in Model 1 for ρ =
1.75, μ = 1.5, β = 1 and τ0 = 10. The censoring times are generated according to a Weibull proportional
hazards model

SC (t |x) = exp (−νμtρ exp(βC x)) ,

for βC = 1 and various choices of ν and are truncated at τ = 15.
Model 3. For the incidence we consider three independent covariates: X1 is normal with mean zero

and standard deviation 2, X2 and X3 are Bernoulli random variables with parameters 0.6 and 0.4 re-
spectively. The latency also depends on three covariates: Z1 = X1, Z2 is a uniform random variable on
(−3,3) independent of the previous ones and Z3 = X2. The cure status and the survival times for the
uncured observations are generated as in Model 1 for ρ = 1.75, μ = 1.5 and different choices of the
other parameters. The censoring times are generated independently of the previous variables from an
exponential distribution with parameter λC and are truncated at τ, for given choices of λC and τ.

Model 4. This setting is obtained by adding an additional continuous covariate to the incidence
component of Model 3. To be precise, X1 is normal with mean zero and standard deviation 2, X2 is
uniform on (−1,1) independent of the other variables, X3 and X4 are Bernoulli random variables with
parameters 0.6 and 0.4 respectively. As in Model 3, Z1 = X1, Z2 is a uniform random variable on (−3,3)
independent of the previous ones and Z3 = X3. The event and censoring times are generated as in the
previous model.

For the four models we choose the values of the unspecified parameters in such a way that the cure
rate is around 20%, 30%, 50% (corresponding respectively to scenarios 1, 2 and 3) and the censoring
rate corresponds to three levels (with a difference of 5% between each other). The specification of the
parameters and the corresponding censoring rate and percentage of the observations in the plateau are
given Table 2. Note that, within each scenario, the fraction of the observations in the plateau decreases
as the censoring rate increases because more cured observations are censored earlier and as a result are
not observed in the plateau. This makes the estimation of the cure rate more difficult. The truncation
of the survival and censoring times on [0, τ0] and [0, τ] is made in such a way that τ0 < τ and condition
(19) is satisfied but in practice it is unlikely to observe event times at τ0. In this way, we try to find a
compromise between theoretical assumptions and real-life scenarios.

For each setting we consider samples of size n = 200,400,1000. This leads to a total of 108 settings
(4 models, 3 scenarios for the cure rate, 3 censoring levels and 3 sample sizes). In this way, we hope to
address a number of issues such as the effect of the cure proportion, the sample size, amount and type
of censoring, covariates (number, relation between X and Z and their distribution). For each configura-
tion 1020 datasets were generated and the estimators of β0 and γ0 were computed through smcure and
our method. We report the bias, variance and mean squared error (MSE) of the estimators, computed
after omitting the lowest and the highest 1% of the estimators (for stability of the reported results) and
rounded to three decimals. Tables 3-5 show some of the results, while the rest can be found in the on-
line Supplementary Material [20]. We aim to provide a ready-to-use method that works well in practice
without needing to think about how to choose the kernel function or the bandwidth. Hence, we illustrate
the performance of the method for some standard and commonly used choices. The kernel function k
is taken to be the Epanechnikov kernel k(u) = (3/4)(1− u2)1{ |u | ≤1}. We use the cross-validation band-
width (implemented in the R package np) for kernel estimators of conditional distribution functions,
in our case for estimation of H = H0 + H1 given the continuous covariates (affecting the incidence). In
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Table 2. Parameter values and model characteristics for each scenario.

Model Parameters Scenario Cens. Cens. Cens. Plateau
level parameters rate

1 λC = 0.1 25% 15%
γ = (1.75,2) 1 2 λC = 0.2 30% 11%

3 λC = 0.3 35% 9%

1 λC = 0.1 34% 22%
1 γ = (1,1.5) 2 2 λC = 0.25 40% 15%

3 λC = 0.4 46% 10%

1 λC = 0.2 54% 32%
γ = (0.1,5) 3 2 λC = 0.4 59% 23%

3 λC = 0.7 65% 15%

1 ν = 1/15 25% 7%
γ = (1.5,0.5) 1 2 ν = 1/7 30% 4%

3 ν = 1/4 35% 2%

1 ν = 1/13 35% 14%
2 γ = (1,1) 2 2 ν = 1/10 40% 9%

3 ν = 5/18 45% 6%

1 ν = 1/9 56% 38%
γ = (−0.1,5) 3 2 ν = 1/4 60% 30%

3 ν = 2/5 65% 25%

γ = (0.5,−1,2.5,1.2) 1 λC = 0.12 25% 10%
β = (−1,0.5,1.5) 1 2 λC = 0.25 30% 6%
τ0 = 30, τ = 35 3 λC = 0.45 35% 4%

γ = (1,2,1.8,0.5) 1 λC = 0.2 35% 16%
3 β = (1,0.5,2) 2 2 λC = 0.5 40% 9%

τ0 = 6, τ = 8 3 λC = 0.8 45% 6%

γ = (−0.8,1.3,1.5,−0.2) 1 λC = 0.3 55% 24%
β = (1,−0.1,0.8) 3 2 λC = 0.7 59% 14%
τ0 = 5, τ = 7 3 λC = 1.3 65% 8%

γ = (0.6,−1,1,2.5,1.2) 1 λC = 0.1 25% 11%
β = (−0.8,0.3,0.5) 1 2 λC = 0.22 30% 7%
τ0 = 14, τ = 16 3 λC = 0.35 35% 5%

γ = (0.45,0.5,2,1,0.5) 1 λC = 0.15 35% 11%
4 β = (1,0.5,2) 2 2 λC = 0.35 40% 7%

τ0 = 18, τ = 20 3 λC = 0.6 45% 5%

γ = (−0.22,0.3,−0.4,0.5,−0.2) 1 λC = 0.2 55% 30%
β = (0.4,−0.1,0.5) 3 2 λC = 0.4 59% 20%
τ0 = 6, τ = 8 3 λC = 0.7 65% 12%

addition, we restrict to the interval [0,Y(m)], where Y(m) is the last observed event time since the estima-
tor of the cure probability π̂ in (9) is essentially a product over values of t that are equal to the observed
event times. This means that we use the cross-validation bandwidth for estimation of the conditional
distribution H(t |x) for t ≤ Y(m). This choice of bandwidth improves significantly the performance of
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Table 3. Bias, variance and MSE of γ̂ and β̂ for smcure (second rows) and our approach (first rows) in Model 1
and 2.

Cens. level 1 Cens. level 2 Cens. level 3
Mod. n scen. Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE

1 200 1 γ1 0.001 0.060 0.060 0.020 0.065 0.065 0.005 0.078 0.078
0.021 0.063 0.063 0.050 0.068 0.071 0.044 0.084 0.086

γ2 −0.034 0.164 0.165 −0.014 0.202 0.202 −0.051 0.209 0.212
0.026 0.173 0.173 0.067 0.222 0.226 0.044 0.229 0.230

β 0.008 0.028 0.028 0.015 0.029 0.029 0.013 0.034 0.035
0.007 0.028 0.028 0.012 0.029 0.029 0.009 0.035 0.035

3 γ1 −0.001 0.059 0.059 0.009 0.065 0.065 −0.014 0.091 0.092
0.010 0.064 0.064 0.029 0.074 0.075 0.037 0.113 0.115

γ2 −0.034 0.536 0.537 −0.111 0.595 0.608 −0.085 0.809 0.816
0.201 0.649 0.689 0.218 0.768 0.816 0.400 1.146 1.306

β 0.011 0.090 0.090 0.024 0.109 0.110 0.014 0.128 0.128
0.007 0.091 0.091 0.014 0.110 0.110 −0.001 0.129 0.129

400 1 γ1 0.001 0.028 0.028 0.007 0.032 0.032 0.001 0.037 0.037
0.015 0.029 0.030 0.027 0.033 0.034 0.024 0.039 0.039

γ2 −0.024 0.083 0.084 −0.004 0.088 0.088 −0.018 0.107 0.107
0.021 0.087 0.087 0.049 0.093 0.095 0.041 0.111 0.113

β 0.003 0.013 0.013 0.007 0.015 0.015 0.002 0.016 0.016
0.002 0.013 0.013 0.005 0.015 0.015 0.000 0.016 0.016

3 γ1 −0.004 0.029 0.029 −0.004 0.030 0.030 −0.007 0.048 0.048
0.002 0.030 0.030 0.009 0.033 0.033 0.015 0.053 0.053

γ2 −0.050 0.237 0.239 −0.080 0.312 0.318 −0.134 0.432 0.450
0.111 0.260 0.273 0.142 0.361 0.381 0.167 0.491 0.519

β −0.003 0.039 0.039 0.024 0.051 0.052 0.013 0.071 0.071
−0.007 0.039 0.039 0.017 0.051 0.052 0.000 0.071 0.071

2 200 1 γ1 0.004 0.040 0.040 0.020 0.045 0.045 −0.016 0.060 0.060
0.017 0.040 0.040 0.058 0.047 0.050 0.083 0.079 0.086

γ2 0.001 0.039 0.039 −0.022 0.042 0.043 −0.027 0.055 0.056
0.016 0.040 0.040 0.008 0.047 0.047 0.029 0.072 0.073

β 0.006 0.011 0.011 0.000 0.014 0.014 0.011 0.015 0.015
0.005 0.011 0.011 −0.002 0.014 0.014 0.004 0.016 0.016

3 γ1 −0.016 0.071 0.071 −0.057 0.065 0.068 −0.139 0.083 0.102
0.029 0.092 0.092 0.051 0.119 0.121 0.024 0.175 0.176

γ2 −0.468 0.723 0.942 −0.943 0.823 1.713 −1.348 0.829 2.646
0.364 0.926 1.058 0.495 1.453 1.698 0.596 2.128 2.482

β 0.017 0.035 0.035 0.022 0.039 0.039 0.036 0.052 0.054
0.014 0.035 0.035 0.017 0.040 0.040 0.025 0.053 0.054

400 1 γ1 0.011 0.019 0.019 0.019 0.023 0.023 0.002 0.032 0.032
0.018 0.019 0.019 0.037 0.023 0.025 0.047 0.034 0.036

γ2 −0.002 0.018 0.018 −0.010 0.023 0.023 −0.019 0.027 0.028
0.009 0.018 0.018 0.007 0.025 0.025 0.008 0.032 0.032

β 0.000 0.006 0.006 0.004 0.006 0.006 0.003 0.008 0.008
0.000 0.006 0.006 0.002 0.006 0.006 0.000 0.008 0.008

3 γ1 −0.015 0.031 0.031 −0.071 0.034 0.039 −0.086 0.041 0.048
0.014 0.037 0.038 0.001 0.050 0.050 0.047 0.072 0.074

γ2 −0.444 0.330 0.527 −0.802 0.410 1.053 −1.191 0.463 1.881
0.149 0.364 0.386 0.244 0.557 0.616 0.325 0.739 0.845

β 0.007 0.016 0.016 0.015 0.019 0.020 0.017 0.024 0.024
0.004 0.016 0.016 0.010 0.019 0.020 0.010 0.024 0.024
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Table 4. Bias, variance and MSE of γ̂ for smcure (second rows) and our approach (first rows) in Model 3.

Cens. level 1 Cens. level 2 Cens. level 3
Mod. n scen. Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE

3 200 1 γ1 0.025 0.147 0.147 0.010 0.192 0.192 −0.008 0.243 0.243
0.034 0.147 0.148 0.034 0.191 0.192 0.062 0.249 0.253

γ2 −0.045 0.042 0.044 −0.078 0.049 0.055 −0.085 0.059 0.066
−0.077 0.050 0.056 −0.122 0.065 0.080 −0.148 0.092 0.144

γ3 0.081 0.366 0.373 0.074 0.485 0.491 0.029 0.536 0.537
0.174 0.397 0.427 0.266 0.574 0.644 0.309 0.799 0.895

γ4 −0.046 0.326 0.373 −0.160 0.412 0.437 −0.289 0.453 0.537
0.087 0.366 0.374 0.089 0.528 0.535 0.186 0.908 0.943

3 γ1 −0.059 0.161 0.164 −0.091 0.258 0.266 −0.223 0.419 0.468
−0.053 0.163 0.166 −0.071 0.261 0.266 −0.138 0.524 0.543

γ2 0.018 0.046 0.046 0.026 0.063 0.064 0.086 0.088 0.096
0.080 0.052 0.058 0.121 0.080 0.095 0.252 0.170 0.233

γ3 0.060 0.235 0.238 0.076 0.366 0.372 0.135 0.517 0.535
0.091 0.242 0.251 0.135 0.375 0.393 0.228 0.642 0.694

γ4 −0.030 0.202 0.203 −0.040 0.292 0.293 −0.081 0.479 0.486
−0.027 0.205 0.205 −0.017 0.277 0.277 −0.037 0.534 0.535

400 1 γ1 0.016 0.074 0.074 0.021 0.091 0.092 0.003 0.128 0.128
0.017 0.072 0.073 0.022 0.082 0.082 0.023 0.108 0.108

γ2 −0.026 0.019 0.019 −0.039 0.023 0.025 −0.070 0.032 0.037
−0.042 0.020 0.021 −0.049 0.025 0.027 −0.081 0.035 0.041

γ3 0.039 0.194 0.195 0.028 0.219 0.220 0.026 0.298 0.298
0.093 0.190 0.198 0.097 0.206 0.215 0.158 0.297 0.322

γ4 0.010 0.171 0.171 −0.091 0.193 0.201 −0.178 0.276 0.307
0.070 0.177 0.182 0.038 0.198 0.200 0.088 0.289 0.297

3 γ1 −0.023 0.089 0.089 −0.051 0.118 0.121 −0.124 0.212 0.228
−0.029 0.092 0.093 −0.032 0.112 0.113 −0.062 0.200 0.204

γ2 0.003 0.023 0.023 0.006 0.033 0.033 0.042 0.048 0.050
0.042 0.023 0.025 0.057 0.034 0.037 0.104 0.055 0.066

γ3 0.010 0.113 0.113 0.042 0.166 0.168 0.090 0.276 0.284
0.039 0.111 0.111 0.060 0.152 0.156 0.108 0.250 0.262

γ4 0.012 0.110 0.110 −0.021 0.131 0.131 −0.047 0.220 0.223
0.014 0.111 0.111 −0.018 0.117 0.118 −0.020 0.183 0.183

the estimators, compared to the cross-validation bandwidth on the whole interval [0, τ], in situations
with a large percentage of observations in the plateau, while it leads to little difference otherwise.

Simulations show that, for not large sample size, the new method performs better than smcure for
estimation of γ0, mostly because of a smaller variance. As the sample size increases, they tend to behave
quite similarly. On the other hand, both methods give almost the same estimates for β0 andΛ. The most
favorable situation for our method is when there is little censoring among uncured observations and
the censored uncured observations are in the region of covariates that corresponds to higher cure rate.
This comes from the fact that the nonparametric estimator in (9) takes larger values when the product
has more terms equal to one. This should not be a problem when we expect that subjects with high
probability of being cured correspond to longer survival times, meaning that it is more probable for
them to be censored compared to those with small cure probability and shorter survival times.

This is indeed the case in Model 1 and we observe that our approach outperforms smcure in all
the scenarios. The difference between the two is more marked when n is small and the absolute value
of the γ coefficient is larger. In Model 2, the situation is more difficult because censoring depends on
the covariate in such a way that, the non-cured subjects have the same probability of being censored
independently of their cure probability. However, for the first two scenarios the new method is still
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Table 5. Bias, variance and MSE of γ̂ for smcure (second rows) and our approach (first rows) in Model 4.

Cens. level 1 Cens. level 2 Cens. level 3
Mod. n scen. Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE

4 200 1 γ1 0.041 0.157 0.159 0.016 0.187 0.188 −0.010 0.210 0.210
0.077 0.178 0.184 0.096 0.228 0.238 0.127 0.285 0.301

γ2 −0.017 0.039 0.039 −0.019 0.042 0.042 −0.015 0.049 0.049
−0.090 0.052 0.060 −0.125 0.069 0.085 −0.164 0.108 0.135

γ3 −0.245 0.159 0.219 −0.281 0.165 0.244 −0.355 0.179 0.305
0.064 0.244 0.249 0.084 0.304 0.311 0.114 0.395 0.408

γ4 −0.068 0.331 0.336 −0.162 0.385 0.411 −0.285 0.443 0.524
0.171 0.401 0.430 0.241 0.561 0.619 0.314 0.842 0.941

γ5 −0.095 0.301 0.310 −0.234 0.349 0.404 −0.366 0.371 0.505
0.106 0.363 0.375 0.143 0.509 0.529 0.177 0.693 0.724

3 γ1 −0.044 0.079 0.081 −0.079 0.095 0.101 −0.148 0.132 0.154
0.000 0.079 0.079 0.003 0.096 0.096 0.009 0.141 0.141

γ2 0.018 0.007 0.008 0.024 0.008 0.009 0.041 0.010 0.012
0.015 0.008 0.008 0.017 0.009 0.010 0.028 0.013 0.014

γ3 0.034 0.066 0.067 0.046 0.073 0.075 0.067 0.087 0.091
−0.025 0.080 0.080 −0.033 0.091 0.092 −0.041 0.120 0.122

γ4 0.041 0.102 0.104 0.054 0.125 0.128 0.082 0.166 0.173
0.022 0.100 0.101 0.023 0.126 0.126 0.026 0.179 0.180

γ5 −0.031 0.103 0.104 −0.034 0.120 0.121 −0.054 0.159 0.162
−0.016 0.099 0.099 −0.013 0.115 0.115 −0.018 0.150 0.151

400 1 γ1 0.013 0.067 0.067 0.015 0.079 0.080 0.005 0.097 0.097
0.024 0.067 0.068 0.037 0.080 0.082 0.043 0.101 0.103

γ2 −0.001 0.017 0.017 −0.003 0.020 0.020 −0.007 0.023 0.023
−0.042 0.020 0.021 −0.055 0.025 0.028 −0.079 0.034 0.041

γ3 −0.229 0.089 0.141 −0.207 0.090 0.133 −0.275 0.102 0.178
0.046 0.107 0.109 0.061 0.137 0.141 0.066 0.162 0.166

γ4 −0.063 0.161 0.165 −0.143 0.175 0.196 −0.222 0.215 0.265
0.085 0.176 0.183 0.107 0.222 0.234 0.145 0.318 0.339

γ5 −0.075 0.146 0.151 −0.192 0.177 0.214 −0.299 0.199 0.289
0.043 0.157 0.159 0.049 0.194 0.196 0.060 0.253 0.257

3 γ1 −0.024 0.038 0.039 −0.038 0.047 0.048 −0.092 0.064 0.073
−0.003 0.036 0.036 0.002 0.044 0.044 0.004 0.060 0.060

γ2 0.006 0.003 0.003 0.010 0.004 0.004 0.019 0.005 0.006
0.005 0.004 0.004 0.005 0.004 0.004 0.006 0.006 0.006

γ3 0.028 0.033 0.034 0.045 0.038 0.040 0.065 0.045 0.049
−0.010 0.036 0.036 −0.008 0.042 0.042 −0.008 0.052 0.052

γ4 0.021 0.052 0.053 0.032 0.062 0.063 0.060 0.088 0.092
0.015 0.050 0.050 0.016 0.060 0.060 0.019 0.083 0.083

γ5 −0.024 0.049 0.050 −0.041 0.059 0.061 −0.048 0.077 0.079
−0.017 0.049 0.049 −0.022 0.056 0.057 −0.022 0.069 0.069

superior. The third scenario is more problematic because the cure probability drops very fast from
almost one to almost zero, resulting in a large fraction of uncured observations with almost zero cure
probability. The presence of censoring in this region leads to overestimation of the cure rate. If we
would take βC = 0.1 (meaning larger probability of being censored for higher cure rate), then the new
approach is significantly superior (see Table 6 for n = 400 and scenario 3). In Model 3, complications
arise because of the presence of different covariates for the incidence and latency. Hence, subjects with
higher cure rate might correspond to shorter survival times. As a result, the previous problem might
still happen and its effects are more visible for large sample size and large censoring rate. Finally,
Model 4 suggests that, even though the assumptions in Section 5 were shown to be satisfied only for
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Table 6. Bias, variance and MSE of γ̂ and β̂ for smcure and our approach in Model 2, scenario 3 when βC = 0.1
and n = 400.

smcure package Our approach
Parameter Bias Var MSE Bias Var MSE

γ1 0.014 0.123 0.123 −0.058 0.103 0.106
γ2 0.418 1.243 1.418 −0.535 0.652 0.937
β 0.001 0.025 0.025 0.001 0.027 0.027

one continuous covariate, the method could be applied in more general cases. We noticed that, when a
continuous covariate affects only the incidence and not the latency, the bandwidth selected by the np
package is often very large, meaning that it fails to capture the effect of this covariate on the conditional
distribution function. In those cases, we truncate the selected bandwidth from above at 2. Note that the
bandwidth is chosen for standardized covariates so the truncation level can be fixed regardless of the
distribution of the covariate. We decided to truncate at 2 since it seems to be a kind of boundary for
a ‘reasonable’ bandwidth with standardized covariates (we do not want to externally affect chosen
bandwidths smaller than 2 but we only replace extremely large values by 2). However, even when
reasonable, the np bandwidth for X2 seems to be larger than it should, resulting in more bias in the
estimator of γ3. Nevertheless, in terms of mean squared error, the method performs well for not large
sample size. If X2 would affect also the latency, the selected bandwidth would be more adequate and
there would be no bias problems.

To conclude, the new approach seems to perform significantly better than smcure when the sam-
ple size is not large and the fraction of censored observations is not much higher than the expected
cure proportion. In other situations, both methods are comparable. However, one has to be more care-
ful when there is no reason to expect that the censored subjects correspond to higher cure probabili-
ties.

In the previous settings, we truncated the event times at τ0 in such a way that condition (19) is
satisfied but in practice it is unlikely to observe event times at τ0. Next, we consider one additional
model for which condition (19) is not satisfied. The covariates and the parameters are as in Model 3
described above, but the event times are generated from a Weibull distribution on [0, τ0] with τ0 = 15,
i.e.

Su(t |z) =
exp {−μtρ exp(β′z)} − exp

{
−μτρ0 exp(β′z)

}
1 − exp

{
−μτρ0 exp(β′z)

}
The censoring times are exponentially distributed as in Model 3 and truncated at τ = 20. Results for
sample size n = 200 and three censoring levels are shown in Table 7. Compared to Model 3 above, we
observe that, when condition (19) is not satisfied, presmoothing is even more superior than the smcure
estimator.

Finally we conclude with a remark about the computational aspect. The proposed approach is com-
putationally more intensive than the MLE mainly because of the bandwidth selection through a cross-
validation procedure. For example, for one iteration in Model 3 with sample size 200 and 400, smcure
computes the estimates in 0.7 and 0.8 seconds respectively, while the new approach requires 4.1 and
23.5 seconds (with a Core i7-8665U CPU desktop). However, this seems still reasonable since the
method is not meant for much larger sample sizes.
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Table 7. Bias, variance and MSE of γ̂ for smcure (second rows) and our approach (first rows) in Model 3 without
condition (19).

Cens. level 1 Cens. level 2 Cens. level 3
Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE

γ1 0.015 0.152 0.152 0.000 0.196 0.196 −0.032 0.246 0.247
0.017 0.150 0.151 0.027 0.193 0.194 0.035 0.260 0.262

γ2 −0.054 0.044 0.047 −0.077 0.052 0.058 −0.109 0.064 0.076
−0.085 0.050 0.057 −0.119 0.069 0.083 −0.171 0.101 0.130

γ3 0.087 0.379 0.386 0.073 0.450 0.456 0.045 0.578 0.580
0.197 0.423 0.462 0.249 0.561 0.623 0.343 0.885 1.002

γ4 −0.010 0.339 0.339 −0.106 0.373 0.385 −0.228 0.498 0.550
0.125 0.364 0.380 0.156 0.523 0.548 0.260 1.513 1.581

7. Application: Melanoma study

To illustrate the practical performance, we apply the proposed estimation procedure to two medical
datasets for patients with melanoma and compare the results with smcure. Melanoma is the third
most common skin cancer type with overall incidence rate 21.8 out of 100,000 people in the US
(Cancer statistics from the Center for Disease Control and Prevention) and according to the Ameri-
can Cancer Society, 6850 people are expected to die of melanoma in 2020. However, in the recent
years, the chances of survival for melanoma patients have increased due to earlier diagnosis and im-
provement of treatment and surgical techniques. The 5-year survival rates based on the stage of the
cancer when it was first diagnosed are 92% for localized, 65% for regional and 25% for distant stage.
It is also known that this disease is more common among white people and the death rate is higher
for men than women. Even though most melanoma patients are cured by their initial treatment, it is
not possible to distinguish them from the uncured patients. Hence, accurately estimating the probabil-
ity of being cured is important in order to plan further treatment and prevent recurrence of uncured
patients.

7.1. Eastern cooperative oncology group (ECOG) data

We use the melanoma data (ECOG phase III clinical trial e1684) from the smcure package [7] in
order to compare our results with those of smcure. The purpose of this study was to evaluate the
effect of treatment (high dose interferon alpha-2b regimen) as the postoperative adjuvant therapy. The
event time is the time from initial treatment to recurrence of melanoma and three covariates have been
considered: age (continuous variable centered to the mean), gender (0 = male and 1 = female) and
treatment (0 = control and 1 = treatment). The data consists of 284 observations (after deleting missing
data) out of which 196 had recurrence of the melanoma cancer (around 30% censoring). The Kaplan-
Meier curve is shown in Figure 1. The parameter estimates, standard errors and corresponding p-values
for the Wald test using our method and the smcure package are given in Table 8. Standard errors are
computed through 500 naive bootstrap samples.

We observe that, for both methods, the effects of the covariates have the same direction. Only the
intercept was found significant for the incidence with smcure, while our method concludes that also
age and treatment are significant. In particular, the probability of recurring melanoma is higher for the
control group compared to the treatment group. This seems to be indeed the case if we look at the
Kaplan Meier survival curves for the two groups in Figure 1. On the other hand, both methods agree
that none of the covariates is significant for the latency.
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Figure 1. Left panel: Kaplan-Meier survival curve for ECOG data. Right panel: Kaplan-Meier survival curves for
the treatment group (solid) and control group (dotted) in the ECOG data.

To illustrate another advantage of the new approach, we also compute the maximum likelihood
estimator with the smcure package for different choices of the latency model. We see in Table 9
that the estimators of the incidence component (and their significance) change depending on which
variables are included in the latency. On the other hand, the new method does not suffer from this
problem because it estimates the incidence independently of the latency.

7.2. Surveillance, epidemiology and end results (SEER) database

The SEER database collects cancer incidence data from population-based cancer registries in US.
These data consist of patient demographic characteristics, primary tumor site, tumor morphology,
stage at diagnosis, length of follow up and vital status. We select the database ‘Incidence—SEER
18 Regs Research Data’ and extract the melanoma cancer data for the county of San Francisco in
California during the period 2004 − 2015. We consider only patients with stage at diagnosis: lo-
calized, regional and distant and exclude those with unknown or zero follow-up time and restrict
the study to white people because of the very small number of cases from other races. The event
time is death because of melanoma. This cohort consists of 1445 melanoma cases out of which 596
are female and 849 male. The age ranges from 11 to 101 years old, the follow-up from 1 to 155
months. For most of the patients the cancer has been diagnosed at early stage (localized), while for
101 of them the stage at diagnosis is ‘regional’ and only for 42 it is ‘distant’. We aim at evaluat-
ing how age, gender and stage at diagnosis affect the survival of melanoma patients in this cohort.

Table 8. Results for the incidence (logistic component) and the latency (Cox PH component) from the ECOG
data.

smcure package Our approach
Covariates Estimates SE p-value Estimates SE p-value

in
ci

de
nc

e Intercept 1.3649 0.3457 8 · 10−5 1.6697 0.3415 10−6

Age 0.0203 0.0159 0.2029 0.0220 0.0104 0.0344
Gender −0.0869 0.3347 0.7949 −0.3039 0.3448 0.3493

Treatment −0.5884 0.3706 0.1123 −0.9345 0.3603 0.0095

la
te

nc
y Age −0.0077 0.0069 0.2663 −0.0079 0.0060 0.1861

Gender 0.0994 0.1932 0.6067 0.1240 0.1653 0.4534
Treatment −0.1535 0.1715 0.3707 −0.0947 0.1692 0.5756
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Table 9. Results for the incidence (logistic component) and the latency (Cox PH component) from the ECOG
data.

Model 1 Model 2 Model 3
Covariates Estimates SE p-value Estimates SE p-value Estimates SE p-value

in
ci

de
nc

e Intercept 1.3507 0.3001 7 · 10−6 1.4148 0.3213 10−5 1.4181 0.3073 4 · 10−6

Age 0.0164 0.0125 0.1905 0.0205 0.0154 0.1803 0.0209 0.0146 0.1528
Gender −0.0265 0.3113 0.9320 −0.0673 0.3352 0.8407 −0.0222 0.3130 0.9432

Treatment −0.6060 0.3509 0.0842 −0.6773 0.3223 0.0415 −0.6913 0.3439 0.0444

la
te

nc
y Age −0.0074 0.0066 0.2568 −0.0073 0.0064 0.2579

Gender 0.0789 0.1863 0.6719
Treatment −0.1324 0.1561 0.3963

The use of cure models is justified from the presence of a long plateau containing around 20% of
the observations (see the Kaplan-Meier curve in Figure 2). Moreover, the Kaplan-Meier curves de-
pending on gender and stage at diagnosis in Figure 2 confirm that gender and stage affect the cure
rate.

We checked the fit of the logistic model by comparing it with the single-index mixture cure model
proposed in [2] through the prediction error of the incidence. More precisely, as in [2], we divide the
data into a training set and a test set of size 964 and 481 respectively. Using the training set, we estimate

Figure 2. Upper panel: Kaplan-Meier survival curves for SEER data. Left panel: group division based on gender,
females (solid) and males (dotted). Right panel: group division based on cancer stage at diagnosis, localized (solid),
regional (dashed) and distant (dotted).
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Table 10. Results for the incidence (logistic component) and the latency (Cox PH component) from the SEER
data.

smcure package Our approach
Covariates Estimates SE p-value Estimates SE p-value

in
ci

de
nc

e
Intercept −4.2071 0.3817 0 −4.2436 0.3980 0

Age 0.0304 0.0122 0.0124 0.0328 0.0172 0.0565
Gender 1.1318 0.4211 0.0072 1.2341 0.4792 0.010

S1 2.6738 0.3702 5 · 10−13 2.4474 0.4247 8 · 10−9

S2 4.0763 0.5067 8 · 10−16 3.9426 0.4536 0

la
te

nc
y

Age −0.0139 0.0098 0.1577 −0.0143 0.0106 0.1756
Gender −0.0549 0.4065 0.8925 −0.0871 0.3687 0.8131

S1 0.5176 0.3993 0.1949 0.6130 0.3971 0.1226
S2 1.8039 0.4529 7 · 10−5 1.8623 0.5072 0.0002

the logistic/Cox model and the single-index/Cox model. Afterwards, we compute the prediction error
in the test set given by

PE = −
481∑
j=1

{
Ŵj log[1 − π̂(X test

j )] + (1 − Ŵj ) log π̂(X test
j )

}

where π̂(X test
j ) and Ŵj are the predicted cure probability and the predicted weight for the jth ob-

servation in the test set, computed based on the parameter estimates (and the link function for the
single-index model) in the training set. More precisely, for the logistic/Cox model we have π̂(X test

j ) =
φ(γ̂n,X test

j ) and

Ŵj = Δ
test
j + (1 − Δtest

j )
π̂(X test

j ) exp
(
−Λ̂n(Y test

j )eβ̂
′
nZ

test
j

)
1 − π̂(X test

j ) + π̂(X test
j ) exp

(
−Λ̂n(Y test

j )eβ̂
′
nZ

test
j

)
where γ̂n, β̂n and Λ̂n are the estimated parameters and the estimated hazard function in the training
set. For the single-index/Cox model, the only difference is that π̂(X test

j ) = ĝn(γ̂n,X test
j ) where ĝn is the

estimated link function as in [2]. The weights Ŵj correspond to the conditional expectation of the
cure status B given the observations. We find that the prediction error for the logistic model is 98.53,
whereas for the single-index model it is 156.55. This means that the logistic model performs better.

We also performed the test for the logistic model proposed in [19], which is based on the distance
between a parametric and a nonparametric estimator of the cure probability. The p-value, estimated
through a bootstrap procedure as described in [19], was 0.91. The bandwidth was chosen using the np
package but even for a range of bandwidths around that value we obtain p-values larger than 0.6. Hence
the logistic assumption for the incidence model seems reasonable.

The parameter estimates, standard errors and corresponding p-values for the Wald test using our
method and the smcure package are given in Table 10. Standard errors are computed with 500 naive
bootstrap samples. The covariate stage is classified using two dummy Bernoulli variables S1 and S2,
where S1 = 1 indicates the regional stage and S2 = 1 indicates the distant stage. The gender variable is
equal to zero for females and one for males. We observe that both methods agree that all the considered
covariates are significant for the incidence (with age being a borderline case for our approach). For
the latency, only being in the distant stage is found significant with both methods. Moreover, again the
effects of all the covariates on the latency and incidence have the same direction for both methods.
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8. Discussion

In this paper we proposed a new estimation procedure for the mixture cure model with a parametric
form of the incidence (for example logistic) and any semiparametric model for the latency. We inves-
tigated more in detail the logistic/Cox model given its practical relevance. Instead of using an iterative
algorithm for dealing with the unknown cure status, this method relies on a preliminary nonparametric
estimator of the cure probabilities. We showed through simulations that the new approach improves
upon the classical maximum likelihood estimator implemented in the package smcure, mainly for
smaller sample sizes. For the latency, both methods behave similarly. Hence, it is of particular interest
in situations in which the focus is on the estimation of cure probabilities. The real data application on
the ECOG clinical trial also showed that the improvement in estimation can be meaningful in practice
and help detecting significant effects.

The proposed method has the advantage of direct estimation of the incidence component, without
relying on the latency, which makes it robust to latency model misspecification. On the contrary, the
smcure estimator strongly depends on the choice of the variables for the latency and could be biased
for a misspecified Cox model. Hence, for practical reason, confronting the estimators obtained with the
two methods is valuable for confirming the results or obtaining new insights. From the theoretical point
of view, unlike the standard maximum likelihood estimation, presmoothing allows us to obtain consis-
tency and asymptotic normality without requiring the ‘unrealistic’ assumption that the distribution of
uncured subjects has a positive mass at the end point of the support.

It might be argued that since the proposed method relies on smoothing, it is more complex and the
results can be affected by the choice of the kernel function or the bandwidth. Our purpose was to show
that the user doesn’t have to think about this because the standard choices proposed in this paper per-
form well in practice. In addition, since the final estimator is a parametric one and the kernel estimator
is only a preliminary step of the procedure, the results would anyway be more stable with respect to
these choices than in a nonparametric setting. The main challenge this method faces is extension to
many continuous covariates for the incidence. We did not deeply investigate such situations since, in
that case, multiple bandwidths have to be chosen, which can be more problematic and computationally
intensive. However, our approach based on presmoothing allows to efficiently handle these situations
if the estimator π̂ is constructed in a more adequate way. One possibility would be to construct the
estimator assuming a single-index model for the latency, which is reasonable since the final goal is a
parametric estimator. With this approach one can avoid the choice of multiple bandwidths and perform
the estimation as in the one dimensional case. However, this problem will be addressed by future re-
search. In this regard, even though considering only one continuous covariate might seem restrictive in
practice, the proposed procedure constitutes the basis for further developments of new estimators for
general dimension scenarios that do not require multidimensional smoothing.

Appendix

A.1. Proof of Theorem 4

We obtain the asymptotic normality of Λ̂n, β̂n following the proof of Theorem 3 in [18]. In order to
work with a one-dimensional submodel, for d in a neighbourhood of the origin, let Λd(t) =

∫ t

0 {1 +
dh1(s)}dΛ̂n(s) and βd = dh2 + β̂n, where h1 is a function of bounded variation on [0, τ0] and h2 is a
q-dimensional real vector. Let Ŝn(Λ̂n, β̂n)(h1,h2) denote the derivative of l̂n(Λd, βd) (defined in (14))
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with respect to d and evaluated at d = 0. We have

Ŝn(Λ̂n, β̂n)(h1,h2) =
1
n

n∑
i=1

Δi1{Yi<τ0 }
[
h1(Yi) + h′

2Zi

]

− 1
n

n∑
i=1

{
Δi + (1 − Δi)1{Yi ≤τ0 }gi(Yi,Λ̂n, β̂n, γ̂n)

}

×
{

eβ̂
′
nZi

∫ Yi

0
h1(s)dΛ̂n(s) + eβ̂

′
nZi Λ̂n(Yi)h′

2Zi

}
,

where gj is defined in (17) and γ̂n is the maximizer of (10). Let Υn = (Λ̂n, β̂n) and Υ0 = (Λ0, β0).
Furthermore, denote by S the asymptotic version of Ŝn:

S(Λ, β)(h1,h2) = E
[
Δ1{Y<τ0 }{h1(Y ) + h′

2Z} −
{
Δ + (1 − Δ)1{Y≤τ0 }g(Y,Λ, β,γ0)

}

×
{

eβ
′Z

∫ Y

0
h1(s)dΛ(s) + eβ

′ZΛ(Y )h′
2Z

}]
.

We have Ŝn(Υn) = 0 and S(Υ0) = 0. The score function Sn and S are respectively a random and a
deterministic map from Ξ to l∞(Hm) (the space of bounded real-valued functions on Hm), where

Ξ =

{
(Λ, β) : sup

h∈Hm

����
∫ τ0

0
h1(s)dΛ(s) + h′

2β

���� <∞
}

and Hm = {h ∈ H : ‖h‖H ≤ m}. Here ‖h‖H = ‖h1‖v+ ‖h2‖L1 , ‖h2‖L1 =
∑q

j=1 |h2, j |, ‖h1‖v = |h1(0)|+
Vτ0

0 (h1) and Vτ0
0 (h1) denotes the total variation of h1 on [0, τ0]. This means that Sn is a random variable

defined in the abstract probability space (Ω,F ,P) (where the random vector (B,T0,C,X,Z) is defined)
with values in the space of bounded functions Ξ �→ l∞(Hm) with respect to the supremum norm. The
latter one is a Banach space equipped with the Borel σ-field.

We need to show that conditions 1-4 of Theorem 4 in [18] (or Theorem 3.3.1 in [28]) are satisfied.
The main difference of the function S from the one in [18] is that here γ = γ0 fixed. We are only
considering variation with respect to β and not γ, so the components of h that correspond to γ are set
to zero. However, conditions 2 and 3 of Theorem 4 in [18] for S can be shown in the same way as in
[18]. Details about conditions 1 and 4 can be found in the online Supplementary Material [20].

A.2. Proof of Theorem 5

The logistic model for the cure probability obviously satisfies assumptions (AN1) and (AN3). Let Π be
the space of continuously differentiable functions f from X to [0,1] such that supx∈X | f ′(x)| ≤ M and

sup
x1 ,x2∈X

| f ′(x1) − f ′(x2)|
|x1 − x2 |ξ

≤ M

for some M > 0 and ξ ∈ (0,1]. If such space is equipped with the supremum norm, the covering numbers
satisfy

log N (ε,Π, ‖ · ‖∞) ≤ K
1

ε1/(1+ξ)
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for some constant K > 0 independent of ε (see Theorem 2.7.1 in [28]). Obviously, for ε > 1,
log N(ε,Π, ‖ · ‖∞) = 0. Hence, assumption (AN2) is satisfied. It remains to check (AN4). Recall that
the estimator of the cure probability π̂(x) is the value at time τ0 of the Beran estimator Ŝ(t |x), while
π0(x) = S(τ0 |x). Moreover, by assumption (4), we have infx H((τ0,∞)|x) > 0. From Proposition 4.1 and
4.2 in [27] it follows that

sup
x

| π̂(x) − π0(x)| =O
(
(nb)−1/2(log b−1)1/2

)
a.s.,

sup
x

��π̂′(x) − π′0(x)�� =O
(
(nb3)−1/2(log b−1)1/2

)
a.s.

and

sup
x1 ,x2∈X

|π̂′(x1) − π′0(x1) − π̂′(x2) + π′0(x2)|
|x1 − x2 |ξ/2

=O
( (

nb3+ξ
) −1/2

(log b−1)1/2
)

a.s.,

where ξ is as in assumption (C1). Since π0 is twice continuously differentiable, from assumption (C1)
it follows that π̂ satisfies (i,ii) of (AN4). From Theorem 3.2 of [10] (with T = τ0) we have π̂(x)−π0(x) =
1
n

∑n
i=1 Ai(x) + Rn(x), where

Ai(x) = −
1 − φ(γ0, x)

fX (x)
1
b

k
(

x − Xi

b

) {
Δi1{Yi ≤τ0 }
H([Yi,∞)|x) −

∫ Yi∧τ0

0

H1(ds |x)
H2([s,∞)|x)

}
(22)

and supx |Rn(x)| =O
(
(nb)−3/4(log n)3/4

)
a.s.. Hence

E
∗
[
(π̂(X) − π0(X))

(
1

φ(γ0,X) +
1

1 − φ(γ0,X)

)
∇γφ(γ0,X)

]

=
1
n

n∑
i=1

E
∗
[
Ai(x)

(
1

φ(γ0,X) +
1

1 − φ(γ0,X)

)
∇γφ(γ0,X)

]

+ E∗
[
Rn(X)

(
1

φ(γ0,X) +
1

1 − φ(γ0,X)

)
∇γφ(γ0,X)

]
.

The second term on the right hand side of the previous display is bounded by c supx |Rn(x)| = o(n−1/2)
for some c > 0 because of assumptions (C1) and (AN1). Furthermore, from (AN1) and (AC4) and a
Taylor expansion, it follows that the generic element of the sum in the first term is equal to

−
∫
X

1
b

k
(

x − Xi

b

) {
Δi1{Yi ≤τ0 }
H([Yi,∞)|x) −

∫ Yi∧τ0

0

H1(ds |x)
H2([s,∞)|x)

}
1

φ(γ0, x)
∇γφ(γ0, x)dx

= −
{
Δi1{Yi ≤τ0 }

H([Yi,∞)|Xi)
−
∫ Yi∧τ0

0

H1(ds |Xi)
H2([s,∞)|Xi)

}
1

φ(γ0,Xi)
∇γφ(γ0,Xi) +O(b2).

Since because of (C1) we have O(b2) = o(n−1/2), (AN4-iii) holds with

Ψ(Y,Δ,X) = −
{
Δ1{Y≤τ0 }

H([Y,∞)|X) −
∫ Y∧τ0

0

H1(ds |X)
H2([s,∞)|X)

}
1

φ(γ0,X)∇γφ(γ0,X).
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