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Abstract 
 

A  pressure  based  solver  is  developed  for  an  incompressible  laminar  
Newtonian  fluid  using  finite  volume  method.  In  the  present  work  the  
coupling  between  density  and  pressure  is  removed,  as  well  as  the  
coupling  between  the  energy  equations  for  compressible  flows.  And  also  
the  effect  of  increased  mesh  resolution  and  mesh  grading  towards  the  
walls  is  investigated.  The  solver  is  validated  with  the  existing  solver  in  
the  literature.  The  results  are  analyzed  for  standard  test  case  driven  
cavity  flow  for  different  mesh  sizes. 
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1.  Introduction 
Since  the  inception  of  the  Semi-Implicit  Method  for  Pressure  Linked  Equations  
(SIMPLE)  algorithm  in  1972  [1],  the  continuity  and  momentum  equations  have  
been  typically  solved  using  segregated  approach.  Over  the  last  quarter  century  
significant  advances  have  been  made  in  pressure  based  methods  including  
improvements  in  convergence  rate  [2],  flow  and  heat  transfer  [3],  unstructured  
grid  arrangement,  ability  to  handle  complex  geometry  [4],  simulating  high  
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speed  flows[5],  handling  deforming  geometries  and  moving  grids  [6]  and  
several  aspects.  A  detailed  description  of  pressure-based  methods  can  be  found  
in  a  monograph  by  Ferzieger  and  peric  [7].Solution  of  the  Navier-Stokes  
equations  is  complicated  by  the  lack  of  an  independent  equation  for  the  
pressure,  whose  gradient  contributes  to  each  of  the  three  momentum  equations.  
In  compressible  flows  the  continuity  equation  can  be  used  to  determine  the  
density  and  the  pressure  is  calculated  from  equation  of  state.  This  approach  is  
not  appropriate  for  incompressible  flows.  The  current  paper  presents  pressure  
based  coupled  solution  approach  for  flow  simulations  in  a  finite  volume  frame  
work  using  Rhie  and  Chow  interpolation  [8]. 
 
 
2.  The  pressure  equation  and  its  solution 
The  incompressible  continuity  and  momentum  equations  are  given  by   

  (2.1) 
 
 The  non  linearity  in  the  convection  term  is  handled  using  an  iterative  
solution  technique.  There  is  no  pressure  equation,  but  the  continuity  equation  
imposes  a  scalar  constraint  on  the  momentum  equation  (since  ∇. u  is  a  scalar).  
There  is  no  pressure  equation  for  incompressible  flow,  so  we  use  the  
continuity  and  momentum  equations  to  derive  a  pressure  equation.  Start  by  
discretizing  the  momentum  equation,  keeping  the  pressure  gradient  in  its  
original  form: 

  (2.2) 
 
Introduce  the  H  (u)  operator: 
 So  that 

  (2.3) 

  (2.4) 
 
 Substituting  this  in  the  incompressible  continuity  equation  (∇. u = 0)  to  get  
pressure  equation  for  incompressible  flow 

  (2.5) 
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3.  Finite  Volume  Method 
The  computational  domain  is  subdivided  into  a  finite  number  of  continuous  
control  volumes,  where  the  resulting  statements  express  the  exact  conservation  
of  relevant  properties  for  each  of  the  control  volumes.  At  the  centroid  of  the  
control  volumes,  the  variable  values  are  calculated.  Interpolation  is  used  to  
express  variable  values  at  the  control  volumes  surface  in  terms  of  the  center  
values  and  suitable  quadrature.  Mathematical  formulae  are  applied  to  
approximate  the  surface  and  volume  integrals.   
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4.  Discretization   
Discretisation  of  the  solution  domain  is  shown  in  figure  4.1.  The  space  domain  
is  discretized  into  computational  mesh  on  which  the  Partial  differential  
equations  are  subsequently  discretized.  Discretisation  of  time,  if  required,  is  
simple:  it  is  broken  into  a  set  of  time  steps  ∆t  that  may  change  during  a  
numerical  simulation,  perhaps  depending  on  some  condition  calculated  during  
the  simulation.  On  a  more  detailed  level,  discretisation  of  space  requires  the  
subdivision  of  the  domain  into  a  number  of  cells,  or  control  volumes.  The  
cells  are  contiguous,  i.e.  they  do  not  overlap  one  another  and  completely  fill  
the  domain.  A  typical  cell  is  shown  in  figure4.1   

 

 
Figure  4.1  Finite  volume  method  for  typical  cell 

 
 
5.  Numerical  schemes 
Here  we  use  the  Euler  implicit  temporal  discretization,  and  the  linear  (central-
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difference)  scheme  for  convection.  The  p  linear  equation  system  is  solved  
using  the  Conjugate  Gradient  solver  PCG.  The  U  linear  equation  system  is  
solved  using  the  Conjugate  Gradient  solver  PBICG.  The  solution  is  considered  
converged  when  the  residual  has  reached  the  tolerance  1e-05  for  each  time  
step. 
 
 
6.  Numerical  Experiments 
The  geometry  of  the  lid  driven  cavity  as  shown  in  figure  6.1  in  which  all  the  
boundaries  of  the  square  are  walls.  The  cavity  with  fine  mesh  of  20  x  20  as  
shown  in  figure  6.2  .The  top  wall  moves  in  the  x  direction  at  a  speed  of  1  
m/s  while  the  other  three  are  stationary.  Initially  the  flow  will  be  assumed  
laminar  and  will  be  solved  on  a  uniform  mesh  using  a  solver  for  laminar,  
isothermal  and  incompressible  flow.  This  case  will  be  run  with  a  Reynolds  
number  of  10,    0.01 . 

 

 
Figure  6.1  Geometry  of  the  lid  driven  cavityFigure  6.2  Fine  Mesh  with  20  
x  20   
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7.  Results 

 
Figure  7.1.  Velocity  vectors  for  coarse  mesh  of  10  X  10  Figure  7.2.  Stream  
lines  for  coarse  mesh  of  10  X  10 

 

 
Figure  7.3.  Pressure  contours  for  the  coarse  mesh  of  10  X  10  Figure  7.4.  
Velocity  U  for  the  fine  mesh  20  x  20 
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Figure  7.5.  Stream  lines  for  fine  mesh  of  20  x  20  Figure  7.6.  Velocity  
vectors  for  fine  mesh  of  20  x  20 

 

 
Figure  7.7.  Velocity  U  for  graded  mesh  Figure  7.8.  Stream  lines  for  
graded  mesh 
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Figure  7.9  Velocity  in  x  direction  at  mid  plane 

 
 
8.  Conclusions 
A  pressure  based  solver  has  been  presented  for  solving  fluid  dynamics  
equations  for  incompressible  flows.  The  method  uses  pressure  based  
formulation  and  solves  primitive  variables  (u,  v  and  p).  The  method  has  been  
tested  on  CFD  bench  mark  case  lid  driven  cavity.  The  results  are  good  
agreement  with  existing  results  in  the  literature  [9].In  lid  driven  cavity  case  
excellent  convergence  rate  has  been  observed.   
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