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Abstract 22 

Hypervelocity impact processes are uniquely capable of generating shock 23 

metamorphism, which causes mineralogical transformations and deformation that 24 

register pressure (P) and temperature (T) conditions far beyond even the most extreme 25 

conditions created by terrestrial tectonics. The mineral zircon (ZrSiO4) responds to 26 

shock deformation is various ways, including crystal-plasticity, twinning, 27 

polymorphism (e.g., transformation to the isochemical mineral reidite), formation of 28 

granular texture, and dissociation to ZrO2 + SiO2, which provide robust 29 

thermobarometers that record different extreme conditions. The importance of 30 

understanding these material processes is two-fold. First, these processes can mobilize 31 

and redistribute trace elements, and thus be accompanied by variable degrees of 32 

resetting of the U-Pb system, which is significant for the use of zircon as a 33 

geochronometer. Second, some features described herein form exclusively during 34 

shock events and are diagnostic criteria that can be used to confirm the hypervelocity 35 

origin of suspected impact structures. We present new P-T diagrams showing the 36 

phase relations of ZrSiO4 polymorphs and associated dissociation products under 37 

extreme conditions using available empirical and theoretical constraints. We present 38 

case studies to illustrate zircon microstructures formed in extreme environments, and 39 

present electron backscatter diffraction data for grains from three impact structures 40 

(Mistastin Lake of Canada, Ries of Germany, and Acraman of Australia) that preserve 41 

different minerals and microstructures associated with different shock conditions. For 42 

each locality, we demonstrate how systematic crystallographic orientation 43 

relationships within and between minerals can be used in conjunction with the new 44 

phase diagrams to constrain the P-T history. We outline a conceptual framework for a 45 

zircon-based approach to ‘extreme thermobarometry’ that incorporates both direct 46 



  

observation of high-P and high-T phases, as well as inferences for the former 47 

existence of phases from orientation relationships in recrystallised products, a concept 48 

we refer to here as ‘phase heritage’. This new approach can be used to unravel the 49 

pressure-temperature history of zircon-bearing samples that have experienced extreme 50 

conditions, such as rocks that originated in the Earth’s mantle, and those shocked 51 

during impact events on Earth and other planetary bodies.  52 
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1. Introduction 56 

Zircon (ZrSiO4) is a common and durable mineral that is perhaps the most widely 57 

studied accessory phase because it can record geological events throughout deep time 58 

(e.g., Wilde et al., 2001; Valley et al., 2005; Hawkesworth and Kemp, 2006; Nemchin 59 

et al., 2009). However, zircon is not impervious in all environments, and can deform 60 

by various mechanisms as well as undergo phase transformations, especially at 61 

extreme pressure and temperature conditions, beyond so-called ‘ultra-high pressure’ 62 

and ‘ultra-high temperature’ metamorphic conditions found in the Earth’s crust (e.g., 63 

Hacker et al., 1998; Harley et al., 2007; Korhonen et al., 2013; Korhonen et al., 2014; 64 

Clark et al., 2015) or those that can be achieved during seismic events along tectonic 65 

faults (e.g., Wenk and Weiss, 1982; Di Toro and Pennacchioni, 2004). Environments 66 

where zircon experiences extreme conditions include the lithospheric mantle, such as 67 

during kimberlite eruption, and also hypervelocity impact events on Earth, the Moon, 68 

and other planetary bodies. Zircon can undergo brittle fracture and cataclasis (e.g., 69 

Boullier, 1980; Corfu et al., 2003; Rimša et al., 2007), crystal-plasticity via formation 70 

and migration of dislocations (e.g., Reimold et al., 2002; Reddy et al., 2006; Moser et 71 

al., 2009; Reddy et al., 2009; Timms et al., 2012b), mechanical twinning (e.g., Moser 72 

et al., 2011; Timms et al., 2012b; Erickson et al., 2013a; Thomson et al., 2014; 73 

Erickson et al., 2016; Montalvo et al., in press), and solid-state recrystallization via 74 

nucleation and growth of neoblasts (e.g., Piazolo et al., 2012; Cavosie et al., 2015b). 75 

Zircon can also transform to reidite, a high-pressure ZrSiO4 polymorph (e.g., Glass 76 

and Liu, 2001; Gucsik et al., 2002; Wittmann et al., 2006; Cavosie et al., 2015a; 77 

Reddy et al., 2015), and undergo dissociation to zirconia (ZrO2) and silica (SiO2) (Fig. 78 

1) (e.g., El Goresy, 1965; Zanetti, 2015). The presence of twins and reidite in zircon 79 

are interpreted to be diagnostic of high-pressure shock deformation, and have been 80 



  

used as evidence of hypervelocity impact (e.g. Cavosie et al., 2015a; Reddy et al., 81 

2015). Zircon from impact settings can also preserve a distinctive microporosity (e.g., 82 

Wittmann et al., 2006; Grange et al., 2013a; Schmieder et al., 2015; Singleton et al., 83 

2015), form diaplectic glass (e.g., Leroux et al., 1999; Wittmann et al., 2006), and 84 

even form a fluidal-vesicular texture reminiscent of devolatilised glass (e.g., Hamann 85 

et al., in press). 86 

The U-Pb system in zircon can be modified during all of the deformation, 87 

recrystallisation and transformation processes described above to varying degrees. 88 

Migration of Pb into clusters at the 10 nm scale during thermal events can result in 89 

both concordant and discordant U-Pb isotopic data when measured at the 20 µm scale 90 

(Valley et al., 2014; Peterman et al., 2016). Crystal-plastic deformation generates fast-91 

diffusion pathways that can mobilise U, Th, Pb and other trace elements at relatively 92 

modest temperatures (e.g., Reddy et al., 2006; Timms et al., 2006; Timms et al., 2011; 93 

Peterman et al., 2016; Piazolo et al., 2016; Reddy et al., 2016; Tretiakova et al., 94 

2016). If deformation occurs soon after crystallisation yet before appreciable 95 

radiogenic Pb has accumulated, then Pb-loss may not be detectable outside the 96 

uncertainties of secondary ion mass spectrometry (SIMS) analyses (e.g., Timms et al., 97 

2006; Timms et al., 2011; Crow et al., 2015). Crystal-plasticity and twinning can 98 

result in no detectable Pb-loss (Erickson et al., 2013b; Cavosie et al., 2015b)}; partial 99 

Pb-loss yielding apparent ages with uncertain meaning (e.g., Deutsch, 1990; Deutsch 100 

and Schärer, 1990; Grange et al., 2013b); discordant arrays with a lower intercept 101 

corresponding to a deformation age (e.g., Krogh et al., 1993a; Moser, 1997; Moser et 102 

al., 2009; Moser et al., 2011; MacDonald et al., 2013); or locally complete U-Pb 103 

resetting to yield deformation ages (e.g., Moser et al., 2009; Nemchin et al., 2009; 104 

Grange et al., 2013b; Bellucci et al., 2016). Recrystallization (neoblast growth, 105 



  

granular texture) can cause U-Pb resetting and can yield deformation ages (e.g., 106 

Krogh et al., 1993b; Kamo and Krogh, 1995; Grange et al., 2009; Moser et al., 2011; 107 

Piazolo et al., 2012; Grange et al., 2013a; Cavosie et al., 2015b). However, U-Pb data 108 

from granular zircon does not always yield reliable event ages. For example, where 109 

neoblasts are too small to analyse via SIMS without contamination from surrounding 110 

interstitial material or have experienced subsequent Pb-loss (e.g., Deloule et al., 2001; 111 

Tohver et al., 2012; Schmieder et al., 2015). Similar effects of deformation 112 

microstructures have been observed on the U-Th-Pb system in monazite (e.g., 113 

Deutsch and Schärer, 1990; Moser, 1997; Flowers et al., 2003; Tohver et al., 2012; 114 

Erickson et al., 2015; Erickson et al., 2016; Erickson et al., in review). Therefore, it is 115 

important to understand the systematic mechanical and thermodynamic behaviour of 116 

zircon at extreme conditions.  117 

Much attention has been given to the solubility (Ayers et al., 2012; Wilke et 118 

al., 2012; Bernini et al., 2013) and saturation (Watson and Harrison, 1983; Boehnke et 119 

al., 2013; Gervasoni et al., 2016) behaviour of zircon in melts and aqueous fluids. 120 

However, these processes are fundamentally different to those discussed here because 121 

at extreme temperature zircon undergoes solid state thermal dissociation to oxides 122 

rather than melting congruently (Fig. 1) (Butterman and Foster, 1967; Kaiser et al., 123 

2008). While many aspects of the fate of zircon at extreme conditions have been 124 

published, only a few studies have attempted to show how variations in pressure-125 

temperature (P-T) histories result in characteristic microstructures and phase relations 126 

observed in natural zircon (Wittmann et al., 2006; Timms et al., 2012b; Singleton et 127 

al., 2015). To date, no studies have incorporated all available experimental data for 128 

polymorphism and dissociation of zircon, nor have all of the known microstructures 129 



  

associated with these processes, which have been reported in natural samples from 130 

extreme environments, been fully integrated. 131 

The aim of this study is to develop a comprehensive conceptual framework for 132 

interpreting zircon from extreme environments, with an emphasis on constraining P-T 133 

conditions that explain formation of deformation microstructures, polymorphic 134 

transformations, granular texture, and dissociation to zirconia and silica. This is 135 

achieved in three ways. Firstly, we provide a new thermodynamic calculation 136 

describing the zircon dissociation reaction and, along with published data, construct a 137 

new P-T phase diagram for ZrSiO4 and its related polymorphs and dissociation 138 

products that are stable at extreme conditions (up to ~3000 °C and 40 GPa).  139 

Secondly, we present three case studies of zircon from terrestrial meteorite impact 140 

environments to illustrate microstructures and orientation relationships among phases 141 

and better understand the behaviour of zircon during impact processes. Thirdly, we 142 

interpret the three case studies within the framework of the new phase diagram to 143 

demonstrate how orientation analysis of ZrSiO4 and related phases can be used to 144 

constrain the P-T paths experienced by zircon under extreme conditions.  145 

 146 

2. Approach, Materials and Methods 147 

Available data from laboratory experiments and ab initio simulations were compiled 148 

as two sets of P-T phase diagrams – one type in which various transformations and 149 

deformations of ZrSiO4 are plotted, and another that illustrates ZrSiO4 dissociation 150 

reactions and the phase stability of ZrO2 and SiO2 dissociation products. 151 

2.1 Available data for phase stability and deformation  152 

Data for the transformation of zircon (tetragonal, space group I41/amd) to reidite 153 

(tetragonal, space group I41/a) has been sourced from ab initio calculations (Marqués 154 



  

et al., 2006; Marqués et al., 2008; Du et al., 2012; Dutta and Mandal, 2012), static 155 

high-pressure laboratory experiments where temperature is constrained (Reid and 156 

Ringwood, 1969; Liu, 1979; Knittle and Williams, 1993; Ono et al., 2004a; Ono et al., 157 

2004b; van Westrenen et al., 2004; Chaplot et al., 2006; Morozova, 2015), and shock 158 

deformation experiments where temperature is not constrained (Mashimo et al., 1983; 159 

Kusaba et al., 1985; Leroux et al., 1999). A ‘post-reidite’ ZrSiO4 phase with 160 

wolframite structure (P2/c) has been predicted to exist above 75.8 GPa, but has not 161 

yet been produced in experiments (Dutta and Mandal, 2012) or observed in nature. 162 

Planar dislocations in zircon occur at 20 GPa in shock recovery experiments (Leroux 163 

et al., 1999). Twinning in zircon has been observed in diamond anvil experiments at 164 

20 GPa (Morozova, 2015), and in reidite during shock experiments at 40 GPa (Leroux 165 

et al., 1999).  166 

Dissociation of zircon to zirconia and silica has been constrained in laboratory 167 

experiments at ambient pressure (Fig. 1) (Butterman and Foster, 1967; Kaiser et al., 168 

2008; Telle et al., 2015), and has also been observed in slag from smelting of tin ore 169 

(Farthing and Pivarunas, 2015; Cavosie et al., 2016c) and in fused bedrock at nuclear 170 

blast sites (Lussier et al., in press). The stabilities of dissociation products, including 171 

polymorphs of silica (SiO2), such as α- and β-quartz, tridymite, cristobalite, coesite, 172 

stishovite, and liquid silica, are sourced from Swamy et al. (1994) and references 173 

therein (e.g., Fenner, 1913; Kennedy et al., 1962; Ostrovsky, 1966; Cohen and 174 

Klement, 1967; Jackson, 1976; Yagi and Akimoto, 1976; Suito, 1977; Grattan-175 

Bellew, 1978; Mirwald and Massonne, 1980; Bohlen and Boettcher, 1982; Kanzaki, 176 

1990; Pacalo and Gasparik, 1990; Zhang, 1992). The stability fields of several 177 

polymorphs of SiO2 and ZrO2 are not well defined. High pressure ‘post-stishovite’ 178 

SiO2 polymorphs with CaCl2- and α-PbO2-like structures are stable above 48 and ~85 179 



  

GPa, respectively (El Goresy et al., 2004). Transformation of silica into lechatelierite, 180 

which is a diaplectic phase that is commonly vesicular, can occur at extreme 181 

temperatures up to several thousand degrees (Kieffer et al., 1976; Macris et al., 2014; 182 

Cavosie et al., 2016b). High-pressure (>100 GPa) hexagonal and tetragonal ZrO2 183 

phases have been reported (Arashi et al., 1990; Ohtaka et al., 1994). However, these 184 

phases are not represented on the phase diagrams in this study. 185 

The stability of zirconia polymorphs of zirconia, including monoclinic 186 

(baddeleyite), tetragonal, cubic, and two orthorhombic polymorphs, as well as liquid 187 

zirconia, are taken from Kaiser et al. (2008) and Bouvier et al. (2000) and references 188 

therein (e.g., Whitney, 1965; Block et al., 1985; Ohtaka et al., 1991; Ohtaka et al., 189 

1994; Haines et al., 1995; Haines et al., 1997). Experimental dissociation of reidite 190 

has been documented by diamond anvil cell (Liu, 1979; Tange and Takahashi, 2004) 191 

and in shocked charges (Mashimo et al., 1983). 192 

 193 

2.2 Thermodynamic calculation of the zircon dissociation reaction 194 

The equilibrium breakdown of zircon to zirconia and silica (cristobalite) was 195 

extrapolated from the experimentally constrained temperature of 1938 °K (1665 °C) 196 

at 1 bar (1.01 x 10-4 GPa Kaiser et al., 2008) using available data (Table 1, Adams et 197 

al., 1985; Subbarao et al., 1990; Robie and Hemingway, 1995; Mittal et al., 1998; 198 

Mao et al., 2001; Bouvier et al., 2002; O'Neill, 2006; Ortiz et al., 2007). 199 

Thermodynamic expressions (O'Neill, 2006) for heat capacity were used to calculate 200 

high temperature entropy and enthalpy of formation. Thermal expansion data were 201 

used for calculation of molar volume as a function of temperature. The limited 202 

pressure range necessary for the calculation means that pressure dependence can be 203 



  

neglected. Further details of the thermodynamic calculation can be found in Appendix 204 

1.  205 

 206 

2.3 Phase orientation relationships and their significance 207 

Deformation of and associated transformations among ZrSiO4, ZrO2, and SiO2 phases 208 

occur via systematic crystallographic orientation relationships. Established orientation 209 

relationships include those associated with mechanical twinning and dislocation creep 210 

in zircon (e.g., Timms et al., 2012b), transformation of zircon to reidite (e.g., Leroux 211 

et al., 1999; Erickson et al., in press), and between low-P zirconia polymorphs (e.g., 212 

Chevalier et al., 2009; Cayron et al., 2010). Orientation analysis can yield information 213 

about deformation mechanisms and phase changes that occur at extreme conditions 214 

(e.g., Kerschhofer et al., 2000; Cavosie et al., 2016b). However, orientation 215 

relationships associated with zircon dissociation, or among high-P zirconia 216 

polymorphs have not been characterised. This study applies known orientation 217 

relationships and identifies new relationships in three case studies to provide new 218 

insight into deformation and transformation histories. 219 

Crystal-plastic microstructures, including subgrains and planar deformation 220 

bands (PDBs) with low-angle boundaries occur in samples that have experienced 221 

deformation (e.g., Moser et al., 2009; Timms et al., 2012b; Erickson et al., 222 

2013a)Kovaleva, 2015 #296;Montalvo, in press #1242}, and so it is important to 223 

account for their effects on crystallographic orientations in zircon crystals that have 224 

experienced extreme conditions. Crystal-plastic deformation causes progressive, 225 

incremental, low-angle dispersion of crystallographic directions, commonly with 226 

angle/axis pairs that describe minimum misorientation (also known as disorientation) 227 

between adjacent data points (c.f. Wheeler et al., 2001) that coincide with rational 228 



  

low-index directions related to the operation of different dislocation slip systems 229 

(Reddy et al., 2006; Reddy et al., 2007; Kaczmarek et al., 2011; Timms et al., 2012a). 230 

The most commonly reported slips systems are {100}<010> or {001}<100> (Reddy 231 

et al., 2007; Nemchin et al., 2009; Reddy et al., 2009; Timms and Reddy, 2009; 232 

Kaczmarek et al., 2011; Piazolo et al., 2012; Timms et al., 2012b; MacDonald et al., 233 

2013; Cavosie et al., 2015a; Kovaleva et al., 2015; Kovaleva et al., 2016).  234 

Deformation twinning in zircon is readily distinguished from growth twinning 235 

(e.g., Jocelyn and Pidgeon, 1974), as it produces polysynthetic lamellar forms (Timms 236 

et al., 2012b; Erickson et al., 2013a). Twinning occurs along {112}, and twinned 237 

domains have a specific misorientation relationship of 65° around <110> of the host 238 

grain (Moser et al., 2011; Timms et al., 2012b; Erickson et al., 2013a; Cavosie et al., 239 

2015a; Montalvo et al., in press). This misorientation relationship is consistent with 240 

the twin mode as K1{112} η1<111>, where K1 is the composition plane and η 1 is the 241 

shear direction (Christian and Mahajan, 1995), and is consistent with impact-related 242 

twins in other tetragonal accessory phases (Cavosie et al., 2016a). Up to four distinct, 243 

symmetrically equivalent {112} twin orientations are possible in zircon (Erickson et 244 

al., 2013a; Cavosie et al., 2015b). Rare, non-lamellar, equant twinned domains at the 245 

intersection between planar deformation features have been reported in lunar zircon 246 

(Timms et al., 2012b). 247 

The transformation of zircon to reidite can produce lamellar and granular 248 

forms. Lamellar reidite has been described with an approximate 90° / <110> 249 

disorientation relationship with the host zircon (Kusaba et al., 1985; Leroux et al., 250 

1999; Cavosie et al., 2015a; Reddy et al., 2015). However, detailed 3D analyses have 251 

revealed that multiple sets of lamellae can form along a variety of non-rational habit 252 

planes in zircon (Reddy et al., 2015; Erickson et al., in press). The crystallographic 253 



  

orientation relationship of reidite to the parent zircon was proposed to occur via 254 

alignment of <110>zircon to <110>reidite and <001>zircon to <110>reidite (Kusaba et al., 255 

1985; Leroux et al., 1999). More recently, (Erickson et al., in press) have proposed 256 

that a {100}zircon is parallel to a {112}reidite and that both phases share a {112}. The 257 

tetragonal symmetry of both phases means that up to eight distinct reidite orientations 258 

can form in a single crystal of zircon, resulting in two main groups of reidite with four 259 

orientations in each group having similarly-oriented (001)reidite (Erickson et al., in 260 

press). Sub-micrometer diameter granular reidite has also been reported to coexist 261 

with lamellar reidite in zircon from the ~6 km-diameter Rock Elm (Wisconsin, USA) 262 

and ~24 km Ries (Germany) impact structures (Cavosie et al., 2015a; Erickson et al., 263 

in press). Granular reidite shares a similar yet less strictly adhered to misorientation 264 

relationship with zircon as lamellar reidite, resulting in a more broadly scattered 265 

orientation distribution (Cavosie et al., 2015a; Erickson et al., in press). 266 

Various mechanisms for the zircon ! reidite transformation have been 267 

proposed, and include a displacive (martensitic) transformation that involves shear 268 

along {100} with a [001] shear vector (Leroux et al., 1999); a quasi-displacive, two-269 

stage transformation that involves partial dislocation along (100) followed by 270 

displacement of oxygen ions (Kusaba et al., 1986; Turner et al., 2014), and a 271 

reconstructive transformation that involves an intermediate monoclinic ZrSiO4 phase 272 

(Marqués et al., 2008; Smirnov et al., 2008; Flórez et al., 2009). It has been shown via 273 

ab initio calculations that a reconstructive transformation is energetically favourable 274 

(Marqués et al., 2008; Smirnov et al., 2008; Flórez et al., 2009). Cavosie et al. (2015a) 275 

and Erickson et al. (in press) have argued that granular and lamellar reidite form by 276 

reconstructive and displacive mechanisms, respectively. 277 



  

Under extreme P-T conditions, zircon can recrystallise into a granular texture 278 

(e.g., Bohor et al., 1993; Kamo et al., 1996; Wittmann et al., 2006; Grange et al., 279 

2013a; Schmieder et al., 2015). Neoblasts in shock-deformed zircon nucleate in 280 

orientations that are widely and non-systematically dispersed from the parent grain 281 

orientation (e.g., Cavosie et al., 2015b), or systematically misoriented from one 282 

another (Cavosie et al., 2016b). Individual zircon neoblasts in granular zircon grains 283 

from Meteor Crater preserve ~65° / <110> and ~90° / <110> misorientations that are 284 

interpreted to have nucleated from twinned domains and reverted from reidite, 285 

respectively (Cavosie et al., 2016b). 286 

Thermal dissociation of zircon at 1673 °C and ambient pressure produces 287 

tetragonal zirconia and cristobalite, with the latter melting to form liquid SiO2 with 288 

only ~10 °C of further heating (Butterman and Foster, 1967; Kaiser et al., 2008). Due 289 

to the absence of SiO2 polymorphs with dissociated zircon, silica polymorphs 290 

resulting from zircon dissociation are not generally preserved (Kaiser et al., 2008). 291 

However, experiments suggest reidite dissociation may produce solid-state oxide 292 

products, in which case stishovite should be the stable phase (e.g. , Tange and 293 

Takahashi, 2004). Systematic crystallographic relations resulting from transformation 294 

among zirconia polymorphs are well known from material science and ceramics 295 

literature (e.g. , Smith and Newkirk, 1965; Bansal and Heuer, 1972; Subbarao et al., 296 

1974). Transformation of cubic to tetragonal zirconia is displacive but not martensitic 297 

and can result in up to three possible distinct orientations whereby (001)tetragonal is 298 

parallel to a {100}cubic (Heuer, 1987). The tetragonal to monoclinic ZrO2 299 

transformation is martensitic and can result in up to four distinct orientation variants 300 

from each precursor tetragonal identity. Therefore, up to twelve monoclinic variants 301 

can result from the two-stage cubic to monoclinic transformation, which can be used 302 



  

to uniquely identify the existence and original orientation of the precursor cubic 303 

polymorph that was stable at much higher temperature (Kerschhofer et al., 2000; 304 

Cayron, 2007; Chevalier et al., 2009; Cayron et al., 2010; Humbert et al., 2010). A 305 

transmission electron microscopy study of a baddeleyite megacryst from a kimberlite 306 

identified the former existence of high-temperature ZrO2 polymorphs using 307 

crystallographic orientation relationships (Kerschhofer et al., 2000). However, this 308 

concept has not yet been applied to studies involving zircon, and the crystallographic 309 

orientation relationships between zircon and dissociated ZrO2 phases remain 310 

unknown. 311 

 312 

2.4 Samples used for the case studies 313 

Zircon grains from three terrestrial meteorite impact structures were chosen for this 314 

study. The first zircon grain is from the late Eocene, 37.83 ± 0.05 Ma, and ~28 km 315 

diameter Mistastin Lake impact structure in northern Labrador, Canada (55º53’ N; 316 

63º18’ W) (Grieve, 1975; Marion, 2009; Sylvester et al., 2013). The zircon is a clast 317 

component in a holohyaline impact melt rock that was found as float on top of the 80 318 

m thick Discovery Hill outcrop, which is a large columnar-jointed impact melt 319 

outcrop near the crater wall (Marion and Sylvester, 2010). The sample has a dark 320 

brown to black, non-vesicular glassy matrix, similar to obsidian, and contains sparse 321 

sub-rounded mineral clasts, which are partially-digested remnants of the 322 

Mesoproterozoic crystalline target rocks (primarily granodiorite, mangerite, and 323 

anorthosite) (Fig. 2A). The zircon grain has a halo of Zr-enriched silicate glass that 324 

forms a trail several millimeters long (Fig. 2B).  325 

The second zircon specimen is from the 14.83 ± 0.15 Ma, 24 km diameter Ries 326 

impact structure in Germany (Shoemaker and Chao, 1961; Di Vincenzo and Skála, 327 



 

2009; Jourdan et al., 2012). The studied zircon grain is from a clast in suevite breccia 328 

recovered from a depth of 498 m in the Nördlingen 1973 borehole, which is located 329 

3.65 km from the centre of the Ries impact structure (48°53’ N, 10°37’ E); 330 

(Bauberger et al., 1974; Stöffler, 1977; Reimold et al., 2011; Erickson et al., in press). 331 

The sample belongs to a melt-rich section of suevite inferred to be Flädle-bearing and 332 

deposited from the impact vapor plume, and possibly reworked within the impact 333 

crater (Stöffler, 1977; Meyer et al., 2011; Stöffler et al., 2013). The zircon is one of 334 

seven reidite-bearing grains in a clast of shocked Variscan basement gneiss containing 335 

maskelynite and amorphous SiO2 (Fig. 2C). The presence of maskelynite and 336 

diaplectic quartz suggests that the clast experienced shock stage II conditions, with 337 

shock pressures of 35 - 45 GPa (Stöffler, 1971).  338 

The third zircon specimen in this study is from the deeply eroded, ~600 Ma, ≥40 km-339 

diameter Acraman impact structure in South Australia, where the target rocks are 340 

assigned to the Yardea Dacite of the Mesoproterozoic (~1.59-1.60 Ga) siliceous 341 

Gawler Range Volcanics (Williams, 1986; Williams, 1994; Allen et al., 2003; Allen 342 

et al., 2008; Schmieder et al., 2015). The sample in this study is from a ~12 x 3 m 343 

wide body of impact melt rock within the ~30 km diameter circular central domain 344 

defined by Lake Acraman, which is possibly a melt dike injected into the centrally-345 

uplifted crater basement (32°3'20.3" S, 135°26'51.1" E). The melt rock is reddish and 346 

has a heterogeneously-developed albite-spinifex texture, and contains variable 347 

proportions of partially-digested relict clasts of Yardea Dacite (Fig. 2D) (Schmieder 348 

et al., 2015).  349 

 350 

2.5 Analytical procedure 351 



 

Petrographic slides of each sample were prepared for electron backscatter diffraction 352 

(EBSD) analysis (Prior et al., 1999), and electron microscopy was done using a 353 

Tescan MIRA3 field emission scanning electron microscope (FE-SEM) fitted with an 354 

Oxford Instruments AZtec combined energy dispersive X-ray (EDX) / EBSD 355 

acquisition system housed at the Microscopy and Microanalysis Facility, John de 356 

Laeter Centre, Curtin University, using established settings and protocols  (Table 2) 357 

(Reddy et al., 2008; Cavosie et al., 2015a; Cavosie et al., 2015b; Reddy et al., 2015). 358 

Backscattered electron (BSE), cathodoluminescence (CL) images, EBSD and EDX 359 

maps with step sizes between 40 and 250 nm were collected from each grain. 360 

Indexing of EBSD patterns included a choice of match units for zircon, reidite and 361 

monoclinic, tetragonal, cubic and orthorhombic polymorphs of ZrO2 (Table 2). 362 

Oxford Instruments’ Channel 5.10 software was used to remove isolated, erroneous 363 

EBSD data points (wildspike correction), calculate disorientation angle/axis pairs 364 

between adjacent data points of the same phase (Wheeler et al., 2001), and produce 365 

thematic EBSD maps and pole figures (Timms et al., 2012b; Cavosie et al., 2015a; 366 

Reddy et al., 2015).  367 

 368 

3. Results and Interpretation 369 

3.1 Synthesis of phase diagrams for zircon at extreme P-T conditions 370 

3.1.1 A pressure-temperature phase diagram for ZrSiO4 371 

Available empirical and experimental constraints, and equilibrium calculations on the 372 

conditions under which phase transformations of ZrSiO4 occur are summarised in 373 

Figure 3, and discussed below. 374 

 375 

3.1.2 Transformation of zircon to reidite 376 



  

Static density functional theory (DFT) calculations (Marqués et al., 2006; Marqués et 377 

al., 2008; Dutta and Mandal, 2012) indicate ~ 5 GPa for the equilibrium 378 

thermodynamic phase transformation to reidite at hydrostatic pressure (Fig. 3A). A 379 

similar pressure has been observed experimentally for the zircon-type to scheelite-380 

type structure transformation in orthovanadates (Yue et al., 2016). Significant 381 

discrepancies exist between theoretical predictions (5 GPa), static experiments (~12-382 

23 GPa) and the appearance of reidite in shock experiments (~30 GPa). These 383 

differences may be attributed to the effects of an energy barrier to transformation 384 

associated with a transition state (Marqués et al., 2006) and/or kinetic effects (Fig. 385 

3A). However, the nature of these effects on reidite formed during shock compression 386 

has yet to be investigated, and so the fields depicted in Fig. 3A serve as a first-order 387 

guide only. Nevertheless, all available studies indicate that transformation of zircon to 388 

reidite is highly pressure-dependent. 389 

 Defects in the zircon lattice can affect the transformation to reidite, which has 390 

significant implications for natural zircon with its abundant trace elements and 391 

ubiquitous radiation damage. For example, non-stoichiometry affects the 392 

transformation kinetics and compressibility of zircon (van Westrenen et al., 2004), 393 

and ion beam irradiated zircon transforms to reidite at much higher static pressures 394 

(~37 GPa) than non-irradiated zircon (Lang et al., 2008). This is consistent with 395 

observations in natural reidite-bearing zircon where non-cathodoluminescent, 396 

partially radiation-damaged domains do not contain reidite lamellae (Cavosie et al., 397 

2015a; Reddy et al., 2015). Only recently have studies begun to systematically 398 

investigate the effects of radiation damage and non-stoichiometry on the conditions of 399 

reidite transformation in natural zircon (c.f., Erickson et al., in press; Timms et al., in 400 

review). 401 



 

 402 

3.1.3 Mechanical twinning in zircon and reidite 403 

Mechanical twinning is considered to be a structural transformation akin to a 404 

displacive (or martensitic) transformation (Christian and Mahajan, 1995). Few 405 

empirical constraints exist for twinning in zircon (Morozova, 2015) and reidite 406 

formation (Leroux et al., 1999; Morozova, 2015), and so experimentally determined 407 

minimum twinning pressures of 20 GPa and 40 GPa, respectively, are tentatively 408 

assigned for those processes (Fig. 3A). The effects of temperature on twin formation 409 

in zircon and reidite have yet to be evaluated. 410 

 411 

3.1.4 Dissociation of zircon and reidite 412 

The Clapeyron slope for the zircon breakdown reaction calculated here is on the order 413 

of 29 bar (2.9 x10-3 GPa) / °C (Fig. 3B). This means that zircon breakdown is a low-414 

P, high-T reaction that intersects the cristobalite solidus at ~1.4 kbar (~0.14 GPa) 415 

(Fig. 3Bii). However, the up-temperature continuation of the reaction line cannot be 416 

extrapolated with confidence due to undetermined thermodynamic effects of liquid 417 

silica on phase stability. Nevertheless, these results indicate that dissociation of zircon 418 

is essentially a high-T (~1690 °C), low-P process within the range of the calibration 419 

(Butterman and Foster, 1967; Kaiser et al., 2008). The effects of intrinsic radiation 420 

damage on zircon dissociation have not been well constrained. A lower dissociation 421 

temperature of ~1540 °C (Fig. 3Bii) for natural zircon at ambient pressure reported by 422 

Curtis and Sowman (1953) could potentially be attributed to the various defects 423 

discussed above being present in the natural zircon analysed. 424 

There is currently insufficient thermodynamic data available for equilibrium 425 

calculation of the reidite dissociation reaction. However, ‘hydrostatic’ diamond anvil 426 



  

cell experiments reveal that dissociation of reidite occurs above ~20-23 GPa in the 427 

1500-1800 °C range (Tange and Takahashi, 2004). These results suggest that reidite 428 

becomes unstable at high-P and low-T conditions, which is difficult to reconcile with 429 

other available experimental constraints on reidite stability (Fig. 3A,B). 430 

 431 

3.1.5 A P-T phase diagram for zircon dissociation products 432 

The single-component phase diagrams for SiO2 and ZrO2 have been combined to 433 

predict equilibrium stabilities for zircon dissociation products, assuming that ZrO2 434 

and SiO2 behave independently at the conditions under consideration (Fig. 3B). The 435 

predicted sequence of stable zirconia and silica polymorphs depends on the specific 436 

P-T path followed, assuming that equilibrium can be achieved. However, it is 437 

acknowledged that impedance of reaction kinetics due to rapid temperature and 438 

pressure changes during impact events could result in preservation of metastable 439 

phases. For further information on the effects of shock on SiO2, readers are referred to 440 

Schmitt and Ahrens (1989). Reversion of the oxides to ZrSiO4 is only possible upon 441 

re-entry of the stability fields of either zircon or reidite (Figs 1B, 3A, C), if kinetics 442 

are favourable. However, if reversion is sluggish or incomplete, then a combination of 443 

both the ZrSiO4 and ZrO2 + SiO2 P-T phase diagrams is required to predict metastable 444 

phases through P-T space (Figs 1 and 3). 445 

 One exception to the general application of these phase diagrams occurs in 446 

thermally annealed radiation-damaged zircon, which can produce ~10 nm zirconia 447 

crystals in silica glass at 1250 °C (e.g., McLaren et al., 1994). Metastable tetragonal 448 

zirconia is strongly grain size-dependent, whereby crystals in the size range of 30-80 449 

nm can grow at temperatures as low as 410 °C (Subbarao et al., 1974). Zirconia in 450 

this size range has been reported in impact-dissociated zircon (Cavosie et al., 2016b), 451 



  

highlighting the potential for discovery of natural occurrences of tetragonal zirconia 452 

as a result of impact processes. 453 

 454 

3.2 Case Studies 455 

3.2.1 Mistastin Lake zircon (impact glass) 456 

The zircon grain from Mistastin Lake [MZRN-2 from Zanetti (2015)] is ~100-457 

150 µm across and comprises an oscillatory zoned core and an intermediate zone 458 

containing zircon that is bright in CL and interspersed with elongate, ~500 nm wide 459 

baddeleyite grains and silica glass arranged in a radial pattern (Fig. 4A). The zircon 460 

core has a single crystallographic orientation and does not contain microstructures 461 

indicative of shock (Fig. 4A, D, E). The oscillatory zoning is interpreted to represent 462 

primary magmatic growth. Zircon in the intermediate zone preserves up to 2° 463 

disorientation from the zircon core (Fig. 4D). The grain is surrounded by a 10-20 µm 464 

wide corona of vermicular/dendritic baddeleyite with rounded boundaries, locally 465 

elongate at high angles to the zircon margin, and interspersed with silicate glass with 466 

a similar bulk composition as that outside the corona (Fig. 4B, C) (Zanetti, 2015). 467 

Irregular-shaped, 10-30 µm wide clusters of morphologically-similar baddeleyite are 468 

discernible within the corona (Fig. 4B-E).  469 

All ZrO2 grains index as baddeleyite and are pervasively twinned; no other 470 

zirconia or ZrSiO4 polymorphs were detected in the corona by EBSD (Fig. 4). Each 471 

baddeleyite grain cluster contains twinned laths with up to twelve distinct 472 

crystallographic orientations that are systematically misoriented relative to one 473 

another and the host zircon (Fig. 4D-F). The twin boundaries between laths have the 474 

following misorientation relationships: 180° around <001>, <00-1>, <100>, <-100>, 475 



  

<101> and <-10-1>; 115° around <1-1-1> and <-1-1-1>; and 90° around <104> and 476 

<-10-4> (Fig. 4D).  477 

Within each cluster, three approximately orthogonal groups of baddeleyite 478 

orientations are present (Fig. 4E-F). Poles to {010} in each group coincide, whereas 479 

poles to {100} and {010} are systematically distributed by ~20°, commonly 480 

producing ‘cross shapes’ in pole figures (Fig. 4F). No consistent, systematic 481 

orientation relationships between the host zircon and baddeleyite clusters were 482 

observed.  483 

 484 

3.2.2 Ries crater zircon (shocked target rock clast in suevite) 485 

The Ries zircon grain [grain 37 from Erickson et al. (in press)] is ~20 µm 486 

across and comprises a non-luminescent core surrounded by an unevenly-developed 487 

bright-CL rim (Fig. 5A). The core consists of a patchy distribution of sub-equant 488 

domains (granules) with a mean diameter of 240 nm that variably index as zircon or 489 

reidite, and abundant irregular fractures (Fig. 5B,C). Indexing is not possible 490 

elsewhere in the core due to poor EBSD pattern quality. Poles for data points indexed 491 

as zircon form broad clusters in three predominant orthogonal orientations (Fig. 5F). 492 

This relationship is seen clearly in misorientation axis plots, where the >70º 493 

misorientation axes coincide with {110} and (001) in the host zircon (Fig. 5F). The 494 

granular reidite grains in the core have two main orientations that share a {110} 495 

plane, which coincides with (001) of the host zircon (Fig. 5H). Dispersion of the data 496 

is such that ~90 % of the data are within ±10º of this relationship (Fig. 5H). Low-497 

angle (<10º) misorientation axes are not systematically oriented, yet the >60º 498 

misorientation axes form a single distinct cluster parallel with poles to (001) of the 499 

host zircon (Fig. 5H). 500 



  

Most of the rim yields good quality EBSD patterns and indexes well as zircon 501 

with relatively consistent single crystallographic orientation with some (<20º) 502 

systematic dispersion around poles to {112} (Fig. 5D, E). Several sets of bright 503 

lamellae cross-cut the rim and are visible in the BSE image; the thickest lamella 504 

indexes as reidite (Fig. 5B). The orientation relationship between reidite and the host 505 

zircon is such that one of the two {100}zircon is aligned with {112}reidite, and another 506 

{112}reidite is aligned with respect to one of the {112}zircon (Fig. 5G).  507 

 508 

3.2.3 Acraman zircon (impact melt rock) 509 

The zircon from Acraman (grain 19) is ~40 µm across, polycrystalline, and 510 

comprised entirely of rounded, equant crystals of zircon with diameters ranging from 511 

0.3 to 2.7 µm (Fig. 6A). In one part of the grain (core), the crystals impinge on one 512 

another, whereas some of the crystals around the rim are smaller than in the core and 513 

non-impinging (i.e., spatially isolated from one another). The interstitial material 514 

comprises a large Fe-Ti oxide grain and silicate glass, the latter having a composition 515 

that is indistinguishable from the surrounding impact melt (Fig. 6A). Therefore, the 516 

Fe-Ti oxide is interpreted to have crystallised within the impact melt after the 517 

formation of granular texture in the zircon. The CL response of zircon crystals is 518 

variable (Fig. 6B). Zircon crystals commonly contain one or more ~10 to ~70 nm 519 

diameter particles of ZrO2 that are completely enclosed by zircon (Fig. 6A). However, 520 

the majority of these grains did not index with EBSD due to poor quality diffraction 521 

patterns. Misorientation analysis of polycrystalline zircon shows three distinct 522 

populations: (1) orientations that align closely (i.e., within 30°) with the host grain 523 

(purple in Fig. 6C-D); (2) those at high-angles but with a systematic crystallographic 524 

relationship to the host grain (orange in Fig. 6C-D); and (3) those at high-angles but 525 



  

with no systematic misorientation relationship to the host grain (i.e., randomly 526 

orientated) (Fig. 6C, D). Low-angle (<30°) misorientation axes are common, but are 527 

not systematically oriented (Fig. 6E-F). Abundant high-angle misorientation axes 528 

have a systematic relationship with the host grain of 90° around <110>, and define the 529 

boundaries between three sub-domains within the impinging crystal domain (Fig. 6F). 530 

 531 

4. Discussion 532 

4.1 Establishing the microstructural processes of the case studies 533 

4.1.1 Microstructures formed by dissociation at high T and low P (Mistastin Lake 534 

zircon)  535 

The Mistastin Lake zircon does not contain twins, reidite, or granular texture, and 536 

there is no evidence that this grain has experienced high-pressure shock deformation. 537 

The morphology and orientation characteristics of the ZrO2 grains are consistent with 538 

an interconnected, three-dimensional network of irregular tubules, that formed during 539 

dissociation of the host zircon. We interpret that the zircon reaction corona formed 540 

concentrically inwards from the original grain edge, producing ZrO2 and liquid SiO2. 541 

The minimum temperature required for dissociation (to tetragonal ZrO2) is 1690 ºC at 542 

low pressures (�1 GPa) (Figs 1B, 3B) (Butterman and Foster, 1967; Kaiser et al., 543 

2008; Telle et al., 2015). The liquid silica dissociation product (that mixed with the 544 

surrounding impact melt everywhere away from the dissociation interface) is 545 

predicted to contain Zr (Fig. 1) (Telle et al., 2015), which is consistent with a halo of 546 

Zr enrichment in the surrounding glass (Fig. 2B) (Zanetti, 2015). However, both the 547 

concentration of dissolved Zr in the glass matrix and the exact polymorph of ZrO2 are 548 

temperature-dependent, with cubic ZrO2 stable above 2350 ºC (Kaiser et al., 2008). 549 

Nevertheless, growth of new zircon at the corona-core boundary (Fig. 4), could only 550 



  

have occurred upon cooling below the zircon dissociation temperature (~1690 ºC), 551 

partially consuming SiO2 and ZrO2, followed by reversion to baddeleyite upon 552 

cooling below ~1200 ºC (Kaiser et al., 2008) (Figs 1 and 3). Orientation relationships 553 

between zircon and ZrO2-tet were not observed directly. A trace amount of ZrO2-tet 554 

was reported in the dissociation corona using Raman spectral mapping (Zanetti, 555 

2015), but was not detected by EBSD because it is either too poorly crystalline to 556 

index, it was located deeper below the surface than sampled by EBSD, or it was 557 

removed during EBSD polishing. 558 

 The preservation of systematic orientation relationships among baddeleyite 559 

grains suggest that the zirconia corona microstructure was achieved via solid-state 560 

transformations. Orientation relationships among baddeleyite grains were used to 561 

determine phase transformation heritage by one of two lineages: 1) zircon ! ZrO2-tet 562 

! ZrO2-mon (1690-2350 ºC), or 2) zircon ! ZrO2-tet ! ZrO2-cubic ! ZrO2-tet ! 563 

ZrO2-mon (>2350 ºC). For each grain cluster in the corona, the twelve preserved 564 

baddeleyite orientations (Fig. 4F) are best explained by a two-stage transformation 565 

from an original ZrO2-cubic grain (cf Cayron, 2007; Cayron et al., 2010; Humbert et 566 

al., 2010) (Fig. 7). This means that the baddeleyite grain clusters are the products of 567 

pre-existing cubic grains that had {100}cubic orientations aligned with {010}baddeleyite 568 

(Fig. 7). Furthermore, each of the three mutually-orthogonal orientation groups in 569 

each cluster (e.g., i-iii in Fig. 4F) is spatially distinct, defining pre-existing ZrO2-tet 570 

grains from the intermediate stage (cf Cayron, 2007; Cayron et al., 2010; Humbert et 571 

al., 2010). The observed baddeleyite orientations for each corona cluster can only be 572 

explained by twinning of ZrO2-tet in three orientations, which formed during 573 

transformation from ZrO2-cubic (cf Kerschhofer et al., 2000; Cayron, 2007; Cayron et 574 



  

al., 2010; Humbert et al., 2010). Therefore, the inferred phase heritage for the zirconia 575 

corona can be traced back to ZrO2-cubic. 576 

The implications of these findings are three-fold: (1) Grain morphology and 577 

crystallographic orientation of former ZrO2 phases can be reconstructed; (2) the non-578 

systematic orientation relationships observed between zircon and its dissociation 579 

products (in tis case, cubic ZrO2) could be used as diagnostic criteria to infer the 580 

former presence of zircon in other samples where zircon may have been completely 581 

consumed/dissociated and only polycrystalline aggregates of zirconia remain; (3) the 582 

analysis of orientation relationships to infer the former presence of phases with 583 

known stabilities constitutes a novel approach to thermobarometry. All textural and 584 

orientation evidence indicate that the Mistastin Lake grain experienced an extreme 585 

thermal excursion that did not fully dissociate prior to quenching of the host rock to 586 

glass, and also that the initial zircon was not shock metamorphosed prior to 587 

incorporation into the impact melt (Figs 1, 3). 588 

 589 

4.1.2 Microstructures formed by reidite transformation and reversion (Ries crater 590 

ZrSiO4) 591 

The Ries zircon grain contains two types of reidite; lamellar reidite 592 

preferentially formed in the crystalline rim domain, and granular reidite formed 593 

chiefly in the partially metamict core domain (Fig. 5). This observation suggests that 594 

intrinsic properties of each domain influenced the reidite transformation mechanism. 595 

The spatial restriction of lamellar reidite to non-metamict domains in zircon has been 596 

observed elsewhere (Cavosie et al., 2015a; Reddy et al., 2015; Erickson et al., in 597 

press). The reasons for this are twofold: First, reduction of the elastic moduli that 598 

accompanies radiation damage means that metamict domains are more compliant and 599 



  

achieve comparatively lower stresses as shock waves pass through the grain (Timms 600 

et al., in review). Second, defects that result from radiation damage are obstacles for 601 

lamellae propagation (Timms et al., in review). Higher defect densities associated 602 

with metamictisation at the time of impact could have provided both suitable 603 

nucleation sites and sufficient strain energy to overcome the nucleation energy barrier 604 

for granular reidite formation (Erickson et al., in press). 605 

The observed crystallographic orientation relationships between the host 606 

zircon and both granular and lamellar reidite varieties are consistent with the findings 607 

of other studies (Leroux et al., 1999; Cavosie et al., 2015a; Reddy et al., 2015; 608 

Erickson et al., in press). The two dominant, approximately orthogonal reidite 609 

orientations with a coincident <110> and a single high-angle (~90º) misorientation 610 

axis coincident with <001> of the host zircon are consistent with epitaxial nucleation 611 

of reidite granules via more than one of the eight symmetrically equivalent 612 

transformation variants (Fig. 5h, 7) (Erickson et al., in press).  613 

The formation of granular zircon with systematic ~90º misorientations, i.e., 614 

<110> of the neoblasts is aligned with [001] of the host grain, in the core domain of 615 

the Ries zircon is inconsistent with subgrain rotation recrystallization, which is 616 

expected to yield low-angle misorientations. However, the reversion of reidite back to 617 

zircon can occur with one of two main, symmetrically equivalent disorientation 618 

relationships, such that either of the conjugate {110}reidite = (001)zircon (Fig. 8). 619 

Therefore, the transformation sequence zircon!reidite!zircon can result in up to 620 

three approximately orthogonal orientations of neoformed zircon from one initial 621 

zircon orientation (Fig. 8). If each orientation permutation is equally likely to form 622 

during each of the transformation steps, then the original zircon orientation dominates 623 

the final microstructure (Fig. 8). Hence, the orientation relationships between granular 624 



  

zircon and host can be explained if the zircon neoblasts transformed from reidite (Fig. 625 

8). 626 

The development of neoformed zircon granules (neoblasts) by reversion from 627 

reidite has two significant implications: (1) zircon neoblast growth necessarily post-628 

dated reidite transformation, and most likely occurred during decompression when the 629 

grain returned to the zircon stability field (Fig. 1a); and (2) a systematic orthogonal 630 

disorientation relationship  (~90° around <110>) between zircon granules can be used 631 

as an indicator of zircon reversion from reidite (Fig. 8). This interpretation has been 632 

used to explain similar orientation relationships between neoblasts and to infer the 633 

former presence of reidite in granular zircon from Meteor Crater (Cavosie et al., 634 

2016b). 635 

The presence of lamellar reidite indicates that the grain from the Ries crater must 636 

have experienced shock pressures >30 GPa (Fig. 3). Furthermore, if a shear 637 

mechanism is not required for the formation of granular reidite (Cavosie et al., 638 

2015a), then this form of reidite could have nucleated at lower, hydrostatic conditions 639 

(>12 GPa), and potentially formed before the lamellar reidite during the same event 640 

(Figs 3, 9). However, this grain does not preserve evidence for dissociation, and so 641 

the maximum temperature during decompression and zircon neoblast growth cannot 642 

have exceeded 1690 ºC (Fig. 3, 9). 643 

 644 

4.1.3 Microstructures formed at high P and high T (Acraman zircon) 645 

Zircon neoblasts are pervasive in the Acraman zircon grain. As outlined above, the 646 

presence of ~90º / <110> disorientation between impinging neoblasts in the lower part 647 

of the Acraman zircon is consistent with nucleation of new grains by reversion from 648 

reidite (e.g., Cavosie et al., 2016b). However, the presence of baddeleyite indicates 649 



  

that dissociation must have occurred, at least locally. The misorientation relationship 650 

is inconsistent with those predicted from solid state reversion from ZrO2 after 651 

dissociation, which could generate a variety of 90º disorientation relationships among 652 

neoblasts, but would not produce specific systematic disorientations of 90º / <110> 653 

(Fig. 4, 7). Therefore, it is interpreted that the Acraman zircon grain experienced P-T 654 

conditions where reidite was stable. 655 

The baddeleyite crystals are fully enclosed in zircon neoblasts, which suggests that 656 

growth of zircon neoblasts occurred after dissociation, partially consuming ZrO2 and 657 

sourcing SiO2 from the surrounding impact melt. Therefore, the zircon specimen must 658 

have experienced post-decompression temperatures of >1690 ºC (Fig. 3B). The 659 

random (non-systematic) orientations of the peripheral, isolated zircon neoblasts 660 

indicates that their orientations are not inherited from the original zircon grain. The 661 

absence of any crystallographic inheritance from the original host grain requires an 662 

alternative explanation than where epitaxy is prevalent. It is difficult to determine 663 

whether or not the non-systematically oriented neoblasts formed via solid state 664 

transformation from zircon, reidite, or ZrO2 phases and were physically dispersed and 665 

non-systematically rotated within the silicate melt, or crystallised directly from melt. 666 

However, it seems unlikely that a fluid (either Zr-saturated melt or an immiscible 667 

ZrO2 liquid) generated from a decomposed zircon would have remained coherent long 668 

enough to recrystallize as ZrO2 and zircon because the viscosities of melt phases at 669 

this temperature must have been extremely low, and they would have been susceptible 670 

to diffusive and turbulent mixing during excavation and crater modification. 671 

Furthermore, a dynamic melt environment would have physically dispersed granules 672 

more heterogeneously than is observed. Perhaps the best explanation is that these 673 

granules nucleated initially in random orientations. Nevertheless, it is clear that 674 



  

granular texture formation was relatively late in the pressure-temperature history of 675 

the Acraman impact melt, and only occurred after zircon stabilized upon cooling 676 

below 1690 ºC (Fig. 3B) (Butterman and Foster, 1967; Kaiser et al., 2008)  677 

 678 

4.2 Application of the phase diagram and orientation relationships to infer P-T 679 

paths 680 

Inevitably, the exact shape and size of P-T trajectories during impact events will vary 681 

within and among impact structures, and will depend on the size, velocity, and 682 

composition of the impactor, the position of the target rock relative to the initial 683 

impact site, and the intrinsic material properties of the target rock (e.g., 684 

sedimentary/porous vs. crystalline/dense; permeable vs. impermeable), meso-scale 685 

heterogeneity of shock heating and compression, and the rate of cooling of the 686 

impactites that host the shocked zircon at high temperatures.  687 

The three zircon samples in this study preserve microstructures that indicate 688 

different pressure-temperature paths at extreme conditions (Fig. 3, 9). These case 689 

studies illustrate how shock conditions can be inferred and used to characterise 690 

different trajectories in pressure-temperature space (Fig. 9). It also shows, 691 

conceptually, how these trajectories make testable predictions about the potential for 692 

preservation or overprinting of early-formed microstructures and shock-induced 693 

phases. The zircon grain from the lithic clast in the Ries suevite (i.e., near the top of 694 

impactite deposits, typically characterized by relatively fast cooling rates) 695 

experienced a P-T loop that involves moderate shock pressure and heating (shown by 696 

the red line in Fig. 9). The Ries zircon was seemingly “protected” from direct contact 697 

with any impact melt (in this case flädle) by its own surrounding host rock clast, 698 

which was subjected to stage II shock metamorphism, and so experienced post-shock 699 



  

cooling rates that were high enough to inhibit the complete reversion of reidite to 700 

zircon. 701 

In contrast, the zircon in the Mistastin Lake impact melt (either a terrace melt 702 

pond or a more typical melt sheet overlying the crater basement and basal breccias, 703 

and likely originally overlain by some suevitic impactites) may simply represent a 704 

weakly shocked (or unshocked) target rock-derived grain that was entrained by the 705 

hot, fluid melt. This grain essentially underwent an extreme temperature excursion at 706 

very low-pressure (blue line of Fig. 9). Onorato et al. (1978) constrain the initial 707 

cooling of impact melt sheets to within ~100 seconds, and so the cooling rate of the 708 

Mistastin lake zircon was likely higher than that experienced by the Ries grain. 709 

The Acraman grain is inferred to have undergone a P-T loop where post-shock 710 

decompression temperatures were high enough for dissociation of zircon (green line 711 

of Fig. 8).  Given that a post-shock temperature of 1500 ºC has been estimated for 712 

non-porous quartzo-feldspathic rocks shocked to 60 GPa (Stöffler, 1971), it is 713 

therefore likely that the Acraman zircon experienced shock pressures >60 GPa. The 714 

Acraman melt rock occurs very close to “ground zero”, and formed by deeper melt 715 

injection into the uplifted crater basement inside the central uplift, presumably 716 

beneath the melt sheet. Subsequent “stage I” high-T cooling of the hot melt and wall 717 

rock was relatively slow, permitting growth of Fe-Ti oxides and spinifex albite. All of 718 

the P-T paths are consistent with granular textures forming late in the P-T history of 719 

shocked zircon. Granular zircon can form from the reversion of reidite to zircon by 720 

heating above 1200 ºC (Cavosie et al., 2016b), or the annealing of dissociated zircon, 721 

where ZrO2 grains react with Si-saturated impact melt to reconstitute zircon 722 

(Wittmann et al., 2006; Wittmann et al., 2009). 723 



  

The new phase diagram also helps to relate microstructure to conditions 724 

experienced by zircon reported from other impact structures, such as Vredefort in 725 

South Africa (Fig. 9A, B, C, line (i)) (Moser et al., 2009; Cavosie et al., 2010; Moser 726 

et al., 2011; Erickson et al., 2013a; Cavosie et al., 2015b; Montalvo et al., in press), 727 

Sudbury in Ontario, Canada (Fig. 9A, B, C, line (i)) (Thomson et al., 2014), Rock 728 

Elm in Wisconsin, USA (Fig. 9A-D) (Cavosie et al., 2015a), the Araguainha impact 729 

structure of Brazil (Tohver et al., 2012), the impact crater that produced the Stac Fada 730 

Member in Scotland (Fig. 9B, D) (Reddy et al., 2015; Reddy et al., 2016), Meteor 731 

Crater in Arizona, USA (Fig. 9F) (Cavosie et al., 2016b), Chicxulub in Mexico (Fig. 732 

9I) (Wittmann et al., 2006), and impact craters on the Moon (Fig. 9A, B, C, lines (i) 733 

and (ii)) (Timms et al., 2012b).  734 

 735 

4.3 Determining phase heritage: A new approach for extreme thermobarometry 736 

This study demonstrates that zircon grains can undergo a variety of structural and 737 

phase changes during impact events, which depend on the P-T trajectory. Here we 738 

identify two different approaches to ‘extreme thermobarometry’ using microstructures 739 

of zircon and the new P-T phase diagram. The first approach involves linking ‘direct 740 

evidence’ to the phase diagram. This includes identification of preserved high-P 741 

phases such as reidite (~30 GPa), diagnostic shock deformation microstructures such 742 

as twins in zircon (~20 GPa), and/or low-P, high-T processes, such as dissociation of 743 

zircon to zirconia and silica (~1687 ºC).  744 

The second approach involves gaining insight into P-T conditions from 745 

crystallographic orientation relationships to infer the former presence of phases that 746 

are no longer present. This approach includes orientation relationships between 747 

neoformed zircon granules to reveal the crystallographic legacy of former twins 748 



  

(tentatively ≥20 GPa shock conditions), reversion from reidite (indicating ≥30 GPa 749 

for shock metamorphism), and orientation relationships between ZrO2 produced by 750 

zircon dissociation to reveal the former presence of cubic zirconia (≥2370 ºC) or 751 

tetragonal zirconia (≥ ~1200 ºC). In this way, orientation analysis can be used to 752 

identify the former presence of phases, and even elucidate the possible sequence of 753 

transformations: a concept we refer to here as ‘phase heritage’. This approach cannot 754 

be applied to situations where orientation relationships with the original host have 755 

been lost; such as if the P-T history involves a stage where ZrO2 was liquid (i.e., total 756 

fusion), or when physical rotation of solid grains in a melt has occurred. The phase 757 

heritage approach outlined in this paper is particularly useful where other evidence of 758 

earlier processes has been erased, such as in granular shocked zircon. 759 

Currently, there are few published studies that quantify microstructures of 760 

zircon that have experienced extreme conditions, and so there is merit in collecting 761 

more data from natural samples from different environments. The case studies 762 

highlighted here focus on impact processes. However, our approach is equally 763 

applicable to zircon sourced from (or having travelled through) the mantle, or, for 764 

example, zircon in fulgurites, that have been modified by lightning strike. The phase 765 

diagram could have implications for recycling of crustal zircon and zirconia through 766 

the Earth’s mantle, kimberlite zircon, and consequently global behavior of Zr. 767 

 768 

Conclusions 769 

• The new P-T diagram constructed from available published data provides 770 

first-order constraints of the stability of ZrSiO4 (zircon, reidite), ZrO2 771 

(including baddeleyite) and SiO2 polymorphs. Up-pressure extrapolation of 772 

the dissociation reaction line (zircon → ZrO2 + SiO2) has been calculated to 773 



  

have a Clapeyron slope of 2.9 x10-3 GPa / °C, and so for a zero-pressure 774 

intercept of 1690 ºC, this reaction intersects the cristobalite solidus at ~0.14 775 

GPa. 776 

• Dissociation of zircon is a high-T, low-P process, that can occur via thermal 777 

processes alone (e.g., entrainment into an impact melt) or during to after shock 778 

decompression. Dissociation can result in numerous, non-systematic cubic 779 

ZrO2 orientations with respect to the original zircon. Upon cooling, each cubic 780 

grain transforms to up to twelve unique baddeleyite orientation variants (via 781 

an intermediate stage of up to three tetragonal ZrO2 variants), which permits 782 

the phase heritage to be inferred, providing constraints on post-shock 783 

temperature history of the sample. 784 

• Shock compression results in the transformation of zircon to lamellar or 785 

granular reidite, which produces up to eight unique crystallographic 786 

orientation variants with (001)zircon = {110}reidite that can be assigned to two 787 

groups that are broadly orthogonally aligned: In each group, reidite (001) are 788 

within 10º of each other.  789 

• Reversion of reidite back to zircon by the reverse orientation relationship or its 790 

symmetric equivalents produces up to three broadly orthogonal orientations, 791 

including the original zircon orientation plus two where (001) of the new 792 

zircon is aligned with {110} of the original orientation. This results in a 793 

characteristic ~90º / {110} disorientation between orientation domains in 794 

neoformed zircon that can be used as indirect evidence of the former presence 795 

of reidite. 796 

• In impact settings, granular zircon texture forms during or after shock 797 

decompression at high-T where zircon is stable, and preferentially forms in 798 



  

domains that contain defects (e.g., metamict domains, lamellae interfaces, 799 

etc.), where the energy barrier for nucleation is lower. 800 

• Combining microstructural analysis of zircon with new P-T diagrams for 801 

ZrSiO4-ZrO2-SiO2 is a useful approach to identify P-T paths during impact 802 

events. 803 
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Figure Captions 822 



  

Figure 1. A. Pressure-temperature-composition (P-T-X) space for the ZrO2-ZrSiO4-823 

SiO2 system, showing the scope of previous compilations and the relative positions of 824 

the figures presented in this study. Stish = stishovite; Coes = coesite; Tridy = 825 

tridymite; Qtz = quartz; Zrn = zircon; Bdy = baddeleyite; liq = liquid; oI and oII = 826 

orthorhombic; t = tetragonal; c = cubic. B. T-X phase diagram for ZrO2-ZrSiO4-SiO2 827 

system modified after Telle et al. (2015). Tridymite stability after Swamy et al. 828 

(1994). Dashed line represents zircon dissociation reaction after Curtis and Sowman 829 

(1953).  830 

 831 

Figure 2. Images showing rock textures of the case study samples. A. Optical 832 

photomicrograph of impact glass from the Mistastin Lake impact structure. Particles 833 

are partially digested minerals and lithic clasts. Plane polarised light. B. Backscattered 834 

electron (BSE) image of the zircon used in this study (white particle) within the 835 

Mistastin Lake impact glass. Pale grey halo and trail is silicate glass that is enriched 836 

in Zr (by up to 1 wt. %). C. Optical photomicrograph of zircon-bearing clast in 837 

suevite from the Ries impact structure that predominantly consists of maskelynite and 838 

amorphous SiO2. The zircon used in this study is central in the image, surrounded by 839 

a dark rectangle of electron beam damaged matrix phases. Plane polarised light. D. 840 

Optical photomicrograph of impact melt rock from the Acraman impact structure. 841 

Spinifex textured albite is commonly radial around partially digested mineral and 842 

lithic clasts. 843 

 844 

Figure 3. Pressure-temperature diagrams illustrating available data for conditions of 845 

ZrSiO4 transformations and dissociation to ZrO2 and SiO2. A. (i) ZrSiO4 polymorphs 846 

(zircon and reidite). Field labelled ‘crust’ represents metamorphic P-T conditions 847 



  

experienced by the Earth’s crust, and includes ultra-high pressure and ultra-high 848 

temperature metamorphism. (ii) expanded P-T field showing other constraints from 849 

shock experiments. Arrows show examples of trajectories of different materials from 850 

shock experiments. Porous sandstone = Kieffer et al. (1976); Quartz = Wackerle 851 

(1962); Olivine = Holland and Ahrens (1997). B. (i) Stability fields for zircon 852 

dissociation products SiO2 (thin lines coloured fields) and ZrO2 polymorphs (thicker 853 

lines and annotated fields). (ii) Expanded P-T field showing zircon dissociation 854 

reaction line (see text for calculation and discussion). Stish = stishovite; Coes = 855 

coesite; Tridy = tridymite; Cristob = cristobalite; Qtz = quartz; bdy = baddeleyite; liq 856 

= liquid; oI and oII = orthorhombic; t = tetragonal; c = cubic. (1) Marqués et al. 857 

(2006) and Du et al. (2012); (2) Reid and Ringwood (1969); (3) Liu (1979); (4) van 858 

Westrenen et al. (2004); (5) Knittle and Williams (1993); (6) Leroux et al. (1999); (7) 859 

Kusaba et al. (1985); (8) Morozova (2015); (9) Ono et al. (2004a); (10) Chaplot et al. 860 

(2006); (11) Tange and Takahashi (2004); (12) Butterman and Foster (1967), Kaiser 861 

et al. (2008); (13) Curtis and Sowman (1953); (14) Dutta and Mandal (2012); Silica 862 

phase transition univariant lines after Swamy et al. (1994) and references therein; 863 

Zirconia polymorph transition univariant lines after Bouvier et al. (2000) and 864 

references therein; (15) Ohtaka et al. (1994); (16) Arashi et al. (1990). 865 

 866 

Table 1. Thermodynamic parameters used to calculate zircon dissociation reaction 867 

line. Temperature in °K. Data source references indicated by superscript letters: a = 868 

O'Neill (2006); b = Bouvier et al. (2002); c = Robie and Hemingway (1995); d = Ortiz 869 

et al. (2007); e = Mao et al. (2001); f = Adams et al. (1985); g = Mittal et al. (1998); h 870 

= Subbarao et al. (1974). 871 

 872 



  

Table 2. Scanning electron microscopy settings and electron backscatter diffraction 873 

analysis acquisition and processing parameters. (Böhm, 1925; Teufer, 1962; Sands, 874 

1969; Hazen and Finger, 1979; Kirfe et al., 1979; Downs and Palmer, 1994; Hill and 875 

Cranswick, 1994; Bondars et al., 1995; Farnan et al., 2003). 876 

 877 

Figure 4. Mistastin Lake zircon in holohyaline impact glass. A. Cathodoluminescence 878 

image. Sector zoned igneous core surrounded by a bright, narrow, intermediate zircon 879 

domain and dark baddeleyite + silicate glass rim. B. Backscattered electron image of 880 

inset shown in A. C. Detail of backscattered electron image from inset shown in B. D. 881 

Orientation map from electron backscatter diffraction data. Zircon coloured for 882 

disorientation from a reference orientation shown by red cross near the center of 883 

grain. Baddeleyite assigned inverse pole figure (IPF) colour scheme. Special 884 

orientation boundaries in baddeleyite are shown as coloured lines. E. Detail of EBSD 885 

map from inset shown in D. Pole figures for selected baddeleyite grain clusters 886 

(numbered in E) plotted in the reference frame of the remaining zircon (refer to grey 887 

symbols on upper left plot). Sub-domains within each grain cluster are oriented 888 

orthogonally to one another (e.g., i, ii and iii in cluster 3). Pole figures are equal area, 889 

lower hemisphere plots in the EBSD map x-y-z reference frame. 890 

 891 

Figure 5. Ries Crater zircon. A. CL image showing bright rim with planar features 892 

(e.g., white arrow) and patchy yet dark core. B. BSE image showing inverse contrast 893 

relationship to CL image. Bright linear features can be seen in the rim (i). C. Phase 894 

map from EBSD data showing zircon-dominated rim domain (i) and core domain (ii) 895 

with zircon and reidite. D. Orientation map from EBSD data. Zircon and reidite 896 

assigned IPF colour scheme. Indexed reidite lamellae shown in domain (iii). E-H. 897 



  

Pole figures (top row) and equal area projections of disorientation axes binned by 898 

disorientation angle (bottom row) for host zircon in domain (i), and zircon and reidite 899 

in domains (ii) and (iii), respectively. Disorientation axis plots with >300 points have 900 

been contoured (max values are multiples of mean uniform distribution). Pole figures 901 

are equal area, lower hemisphere plots in the EBSD map x-y-z reference frame. 902 

 903 

Figure 6. Acraman zircon. A. BSE image. Bdy = baddeleyite. B. CL image. C. 904 

Orientation map from EBSD data. Zircon assigned IPF colour scheme. D. Pole figures 905 

for zircon. Colour scheme as in C. F. Equal area projections of disorientation axes 906 

binned by disorientation angle. Pole figures are equal area, lower hemisphere plots in 907 

the EBSD map x-y-z reference frame. 908 

 909 

Figure 7. Schematic diagram to show possible crystallographic orientation 910 

relationships associated with dissociation of a single zircon to ZrO2, followed by 911 

several polymorphic ZrO2 phase transformations determined from the Mistastin Lake 912 

grain. Each cubic ZrO2 variant can result in three tetragonal ZrO2 orientations, which 913 

in turn can lead to up to twelve distinct orientation variants of baddeleyite. Grey box 914 

shows an example orientation lineage across multiple phase transformations. See text 915 

for further discussion. 916 

 917 

Figure 8. Schematic diagram to show the possible crystallographic orientation 918 

relationships of transformation from a single zircon to reidite followed by reversion to 919 

zircon using known relationships (Leroux et al., 1999; Cavosie et al., 2015a; Erickson 920 

et al., in press). Pole figures summarise the key relationships. 921 

  922 



  

Figure 9. Schematic diagram to summarise different types of microstructure that can 923 

form during impact events, and how they link to pressure-temperature conditions for 924 

several example P-T paths (red, green and blue lines). Zrn = zircon; Reid = reidite. 925 

Stability fields based on Fig. 2. See text for discussion. 926 

 927 

Appendix 1 928 

The slope of a reaction in pressure-temperature space (Clapeyron slope) given by the 929 

change in entropy with respect to molar volume such that: 930 

 931 

𝑑𝑃𝑑𝑇=∆𝑆∆𝑉 932 

 933 

Therefore if it is possible to calculate the changes in entropy and molar volume for a 934 

reaction, in this case zircon ! ZrO2-tet + SiO2-crist, then the slope of this reaction 935 

may be determined.  936 

 937 

The temperature dependence of the entropy and molar volume can be approximated 938 

using expressions for the heat capacity and thermal expansion, respectively, of each 939 

phase in the reaction: 940 

 941 

𝑆𝑇,1=𝑆𝑇𝑟𝑒𝑓,1+ 𝑇𝑟𝑒𝑓𝑇𝐶𝑝𝑇𝑑𝑇 942 

 943 

𝑉𝑇,1=𝑉0𝑒𝑎0𝑇−𝑇𝑟𝑒𝑓 944 

 945 

Where Tref is the reference temperature for S and V0 946 



  

 947 

Similar expressions exist for extrapolations to higher pressure but the parameters in 948 

Table 1 for the phases of interest give a steep slope (29°C/bar) that intersects the 949 

silica solidus (~1715°C) at 1.4 kbar. 950 

 951 
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Table 1. Thermodynamic parameters used to calculate zircon dissociation reaction line. Temperature in °K. Data source references indicated by 

superscript letters: a = O’Neill, 2006; b = Bouvier et al., 2002; c = Robie & Hemmingway, 1995; d = Ortiz et al., 2007; e = Mao et al., 2001; f = 

Adams et al., 1985; g = Mittal et al. 1998; h = Subbarao et al., 1990. 

Phase δHf (1,Tref) S(1,Tref) Tref A b c d V0(1,Tref) a0 b0 Kp'

Zircon -2034.2a -384.0a 298.15 2.32E+02a -1.44E-02 a -2.24E+03 a 39.81c 5.00E-06h 4.44E-07g 6.5g

Mon-ZrO2 -1100.6a 167.1a 298.15 1.03E+02a -4.55E-03 a -4.16E+05 a -7.14E+02 a 21.15 c 8.12E-06f 5.21E-07d 5d

Tet-ZrO2 -1009.7a 165.8a 1430 7.86E+01a 20b 9.93E-06f 4.83E-07d 4.4d

Cristobalite -896.0a 69.7a 523 6.69E+01a 4.85E-03 a 2.54E+06 a 27.426 c 1.05E-06e 7.47E-11e 6e



Table 2. Scanning electron microscopy settings and electron backscatter diffraction 
analysis acquisition and processing parameters. 

SEM

Make/model Tescan Mira3 FEG-SEM
EBSD acquisition system Oxford Instruments Aztec / Nordlys EBSD Detector
EBSD Processing software Oxford Instruments Channel 5.10
Acceleration Voltage (kV) 20
Working Distance (mm) ~20.5
Tilt 70°
EBSD match units

Zircon Zircon5260, 1 atm (Hazen and Finger, 1979)
Reidite Reidite632, 0.69 GPa (Farnan et al., 2003)
Baddeleyite (monoclinic ZrO2) (Bondars et al., 1995), (Hill and Cranswick, 1994)
Tetragonal ZrO2 (Teufer, 1962)
Cubic ZrO2 ICSD card 53998 (Böhm, 1925)
Orthorhombic ZrO2 ICSD card 77716
Quartz ‘Quartznew’, HKL database (Sands, 1969)
Cristobalite (Downs and Palmer, 1994)
Coesite (Kirfe et al., 1979)
EBSP Acquisition, Indexing and Processing

Sample Location Mistastin Lake Ries Acraman

Grain ID Zrn 2 Zrn 21 Zrn 19
Figure 4 5 6

EBSP Acquisition Speed (Hz) 40 40 40
EBSP Background (frames) 64 64 64
EBSP Binning 4 x 4 4 x 4 4 x 4
EBSP Gain High High High
Hough resolution 60 60 60
Band detection (min / max) 6 / 8 6 / 8 6 / 8
Mean angular deviation (zircon) <1° <1° <1°
Mean angular deviation (reidite) n/a <1° n/a
Mean angular deviation (baddeleyite) <1° n/a n/a
Map step size (nm) 80 200 100
Map size (X steps / Y steps) 1495 / 1435 417 / 442 205 / 314
EBSD noise reduction routine

Wildspike correction Yes Yes Yes
Nearest neighbour zero solution 
extrapolation

6 7 6
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