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Abstract — The paper presents a hiologicdly-inspired multi-level neural-schema
architecture for prey catching and predator avoidance in single and multiple autonomous
robotic systems. The architecture is inspired on anuran (frogs and toads) neuroethological
studies and wolf pack group behaviors. The single robot architecture exploits visuomotor
coordination modds developed to explain anuran behavior in the presence of preys and
predators. The mulitiple robot architecture extends the individua prey catching and predator
avoidance model to experiment with group behavior. The robotic modeling architecture
diginguishes between higher-level schemas representing behavior and lower-leve neurd
structures representing brain regions. We present results from single and multiple robot
experiments developed using the NSL/ASL/MIRO system and Sony AIBO ERS-210
robots.

Index Terms — Biorobotics Biologicdly-inspired Robotics; Neural Networks, Schemas,
Behaviors, Prey Catching; Predator Avoidance; Swarms.
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|. INTRODUCTION

In recent years researchers have taken a specid interest in biologicd gudies of anima behavior
(ethology) as a basis for robotic systems [8][13]. Some researchers have gone even further by trying to
provide a linkage between animd behavior and underlying brain mechanisms (neuroethology) [2].
Among these, there has been substantial work in studying the underlying neural mechanismsresponsible
for sensorimotor coordinaion in living animas [3]. In this paper we extend upon this work by
describing a neurd- schema architecture for robotics systems inspired on anima studies that builds upon
acycle of biologica experimentation, computational modeling and robotics experimentationas depicted
in Figure 1. This generd research framework not only contributes to the development of new robotic
architectures but adso provides a platform to further study and experiment with anima behaviors [43].

The prey catching and predator avoidance sensorimotor models described in thiswork are inspired
on visudly-guided neuroethological sudies in anurans (frogs and toads) [26] aswdl as praying mantis
[16]. Thesemodds are further extended by ethological studiesin wolf pack hunting [33] to ingpire new
dudies, experiments and robotic architectures for dngle and multiple robot sysems. The
neuroethologica models described by this work are based on schema and neural network multi-leve
architectures developed using the Abstract Smulation Language ASL [44] and the Neurd Smulation
Language NSL f7]. We integrate the ASL/NSL didributed system [B50] with the Mobile Internet
Robotics MIRO [49] to perform actua robot experiments using the Sony AIBO ERS-210 platform
This work is presented in the paper as follows. Section Il describes a neura-schema architecture for
biologically-inspired robotic systems; Secion |11 presents a prey catching and predator avoidance model
for single robots; Section IV presents experiments and results for prey catching and predator avoidance
on single robots; Secion V presents a prey catching and predator avoidance modd for multiple robots
Section VI presents experiments and results for prey catching and predator avoidance on multiple
robots; and Section VI presents the conclusions and discusses future work.
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Figure 1. The above diagram depicts a framework for the study of living organisms through cycles of biological

experimentation, computational modeling, and robotics experimentation serving as inspiration to the design of
biologically-inspired autonomous robotics systems.
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Il. A NEURAL-SCHEMA ARCHITECTURE FOR BIOLOGICALLY -INSPIRED ROBOTICS SYSTEMS

The dudy of animds has provided an invduable source of information for the understanding of
neurobiologica systems and the ingpiration of new robotic architectures [7]. To address the underlying
complexity in building such sysems we distinguish between two different levels of modding: behavior
and neurd structure [1]:

1. At the behavior level, ethologica and neuroethologica data from living animas is gathered to study
the spatial-tempora relationship between sngle and multiple living entities and thelr environment,
giving emphass to aspects such as cooperation and competition between them. Examples of
behaviora modds include prey catching and predator avoidance in frogs and toads[6, 19, 20, 21],
and praying mantis [9]. A schema computational model describes behaviors in terms of perception
sensorimotor integration and motor action [4, 5].

2. At the neurd leve, neuroanatomica and neuronphysiological data are used to generate perceptud
and motor neura network models corresponding to schemas developed at the behaviora leve [46].
These modds are intended to explain the underlying mechanisms for sensorimotor integration
involved in behaviors such as habituation [32, 42], prey catching and predator avoidance [48], and
learning to detour around a barrier [23]. Examples of neura network modes include the frog's
tectum and pretectum-thaamus responsible for discrimination among preys and predators[17, 18].

A. Behavior

Animds depend on their gbility to perform certain behaviors in response to externd stimuli. In Figure 2
we show a prey catching behavior when a prey becomes vishble (Ieft) and a predator avoidance
behavior when a predator appears (right).

prey_visible predator_visible
prey not_visible predator_not_visible

Figure 2. State machine diagram describing an animal pursuing a visible prey (left) and an animal fleeing away
from avisible predator (right).

B. Schemas and ASL

Schemas define a didtributed computationd hierarchy for action-perception in anmds. In schema
architectures, as depicted in Figure 3, we digtinguish among multiple levels of decomposition to better
describe ampler units of processing in the brain. In the top portion of the diagrama higher-leve schema
is shown decomposed into two lower level schemas where the three schemas together form what is
known as a schema aggregate or assemblage. Note how the multi-level schema decomposition
provides a top-down approach where higher level schemas are initidly described a a more functiond
way followed by a more detailed lower levd schema specification, and a bottomup data-driven
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gpproach where individud schemas are specified in detail and then assembled in cregting higher level
comprehensive schema systems.

Schema Level 1

SchemalLeve 2

Figure 3. A schema hierarchy decomposes (dashed arrows) higher level schemas (level 1) into more detailed
lower level schemas (level 2).

Communication between schemas can be of a cooperative or competitive nature. When schema
activity surpasses certain threshold it produces output indicating enough confidence on that particular
schema, ds0 known as schema assertion. Figure 4 shows a schema architecturefor a prey catching
and predator avoidance behavior involving Visual Perception (PS - perceptua scherma), Motor
Action (MS - motor schema), and Prey Catching and Predator Avoidance (S — sensorimotor
schemas). In the diagram Prey Catching isfurther decomposed into Prey Recognition, Prey Selector

and Prey Approach schemas.

S
Predator | N\
Avoidance
PS MS
Visual | Motor
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Catching
7 1N
;’, ] s\
A Y
’, ] N
’ N
’ 1 S
7 ! AN
e 1 S
—— A‘—
S S S
Prey Prey Prey
Recognition Selection Approach

Figure 4. Schema architecture showing Visual Perception (PS - perceptual schemas), Motor Action (MS- Motor
Schema), and Prey Catching and Predator Avoidance (S - sensorimotor schemas). Prey Catching is further
decomposed into lower level Prey Recognition, Prey Selection and Prey Approach schemas. Solid arows
represent information flow from schemas at the same level; dashed arrows represent schema decomposition
between multiple levels; and solid circles at the end of lines represent schema competition.
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The Abstract Schema Language ASL [44] can be used to model schema architectureswhere each
schema incorporates its own dructure and control mechanisms. At the higher functiond levels, schemas
are only specified, leaving their detailed implementations to lower level schemas. The schemainterface
condsts of multiple unidirectional control/data, input and output ports together with a schema
implementation body, as shown in Figure 5.

—> din, dout, 3>
Schema
—> din_ dout, >

Figure 5. Each schema may contain multiple input, din,.,din, and output, dout,...,douty,, ports for
unidirectional communication.

Schema connectivity is inspired in port automata with activity variables indicating the degree of
confidence B9]. Communication between schemas in ASL isin the form of asynchronous message
passng, hierarchicdly managed, interndly, through anonymous port reading and writing, and externdly,
through dynamic port connections and relabelings. In Figure 6 we show an example of two leve
schema hierarchy with interconnected and relabeled ports. Schemas are interconnected by matching
schema interfaces, in other words, connections (solid arrows) are done by linking output portsfrom
one schemato input portsin other schemas. On the other hand, relabelings (dashed arrows) are done
by linking ports of amilar type (input or output) among different schemas usudly & different levelsin the
hierarchy. In such a multi-level hierarchy, we consder that higher-level schemasto delegatethe task to
lower-level ones. The hierarchicd port management framework enables the development of distributed
architectures where schemas may be designed in a top-down or bottom-up fashion implemented
independently and without prior knowledge of the complete modd or their find execution environment,
thus encouraging component reusability.

i Prey Motor
Visua ’ .
Perception Catching Action
objects »| objects action ¥ |action
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’ L
yooTTTTTTTToTTeomm TETEET T mm e !
! '
i z
objects action
preys »{ preys prey ”| prey
Prey. Prey Prey
Recognition Selector Approach

Figure 6. Example of a two-level schema model showing port interconnections and relabelings. Note how the objects input
port in Prey Catching is relabeled to objects in Prey Recognition while action output port in Prey Approach is relabeled to

action in Prey Catching. The solid lines show connections from output ports in one schema to input ports in another
schema.
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In the following piece of codewe show portions of the schema specification in ASL corresponding
to the diagram described in Figure 6 ASL uses a Java-like syntax where schemas are declared and
indantiated (not seen in the code) and have their ports interconnected insde the makeConn using the
nslConnect method connecting an output port to an input port, e.g. vp.objects with pc.objects and
pc.action with ma.action, as shown below.

nsM odule SchemaM odel extends NsIModule
{

public VisualPer ception vp;
public PreCatching pc;
public Motor Action mg

public voidmakeConn(){

nsl Connect(vp.objects, pc.objects);
nsl Connect(pc.action, ma.action);

In the following piece of code we show a portion of PreyCatching schema whereit relabels some
of its ports to lower-leve ports defined in PreyRecognition and PreyApproach schemas Note the
additiona connection between the preys and prey portsin the lower level schemas

ndM odule PreyCatching extends NsIModule

{
public PreyRecognition pr;
public PreySelection ps;
public PreyApproach pa;
public voidmakeConn(){
nslRelabel (objects, pr.objects);
nslRelabel (pa.action, action);
nslConnect(pr.preys, ps.preys);
nslConnect(ps.prey, pa.prey);
}
}

C. Neural Networks and NSL

In a neura-schema architecture, schemas may be specified at ahigher levd and then implemented by
lower level neuroethologica mechanisms corresponding to neural schemas, as shown in Figure 7.
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Figure 7. In a neural schema architecture, higher level schema may be implemented by lower level neura
mechanismsin the form of neural schemas

A MaxSelector neurd schema example is shown in Figure 8. This schema is responsible for
secting among multiple preys where more than one is present. At the ASL description level, neurd
schemas are treated as regular schemas having ports, connediions and relabels as any other schema
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Figure 8. A MaxSdlector neural schema implementation pf Prey Sdection schema

A neurd network implementation of a neura schema is shown in Figure 9 where neurons are
described by smpler elements, each represerted by a sphere with connections among neurons
represented by solid arrows. In generd, neural schemas may be implemented by neura networks
described a any levels of detal, from very smple neurons to complex and detailed neurons involving
eectrochemicd mechanisms responsble for phenomena like syngptic pladticity. While there is no

restriction to what degree of detail a neura schema may be described, it is usualy the case where
sampler neurd modds are used when building larger neural networks.
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neurd schema

neura network
Figure 9. Neural schemaimplementation by a simple neural network model. Spheres represent neurons while solid
arrows represent neural connections.

Simpler neuron modes, such as the leaky integrator neurd model [2], are best suited for large-
scale computation, where each neuron is defined in terms of a membrane potential with vaue mp
representing its previous higtory, input s and output vaue mf represented by a nonlinear threshold
function over its membrane potentid, as shownin Fgure 10.

~

s/ mf

input neuron output
Figure 10. Simple neural model having an input s a neuron body or soma mp, and output nf.

Theleaky integrator neural modd is described by:

dmp(t)/dt = f(smpyt) @
mf(t) =s(mp(t) @
t dm(t)/dt =-m(t) +s 3

Equation 1 describes the membrane potentid mp in terms of a firs order differentia equation
function f that varies in time and depends on its input s and previous mp vaue. Equation 2 describes the
adl fiing mf in terms of a threshold function s that also varies in time and depends on its membrane
potentid. Equation 3 describes the leaky integrator mode with dependence on an integration congtant t.

For example, the Maximum Sdlector [25] neura network, shown in Figure 11, is described using the
following lesky integrator equtions:

U%Z‘Upi*'WuUfi‘Wme'hu"'S (4)
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Equation 4 represents the leaky integrator equation for neurons u with weghted input from u and v,
viaud input s in addition to parameter h and time constant t . Equation 5 describes the output of neurons
u asa“sep” threshold function. Equation 6 represents the lesky integrator equation for neuron v with

weighted input from v and u, in addition to parameter h and time congtant t. Equation 7 describes the
output of neuron v asa“ramp” threshold function.

lsn
(;@/

Wn

Figure 11. The neural network shown corresponds to the architecture of the Maximum Selector model, where upj
and vp represent neural membrane potentials, ufj and vf represent neura firing rates, sj represent inputs to the
network, and wj represent connection weights. The network is initialized with a number of positive inputs

assigned to different cells. After multiple iterations the network stabilizes producing a single "winner", i.e. a
single active cell.

The Neural Smulation Language NSL [47] provides the foundations to describe neurd schemasin
terms of neural networks. For example, the MaxSelector neurd schema code is described next and
indudes indantiation varigbles, sizeX and sizeY where the actua number of neurons is specified The
schema dso contains an in “NdDinDouble2” input port and an out “NdDoutDouble2” output ports
Additiondly, there are declarations for internd variables, up, uf, vp, vf, hu, hv and tau, used in the
simRun method for neura processing. Note the correspondence with equations 4 to 7. The other
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method, initRun, is used for congant and variable initidizations. (Documentation and model code is
available for download from the NSL web Sites [34].)

ndModule MaxSelector (int sizeX, int sizeY) extends NsiModule

{
public NdDinDouble2 in(sizeX ,sizeY);
public NsIDoutDouble2 out(sizeX ,sizeY);

public NsIDouble2 up(sizeX,sizeY);
public NsIDouble2 uf(sizeX ,sizeY);
public NsiDouble0 vp, vf;

public NslDouble0 hu, hv, tau;

public voidinitRun(){
up=0; uf =0; vp=0; vf =0;
hu=0.1; hv =0.5; tau = 1.0;
}
public voidsimRun(){
up = nslDiff(up,tau, -up + uf - vf —hu+in);
uf = nslStep(up,0.1,0.1.0);
vp = nsIDiff(vp,tau;vp + nsiSum(uf) — hv);
vf = nsdRamp(vp);
out = uf;

D. Robotics and MIRO

The ASL and NSL systems have been embedded into the MIRO [49] robotics architecture into a
unified Smulation and robotics experimental environment. In the integrated system, shown in Figure 12,
MIRO controls robot sensory input and motor output while ASL/NSL performs expensive schemaand
neura network model processing MIRO performs preliminary visud processing such as blob formation
and segmentation from ether the smulated or red camera, and perfornms motor actions fromsimulation
or real robot commands. Although the MIRO architecture would make it possible to share robot
“intdligence’” among multiple robots, we keep robots fully independent and autonomous. The
drawbacks in such an architecture are communication delays between robot and computer considered
negligible consdering the expensve processing of neurd networks
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Figure 12. Block diagram for the embedded ASL/NSL and MIRO robot architecture. ASL/NSL is responsible for schemaand
neural network processing while MIRO provides robotic control from the simulated or physical robot environment.

For the work presented in this paper we have used a number of Sony AIBO ERS-210 four-legged
robots having a local cameracommunicating with the ASL/NSL/MIRO system via wirdess networking.
In Figure 13 we show a sample cycle of computation of the NSL/ASL/MIRO robotics architecture.
The camera in the robot captures video and sends it to the remote computer for video processng by
MIRO. Afterwards model processing is carried out in the computer by NSL/ASL using as input the
processed images. NSL/ASL generates modd output in the form of action control commands, i.e. robot
walking, robot and camera headings. These commands are sent by MIRO to the robots via wirdess
communication. The following cydes repesats themseaves indefinitely or until behaviors are completed:

Video Capture - Images are obtained from the smulated or red robot camera via wirdess
trangmisson.

Video Processing - Objects are recognized according to some intringc characterigtic such ascolor,
eg. blue corresponding to a prey and greento a predator.

Model Processing - Graphs represent prey catching and predator avoidance schemafields.

Model Output - Modd output is spedfied in terms of displacement d, robot orientation g and
camera orientation .

Robot Control. Robot is controlled remotdly via wirdess transmisson.
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Figure 13. Cycle of computation for robotic experiments using the ASL/NSL and MIRO architecture. The model
output consists of robot displacement d, robot orientation gqr and camera orientation qc.

[11. PREY CATCHING AND PREDATOR AVOIDANCE— SINGLE ROBOT ARCHITECTURE

Anurans (frogs and toads) and praying mantis display Smilar visuomotor coordination prey catching and
predator avoidance. Both animds respond to far avay moving simuli in their monocular laterd visud
fidd, exploiting ther binocular visud fidd for doser dimuli distance computation. While their overdl
behaviors may overlap, such as orierting and then approaching a prey, there are severd differences
such as their response to predators. Initidly both animds may try to flee avay, yet, frogswill display a
ducking behavior when closer to predators while praying mantiswill display a deimatic behavior where
the insect stands up and opens its wings and forearms to gppear larger than it redly is [16]. In this
section we describe the generdities in anuran and praying mantis prey catching and predator avoidance
behaviors where particular anuran behaviors are included in the mode when differing in their response.
Prey catching behavior in anurans and praying mantis (to be generdized as “frogs’ in the rest of the
paper) are summarized as follows

Pursuit - The frog will move towards a prey using ether itslaterd or binocular visud fidd
depending on its distance to the stimulus. The frog will move in the same direction asthe prey,
trying to keep it within reaching disance.

Attack - When the stimulus is within reaching distance, the frogwill snap at the prey after
performing abinocular fixation to estimate its three-dimensiond relative postion.

Eat — After successfully sngpping at the prey the frog will swalow and ingest it.
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In the case of predator avoidance, frogs will detect large snake-like or bird-like moving simuli by
reorientationand fleeing away from them

Flee - Thefrog will orient avay in an opposite direction to the predator.

Duck —When too close to escape, the frog will duck in an attempt to avoid being seen by the
predator.

In the case of multiple simuli, afrog will sdect and react to the largest prey or predator dthoughin
some cases it will respond to their average [22]. Figure 14 shows a dimulus-response diagram for the
frog prey catching (Ieft) and predator avoidance (right) behaviors.

e
ek
2 €ommmnan
 mmmeme- -> -
Stimulus Response Stimulus Response
Mobile Prey Mobile Predator
in Monocular in Monocular
Lateral Visual Field \ Lateral Visual Field \
Orient & Orient &
Approach Flee from
Prey Predator
Mobile Prey / Mobile Predator /
in Binocular in Binocular
Visual Field \ Visual Field \
Snap at Duck
Prey
Prey
Inside
Mouth
\ Ingest
Prey

Figure 14. Stimulus-response diagrams for afrog (left) prey catching and (predator) predator avoidance
behaviors.

A. Behaviors

The prey catching behavior is described in terms of a state diagram that includes Pursuit, Attack, Eat
and Wander states as shown in Figure 15:

Wander - In the Wander dtate the frog explores the environment in search for a prey. When it
detects one, the prey_visible condition is activated indicating a change to the Pursuit state.

Pursuit - Inthe Pursuit state there are two possible trangitions. one towards the Wander seaein
case the prey is outsde its range of vison caused by the prey_not_visible condition; the second
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trangtion occurs when the prey is detected a a close distance, activated by the prey _near
condition.

Attack - In the Attack dtatethe animd snaps at the prey activating the prey_catch condition. If the
anima gets far from the prey the behavior goes back to the Pursuit state activated by the prey_far

condition.

Eat - In the Eat dtate the anima digedts the prey after successfully snapping &t it. If the prey has
been eaten the condition prey _not_visible is activated returning to the Wander dtate. If the prey
suddenly escapes, the condition prey_not_catch is activated returning to the Attack state.

prey_n?/_ visible

prey_Rot_catch

prey_not_\isi

Figure 15. Prey catching behavior consisting of Wander, Pursuit, Attack and Eat states.

The predator avoidance behavior is described in terms of a state diagram that includes Flee, Duck
and Wander dtates as shown in Figure 16:

Wander — The Wander date is andogous to thet in the Prey Catching behavior. If the animd
detects a predator during wandering, the predator_visible condition is activated indicating a change
to the Flee State.

Flee — In the Flee state he animd will gt away in direction opposite to the predator. If the
predator gets too close the predator_near condition is activated changing to a Duck state avoid
being perceived by the predator. If the predator is not visble, the predator_not_visible condition is
activated going back to a Wander state.

Duck — Inthe Duck date the frog gets either eaten or is able to escape. If the predator is visible but
not too near, the predator_far condition is activated going back to the Flee state. If the predator is
not vishble, the predator_not_visible condition is activated changing to a Wander state.
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predator_not_visible

predator_not_Wgi predator_far

Figure 16. Predator Avoidancebehavior consisting of Wander, Flee and Duck states.

Additiondly, the animd will change from Prey Catching to Predator Avoidance state depending if
a predator becomes vishle with the activation of the corresponding predator_visible condition and
dterndivdy the ate will switch from Predator Avoidanceto Prey Catching with the activetion of the
correponding predator_not_visible condition aslong asaprey isin the visud fidd (otherwise the frog
will switch to aWander gtate), as shownin Figure 17:

predator_not_visible
Prey Predator
Catching Avnidance

predator_visible
Figure 17. When in the Prey Catching state the animal will change to the Predator Avoidance state if the
condition predator_visible is activated. Alternatively, when in the Predator Avoidance state the animal will
change to the Prey Catching state if the condition predator_not_visibleis activated.

B. Schemas

The prey catching and predator avoidance behaviors are mapped to a set of schemas, shown in Figure
18 The schema architecture includes perceptual schemas Visual, Prey Recognizer, Predator
Recognizer, Max Prey Selector and Max Predator Selector ; sensorimotor schemas: Prey Approach,
Predator Avoid and Motor Heading Map; and motor schemas Orient, Forward and Backup. Note
that Orient can be combined with Forward or Backward movement to didt e.g. a diagona motion
Note the competitive “dotted” line between Prey Approach and Predator Avoid schemas.
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Figure 18. Prey acquisition and predator avoidance schema architecture consisting of perceptual schemas (PS):
Visual, Prey Recognizer, Predator Recognizer, Max Prey Selector and Max Predator Selector; sensorimotor
schemas (S):  Prey Approach, Predator Avoid and Motor Heading Map; and notor schemas (MS): Orient,
Forward and Backup.

Per ceptual schemas describe sensor and recognition processes.

Vision - Perceives moving stimuli mapped to either preysor predators.

Prey Recognizer - Recognizes prey-like gimuli.

Predator Recognizer - Recognizes predator-like simuli.

Max Prey Selector - Sdects asingle prey-like simulus from multiple ones,

Max Predator Selector - Sdlects asingle predator-like simulus from multiple ones.

Sensorimotor schemas integrate sensory and motor action processes.

Prey Approach — Obtains input from the Max Prey Selector schema generaing as output an
attractant field whose strength decays proportiona to the distance to the prey.

Predator Avoid - Obtains input from the Max Predator Selector schema generating as output a
repellent field whose strength decays proportiona to the distance to the predator.

Motor Heading Map (MHM) — Obtains input from both Prey Approach and Predator Avoid
schemas generdting output that combines their weighed activities. A winner-take-al dynamics over
MHM assures the sdlection of the strongest target angle for prey attraction or predator repulsion.
The MHM schema provides input to the different motor schemas.

Motor schemas describe motor actions representing intrinsic motor patterns or muscle activations:

Orient - Obtains adirection to reorient, either forwards or backwards.
Backward - Performs backward movements.
Forward - Performs forward movements.
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C. Neural Networks

In order to develop a multi-leve neural schema modd it is necessary to have a mapping between
behavior, schemas and the underlying frog brain regions. Figure 19 illudrates the most important prey
caching and predator avoidance brain regions involved, manly: Retina, Optic Tectum and
Pretectum/Thalamus[37].

Figure 19. The two illustrations show the most important neural areas involved in the frog prey catching and
predator avoidance model: Optic Tectum (O), divided into four regions. Temporal (T), Dorsal (D), Nasal (N) and
Ventral (V); Thalamic Pretectal Neuropil (P); and Nucleus of Belonci (B), Lateral Geniculate Nucleus (C) and Basal
Optic Root (X) [37].

Based on neurophysiologicad and neuroanatomical studies researchers have identified the structures
of the Centrd Nervous System (CNS) that possibly conform the base of neura activity during prey
catching and predator avoidance [27, 28]: retina (R), optic tectum (O), and prethalamic tectum (P).
Many dectrophysiologica tests have shown how the optic tectum and its cdlls (T5_2) are linked to the
prey recognition process and, therefore, to the prey catching behavior. On the other hand, the
prethaamic tectum region and its cells (TH3) are related to predator recognition and, therefore, to
predator avoidance. The discrimination between preys and predators, and the sdection of the most
important stimuli (if both are present), depend on the interaction between the TS 2 and TH3 cdlls. If
there is a prey simulus, the optic tectum, in addition to some prethaamic tectum sgnds, activates the
catching motor responses. Meanwhile, when a predator stimulus is present, the prethdamic tectum
sends hhibitory sgnds to the optic tectum to initiate the avoidance behavior. Physiologicd evidence
shows that separate classes of retind ganglion cdlls are senstive to prey and predator stimuli supporting
the hypothesis that tectd and thalamic visud mechaniams can operate somewhat independently [31]. In
Figure 20 we show mappings between schemas and the underlying neurd networks:

Retina - Processes visud stimuli in anurans[24, 40].

MaxSelector - Chooses among multiple simuli, sometimes responding to an “average’ simulus
[22, 25].

Tectum — Recognizes preys as well as matesin anurans[14, 26].

PreTectum/Thalamus - Recognizes stationary or predator-like objectsin anurans [29, 30].
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Figure 20. Prey catching and predator avoidance multi level neural schema architecture. The schema level consists of
perceptual schemas (PS): Visual, Prey Recognizer, Predator Recognizer, Max Prey Selector and Max Predator Selector;
sensorimotor Schemas (S): Prey Approach, Predator Avoid, and Motor Heading Map; and motor schemas (MS): Orient,
Forward, and Backup. The neura level consists of four neural schemas: Retina, MaxSdector, Tectum and
PreTectum/Thalamus.

V. PREY CATCHING AND PREDATOR AVOIDANCE — SINGLE ROBOT EXPERIMENTS AND RESULTS

In this section we describe prey catching and predator avoidance experiments on single robots inspired
in anuran gudies as described in the previous section. We initidly test the experiments under a
samulation-only environment and then perform physical experiments with the redl robot.

A. Prey Catching

We tested a set of basic prey catching experimentsinvolvinga frog and prey as shown in Figure 21. The
amulation shows, Figure 21 (left), a frog (square box) pursuing a moving prey @ndler horizonta
rectangle). The frog moves towards the prey with steps numbered 1 through 4 where dashed arrows
represent frog's visud fidd. Figure 21 (right) shows different neurd schema field activities during the
simulation predator_hor represents predator activity in PreTectumyThalamus, prey _hor represents
prey activity in Tectum, mhm represents combined prey and predator activities in Motor Heading
Map (MHM) and wta (winner-take-all) represents frog movement direction in MHM. Note that
activities are modeled as Gaussians with the exception of the wta step function.
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Figure 21. The figure shows (l€eft) the frog (square box) trajectory during prey catching behaviorin response to prey
(smaller horizontal rectangle) position. The prey moves horizontally independent of actual frog movement. The
trajectory shows numbered positions “1” through“4” for frog (dashed arrows) and prey, with frog visual field shown
as a “v” shape. Note howthe frog gets closer to the prey adjusting its orientation at each time step. Thefigure (right)
shows different activity fields in the neural schema model. From the top: (i) predator_hor represents predator
activation in PreTectum'Thalamus neural schema showing no activity since no predator is present, (ii) prey_hor
represents prey activation in Tectumneural schema with activation centered at the prey location, (iii) mhm represents
combined prey and predator activation in Motor Heading Map (MHM), and (iv) wta represents winnertake-dl
activity in MHM resulting in movement towards maximum MHM activity.

The physca experiment results are shown in Fgure 22. Figure 22 (left) shows the robot trgjectory
towards a static blue colored cylinder corresponding to prey (amoving prey experiment is described in
the multiple robot experiment section). Note that we are smplifying perception by recognizing a blue
colored cylinder as the prey. The Retina schema caculates distances to the dimulus by computing the
number of blue pixds segmented from the visud fidd of the camera. Due to the absence of obstaclesthe
robot moves towards the prey (Pursuit state) stopping a a short distance before the prey (Attack and
Eat states). Figure 22 (right) shows fidd activities (Ieft portion of the display window) smilar to those
previoudy shown in Figure 21. Theright portion of the display window shows visualField activity in the
Retina schema diplaying the ssgmented blue cylinder corresponding to prey.
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Fgure 2. The figure shows (left) the robot trajectory during prey catching behavior in response to prey position.
The figure (right) shows a window with two displays. The left display shows the following activity fields from the
Ieft: (i) preyHor represents prey activation in Tectumneural schema with activation centered at the prey location, (ii)
predatorHor represents predator activation in PreTectumy/Thalamus neural schema showing no activity since no
predator is present, (iii) mhm represents combined prey and predator activation in Motor Heading Map (MHM), and
(iv) wta represents winner-take-all activity in MHM resulting in movement direction towards maximum combined
MHM activity. The right display shows visualField activity in the Retina.

B. Predator Avoidance

We tested a set of basic predator avoidarce experiments involving afrog and predator as shown in
Figure 2. The smulaion shows a frog (square box) avoiding a moving predator (larger vertica
rectangle). The frog moves opposite predator direction with step, numbered 1 through 3, where dashed
arrows represent frog's visud field. Figure 23 (right) shows different neural schemafied activitiesduring
the dmulationt predator_hor represents predator activity in PreTectumVThalamus, prey_hor
representing prey activity in Tectum, mhm represents combined prey and predator activitiesin Motor
Heading Map (MHM) and wta (winner-take-dl) represents frog movement direction in MHM. Inred
frogs, obstacles correspond to any static objects while preys and predators are recognized only if they
move. In particular, preys have alarger horizontd to verticd ratio while predators have alarger vertica
to horizontd ratio. To amplify visuad processng, preys and predators will be recognized in these
experimentsby color where blue is used for preys and green for predators.
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Figure 23. The figure shows (left) the frog (sguare box) trajectory during predator avoidance behavior in response to
predator (larger vertical rectangle) position. The predator moves horizontally independent of actual frog movement.
The tragjectory shows numbered positions “1” through “3" for frog (dashed arrows) and predator, with frog visual
field shown asa*“v” shape. Note how the frog gets away from the predator adjusting its orientation at each time step.
The figure (right) shows different activity fields in the neural schema model. From the top: (i) predator_hor
represents predator activation in PreTectum/Thalamus neural schemawith activity centered at the predator location,
(i) prey_hor represents prey activation in Tectumneural schema showing no activity since no predator is present,
(ili) mhmrepresents combined prey and predator activation in Motor Heading Map (MHM), and (iv) wta represents
winner-take-all activity in MHM resulting in movement towards maximum MHM activity.

In Hgure 24 we show a combination of prey catching and predator avoidance behaviorsin afrog
in the presence of both moving prey and predator. At firgt, postions 1 and 2, the predator is outside the
visud fidd of the frog and the frog purslits the prey. Once the predator enters the frog visud fidd,
position 3, thefrog flees away from the predator in direction opposite to the predator position without
reacting any longer to the prey. In Figure 24 (left) note how at step 3, the frog visud fidd points
towards the predator. In Figure 24 (right) note the different prey and predator activities, predator _hor
and prey_hor respectively. The mhm fied shows the combination of both fields giving more weight to
the predator, thus resulting in awta pointing towards the predator.
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Figure 2. The figure shows (left) the frog (square box) trajectory during combined prey catching and predator
avoidance behaviorin response to prey (smaller horizontal rectangle) and predator (larger vertical rectangle) position.
Both prey and predator move horizontally and independent of frog. The trajectory shows numbered positions
starting with “1” ending with “3”. Dashed arrows represent frog movement direction while “v” shape represents
visua field orientation. Note how the frog initially moves towards the prey (positions 1 and 2) and then gets away
from the predator when it is inside its visua field (position 3). The figure (right) shows different activity fieldsin the
neural schema model. From the top: (i) predator_hor represents predator activation in the PreTectum/Thalamus
neural schema with activity centered at the predator location, (ii) prey_hor represents prey activation in the Tectum
neural schema with activity centered at the prey location, (iii) mhmrepresents combined prey and predator activation
in the Motor Heading Map (MHM), and (iv) wta represents winner-take-all activity in MHM resulting in movement
towards maximum MHM activity.

The physicd experiment results are shown in Figure 25. Figure 25 (left) the robot trgectory
towards a blue colored cylinder corresponding to prey and then away from a green colored cylinder
corresponding to predator. Note again that we are Smplifying perception by recognizing a blue colored
cylinder as prey and a green colored cylinder as predator. The Retina schema calculates distancesto
the dimulus by computing the number of blue pixds segmented from the visud fidd of the camera Due
to the absence of obstacles the robot moves towards the prey Pursuit state), locations 1 and 2,
changing orientation in response to predator presence (Flee state). Figure 25 (right) shows fidd
activities (left portion of the display window) smilar to those previoudy shown in Figure 24. The right
portion of the display shows visualField adivity in the Retina schema diplaying the segmented blue
cylinder corresponding to prey and green cylinders corresponding to predator.
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Fgure 25. The figure shows (left) the robot trajectory during prey catching and predator avoidance behavior initially
in response to prey and then predator. Thefigure (right) shows awindow with two displays. The left displays shows
the following activity fields from the left: (i) preyHor represents prey activation in Tectumneural schemawith activity
centered at prey location, (i) predatorHor represents predator activation in the PreTectum/Thalamusneural schema
with activity centered at predator location, (iii) mhm represents combined prey and predator activation in Motor
Heading Map (MHM), and (iv) wta represents winner-take-all activity in MHM resulting in movement direction
towards maximum combined MHM activity. The right display shows visualField activity in the Retina with
segmented prey (light rectangle) and predator (dark rectangle).
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V. PREY CATCHING AND PREDATOR AVOIDANCE —MULTIPLE ROBOT ARCHITECTURE

While neither anurans nor praying mantis display multi-group hunting, there exist other animas with
advanced socid behaviors. Among these, wolves show advanced hunting by organizing themsdlves as
small packs [51]. This organization enables wolves to hunt animas that are larger and sometimes even
fadter than themselves, as well as be more compact in response to attacks from outsde predators
While very limited neurobiologicd dudies exist on wolves, it is possible in robots to combine sudies
from different animas into a sngle comprehensive modd. In this section we take the individua anuran
mode for prey catching and predator avoidance and exterd it to multiple robots taking inspiration on
wolf pack hunting [41]. The god of this extended architecture is two fold: (1) To andyze the reusability
and scaability of the underlying anuran neurd - schema architecture when gpplied to collaborative robots,
and (2) to evauate the extenghility of the higher level prey catching and predator avoidance individud
behavior modd to multiple robots. This approach differs from “classca” behavior models developed
for multiple robots[11, 15, 35, 36, 38].

The prey catching and predator avoidance modd for multiple robots considers ateam of wolf
predators, i.e. awolf pack, comprisng an alphawolf and severd beta wolves. Behaviora dudies have
shown that wolves hunt in packs of about 5 to 20 members keeping asocid hierarchy during hunting as
well asesting with the stronger alpha wolf leading the pack. The wolf pack hunting model described in
this work indudes the following generdizations:

- Wolf teams are conformed by a group leader (alpha wolf) and at least one follower (beta wolf).
Beta wolves group around the alpha wolf keeping a certain distance from their leader and among
themsdaves.

Wolves receive only visud information from the environment, using this input to cdculate their

positions and distances to gimuli. Thereis no direct communication between wolves.
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Visud ields are limited to a Sngle camera recognizing objects by their color. If an dpha walf is
outside a betawolf visud field, thenthe beta wolves loses track of leader.

Walking speeds are kept constant for al wolvesat dl times.

Head direction is kept congtant relative to body motions, Smilar to the anuran model.

We extend the individua anuran prey catching and predator avoidance mode from previous section
by incorporation formations consisting of one or more beta wolves in addition to the a pha wolf. Inthe
model, keta wolves will try to keep a radia distance r behind the dpha wolf effectively forming a
circumference centered at the apha wolf as shown in Figure 26. In the figure, movement direction d is
shown for al wolves. Lines in blue represent beta wolf visud fidd having angular sze 2a. If
g represents the angle between beta wolf moving direction and visud sight of dpha wolf; then when a
< ( the betawolf losestrack of aphawaolf.

Beta Wolf

/
Beta Wolf

N

Figure 26. Wolf pack formation diagram. Beta wolves keep behind alphawolf following a circumference formation
centered at the alphawolf using their visual field to track the alphawolf.

A. Behavior

The alpha wolf prey catching behaviour is the same as previoudy described for anurans. The beta wolf
prey caiching behavior is abscribed in terms of a state diagram that includes Formation, Pursuit,
Attack, Eat, and Wander as shown in Figure 27:

Wander - Inthe Wander dtate the wolf explores the environment in search for a prey. The dpha
wolf behavior is smilar to the individud frog previoudy described. The beta wolf behaviour
consders both prey and leader. If the wolf perceives the leader, leader visible is activated
continuing to the Formation sate. If the wolf perceives aprey (but not the leader), prey_visibleis
activated continuing to the Pursuit state.

Formation - Aslong as the beta wolf continues percaiving the dphawalf, it will gayto it. If visble
contect is lost with the leader then the condition leader_not_visible is activated continuing to the
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Wander state. If the beta wolf detects aprey (but not the leader) it will change to the Pursuit state
in response to prey_visible activation

Pursuit - Inthe Pursuit state the god is to goproach the prey without separating from the
formation. Inthe Pursuit statethere arethree possible trangtions: one towards the For mation state
in case the prey is outsde its range of vison caused by the prey_not_visible condition; the second
trangtion occurs when the prey is detected a a close distance, activated by the prey near
condition and continuing to the Attack state; and, the third trangtion occurs when the beta wolf
loses track of the dpha wolf, activating the leader_not_visible condition and continuing to the
Wander state.

Attack — In the Attack statethe anima sgps a the prey activating the prey_catch condition If the
anima gets far from the prey the behavior goes back to the Pursuit state activated by the prey_far
condition. The beta walf will follow the dpha wolf cue in attacking the prey. If the prey far
condition is activated the beta wolf returns to the Pursuit state. If the prey is caught, the condition
catch_prey isactivated continuing to the Eat state.

Eat - In the Eat state the wolf eats the anima where beta wolves egt only after the dpha wolf has
done so. After the prey has been eaten the condition prey _not_visibleis activated returning to the
Wander date. If the prey escapes, the condition prey _not_catch is activated returning to the
Attack state.

prey_not_vjgible gy_not_catch

\ prey_not_visible /
v

Fgure 27. Beta wolf prey catching behavior consisting of Wander, Formation, Pursuit, Attack and Eat states. Alpha
wolf behavior issimilar to theindividual behavior described in Figure 15.
The predator avoidance behavior is described in terms of a state diagram that includes Flee, Duck

and Wander gtates as shown in Figure 16:
The predator avoidance behavior is Smilar to the one described in Figure 16 and 17.
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B. Schemas

The multipleanimd prey catching and predator avoidance behavior is mapped to an extended schema
architedure where a new “same species’ set of schemas has been added, as shown in Figure 28. The
extended schema architecture includes, in addition to the previous schemas shown in Figure 18, a
Same-Species Recognizer, aMax Same-Species Selector, and a Same-Species Approach schema.

Max Predator
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\ PS PS Forward
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Figure 28. Extended prey acquisition and predator avoidance schema architecture consisting of perceptual
schemas (PS): Visual, Prey Recognizer, Predator Recognizer, Same-Species Recognizer, Max Prey Selector,
Max Predator Selector and Max Same-Specie Selector; sensorimotor schemas (S): Prey Approach, Predator
Avoid, Same-Specie Approach and Motor Heading Map; and motor schemas (MS): Orient, Forward and
Backup.

Perceptual schemas incdude Vision, Prey Recognizer, Predator Recognizer, Max Prey Selector,

Max Predator Selector in addition to:
Same-Species Recognizer — Recognizes a simulus from the same species corresponding to the
animd leader.
Max Same-pecies Selector - Selects anong muitiple Same-Specie gimuli.

Sensorimotor schemas indude Prey Approach and Predator Avoid in additiond to:
Same-Specie Approach — Obtains input from the Max Same-Specie Selector schemagenerating
as output an attractant field whose strength decays proportiond to the distance to the same-specie

dimulus.

Motor schemas include Orient, Backward and Forward as before.
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C. Neural Networks

The neurd schema architecture is Smilar to the previous architecture with the addition of a link
between Same-Species Approach and Tectum inspired in studies that map same species recognition
(mates) to the Tectum [14]. In Figure 29 we show mappings between schemas and the underlying
neurd networks:
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Figure 29. Prey catching and predator avoidance extended multi level neural schemaarchitecture. The schemalevel consists
of perceptual schemas (PS): Visual, Prey Recognizer, Predator Recognizer, Same Species Recognizer, Max Prey Sdlector,
Max Predator Selector and Max Same-ecies Selector; sensorimotor Schemas (S): Prey Approach, Predator Avoid, Same
Species Approach, and Motor Heading Map; and motor schemas (MS): Orient, Forward, and Backup. The neural level
consists of four neural schemas: Retina, MaxSelector, Tectum and PreTectum/Thalamus

V1. PREY CATCHING AND PREDATOR AVOIDANCE — MULTIPLE ROBOT EXPERIMENTSAND RESULTS

In this section we describe prey catching and predator avoidance experiments on multiple robots
ingpired on wolf pack studies as described in the previous section. We initidly test the experiments
under a smulationonly environment and then perform physica experiments with three redl robots.

A. Prey Catching

We tested a set of basic prey catching experiments involving a prey, an apha robot and severd beta
robots. The amulaions shown in Figure 30 were developed using the TeamBots software [10]. Three
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beta wolves in black maintain a formation behind an apha robot in red pursuing a prey in yelow. The
beta wolvesrespond to the presence of the aphawolf leader.
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Fgure 3. A 4robot pack formation consisting of one dpharobot in red and three beta robotsin black The robots
are pursuing aprey in yellow.

The physicd experiment results are shown in Figure 31. Figure 31 (left) shows the robot pack
pursuing a blue colored cylinder corresponding to a prey. Alphawolf isin red and betawolvesin blue
Figure 31 (center) shows the robot pack pursuing the prey after it has moved. All wolves move at the
same speed and there are no obstadles in the fidld. To keep formation the dpha wolf has to be insde
the visud fidd of the beta wolves at dl times. Figure 31 (right) shows the apha and beta wolves
surrounding (attacking) the prey when dose enough to it. Note that the alpha robot is the firgt to attack.
s . . . o@3ll — 2ag]
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Fgure 31. Left: Alpha wolf in red and beta wolves in dark blue. Robots pursue the blue colored cylinder
corresponding to prey. Beta wolves keep a formation behind their leader. Center: Prey is manually moved with pack
tracking it. Beta wolves maintain a formation behind their leader. Right: Eventually the robots get close to the prey
attacking it by a surrounding motion.

Figure 2 shows a window with three displays. (bottom) beta wolf segmented view of prey and
apha wolf; (top left) segmented objects in visud field; and (top right) different fidd activities (i) the left
four graphs represent prey (preyHor), predator (predatorHor), and dpha (alphaHor) recognition
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maps, (i) the next graph represents the motor heading map (mhm) integrated movement showing
sronger apha recognition; (iii) the graph to the right shows a step activation corresponding to awinner-
take-dl (wta) dynamics representing output robot orientation. As shown in the figure, in the current
stage the betawolf will follow the aphawolf and not the prey.

AIrJi‘D EG;H Yacekzaciin Venbara Awids

il Maual Dutp B G TS T
oo pcdurttler aisHer Py &

e —
'l
- =
IJ. —

i Z =
i
| e Cydatime: 03 Falsted Cpcles 2 Finkhed Spechs 0 Bolycetime U0 Fnthed Dyl § Fvsned Eachs 0

Nekeapeabras! Wickaa 2Lk

(a1 ) s - T 0

=2 OR@WE® —
FHgure 3. The figure shows (bottom) beta wolf view of prey segmented in blue and alpha wolf segmented in red.
Upper graphs show segmented objects in gray (left) and field activities graph (right). From left to right these field

activities correspond to: preyHor, predatorHor, alphaHor, mhmand wta.

B. Predator Avoidance

We tested a set of basic of predator avoidance experiments involve aprey, an alpharobot and severd
beta robots. These smulations shown in Figure 33 were developed using the TeamBots software [10].
Three beta wolves in black break away from a formation behind an apha robot as the predator in
brown. As opposed to the prey catching behavior where robots react to the leader and the prey, once a
predator is perceived robots flee away from theintruder breaking up with the formation
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Fgure 3. Left: A 4robot pack formation consisting of one alpharobot in red and three beta robots in black. The
robotsinitially pursuing aprey in yellow start fleeing once the predator in brown appears.

The physicd experiment results are shown in FHgure 34. Figure 34 (l&ft) shows the robot pack,
initidly pursuing a blue cylinder corresponding to a prey, now fleeing away from a green cylinder
representing a predator. Alphawolf isin red and beta wolves in blue. Smilarly to the individud robot
predator avoidance behavior, dpha and beta wolves break away from the pack independent of pack
formetion in direction opposite to the predator location. Figure 34 (right) shows a window with three
displays. (bottom) beta wolf segmented view of prey, predator and apha wolf; (top left) segmented
objects in visud fidd; and (top right) different field activities (i) te left four grgphs represent prey
(preyHor), predator (predatorHor), and dpha (alphaHor) recognition maps (i) the next graph
represents the motor heading map (mhm) integrated movement showing stronger apha recognition; (iii)
the graph to the right shows a step activation corresponding to awinner-take-all wta) dynamics
representing output robot orientation. As shown in the figure, beta wolves will react towards predator
disregarding the alpha wolf and the prey.
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Fgure 3. Left: Alpha wolf in red and beta wolves in dark blue. Robots flee away fromgreen colored cylinder
corresponding to predator. Right: The figure shows (bottom) beta wolf view of prey segmented in blue, predator
segmented in green and a pha wolf segmented in red. Upper graphs show segmented objectsin gray (left) and field
activities graph (right). From left to right these field activities correspond to: preyHor, predator Hor, alphaHor, mhm
and wta.

*

VII.  CONCLUSIONS

The god of thiswork has been to devel op amulti-level neurd-schema robotic architecture ingpired
in behavior and brain studies in red animas. We have modeled, based on anuran and praying mantis
neuroethologica studies, aprey catching and predator avoidance single robot architecture. We aso
extended the model and architecture to multiple robots taking inspiration in wolf pack ethologica
sudies. While there has been some prior work in prey catching and predator avoidance robotic models
and robotic architectures, the work presented in this paper is unique n its multi-levd neura schema
gpproach and its extension from single to multiple robots.

The methodology used in this work involves the development of smulations to test behaviors and
neurd schema modds in angle and multiple animas followed by its implementation in red robotic
sysems. We use as sngleanimd smulaion platform the NSL/ASL multi-level neurd schema systems,
while we use as multiple anima  smulation platform the TeamBots behaviora modding system. We
execute dl robaotic modes using the integrated NSL/ASL/MIRO system connected in awireless fashion
to a Sony AIBO ERS-210 robot for physca experimentation Although TeamBots provides linkage to
red robots, we only use this environment for preliminary behavior-only multiple robot simulation.
Modds tested in TeamBotsare then integrated with NSL/ASL single anima modelsin developing multi-
level neura schema architectures for multiple robots.

The NSL/ASL arquitecture has been crucid to manage the complexity involved in modding mult-
level neuroethological systems and corresponding neura schema architectures. Under the NSL/ASL
architecture schemas represent behaviora patterns while neura networks represent the dynamic and
computationa properties of the underlying brain mechaniams. As the complexity of the biologica
sysems being modeled grows, it becomes necessary to have powerful smulation tools and robotic
systems that let the developer follow good software practices including modularity and top-town and
bottom:up designs.

p. 32



Weitzenfeld A., Journal of Intelligent and Robotics Systems, Springer, Vol 51, Num 2, Feb 2008, ISSN 0921-0296

In terms of actud models, prey catching and predator avoidance is ingpired primarily in anuran and
praying mantis studies with extensons to multiple robots ingpired in wolf pack hunting behavior. The
behaviors modeled are much more complex in nature than those modeled in the robots. For example,
anurans and praying mantis perform a more complex visua object recognition based on motion
detection while wolves use both smell and visonto keep pack hierarchy. In the robotic experiments we
used only color to detect objects in order to Smplify perception limiting robot coordination to sght only.
The limited robot visud fidd directly affects pack tightness. Other aspects that will make behaviors
more redidic indude: use of more robots during experimentation, addition of motivationd varigbleslike
fatigue and hunger, variation of robot speeds and turning angles, the inclusonof more than one prey and
predator, use of robots for both preys and predators, and the extension to new behaviors. In terms of
neura mechanisms in anurans and praying mantis we plan to anayze the effect of additiond factorsin
prey catching and predator avoidance behavior including additiond neurd schemas, extension of exiging
ones to adapt to later studies and the indusion of motivationd factors such as hunger (internd) and
season and time (externd) at the neurd level. These aspects become criticd in robot architectures thet
intend to exhibit adaptation and learning [12].

Findly, al robot experiments can be retrieved from our web ste [45].
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