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Abstract – The paper presents a biologically-inspired multi-level neural-schema 
architecture for prey catching and predator avoidance in single and multiple autonomous 
robotic systems. The architecture is inspired on anuran (frogs and toads) neuroethological 
studies and wolf pack group behaviors. The single robot architecture exploits visuomotor 
coordination models developed to explain anuran behavior in the presence of preys and 
predators. The multiple robot architecture extends the individual prey catching and predator 
avoidance model to experiment with group behavior. The robotic modeling architecture 
distinguishes between higher-level schemas representing behavior and lower-level neural 
structures representing brain regions. We present results from single and multiple robot 
experiments developed using the NSL/ASL/MIRO system and Sony AIBO ERS-210 
robots.  
 
Index Terms – Biorobotics; Biologically-inspired Robotics; Neural Networks; Schemas; 

Behaviors; Prey Catching; Predator Avoidance; Swarms . 
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I. INTRODUCTION 
 
In recent years researchers have taken a special interest in biological studies of animal behavior 
(ethology) as a basis for robotic systems [8][13]. Some researchers have gone even further by trying to 
provide a linkage between animal behavior and underlying brain mechanisms (neuroethology) [2]. 
Among these, there has been substantial work in studying the underlying neural mechanisms responsible 
for sensorimotor coordination in living animals [3]. In this paper we extend upon this work by 
describing a neural-schema architecture for robotics systems inspired on animal studies that builds upon 
a cycle of biological experimentation, computational modeling and robotics experimentation as depicted 
in Figure 1. This general research framework not only contributes to the development of new robotic 
architectures but also provides a platform to further study and experiment with animal behaviors [43]. 

The prey catching and predator avoidance sensorimotor models described in this work are inspired 
on visually-guided neuroethological studies in anurans (frogs and toads) [26] as well as praying mantis 
[16]. These models are further extended by ethological studies in wolf pack hunting [33] to inspire new 
studies, experiments and robotic architectures for single and multiple robot systems. The 
neuroethological models described by this work are based on schema and neural network multi-level 
architectures developed using the Abstract Simulation Language ASL [44] and the Neural Simulation 
Language NSL [47]. We integrate the ASL/NSL distributed system [50] with the Mobile Internet 
Robotics MIRO [49] to perform actual robot experiments using the Sony AIBO ERS-210 platform. 
This work is presented in the paper as follows: Section II describes a neural-schema architecture for 
biologically-inspired robotic systems; Secion III presents a prey catching and predator avoidance model 
for single robots; Section IV presents experiments and results for prey catching and predator avoidance 
on single robots; Secion V presents a prey catching and predator avoidance model for multiple robots; 
Section VI presents experiments and results for prey catching and predator avoidance on multiple 
robots; and Section VII presents the conclusions and discusses future work. 
 

 
Figure 1. The above diagram depicts a framework for the study of living organisms through cycles of biological 
experimentation, computational modeling, and robotics experimentation serving as inspiration to the design of 
biologically-inspired autonomous robotics systems . 
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II. A NEURAL-SCHEMA ARCHITECTURE FOR BIOLOGICALLY-INSPIRED ROBOTICS SYSTEMS 

The study of animals has provided an invaluable source of information for the understanding of 
neurobiological systems and the inspiration of new robotic architectures [7]. To address the underlying 
complexity in building such systems we distinguish between two different levels of modeling: behavior 
and neural structure [1]: 
 
1. At the behavior level, ethological and neuroethological data from living animals is gathered to study 

the spatial-temporal relationship between single and multiple living entities and their environment, 
giving emphasis to aspects such as cooperation and competition between them. Examples of 
behavioral models include prey catching and predator avoidance in frogs and toads [6, 19, 20, 21], 
and praying mantis [9]. A schema computational model describes behaviors in terms of perception, 
sensorimotor integration and motor action [4, 5].  

2. At the neural level, neuroanatomical and neuronphysiological data are used to generate perceptual 
and motor neural network models corresponding to schemas developed at the behavioral level [46]. 
These models are intended to explain the underlying mechanisms for sensorimotor integration 
involved in behaviors such as habituation [32, 42], prey catching and predator avoidance [48], and 
learning to detour around a barrier [23]. Examples of neural network models include the frog’s 
tectum and pretectum-thalamus responsible for discrimination among preys and predators [17, 18].  

A. Behavior 

Animals depend on their ability to perform certain behaviors in response to external stimuli. In Figure 2 
we show a prey catching behavior when a prey becomes visible (left) and a predator avoidance 
behavior when a predator appears (right). 

 

 

Figure 2. State machine diagram describing an animal pursuing a visible prey (left) and an animal fleeing away 
from a visible predator (right).  

B. Schemas and ASL 

Schemas define a distributed computational hierarchy for action-perception in animals. In schema 
architectures, as depicted in Figure 3, we distinguish among multiple levels of decomposition to better 
describe simpler units of processing in the brain. In the top portion of the diagram a higher-level schema 
is shown decomposed into two lower level schemas where the three schemas together form what is 
known as a schema aggregate or assemblage. Note how the multi-level schema decomposition 
provides a top-down approach where higher level schemas are initially described at a more functional 
way followed by a more detailed lower level schema specification, and a bottom-up data-driven 
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approach where individual schemas are specified in detail and then assembled in creating higher level 
comprehensive schema systems.  

 

 
Figure 3. A schema hierarchy decomposes (dashed arrows) higher level schemas (level 1) into more detailed 
lower level schemas (level 2).  

 Communication between schemas can be of a cooperative or competitive nature. When schema 
activity surpasses certain threshold it produces output indicating enough confidence on that particular 
schema, also known as schema assertion. Figure 4 shows a schema architecture for a prey catching 
and predator avoidance behavior involving Visual Perception (PS - perceptual schema), Motor 
Action (MS - motor schema), and Prey Catching and Predator Avoidance (S – sensorimotor 
schemas). In the diagram Prey Catching is further decomposed into Prey Recognition, Prey Selector 
and Prey Approach schemas.  
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Figure 4. Schema architecture showing Visual Perception (PS - perceptual schemas), Motor Action (MS - Motor 
Schema), and Prey Catching and Predator Avoidance (S - sensorimotor schemas). Prey Catching is further 
decomposed into lower level Prey Recognition , Prey Selection and Prey Approach schemas. Solid arrows 
represent information flow from schemas at the same level; dashed arrows represent schema decomposition 
between multiple levels; and solid circles at the end of lines represent schema competition.   
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The Abstract Schema Language ASL [44] can be used to model schema architectures where each 
schema incorporates its own structure and control mechanisms. At the higher functional levels, schemas 
are only specified, leaving their detailed implementations to lower level schemas. The schema interface 
consists of multiple unidirectional control/data, input and output ports together with a schema 
implementation body, as shown in Figure 5.  
 

 
Figure 5. Each schema may contain multiple input, din1,...,dinn, and output, dout1,...,doutm, ports for 
unidirectional communication. 

Schema connectivity is inspired in port automata with activity variables indicating the degree of 
confidence [39]. Communication between schemas in ASL is in the form of asynchronous message 
passing, hierarchically managed, internally, through anonymous port reading and writing, and externally, 
through dynamic port connections and relabelings. In Figure 6 we show an example of two level 
schema hierarchy with interconnected and relabeled ports. Schemas are interconnected by matching 
schema interfaces, in other words, connections (solid arrows) are done by linking output ports from 
one schema to input ports in other schemas. On the other hand, relabelings (dashed arrows) are done 
by linking ports of similar type (input or output) among different schemas usually at different levels in the 
hierarchy. In such a multi-level hierarchy, we consider that higher-level schemas to delegate the task to 
lower-level ones. The hierarchical port management framework enables the development of distributed 
architectures where schemas may be designed in a top-down or bottom-up fashion implemented 
independently and without prior knowledge of the complete model or their final execution environment, 
thus encouraging component reusability.  
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Figure 6. Example of a two-level schema model showing port interconnections and relabelings. Note how the objects input 
port in Prey Catching is relabeled to objects in Prey Recognition while action output port in Prey Approach is relabeled to 
action in Prey Catching. The solid lines show connections from output ports in one schema to input ports in another 
schema. 
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In the following piece of code we show portions of the schema specification in ASL corresponding 
to the diagram described in Figure 6. ASL uses a Java-like syntax where schemas are declared and 
instantiated (not seen in the code) and have their ports interconnected inside the makeConn using the 
nslConnect method connecting an output port to an input port, e.g. vp.objects with pc.objects and 
pc.action with ma.action, as shown below. 
 
nslModule SchemaModel extends NslModule  
{ 
 … 
 public VisualPerception vp; 
 public PreCatching pc; 
 public MotorAction ma; 
 … 
 
 public void makeConn(){ 
  …. 
  nslConnect(vp.objects, pc.objects); 
  nslConnect(pc.action, ma.action); 
  …. 
 } 
} 

 
In the following piece of code we show a portion of PreyCatching schema where it relabels some 

of its ports to lower-level ports defined in PreyRecognition and PreyApproach schemas. Note the 
additional connection between the preys and prey ports in the lower level schemas.  

 

nslModule PreyCatching extends NslModule 
{ 
 public PreyRecognition pr; 
 public PreySelection ps; 
 public PreyApproach pa; 

… 
 
 public void makeConn(){ 
  nslRelabel(objects, pr.objects); 
  nslRelabel(pa.action, action); 
 
  nslConnect(pr.preys, ps.preys); 
  nslConnect(ps.prey, pa.prey); 
 } 
} 

C. Neural Networks and NSL 

In a neural-schema architecture, schemas may be specified at a higher level and then implemented by 
lower level neuroethological mechanisms corresponding to neural schemas, as shown in Figure 7.  
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Figure 7. In a neural schema architecture, higher level schema may be implemented by lower level neural 
mechanisms in the form of neural schemas. 

A MaxSelector neural schema example is shown in Figure 8. This schema is responsible for 
selecting among multiple preys where more than one is present. At the ASL description level, neural 
schemas are treated as regular schemas having ports, connections and relabels as any other schema. 
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Figure 8. A MaxSelector neural schema implementation pf Prey Selection schema. 

A neural network implementation of a neural schema is shown in Figure 9 where neurons are 
described by simpler elements, each represented by a sphere with connections among neurons 
represented by solid arrows. In general, neural schemas may be implemented by neural networks 
described at any levels of detail, from very simple neurons to complex and detailed neurons involving 
electrochemical mechanisms responsible for phenomena like synaptic plasticity. While there is no 
restriction to what degree of detail a neural schema may be described, it is usually the case where 
simpler neural models are used when building larger neural networks.  
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Figure 9. Neural schema implementation by a simple neural network model. Spheres represent neurons while solid 
arrows represent neural connections. 

Simpler neuron models, such as the leaky integrator neural model [2], are best suited for large-
scale computation, where each neuron is defined in terms of a membrane potential with value mp 
representing its previous history, input s and output value mf represented by a non-linear threshold 
function over its membrane potential, as shown in Figure 10.  

 

 
Figure 10. Simple neural model having an input s, a neuron body or soma mp, and output mf. 

The leaky integrator neural model is described by:  
 

dmp(t)/dt = f(s,mp,t) (1) 

mf(t) =σ(mp(t)) (2) 

τ dm(t)/dt = -m(t) + s (3) 

Equation 1 describes the membrane potential mp in terms of a first order differential equation 
function f that varies in time and depends on its input s and previous mp value. Equation 2 describes the 
cell firing mf in terms of a threshold function σ that also varies in time and depends on its membrane 
potential. Equation 3 describes the leaky integrator model with dependence on an integration constant τ. 

For example, the Maximum Selector [25] neural network, shown in Figure 11, is described using the 
following leaky integrator equations:  
 

iumiui
i

u shvfwufwup
dt

dup
+−−+−=τ  (4) 

mp 

neuron 

s mf 

input output 

 neural schema 

 neural network 



Weitzenfeld A., Journal of Intelligent and Robotics Systems, Springer, Vol 51, Num 2, Feb 2008, ISSN 0921-0296  

p. 10 





≤
>

=
00
01

i

i
i up

up
uf  (5) 

v

n

ii
inv hufwvp

dt
dvp

−+−= ∑
=

τ  (6) 





≤
>

=
00
0

vp
vpvp

vf  (7) 

 

 Equation 4 represents the leaky integrator equation for neurons u with weighted input from u and v, 
visual input s, in addition to parameter h and time constant τ. Equation 5 describes the output of neurons 
u as a “step” threshold function. Equation 6 represents the leaky integrator equation for neuron v with 
weighted input from v and u, in addition to parameter h and time constant τ. Equation 7 describes the 
output of neuron v as a “ramp” threshold function. 

 

 
Figure 11. The neural network shown corresponds to the architecture of the Maximum Selector model, where upi 
and vp represent neural membrane potentials, ufi and vf represent neural firing rates, si represent inputs to the 
network, and wi represent connection weights. The network is initialized with a number of positive inputs 
assigned to different cells. After multiple iterations the network stabilizes producing a single "winner", i.e. a 
single active cell.  

 
The Neural Simulation Language NSL [47] provides the foundations to describe neural schemas in 

terms of neural networks. For example, the MaxSelector neural schema code is described next and 
includes instantiation variables, sizeX and sizeY where the actual number of neurons is specified. The 
schema also contains an in “NslDinDouble2” input port and an out “NslDoutDouble2” output ports. 
Additionally, there are declarations for internal variables, up, uf, vp, vf, hu, hv and tau, used in the 
simRun method for neural processing. Note the correspondence with equations 4 to 7. The other 
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method, initRun, is used for constant and variable initializations. (Documentation and model code is 
available for download from the NSL web sites [34].) 
 
nslModule MaxSelector (int sizeX, int sizeY) extends NslModule 
{ 
 public NslDinDouble2 in(sizeX,sizeY); 
 public NslDoutDouble2 out(sizeX,sizeY); 
 
 public NslDouble2 up(sizeX,sizeY); 
 public NslDouble2 uf(sizeX,sizeY); 
 public NslDouble0 vp, vf;  
 public NslDouble0 hu, hv, tau; 
 
 public void initRun(){ 
  up = 0; uf = 0; vp = 0; vf = 0; 
  hu = 0.1; hv = 0.5; tau = 1.0;  
 } 
 public void simRun(){ 
  up = nslDiff(up,tau, -up + uf  - vf – hu + in);  
  uf = nslStep(up,0.1,0.1.0); 
  vp = nslDiff(vp,tau,-vp + nslSum(uf) – hv);  
  vf = nslRamp(vp); 
  out = uf;  
 } 
} 

D. Robotics and MIRO 

The ASL and NSL systems have been embedded into the MIRO [49] robotics architecture into a 
unified simulation and robotics experimental environment. In the integrated system, shown in Figure 12, 
MIRO controls robot sensory input and motor output while ASL/NSL performs expensive schema and 
neural network model processing. MIRO performs preliminary visual processing such as blob formation 
and segmentation from either the simulated or real camera, and performs motor actions from simulation 
or real robot commands. Although the MIRO architecture would make it possible to share robot 
“intelligence” among multiple robots, we keep robots fully independent and autonomous. The 
drawbacks in such an architecture are communication delays between robot and computer considered 
negligible considering the expensive processing of neural networks.  
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Figure 12. Block diagram for the embedded ASL/NSL and MIRO robot architecture. ASL/NSL is responsible for schema and 
neural network processing while MIRO provides robotic control from the simulated or physical robot environment. 

For the work presented in this paper we have used a number of Sony AIBO ERS-210 four-legged 
robots having a local camera communicating with the ASL/NSL/MIRO system via wireless networking.  

In Figure 13 we show a sample cycle of computation of the NSL/ASL/MIRO robotics architecture. 
The camera in the robot captures video and sends it to the remote computer for video processing by 
MIRO. Afterwards model processing is carried out in the computer by NSL/ASL using as input the 
processed images. NSL/ASL generates model output in the form of action control commands, i.e. robot 
walking, robot and camera headings. These commands are sent by MIRO to the robots via wireless 
communication. The following cycles repeats themselves indefinitely or until behaviors are completed: 

 
• Video Capture - Images are obtained from the simulated or real robot camera via wireless 

transmission. 
• Video Processing - Objects are recognized according to some intrinsic characteristic such as color, 

e.g. blue corresponding to a prey and green to a predator. 
• Model Processing - Graphs represent prey catching and predator avoidance schema fields. 
• Model Output - Model output is specified in terms of displacement d, robot orientation θr and 

camera orientation θc. 
• Robot Control. Robot is controlled remotely via wireless transmission. 
 



Weitzenfeld A., Journal of Intelligent and Robotics Systems, Springer, Vol 51, Num 2, Feb 2008, ISSN 0921-0296  

p. 13 

Video capture

Video processing

Model processing

Model output

Robot control
(d , θr , θc)

Robot

Camera

PC 
 

Figure 13. Cycle of computation for robotic experiments using the ASL/NSL and MIRO architecture. The model 
output consists of robot displacement d, robot orientation θr and camera orientation θc. 

III. PREY CATCHING AND PREDATOR AVOIDANCE – SINGLE ROBOT ARCHITECTURE  

Anurans (frogs and toads) and praying mantis display similar visuomotor coordination prey catching and 
predator avoidance. Both animals respond to far away moving stimuli in their monocular lateral visual 
field, exploiting their binocular visual field for closer stimuli distance computation. While their overall 
behaviors may overlap, such as orienting and then approaching a prey, there are several differences 
such as their response to predators. Initially both animals may try to flee away, yet, frogs will display a 
ducking behavior when closer to predators while praying mantis will display a deimatic behavior where 
the insect stands up and opens its wings and forearms to appear larger than it really is [16]. In this 
section we describe the generalities in anuran and praying mantis prey catching and predator avoidance 
behaviors where particular anuran behaviors are included in the model when differing in their response. 
Prey catching behavior in anurans and praying mantis (to be generalized as “frogs” in the rest of the 
paper) are summarized as follows: 
 

• Pursuit - The frog will move towards a prey using either its lateral or binocular visual field 
depending on its distance to the stimulus. The frog will move in the same direction as the prey, 
trying to keep it within reaching distance.  

• Attack - When the stimulus is within reaching distance, the frog will snap at the prey after 
performing a binocular fixation to estimate its three-dimensional relative position.  

• Eat – After successfully snapping at the prey the frog will swallow and ingest it. 
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In the case of predator avoidance, frogs will detect large snake-like or bird-like moving stimuli by 
reorientation and fleeing away from them.  

 
• Flee - The frog will orient away in an opposite direction to the predator. 
• Duck – When too close to escape, the frog will duck in an attempt to avoid being seen by the 

predator. 
 
In the case of multiple stimuli, a frog will select and react to the largest prey or predator although in 

some cases it will respond to their average [22]. Figure 14 shows a stimulus-response diagram for the 
frog prey catching (left) and predator avoidance (right) behaviors. 
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Figure 14. Stimulus-response diagrams for a frog (left) prey catching and (predator) predator avoidance 
behaviors. 

A. Behaviors 

The prey catching behavior is described in terms of a state diagram that includes Pursuit, Attack, Eat 
and Wander states as shown in Figure 15: 

 
• Wander - In the Wander state the frog explores the environment in search for a prey. When it 

detects one, the prey_visible condition is activated indicating a change to the Pursuit state. 
• Pursuit - In the Pursuit state there are two possible transitions: one towards the Wander state in 

case the prey is outside its range of vision caused by the prey_not_visible condition; the second 
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transition occurs when the prey is detected at a close distance, activated by the prey_near 
condition.  

• Attack  - In the Attack  state the animal snaps at the prey activating the prey_catch condition. If the 
animal gets far from the prey the behavior goes back to the Pursuit  state activated by the prey_far 
condition. 

• Eat - In the Eat state the animal digests the prey after successfully snapping at it. If the prey has 
been eaten the condition prey_not_visible is activated returning to the Wander state. If the prey 
suddenly escapes, the condition prey_not_catch is activated returning to the Attack  state. 

 

 
Figure 15. Prey catching behavior consisting of Wander , Pursuit, Attack and Eat states. 
 

The predator avoidance behavior is described in terms of a state diagram that includes Flee, Duck 
and Wander states as shown in Figure 16: 

 
• Wander – The Wander state is analogous to that in the Prey Catching behavior. If the animal 

detects a predator during wandering, the predator_visible condition is activated indicating a change 
to the Flee state. 

• Flee – In the Flee state the animal will get away in direction opposite to the predator. If the 
predator gets too close the predator_near condition is activated changing to a Duck state avoid 
being perceived by the predator. If the predator is not visible, the predator_not_visible condition is 
activated going back to a Wander state. 

• Duck – In the Duck  state the frog gets either eaten or is able to escape. If the predator is visible but 
not too near, the predator_far condition is activated going back to the Flee state. If the predator is 
not visible, the predator_not_visible condition is activated changing to a Wander state. 
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Figure 16. Predator Avoidance behavior consisting of Wander, Flee and Duck states. 
 

Additionally, the animal will change from Prey Catching to Predator Avoidance state depending if 
a predator becomes visible with the activation of the corresponding predator_visible condition and 
alternatively the state will switch from Predator Avoidance to Prey Catching with the activation of the 
corresponding predator_not_visible condition as long as a prey is in the visual field (otherwise the frog 
will switch to a Wander state), as shown in Figure 17: 
 

 
Figure 17. When in the Prey Catching state the animal will change to the Predator Avoidance state if the 
condition predator_visible is activated. Alternatively, when in the Predator Avoidance  state the animal will 
change to the Prey Catching state if the condition predator_not_visible is activated. 

B. Schemas 

The prey catching and predator avoidance behaviors are mapped to a set of schemas, shown in Figure 
18. The schema architecture includes perceptual schemas: Visual, Prey Recognizer, Predator 
Recognizer, Max Prey Selector and Max Predator Selector; sensorimotor schemas: Prey Approach, 
Predator Avoid and Motor Heading Map; and motor schemas: Orient, Forward and Backup. Note 
that Orient can be combined with Forward or Backward movement to elicit e.g. a diagonal motion. 
Note the competitive “dotted” line between Prey Approach and Predator Avoid schemas.  
 

Prey 
Catching 

Predator 
Avoidance 

predator_not_visible 

predator_visible 

Wander Duck 

predator_visible 

predator_not_visible 

Flee 

predator_near 
predator_far 

predator_not_visible 



Weitzenfeld A., Journal of Intelligent and Robotics Systems, Springer, Vol 51, Num 2, Feb 2008, ISSN 0921-0296  

p. 17 

 
Figure 18. Prey acquisition and predator avoidance schema architecture consisting of perceptual schemas (PS): 
Visual , Prey Recognizer , Predator Recognizer, Max Prey Selector and Max Predator Selector; sensorimotor 
schemas (S):  Prey Approach , Predator Avoid and Motor Heading Map; and motor schemas (MS): Orient, 
Forward  and Backup.  

Perceptual schemas describe sensor and recognition processes: 
 
• Vision - Perceives moving stimuli mapped to either preys or predators. 
• Prey Recognizer - Recognizes prey-like stimuli.  
• Predator Recognizer - Recognizes predator-like stimuli.  
• Max Prey Selector - Selects a single prey-like stimulus from multiple ones.  
• Max Predator Selector - Selects a single predator-like stimulus from multiple ones. 
 
Sensorimotor schemas integrate sensory and motor action processes: 
 
• Prey Approach – Obtains input from the Max Prey Selector schema generating as output an 

attractant field whose strength decays proportional to the distance to the prey. 
• Predator Avoid - Obtains input from the Max Predator Selector schema generating as output a 

repellent field whose strength decays proportional to the distance to the predator. 
• Motor Heading Map (MHM) – Obtains input from both Prey Approach and Predator Avoid 

schemas generating output that combines their weighed activities. A winner-take-all dynamics over 
MHM assures the selection of the strongest target angle for prey attraction or predator repulsion. 
The MHM schema provides input to the different motor schemas. 

 
Motor schemas describe motor actions representing intrinsic motor patterns or muscle activations: 
 
• Orient - Obtains a direction to reorient, either forwards or backwards. 
• Backward - Performs backward movements. 
• Forward - Performs forward movements. 
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C. Neural Networks 

In order to develop a multi-level neural schema model it is necessary to have a mapping between 
behavior, schemas and the underlying frog brain regions. Figure 19 illustrates the most important prey 
catching and predator avoidance brain regions involved, mainly: Retina, Optic Tectum and 
Pretectum/Thalamus [37].  
 

 
Figure 19. The two illustrations show the most important neural areas involved in the frog prey catching and 
predator avoidance model: Optic Tectum (O), divided into four regions: Temporal (T), Dorsal (D), Nasal (N) and 
Ventral (V); Thalamic Pretectal Neuropil (P); and Nucleus of Belonci (B), Lateral Geniculate Nucleus (C) and Basal 
Optic Root (X) [37]. 

Based on neurophysiological and neuroanatomical studies researchers have identified the structures 
of the Central Nervous System (CNS) that possibly conform the base of neural activity during prey 
catching and predator avoidance [27, 28]: retina (R), optic tectum  (O), and prethalamic tectum (P). 
Many electrophysiological tests have shown how the optic tectum and its cells (T5_2) are linked to the 
prey recognition process and, therefore, to the prey catching behavior. On the other hand, the 
prethalamic tectum region and its cells (TH3) are related to predator recognition and, therefore, to 
predator avoidance. The discrimination between preys and predators, and the selection of the most 
important stimuli (if both are present), depend on the interaction between the T5_2 and TH3 cells. If 
there is a prey stimulus, the optic tectum, in addition to some prethalamic tectum signals, activates the 
catching motor responses. Meanwhile, when a predator stimulus is present, the prethalamic tectum 
sends inhibitory signals to the optic tectum to initiate the avoidance behavior. Physiological evidence 
shows that separate classes of retinal ganglion cells are sensitive to prey and predator stimuli supporting 
the hypothesis that tectal and thalamic visual mechanisms can operate somewhat independently [31]. In 
Figure 20 we show mappings between schemas and the underlying neural networks: 
 
• Retina - Processes visual stimuli in anurans [24, 40]. 
• MaxSelector - Chooses among multiple stimuli, sometimes responding to an “average” stimulus 

[22, 25]. 
• Tectum – Recognizes preys as well as mates in anurans [14, 26].  
• PreTectum/Thalamus - Recognizes stationary or predator-like objects in anurans [29, 30]. 
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Figure 20. Prey catching and predator avoidance multi level neural schema architecture. The schema level consists of 
perceptual schemas (PS): Visual, Prey Recognizer, Predator Recognizer , Max Prey Selector and Max Predator Selector; 
sensorimotor Schemas (S): Prey Approach, Predator Avoid, and Motor Heading Map; and motor schemas (MS): Orient, 
Forward, and Backup. The neural level consists of four neural schemas: Retina, MaxSelector, Tectum and 
PreTectum/Thalamus . 

IV. PREY CATCHING AND PREDATOR AVOIDANCE – SINGLE ROBOT EXPERIMENTS AND RESULTS  

In this section we describe prey catching and predator avoidance experiments on single robots inspired 
in anuran studies as described in the previous section. We initially test the experiments under a 
simulation-only environment and then perform physical experiments with the real robot. 

A. Prey Catching 

We tested a set of basic prey catching experiments involving a frog and prey as shown in Figure 21. The 
simulation shows, Figure 21 (left), a frog (square box) pursuing a moving prey (smaller horizontal 
rectangle). The frog moves towards the prey with steps numbered 1 through 4 where dashed arrows 
represent frog’s visual field. Figure 21 (right) shows different neural schema field activities during the 
simulation: predator_hor represents predator activity in PreTectum/Thalamus, prey_hor represents 
prey activity in Tectum, mhm represents combined prey and predator activities in Motor Heading 
Map (MHM) and wta (winner-take-all) represents frog movement direction in MHM. Note that 
activities are modeled as Gaussians with the exception of the wta step function. 
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Figure 21. The figure shows  (left) the frog (square box) trajectory during prey catching behavior in response to prey 
(smaller horizontal rectangle) position. The prey moves horizontally independent of actual frog movement. The 
trajectory shows numbered positions “1” through “4” for frog (dashed arrows) and prey, with frog visual field shown 
as a “v” shape. Note how the frog gets closer to the prey adjusting its orientation at each time step. The figure (right) 
shows different activity fields in the neural schema model. From the top: (i) predator_hor represents predator 
activation in PreTectum/Thalamus neural schema showing no activity since no predator is present, (ii) prey_hor 
represents prey activation in Tectum neural schema  with activation centered at the prey location, (iii) mhm represents 
combined prey and predator activation in Motor Heading Map (MHM), and (iv) wta represents winner-take-all 
activity in MHM  resulting in movement towards maximum MHM activity.  
 

The physical experiment results are shown in Figure 22. Figure 22 (left) shows the robot trajectory 
towards a static blue colored cylinder corresponding to prey (a moving prey experiment is described in 
the multiple robot experiment section). Note that we are simplifying perception by recognizing a blue 
colored cylinder as the prey. The Retina schema calculates distances to the stimulus by computing the 
number of blue pixels segmented from the visual field of the camera. Due to the absence of obstacles the 
robot moves towards the prey (Pursuit state) stopping at a short distance before the prey (Attack  and 
Eat states). Figure 22 (right) shows field activities (left portion of the display window) similar to those 
previously shown in Figure 21. The right portion of the display window shows visualField activity in the 
Retina schema displaying the segmented blue cylinder corresponding to prey.   

 



Weitzenfeld A., Journal of Intelligent and Robotics Systems, Springer, Vol 51, Num 2, Feb 2008, ISSN 0921-0296  

p. 21 

  
Figure 22. The figure shows (left) the robot trajectory during prey catching behavior in response to prey position. 
The figure (right) shows a window with two displays. The left display shows the following activity fields from the 
left : (i) preyHor represents prey activation in Tectum neural schema with activation centered at the prey location, (ii) 
predatorHor represents predator activation in PreTectum/Thalamus neural schema showing no activity since no 
predator is present, (iii) mhm represents combined prey and predator activation in Motor Heading Map (MHM), and 
(iv) wta represents winner-take-all activity in MHM resulting in movement direction towards maximum combined 
MHM activity. The right display shows visualField  activity in the Retina. 

B. Predator Avoidance 

We tested a set of basic predator avoidance experiments involving a frog and predator as shown in 
Figure 23. The simulation shows a frog (square box) avoiding a moving predator (larger vertical 
rectangle). The frog moves opposite predator direction with step, numbered 1 through 3, where dashed 
arrows represent frog’s visual field. Figure 23 (right) shows different neural schema field activities during 
the simulation: predator_hor represents predator activity in PreTectum/Thalamus, prey_hor 
representing prey activity in Tectum , mhm represents combined prey and predator activities in Motor 
Heading Map (MHM) and wta (winner-take-all) represents frog movement direction in MHM. In real 
frogs, obstacles correspond to any static objects while preys and predators are recognized only if they 
move. In particular, preys have a larger horizontal to vertical ratio while predators have a larger vertical 
to horizontal ratio. To simplify visual processing, preys and predators will be recognized in these 
experiments by color where blue is used for preys and green for predators. 
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Figure 23. The figure shows  (left) the frog (square box) trajectory during predator avoidance behavior in response to 
predator (larger vertical rectangle) position. The predator moves horizontally independent of actual frog movement. 
The trajectory shows numbered positions “1” through “3” for frog (dashed arrows) and predator, with frog visual 
field shown as a “v” shape. Note how the frog gets away from the predator adjusting its orientation at each time step. 
The figure (right) shows different activity fields in the neural schema model. From the top: (i) predator_hor 
represents predator activation in PreTectum/Thalamus neural schema with activity centered at the predator location, 
(ii) prey_hor represents prey activation in Tectum neural schema showing no activity since no predator is present, 
(iii) mhm represents combined prey and predator activation in Motor Heading Map (MHM), and (iv) wta represents 
winner-take-all activity in MHM resulting in movement towards maximum MHM activity. 
 

In Figure 24 we show a combination of prey catching and predator avoidance behaviors in a frog 
in the presence of both moving prey and predator. At first, positions 1 and 2, the predator is outside the 
visual field of the frog and the frog pursuits the prey. Once the predator enters the frog visual field, 
position 3, the frog flees away from the predator in direction opposite to the predator position without 
reacting any longer to the prey. In Figure 24 (left) note how at step 3, the frog visual field points 
towards the predator. In Figure 24 (right) note the different prey and predator activities, predator_hor 
and prey_hor respectively. The mhm field shows the combination of both fields giving more weight to 
the predator, thus resulting in a wta pointing towards the predator. 
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Figure 24. The figure shows (left) the frog (square box) trajectory during combined prey catching and predator 
avoidance behavior in response to prey (smaller horizontal rectangle) and predator (larger vertical rectangle) position. 
Both prey and predator move horizontally and independent of frog. The trajectory shows numbered positions 
starting with “1” ending with “3”. Dashed arrows represent frog movement direction while “v” shape represents 
visual field orientation. Note how the frog initially moves towards the prey (positions 1 and 2) and then gets away 
from the predator when it is inside its visual field (position 3). The figure (right) shows different activity fields in the 
neural schema model. From the top: (i) predator_hor represents  predator activation in the PreTectum/Thalamus 
neural schema with activity centered at the predator location, (ii) prey_hor represents prey activation in the Tectum 
neural schema with activity centered at the prey location, (iii) mhm represents combined prey and predator activation 
in the Motor Heading Map  (MHM ), and (iv) wta represents winner-take-all activity in MHM resulting in movement 
towards maximum MHM activity. 
 

The physical experiment results are shown in Figure 25. Figure 25 (left) the robot trajectory 
towards a blue colored cylinder corresponding to prey and then away from a green colored cylinder 
corresponding to predator. Note again that we are simplifying perception by recognizing a blue colored 
cylinder as prey and a green colored cylinder as predator. The Retina schema calculates distances to 
the stimulus by computing the number of blue pixels segmented from the visual field of the camera. Due 
to the absence of obstacles the robot moves towards the prey (Pursuit state), locations 1 and 2, 
changing orientation in response to predator presence (Flee state). Figure 25 (right) shows field 
activities (left portion of the display window) similar to those previously shown in Figure 24. The right 
portion of the display shows visualField activity in the Retina schema displaying the segmented blue 
cylinder corresponding to prey and green cylinders corresponding to predator.   
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Figure 25. The figure shows  (left) the robot trajectory during prey catching and predator avoidance behavior initially 
in response to prey and then predator. The figure (right) shows a window with two displays. The left displays shows 
the following activity fields from the left: (i) preyHor represents prey activation in Tectum neural schema with activity 
centered at prey location, (ii) predatorHor represents predator activation in the PreTectum/Thalamus neural schema 
with activity centered at predator location, (iii) mhm represents combined prey and predator activation in Motor 
Heading Map (MHM ), and (iv) wta represents winner-take-all activity in MHM  resulting in movement direction 
towards maximum combined MHM activity. The right display shows visualField activity in the Retina  with 
segmented prey (light rectangle) and predator (dark rectangle). 

V. PREY CATCHING AND PREDATOR AVOIDANCE – MULTIPLE ROBOT ARCHITECTURE  

While neither anurans nor praying mantis display multi-group hunting, there exist other animals with 
advanced social behaviors. Among these, wolves show advanced hunting by organizing themselves as 
small packs [51]. This organization enables wolves to hunt animals that are larger and sometimes even 
faster than themselves, as well as be more compact in response to attacks from outside predators. 
While very limited neurobiological studies exist on wolves, it is possible in robots to combine studies 
from different animals into a single comprehensive model. In this section we take the individual anuran 
model for prey catching and predator avoidance and extend it to multiple robots taking inspiration on 
wolf pack hunting [41]. The goal of this extended architecture is two fold: (1) To analyze the reusability 
and scalability of the underlying anuran neural-schema architecture when applied to collaborative robots; 
and (2) to evaluate the extensibility of the higher level prey catching and predator avoidance individual 
behavior model to multiple robots. This approach differs from “classical” behavior models developed 
for multiple robots [11, 15, 35, 36, 38]. 

The prey catching and predator avoidance model for multiple robots considers a team of wolf 
predators, i.e. a wolf pack, comprising an alpha wolf and several beta wolves. Behavioral studies have 
shown that wolves hunt in packs of about 5 to 20 members keeping a social hierarchy during hunting as 
well as eating with the stronger alpha wolf leading the pack. The wolf pack hunting model described in 
this work includes the following generalizations:  
• Wolf teams are conformed by a group leader (alpha wolf) and at least one follower (beta wolf).  
• Beta wolves group around the alpha wolf keeping a certain distance from their leader and among 

themselves.  
• Wolves receive only visual information from the environment, using this input to calculate their 

positions and distances to stimuli. There is no direct communication between wolves.  
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• Visual fields are limited to a single camera recognizing objects by their color. If an alpha wolf is 
outside a beta wolf visual field, then the beta wolves loses track of leader. 

• Walking speeds are kept constant for all wolves at all times. 
• Head direction is kept constant relative to body motions, similar to the anuran model. 

 
We extend the individual anuran prey catching and predator avoidance model from previous section 

by incorporation formations consisting of one or more beta wolves in addition to the alpha wolf. In the 
model, beta wolves will try to keep a radial distance r behind the alpha wolf effectively forming a 
circumference centered at the alpha wolf as shown in Figure 26. In the figure, movement direction d is 
shown for all wolves. Lines in blue represent beta wolf visual field having angular size 2α . If 
θ  represents the angle between beta wolf moving direction and visual sight of alpha wolf; then when α 
< θ the beta wolf loses track of alpha wolf.  

 

 
Figure 26. Wolf pack formation diagram. Beta wolves keep behind alpha wolf following a circumference formation 
centered at the alpha wolf using their visual field to track the alpha wolf.  

A. Behavior 

The alpha wolf prey catching behaviour is the same as previously described for anurans. The beta wolf 
prey catching behavior is described in terms of a state diagram that includes Formation, Pursuit, 
Attack, Eat, and Wander as shown in Figure 27: 

 
• Wander - In the Wander state the wolf explores the environment in search for a prey.  The alpha 

wolf behavior is similar to the individual frog previously described. The beta wolf behaviour 
considers both prey and leader. If the wolf perceives the leader, leader_visible is activated 
continuing to the Formation state. If the wolf perceives a prey (but not the leader), prey_visible is 
activated continuing to the Pursuit state.  

• Formation - As long as the beta wolf continues perceiving the alpha wolf, it will stay to it. If visible 
contact is lost with the leader then the condition leader_not_visible is activated continuing to the 
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Wander state. If the beta wolf detects a prey (but not the leader) it will change to the Pursuit  state 
in response to prey_visible activation. 

• Pursuit - In the Pursuit state the goal is to approach the prey without separating from the 
formation. In the Pursuit  state there are three possible transitions: one towards the Formation state 
in case the prey is outside its range of vision caused by the prey_not_visible condition; the second 
transition occurs when the prey is detected at a close distance, activated by the prey_near 
condition and continuing to the Attack  state; and, the third transition occurs when the beta wolf 
loses track of the alpha wolf, activating the leader_not_visible condition and continuing to the 
Wander state.  

• Attack  – In the Attack  state the animal snaps at the prey activating the prey_catch condition. If the 
animal gets far from the prey the behavior goes back to the Pursuit  state activated by the prey_far 
condition. The beta wolf will follow the alpha wolf cue in attacking the prey. If the prey_far 
condition is activated the beta wolf returns to the Pursuit state. If the prey is caught, the condition 
catch_prey is activated continuing to the Eat state. 

• Eat - In the Eat state the wolf eats the animal where beta wolves eat only after the alpha wolf has 
done so. After the prey has been eaten the condition prey_not_visible is activated returning to the 
Wander state. If the prey escapes, the condition prey_not_catch is activated returning to the 
Attack  state. 

 

 
 
Figure 27. Beta wolf prey catching behavior consisting of Wander, Formation, Pursuit , Attack  and Eat states. Alpha 
wolf behavior is similar to the individual behavior described in Figure 15. 

The predator avoidance behavior is described in terms of a state diagram that includes Flee, Duck 
and Wander states as shown in Figure 16: 

The predator avoidance behavior is similar to the one described in Figure 16 and 17. 
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B. Schemas 

The multiple animal prey catching and predator avoidance behavior is mapped to an extended schema 
architecture where a new “same species” set of schemas has been added, as shown in Figure 28. The 
extended schema architecture includes, in addition to the previous schemas shown in Figure 18, a 
Same-Species Recognizer, a Max Same-Species Selector, and a Same-Species Approach schema.  
 

 
Figure 28. Extended prey acquisition and predator avoidance schema architecture consisting of perceptual 
schemas (PS): Visual, Prey Recognizer, Predator Recognizer, Same-Species Recognizer , Max Prey Selector, 
Max Predator Selector and Max Same-Specie Selector; sensorimotor schemas (S):  Prey Approach, Predator 
Avoid, Same -Specie Approach  and Motor Heading Map; and motor schemas (MS): Orient , Forward and 
Backup .  

Perceptual schemas include Vision, Prey Recognizer, Predator Recognizer, Max Prey Selector, 
Max Predator Selector in addition to: 
 
• Same-Species Recognizer – Recognizes a stimulus from the same species corresponding to the 

animal leader.  
• Max Same-Species Selector - Selects among multiple Same-Specie stimuli.  
 
Sensorimotor schemas include Prey Approach and Predator Avoid in additional to: 
 
• Same-Specie Approach – Obtains input from the Max Same-Specie Selector schema generating 

as output an attractant field whose strength decays proportional to the distance to the same-specie 
stimulus. 

 
Motor schemas include Orient, Backward and Forward as before. 
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C. Neural Networks 

The neural schema architecture is similar to the previous architecture with the addition of a link 
between Same-Species Approach and Tectum inspired in studies that map same species recognition 
(mates) to the Tectum [14]. In Figure 29 we show mappings between schemas and the underlying 
neural networks: 
 
 

 
Figure 29. Prey catching and predator avoidance extended multi level neural schema architecture. The schema level consists 
of perceptual schemas (PS): Visual, Prey Recognizer , Predator Recognizer , Same-Species Recognizer, Max Prey Selector, 
Max Predator Selector and Max Same-Species Selector; sensorimotor Schemas (S): Prey Approach, Predator Avoid, Same-
Species  Approach, and Motor Heading Map; and motor schemas (MS): Orient, Forward, and Backup. The neural level 
consists of four neural schemas: Retina, MaxSelector, Tectum and PreTectum/Thalamus. 

VI. PREY CATCHING AND PREDATOR AVOIDANCE – MULTIPLE ROBOT EXPERIMENTS AND RESULTS  

In this section we describe prey catching and predator avoidance experiments on multiple robots 
inspired on wolf pack studies as described in the previous section. We initially test the experiments 
under a simulation-only environment and then perform physical experiments with three real robots.  

A. Prey Catching 

We tested a set of basic prey catching experiments involving a prey, an alpha robot and several beta 
robots. The simulations shown in Figure 30 were developed using the TeamBots software [10]. Three 
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beta wolves in black maintain a formation behind an alpha robot in red pursuing a prey in yellow. The 
beta wolves respond to the presence of the alpha wolf leader.  

Beta Wolves

Alpha Wolf

Prey

Beta Wolves

Alpha Wolf

Prey

 
Figure 30. A 4-robot pack formation consisting of one alpha robot in red and three beta robots in black. The robots 
are pursuing a prey in yellow. 
 

The physical experiment results are shown in Figure 31. Figure 31 (left) shows the robot pack 
pursuing a blue colored cylinder corresponding to a prey. Alpha wolf is in red and beta wolves in blue. 
Figure 31 (center) shows the robot pack pursuing the prey after it has moved. All wolves move at the 
same speed and there are no obstacles in the field. To keep formation the alpha wolf has to be inside 
the visual field of the beta wolves at all times. Figure 31 (right) shows the alpha and beta wolves 
surrounding (attacking) the prey when close enough to it . Note that the alpha robot is the first to attack.  
 

   
Figure 31. Left: Alpha wolf in red and beta wolves in dark blue. Robots pursue the  blue colored cylinder 
corresponding to prey. Beta wolves keep a formation behind their leader. Center: Prey is manually moved with pack 
tracking it. Beta wolves maintain a formation behind their leader. Right: Eventually the robots get close to the prey 
attacking it by a surrounding motion. 
 

Figure 32 shows a window with three displays: (bottom) beta wolf segmented view of prey and 
alpha wolf; (top left) segmented objects in visual field; and (top right) different field activities: (i) the left 
four graphs represent prey (preyHor), predator (predatorHor), and alpha (alphaHor) recognition 
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maps; (ii) the next graph represents the motor heading map (mhm) integrated movement showing 
stronger alpha recognition; (iii) the graph to the right shows a step activation corresponding to a winner-
take-all (wta) dynamics representing output robot orientation. As shown in the figure, in the current 
stage the beta wolf will follow the alpha wolf and not the prey.  
 

 
Figure 32. The figure shows (bottom) beta wolf view of prey segmented in blue and alpha wolf segmented in red. 
Upper graphs show segmented objects in gray (left) and field activities graph (right). From left to right these field 
activities correspond to: preyHor, predatorHor, alphaHor, mhm and wta. 

B. Predator Avoidance 

We tested a set of basic of predator avoidance experiments involve a prey, an alpha robot and several 
beta robots. These simulations shown in Figure 33 were developed using the TeamBots software [10]. 
Three beta wolves in black break away from a formation behind an alpha robot as the predator in 
brown. As opposed to the prey catching behavior where robots react to the leader and the prey, once a 
predator is perceived robots flee away from the intruder breaking up with the formation.  
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Figure 33. Left: A 4-robot pack formation consisting of one alpha robot in red and three beta robots in black. The 
robots initially pursuing a prey in  yellow start fleeing once the predator in brown appears. 
 

The physical experiment results are shown in Figure 34. Figure 34 (left) shows the robot pack, 
initially pursuing a blue cylinder corresponding to a prey, now fleeing away from a green cylinder 
representing a predator. Alpha wolf is in red and beta wolves in blue. Similarly to the individual robot 
predator avoidance behavior, alpha and beta wolves break away from the pack independent of pack 
formation in direction opposite to the predator location. Figure 34 (right) shows a window with three 
displays: (bottom) beta wolf segmented view of prey, predator and alpha wolf; (top left) segmented 
objects in visual field; and (top right) different field activities: (i) the left four graphs represent prey 
(preyHor), predator (predatorHor), and alpha (alphaHor) recognition maps; (ii) the next graph 
represents the motor heading map (mhm ) integrated movement showing stronger alpha recognition; (iii) 
the graph to the right shows a step activation corresponding to a winner-take-all (wta) dynamics 
representing output robot orientation. As shown in the figure, beta wolves will react towards predator 
disregarding the alpha wolf and the prey. 
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Figure 34. Left: Alpha wolf in red and beta wolves in dark blue. Robots flee away from green colored cylinder 
corresponding to predator. Right: The figure shows (bottom) beta wolf view of prey segmented in blue, predator 
segmented in green and alpha wolf segmented in red. Upper graphs show segmented objects in gray (left) and field 
activities graph (right). From left to right these field activities correspond to: preyHor, predatorHor, alphaHor, mhm 
and wta. 

VII. CONCLUSIONS 

The goal of this work has been to develop a multi-level neural-schema robotic architecture inspired 
in behavior and brain studies in real animals. We have modeled, based on anuran and praying mantis 
neuroethological studies, a prey catching and predator avoidance single robot architecture. We also 
extended the model and architecture to multiple robots taking inspiration in wolf pack ethological 
studies. While there has been some prior work in prey catching and predator avoidance robotic models  
and robotic architectures, the work presented in this paper is unique in its multi-level neural schema 
approach and its extension from single to multiple robots.  

The methodology used in this work involves the development of simulations to test behaviors and 
neural schema models in single and multiple animals followed by its implementation in real robotic 
systems. We use as single animal simulation platform the NSL/ASL multi-level neural schema systems, 
while we use as multiple animal simulation platform the TeamBots behavioral modeling system. We 
execute all robotic models using the integrated NSL/ASL/MIRO system connected in a wireless fashion 
to a Sony AIBO ERS-210 robot for physical experimentation. Although TeamBots provides linkage to 
real robots, we only use this environment for preliminary behavior-only multiple robot simulation. 
Models tested in TeamBots are then integrated with NSL/ASL single animal models in developing multi-
level neural schema architectures for multiple robots.  

The NSL/ASL arquitecture has been crucial to manage the complexity involved in modeling multi-
level neuroethological systems and corresponding neural schema architectures. Under the  NSL/ASL 
architecture schemas represent behavioral patterns while neural networks represent the dynamic and 
computational properties of the underlying brain mechanisms. As the complexity of the biological 
systems being modeled grows, it becomes necessary to have powerful simulation tools and robotic 
systems that let the developer follow good software practices including modularity and top-town and 
bottom-up designs.  
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In terms of actual models, prey catching and predator avoidance is inspired primarily in anuran and 
praying mantis studies with extensions to multiple robots inspired in wolf pack hunting behavior. The 
behaviors modeled are much more complex in nature than those modeled in the robots. For example, 
anurans and praying mantis perform a more complex visual object recognition based on motion 
detection while wolves use both smell and vision to keep pack hierarchy. In the robotic experiments we 
used only color to detect objects in order to simplify perception limiting robot coordination to sight only. 
The limited robot visual field directly affects pack tightness. Other aspects that will make behaviors 
more realistic include: use of more robots during experimentation, addition of motivational variables like 
fatigue and hunger, variation of robot speeds and turning angles, the inclusion of more than one prey and 
predator, use of robots for both preys and predators, and the extension to new behaviors. In terms of 
neural mechanisms in anurans and praying mantis we plan to analyze the effect of additional factors in 
prey catching and predator avoidance behavior including additional neural schemas, extension of existing 
ones to adapt to later studies and the inclusion of motivational factors such as hunger (internal) and 
season and time (external) at the neural level. These aspects become critical in robot architectures that 
intend to exhibit adaptation and learning [12].  

Finally, all robot experiments can be retrieved from our web site [45]. 
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