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Abstract. In this paper, a mathematical model is proposed and analysed to study the

dynamics of a prey-predator model. It is assumed that the habitat is divided into two

zones, namely free zone and reserved zone. Predators are not allowed to enter into the

reserved zone. Criteria for the coexistence of predator-prey are obtained. The role of

reserved zone is investigated and it is shown that the reserve zone has a stabilizing effect

on predator-prey interactions.
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1 Introduction

The biosphere is an important zone for biological activities that are mainly responsible

for the changes in ecology and environment. The co-existence of interacting biolo-

gical species has been of great interest in the past few decades and has been studied

extensively using mathematical models by several researchers [1–10]. Many biological

species have been driven to extinction and many others are at the verge of extinction

due to several external forces such as overexploitation, over predation, environmental

pollution, mismanagement of the habitat, etc. In order to protect these species, appropriate

measures such as restriction on harvesting, creating reserved zones/refuges, etc. should be

adopted that will decrease the interaction of these species with external forces. The role

of reserve zones/refuges in predator-prey dynamics has received considerable attention

and has also been investigated by several researchers [11–21]. In particular, Collings [11]

studied the nonlinear behavior of predator-prey model with refuge protecting a constant

proportion of prey and wit temperature dependent parameters chosen appropriately for a

mite interaction on fruit species. He showed the existence of a temperature interval in

which increasing the amount of refuge dynamically destabilizes the system; and on part

of this interval the interaction is less likely to persist in that predator and prey minimum

population densities are lower than when no refuge is available. Krivan [12] proposed a

mathematical model and investigated the effects of optimal antipredator behavior of prey

in predator-prey system. He showed that optimal antipredator behavior of prey leads to

persistence and reduction of oscillations in population densities. Chattopadhyay et al. [13]
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studied a prey-predator model with some cover on prey species. They observed that global

stability of the system around positive equilibrium does not necessarily imply the perma-

nence of the system. Recently, Kar [18] proposed a predator-prey model incorporating

a prey refuge and independent harvesting on either species. He showed that using the

harvesting efforts as control, it is possible to break the cyclic behavior of the system.

In the above investigations, the dynamics of predator living in unreserved zone

together with prey has not been studied explicitly. The reserve zone plays a vital role

in aquatic environment for the protection of fishery resources from its overexploitation

[22–26]. In particular, Dubey et al. [22] proposed and analyzed a mathematical model to

study the dynamics of a fishery resource system in an aquatic environment consisting of

two zones, namely a free fishing zone and a reserve zone where fishing is strictly prohibi-

ted. It was suggested that even if fishery is exploited continuously in the unreserved zone,

fish populations can be maintained at an appropriate equilibrium level in the habitat. The

model presented in this paper will be of great use in a National Park where prey-predator

are living together. The prey species which are to be conserved can be protected from

predators by creating an artificial boundary or shelter that will divide the habitat into two

zones – one reserved and other unreserved. The entry of predators into reserved zone can

be restricted by the artificial boundary that may be in the form of fencing of suitable mesh

size through which prey can pass but predators can not. The model studied in Section 4

(when predator is partially dependent on the prey) can also be used in fishery resources

where fisherman can be thought of as predator (in fact, generalist predator) and fishing is

not permitted in a particular zone, called the reserved zone.

Keeping this in view, we consider a habitat consisting of two zones: an unreserved

zone where prey and predator can move freely and a reserved zone where prey can live

but predators are not allowed to enter inside. We consider the two cases: one when

the predator is wholly dependent on the prey and other when the predator is partially

dependent on the prey in the unreserved zone. In fact, we consider the model developed

in [22] by incorporating an additional equation for predator in the unreserved zone. Then

we study the coexistence and stability behavior of predator-prey system in the habitat.

2 Mathematical model

Consider a habitat where prey and predator species are living together. It is assumed that

the habitat is divided into two zones, namely, reserved and unreserved zones. It is assumed

that predator species are not allowed to enter inside the reserved zone whereas the free

mixing of prey species from reserved to unreserved zone and vice-versa is permissible.

Let x(t) be the density of prey species in unreserved zone, y(t) the density of prey

species in reserved zone and z(t) the density of the predator species at any time t ≥ 0.

Let σ1 be the migration rate coefficient of the prey species from unreserved to reserved

zone and σ2 the migration rate coefficient of prey species from reserved to unreserved

zone. It is assumed that the prey species in both zones are growing logistically.

Keeping these in view and following Dubey et al. [22], the dynamics of system may
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be governed by the following system of ordinary differential equations:

dx

dt
= rx

(
1 −

x

K

)
− σ1x + σ2y − β1xz,

dy

dt
= sy

(
1 −

y

L

)
+ σ1x − σ2y,

dz

dt
= Q(z) − β0z,

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

(1)

In model (1), r and s are intrinsic growth rate coefficients of prey species in unreserved

and reserved zones respectively; K and L are their respective carrying capacities. β1 is

the depletion rate coefficient of the prey species due to the predator, and β0 is the natural

death rate coefficient of the predator species.

In model (1), the function Q(z) represents the growth rate of predator. The model

(1) is analyzed in two different cases, namely,

(i) Q(z) = β2xz, (2)

i.e. when predator is wholly dependent on the prey species;

(ii) Q(z) = bz

(
1 −

z

M0

)
+ β2xz (3)

i.e. when the predator is partially dependent on the prey. In this case, the prey species of

density x(t) can be thought of as an alternative resource for the predator.

By denoting a = b − β0 > 0, M = M0(b − β0)/b we note that the third equation

of model (1) can be written as

dz

dt
= az

(
1 −

z

M

)
+ β2xz. (4)

In model system (1)–(4), r, s, σ1, σ2, β1, β2, β0 and a are assumed to be positive con-

stants.

Now we present the analysis of model (1) in two cases (2) and (3) by using stability

theory of ordinary differential equations [27].

3 Case I: when predator is wholly dependent on the prey

In this case, Q(z) satisfies equation (2).

3.1 Existence of equilibria

It can be checked that model (1), when Q(z) satisfies (2), has only three nonnegative

equilibria, namely E0(0, 0, 0), E1(x̂, ŷ, 0) and E(x, y, z). The equilibrium E0 exists

obviously and we shall show the existence of E1 and E as follows:
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3.1.1 Existence of E1(x̂, ŷ, 0)

Here x̂ and ŷ are the positive solutions of the following algebraic equations:

rx

(
1 −

x

K

)
− σ1x + σ2y = 0, (5a)

sy

(
1 −

y

L

)
+ σ1x − σ2y = 0. (5b)

From equation (5a), we have

y =
1

σ2

[
rx2

K
− (r − σ1)x

]
. (6)

Substituting the value of y from equation (6) into equation (5b), a little algebraic manipu-

lation yields

ax3 + bx2 + cx + d = 0, (7)

where

a =
sr2

Lσ2
2K

2
, b =

−2rs(r − σ1)

KLσ2
2

,

c =
s(r − σ1)

2

Lσ2
2

−
(s − σ2)r

σ2K
, d =

(r − σ1)(s − σ2)

σ2

− σ1.

It may be noted that equation (7) has a unique positive solution x = x∗ if the

following inequalities hold:

s(r − σ1)
2

Lσ2

<
(s − σ2)r

K
, (8a)

(r − σ1)(s − σ2) < σ1σ2. (8b)

From the model system (1) we note that if there is no migration of the prey species

from reserved to unreserved zone (i.e. σ2 = 0) and r − σ1 < 0, then dx
dt

< 0. Similarly

if there is no migration from of the prey species from unreserved to reserved zone (i.e.

σ1 = 0) and s − σ2 < 0, then dy
dt

< 0. Hence it is natural to assume that

r > σ1 and s > σ2. (8c)

Knowing the value of x̂, the value of ŷ can be computed from equation (6). It may also

be noted that for ŷ to be positive, we must have

x̂ >
K

r
(r − σ1). (9)

482



A Prey-Predator Model with a Reserved Area

3.1.2 Existence of E(x, y, z)

Here x, y, z are the positive solutions of the following algebraic equations:

rx

(
1 −

x

K

)
− σ1x + σ2y − β1xz = 0,

sy

(
1 −

y

L

)
+ σ1x − σ2y = 0,

β2xz − β0z = 0.

Solving the above equations, we get,

x =
β0

β2

, (10a)

y =
1

2sβ2

[
(s − σ2) +

√
(s − σ2)2 + 4sσ1Lβ0β2

]
, (10b)

z =
β2

β0β1

[
σ2y + (r − σ1)

β0

β2

−
rβ2

0

Kβ2
2

]
. (10c)

For z to be positive, we must have

σ2y + (r − σ1)
β0

β2

>
rβ2

0

Kβ2
2

. (11)

Equation (11) gives a threshold value of the carrying capacity of the free access zone for

the survival of predators.

In the following lemma, we show that all solutions of model (1) are nonnegative and

bounded.

Lemma 1. The set

Ω =

{
(x, y, z) ∈ R

+

3 : 0 < w = x + y + z ≤
µ

η

}

is a region of the attraction for all solutions initiating in the interior of the positive orthant,
where η is a constant such that

0 < η < β0, µ =
K

4r
(r + η)2 +

L

4s
(s + η)2, β1 ≥ β2.

Proof. Let w(t) = x(t) + y(t) + z(t) and η > 0 be a constant. Then

dw

dt
+ ηW = (r + η)x −

rx2

K
+ (s + η)y −

sy2

L
− (β1 − β2)xz − (β0 − η)z. (12)

Since β1 is the depletion rate coefficient of prey due to its intake by the predator and β2

is the growth rate coefficient of predator due to its interaction with their prey, and hence

it is natural to assume that β1 ≥ β2.
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Now choose η such that 0 < η < β0.

Then equation (12) can be written as

dW

dt
+ ηw ≤ (r + η)x −

rx2

K
+ (s + η)y −

sy2

L

=
K

4r
(r + η)2 −

r

K

{
x −

K

2r
(r + η)

}2

+
L

4s
(s + η)2 −

s

L

{
y −

L

2s
(s + η)

}2

≤
K

4r
(r + η)2 +

L

4s
(s + η)2 = µ(say).

By using the differential inequality [28], we obtain

0 < w
(
x(t), y(t), z(t)

)
≤

µ

η
(1 − e−ηt) +

(
x(0), y(0), z(0)

)
e−ηt.

Taking limit when t → ∞, we have, 0 < w(t) ≤ µ
η

, proving the lemma.

3.2 Stability analysis

By computing the variational matrices corresponding to each equilibrium, we note the

following:

1. E0 is a saddle point with stable manifold locally in the z-direction.

2. If β2x̂ > β0 then E1 is a saddle point with stable manifold locally in the xy-plane

and with unstable manifold locally in the z-direction.

3. If β2x̂ < β0 then E1 is locally asymptotically stable.

In the following theorem, we show that the model system (1) does not have any

closed trajectory in the interior of the positive quadrant of the xy-plane.

Theorem 1. The model system (1) under the assumption (2) can not have any periodic
solution in the interior of the positive quadrant of the xy-plane.

Proof. Let H(x, y) = 1

xy
. Clearly H(x, y) is positive in the interior of the positive

quadrant of the xy-plane. Let

h1(x, y) = rx

(
1 −

x

K

)
− σ1x + σ2y,

h2(x, y) = sy

(
1 −

y

L

)
+ σ1x − σ2y.

Then

∆(x, y) =
∂

∂x
(h1H) +

∂

∂y
(h2H) = −

1

y

(
r

K
+

σ2y

x2

)
−

1

x

(
s

L
+

σ1x

y2

)
< 0.
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From the above equation, we note that ∆(x, y) does not change sign and is not identically

zero in the interior of the positive quadrant of the xy-plane. By Dulac-Bendixon criteria,

it follows that there is no closed trajectory in the interior of the positive quadrant of the

xy-plane, and hence the theorem follows.

In the following theorem, we show that E is locally asymptotically stable.

Theorem 2. The interior equilibrium E is locally asymptotically stable.

Proof. In order to prove this theorem, we first linearize model (1) by taking the following

transformations:

x = x + X, y = y + Y, z = z + Z.

Now we consider the following positive definite function:

V (t) =
1

2
X2 +

1

2
c1Y

2 +
1

2
c2Z

2,

where c1 and c2 are positive constants to be chosen suitably.

Now differentiating V with respect to time t along the linear version of model (1),

we get

dV

dt
= −

(
rx

K
+

σ2y

x

)
X2

− c1

(
sy

L
+

σ1x

y

)
Y 2

+ XY (σ2 + c1σ1) + XZ(c2β2z − β1x).

Choosing c2 = β1x
β2z

we note that V̇ is negative definite if

(σ2 + c1σ1)
2 < 4c1

(
rx

K
+

σ2y

x

)(
sy

L
+

σ1x

y

)
.

The above equation can further be written as

(σ2 − c1σ1)
2 + 4c1σ1σ2 < 4c1

(
rx

K
+

σ2y

x

)(
sy

L
+

σ1x

y

)
.

It may be noted that if we choose c1 = σ2

σ1

then the above condition is automatically satis-

fied. This shows that V is a Liapunov function [27], and hence the theorem follows.

In the following theorem, we are able to show that E is globally asymptotically

stable.

Theorem 3. The interior equilibrium E is globally asymptotically stable with respect to
all solutions initiating in the interior of the positive orthant.
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Proof. Consider the following positive definite function about E,

W (t) =

(
x − x − x ln

x

x

)
+ c1

(
y − y − y ln

y

y

)
+ c2

(
z − z − z ln

z

z

)
.

Differentiating W with respect to time t along the solutions of model (1), we get

dW

dt
= −

r

K
(x − x)2 −

c1s

L
(y − y)2 + (x − x)(z − z)(c2β2 − β1)

+ σ2(x − x)

(
xy − xy

xx

)
+ c1σ1(y − y)

(
xy − xy

yy

)
.

Choosing c1 = yσ2

xσ1

and c2 = β1

β2

, dW
dt

can further be written as

dW

dt
= −

r

K
(x − x)2 −

yσ2s

xσ1L
(y − y)2 −

σ2

xxy
(xy − xy)2,

which is negative definite. Hence W is a Liapunov function [27] with respect to E whose

domain contains the region of attraction Ω, proving the theorem.

4 Case II: when the predator is partially dependent on the prey

In this case Q(z) satisfies equation (3) and the prey can be thought of as an alternative

food for the predator.

4.1 Existence of equilibria

When Q(z) satisfies equation (3), then the third equation of model (1) can be replaced

by equation (4). Then it can be checked that model (1) has four nonnegative equilibria,

namely, F0(0, 0, 0), F1(0, 0, M), F2(x̃, ỹ, 0), F ∗(x∗, y∗, z∗).
The equilibriums F0 and F1 obviously exist. As in Case I, equilibrium F2(x̃, ỹ, 0)

exists if the inequalities (8a) and (8b) are satisfied. Further, for x̃ to be positive, we must

have

x̃ >
K

r
(r − σ1). (13)

To see the existence of F ∗, we note that x∗, y∗, z∗ are the positive solutions of the

following algebraic equations:

rx

(
1 −

x

K

)
− σ1x + σ2y − β1xz = 0, (14a)

sy

(
1 −

y

L

)
+ σ1x − σ2y = 0, (14b)

z =
M

a
(a + β2x). (14c)
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Solving the above system of algebraic equations, we get

Ax3 + Bx2 + Cx + D = 0, (15)

where

A =
s

Lσ2
2

(
r

K
+

β1β2M

a

)
,

B = −
2s

Lσ2
2

(
r

K
+

β1β2M

a

)
(r − σ1 − β1M),

C =
s

Lσ2
2

(r − σ1 − β1M)2 −
s − σ2

σ2

(
r

K
+

β1β2M

a

)
,

D =
s − σ2

σ2

(r − σ1 − β1M) − σ1.

We note that the equation (15) has a real positive root x = x∗ if the following conditions

are satisfied:

s(r − σ1 − β1M)2 < Lσ2(s − σ2)

(
r

K
+

β1β2M

a

)
, (16a)

(r − σ1 − β1M)(s − σ2) < σ1σ2, (16b)

r − σ1 − β1M > 0. (16c)

Knowing the value of x∗, the value of z∗ can be computed from equation (14c) and the

value of y∗ can be computed from the equation given below:

y∗ =
1

σ2

[(
r

K
+

β1β2M

a

)
x∗2

− (r − σ1 − β1M)x∗

]
. (17)

For y∗ to be positive, we must have

(
r

K
+

β1β2M

a

)
x∗ > (r − σ1 − β1M). (18)

In the following lemma, we show that the model system (1) is biologically well behaved.

The proof of this lemma is similar to that of Lemma 1, and hence omitted.

Lemma 2. The set

Ω1 =

{
(x, y, z) : w(t) = x(t) + y(t) + z(t), 0 < w(t) ≤

µ∗

η∗

}

attracts all solutions initiating in the interior of the positive orthant, where

µ∗ =
K

4r
(r + η∗)2 +

L

4s
(s + η∗)2 +

M

4a
(a + η∗)2,

and η∗ is a positive constant.
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4.2 Stability analysis

In order to study the local stability behavior of F ∗, we compute the variational matrices

corresponding to each equilibrium. From these matrices, we note the following:

1. F0 is an unstable equilibrium point.

2. F1 is a saddle point with stable manifold locally in the z-direction and with unstable

manifold locally in the xy-plane.

3. F2 is also a saddle point whose stable manifold is locally in the xy-plane and unstable

manifold locally in the z-direction.

Remark. It may be noted that Theorem 1 will remain valid in the case when predator is
partially dependent on the prey.

In the following theorems, local and global stability behavior of F ∗ have been studied.

The proof of Theorem 4 is similar to that of Theorem 2, and the proof of Theorem 5 is

similar to that of Theorem 3. Hence we omit the proofs of these theorems.

Theorem 4. The interior equilibrium F ∗ is locally asymptotically stable.

Theorem 5. The interior equilibrium F ∗ is globally asymptotically stable with respect to
all solutions initiating in the interior of positive orthant.

5 Numerical simulation

In this section we present numerical simulation to illustrate the results obtained in previ-

ous sections. We choose the following values of parameters in model (1):

a = 3, r = 4, s = 3.5, K = 40, L = 50, M = 30,

β0 = 3, β1 = 2, β2 = 1, σ1 = 2.5, σ2 = 1.5.
(19)

With the above values of parameters, we note that conditions (8) and (9) are satisfied.

This shows that equilibrium exists, and it is given by

x̂ = 36.7429, ŷ = 53.2598. (20)

When predator is wholly dependent on the prey, it is noted that the positive equilibrium

E(x, y, z) exists and it is given by

x = 3, y = 10.6406, z = 3.2602. (21)

Further, when the predator is partially dependent on the prey, it is seen that the positive

equilibrium F ∗(x∗, y∗, z∗) exists, and it is given by

x∗ = 10.4939, y∗ = 5.5363, z∗ = 31.0494. (22)

From (20)–(22), we note the following:

488



A Prey-Predator Model with a Reserved Area

1. When the predator is at zero equilibrium level (z = 0), the total density of the prey

species at equilibrium level is 90.0027 (36.7429 + 53.2598).

2. When the predator is completely dependent on the prey, then density of the predator

is 3.2602 while the total density of the prey has decreased from 90.0027 to 13.6406.

3. Comparing (21) and (22), it is noted that when the predator is partially dependent

on the prey, then density of the predator has increased from 3.2602 to 31.0494, and

prey density has also increased from 13.6406 to 16.0302.

This suggests that an alternative food for the predator leads an increase in the density

of the prey as well as predator.

Figs. 1–5 correspond to model (1) when the predator is wholly dependent on the
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Fig. 1. Case I: graph of x verses t for diffe-

rent value of σ1 obtained using parameters:

s = 3.5, K = 40, L = 50, β0 = 3, β1 = 2,

β2 = 1, σ2 = 1.5.
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Fig. 2. Case I: graph of x verses t for diffe-

rent value of σ2 obtained with σ1 =2.5 and

other values of parameters are same as in

Fig. 1.
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Fig. 3. Case I: graph of x verses t for diffe-

rent value of β1 obtained with σ1 = 2.5 and

other values of parameters are same as in

Fig. 1.
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values of parameters as in Fig. 1.

489



B. Dubey

prey. Fig. 1 shows the behavior of x with time for different values of σ1. This figure

shows that initially x increases for some time, then it starts decreasing and finally attains

its equilibrium level. We also note that initially x decreases as σ1 increases but after

certain time this behavior is just reversal and finally x settles down at its equilibrium

level. Fig. 2 shows the behavior of x with time t for different values of σ2. From this

figure, we note that initially x increases as σ2 increases, after certain time x decreases

with σ2 and finally attains its equilibrium level. From Fig. 3, we note that behavior of

x with time t is similar to that of Fig. 1. Fig. 4 shows the behavior of prey species in

reserved area w.r.t. time t. This figure shows that initially y increases with time and after

certain period of time, it attains its equilibrium level. We also note that y increases as σ1

increases. Fig. 5 shows that y increases with time and y decreases as σ2 increases, and

finally settles down at its equilibrium level.
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15
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25

30

35
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σ
2
=1.5

σ
2
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σ
2
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Fig.5 

Fig. 5. Case I: graph of y verses t for different value of σ2 obtained with σ1 = 2.5 and

other values of parameters are same as in Fig. 1.

Figs. 6–10 correspond to model (1) when predator is partially dependent on the prey.

Figs. 6–8 show the behavior of prey species in unreserved area with respect to time t.
Fig. 6 shows that behavior of x with time when predator is partially dependent on the

prey. It is noted that x exhibits periodic behavior for some time and finally it settles down

at its equilibrium level. It is also observed that initially x increases as σ1 increases and

after certain time x decreases as σ1 increases, and finally obtains its equilibrium level.

From Fig. 7 we note that x has oscillatory behavior for certain time, and then it settles

down at its equilibrium level. It is also noted that initially x increases as σ2 increases, but

after certain time this behavior is just reversed. Fig. 8 shows the behavior of x w.r.t. time t
for different values of β1. It is noted that if β1 is small, then initially x increases and then

exhibits oscillatory behavior and finally obtains its equilibrium level. But if β1 is larger

than a threshold values, then initially x decreases, then after a slight increase it obtains its

equilibrium level. It is also observed that x decreases as β1 increases. Fig. 9 and Fig. 10

show the behavior of prey species in reserved area w.r.t. time t. From these figures it is

noted that y increases with time and finally settles down at its equilibrium level. It is also

noted that y increases as σ1 increases whereas y decreases as σ2 increases. It is observed

that the prey species in reserved zone do not exhibit periodic behavior.
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Fig. 6. Case II: graph of x verses t for diffe-

rent value of σ1 obtained using parameters:

a = 3, s = 3.5, K = 40, L = 50, M = 30,

β1 = 2, β2 = 1, σ2 = 1.5.
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Fig. 7. Case II: graph of x verses t for diffe-

rent value of σ2 obtained with σ1 =2.5 and

other values of parameters are same as in

Fig. 6.
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Fig. 8. Case II: graph of x verses t for diffe-

rent value of β1 obtained with σ1 =2.5 and

other values of parameters are same as in

Fig. 6.
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Fig. 9. Case II: graph of y verses t for diffe-

rent value of σ1 obtained using the same

values of parameters as in Fig. 6.
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Fig. 10. Case II: graph of y verses t for different value of σ2 obtained with σ1 = 2.5

and other values of parameters are same as in Fig. 6.
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6 Conclusions

In this paper, a mathematical model has been proposed and analyzed to study the role of a

reserved zone on the dynamics of predator-prey system. The model has been analyzed in

two cases: first when predator species are wholly dependent on the prey and second when

predator species are partially dependent on the prey in the unreserved zone. In both cases,

computer simulations with MATLAB have been performed to study the effects of various

parameters on the dynamics of the system. By analytical and numerical simulations, the

following observations have been made:

1. In the absence of predator, the density of prey is maximum in reserved as well as

unreserved zone.

2. In the case when predators are wholly dependent on the prey, then cumulative density

of prey decreases in comparison to the case 1.

3. In the case when predators are partially dependent on the prey and alternative food

is also made available to predators in unreserved zone, then the cumulative density

of the prey decreases in comparison to case 1, but it increases in comparison to the

case 2 and density of predator also increases in comparison to the case 2.

This shows that an alternative resource for the predator is better suited in comparison

to the wholly dependent case as it leads an increase in the density of the prey and predator

both that ensures the survival of prey and predator in a better way. In both cases, it has

been found that prey species has oscillatory behavior in the unreserved zone where as

oscillatory behavior has not been observed for prey species in the reserved zone.

By using stability theory of ordinary differential equations, it has been shown that

the positive equilibrium, whenever exists, is always globally asymptotically stable in both

the cases, namely predators are wholly or partially dependent on the prey species. This

shows that reserve zone has a stabilizing effect on the predator-prey system. This study

suggests that the role of reserved zone is an important integrating concept in ecology and

evolution. By creating reserved zones in the habitat where predator have no access or

chance of settling, the prey species can grow without any external disturbances and hence

the prey species can be maintained at an appropriate level.
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