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Abstract 

A primal cutting plane algorithm is proposed for the integer fractional 

programming problem: 

n n 
maximize (cO + L c.x.)/(do + L d.x.J 

j=l ] ] j=l ] ] 

n 
subject to L a .. x. ~ b. , i=1,2,···,m 

j=l ~J ] ~ 

x. > 0 , integer, j=1,2,··· ,n 
] 

The algorithm is obtained by slightly modifying Young's simplified primal 

algorithm developed for the ordinary integer programming problem, and is based 

on the parametric programming approach to the fractional problem given by 

Jagannathan and Dinkelbach. 

1. Introduction 

Research on fractional programming problems has been concentrated on 

continuous type problems with a linear fractional objective function. This 

paper, however, discusses the integer programming problem with a linear fraction-

al objective function. In addtion. to the known methods ([1], [5], [6], [9]) 
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A Primal Cutting Plane Algorithm fo,. Integer Fractional Programming 229 

for the integer fractional programming problem or some special cases, this paper 

proposes a new method, which may be considered as an integer programming version 

of the well known Martos'method for the linear fractional problems with continu-

ous variables [8]. The adaptation to the integer problem is made possible by 

applying Young's simplified primal algorithm (SPA) for the integer programming 

problem, in a parametric programming manner proposed by Jagannathan [7] and 

Dinke1bach [2]. 

In Section 2, the problem description and some assumptions are given. 

In Section 3, a subsidiary problem peA) is defined, and close relations between 

peAl and the original integer fractional problem P are discussed. Based on 

these relations, an algorithm is proposed in Section 4. Following an example 

given in Section 5, Section 6 proves the validity of the algorithm and its 

finiteness. In Section 7 some further considerations are given. 

where 

2. Integer Fractional Programming Problem 

This paper treats the following integer fractional problem P: 

maximize N(x)!D(X) 

subject to X E S , 

S {x 

n 

L 
j=l 

n 

L C,X, + Co 
j=l ]] 

n 

L d ,x, + dO 
:i=l ]] 

a .. x, < b 
~J J = i 

i=1,2,···,m 

and x, ~ 0, integer, j=1,2,···,n} 
] 

The fo11owings are assumed throughout this paper. 

(1) Coefficients c
J
" d" b" a" are all integers. 

J 1 1J 
(2) S is bounded and nonempt:y. 

(3) D(x) > 0 for all x E S. 

3. Subsidiary Problem peA) .and its Relations to P 

Subsidiary Problem peA) is defined for a real number A as follows. 

P (A) ; maximize 
11 

N(x) - AD(x) = :f (c, 

j';l ] 
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230 H. Ishii. T. lbaraki and H. Mine 

subject to x e: S. 

Let Z(A) be the optimal value of peA). It is well known that P and peA) are 

closely related to each other as follows. (Theorem 3.1 and Theorem 3.2 are 

due to [2], [7].) 

* Theorem 3.1. Let A be the optimal value of P. Then, it holds that 

* (i) A < A <===-> Z (A) > 0 , 

* (H) A A <~ Z (A) 0 

* (Hi) A > A <=--<> Z (A) < 0 

Theorem 3.2. zeAl is a strictly decreasing convex function of A. 

By theorem 3.1, the problem P reduces to finding a A such that Z(A)=O. 

Theorem 3.3. 

if and only if 

Proof. 

For x, x e: .c; and )...=N(x)/D(x), 

N(x) / D(i) > N(x) / D(x) 

N(x) D(-) > 0 
D(x) x 

(since D(x) > 0 ). 

<===> N(i) _ N(x) > 0 

D(i) D(x) 

o 

The property of Theorem 3.3 plays an important role in the development 

of our algorithm. 

4. An Algorithm for the Integer Fractional Programming Problem 

Before describing an algorithm for the integer fractional programming 

problem, we shall briefly review Young's SPA used to solve the ordinary integer 

programming problems ([3, 11, 13, 14]). Young's SPA starts with the following 

integer programming problem as the initial tableau: 

(4.1) 

Maximize 

subject to 

x > 0, 
k= 

x = c: + 
o 0 

n 

I 
j=l 

n 

I 

(-c: .) (-x .) 
J J 

b. + 
~ 

j=l 

a . . (-x.) 
~J J 

k=1,2,""' rn+J11, 

i=1,2,· . . ,rn, 
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where the primal feasibility condition 

b. ~ 0 , 
~ -

i=1,2, .. ··,m 

is assumed, and c" a. " b. are all intE~ger constants. 
] ~] ~ 

To deal with a tableau obtained after pivot operations, in general, let 

us assume that the following is the current tableau. 

maximize 

subject to 

(4.2) t. 
] 

> 0 , 

u. > 0 , 
~ 

where the primal feasibility 

u. 
~ 

j=1,2,"',n 

i=1,2,···,m' 

j=1,2,"',n 

i=1,2,···,m' 

, 

is also assumed; u. denotes the current basic variables and t. nonbasic 
~ ] 

variables. 

If this tableau satisfies the dual feasibility condition also, i,e., 

o , j=1,2,···,n, 

then the current tableau provides an optunal solution and computation termi-

231 

nates. Otherwise, a cut is generated according to a certain rule, and a pivot 

operation is performed on this cut row. (m' in(4.2) includes the number of 

the generated cuts.) 

three conditions: 

The reSUlting tableau satisfies one of the following 

(i) It is dual feasible. Then Young's SPA terminates. 

(ii) It is not dual feasible, but will be able to satisfy aOo > a
OO 

in the next tableau, where aoo is the new coefficient a
OO 

after the pivot 

operation is executed. (This case is called a transition cycle.) Then the 

same procedure is repeated by regarding the resulting tableau as (4.2) until 

case (i) or case (iii) is reached. (J:fthe tableau has L-row (introduced in 

(iii) below), it is deleted before the pivot operation.) 
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232 H. Ishii. T. lbaraki and H. Mine 

(iii) It is not dual feasible, and aoo = a
OO 

will hold in the next 

tableau. (This case is called a stationary cycle.) A pivot element is deter-

mined by a rule based on a special row, called L-row. (If the current tableau 

does not have L-row, a pivot element is selected after generating L-row.) 

Then pivot operation is performed. After repeating this process finite times, 

it is known that either case (i) or case (ii) is eventually reached. 

By repeating the above cycles, young's SPA guarantees that case (i) is 

eventually reached and an optimal solution of (4.1) is obtained. 

that the problem peA) is rewritten as follows. 

Now note 

peA) : maximize 

subject to 

(4.3) 

zl 

z2 

c -o 

Co + 

dO + 

n 

dO + L {(-c.J 
j=l ] 

n 

L (-c.J (-x.J 

j=l 
] ] 

n 

L (-d .J (-x.J 
j=l ] ] 

n 
b. + 
~ 

La .. (-x.) 
j=l~] ] 

A(-d.J}(-x.J 
] ] 

i=1,2,·· ·,m 

Xj ~ 0 , integer, j=1,2,···,n+m. 

This differs from (4.1) only in that the objective function is parametrized 

by A, and rows zl and z2 are augmented. The primal feasibility 

i=1,2,···,m, 

is also assumed. For a fixed A, our algorithm is exactly the same as Young's 

SPA. Two rows zl and z2 corresponding to N(x) and D(x) respectively, are used 

to compute the new objective row Xo when A is modified. To describe a general 

step of our algorithm, let the current tableau be as follows: 

maximize 

subject to 
n 

BOO + L B 0 • (-t .J 
j=l ] ,] 
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u 0 

~ 

n 

Yoo + L Yoo(-to) 
j=l ] ] 

n 

a i 0 + L a 0 0 (-t .J 
j=l ~J ] 

j=1,2,··· ,n 

i=1,2,···,m' 

This tableau satisfies the primal feasibility 

i=1,2,···,m' 

i=l ,2, .• • ,m' , 

and all coefficients a 0 0' Ba 0' Y 0 are integers. 
1.) ) 0) 

The objective row Xo is 

related to the Zl and Z2 rows in the following way: 

(4.4) j=1,2,···,n . 

OUr algorithm starts with the initial tableau (4.3) with 

(this makes aoo(A)=O). If the initial t.ableau does not satisfy the dual 

233 

feasibility condition, the above Young's SPA is applied until coefficient aOO(A) 

strictly increases (Le. ,aOO(A) > 0) or t.he dual feasibility condition (with 

aoO(A)=O) is satisfied. As noted above, Young's SPA always produces one of 

the two results in finite pivot operations. If a dual feasible tableau is 

obtained, computation terminates and the resulting tableau provides an optimal 

solution. If aoo(A) > Otis obtained, however, A is updated to A= BOOIYOO 

(this is justified by Theorem 3.3) so that aOO(A)=O and the objective row Xo 

is recalculated by (4.4). Then the above procedure is repeated. 

As shown in Theorem 6.1, the entire computation eventually terminates and 

an optimal solution is obtained. 

t aOO(A»O corresponds to a
OO

> a
OO 

(the condition to enter the transition cycle). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



234 H. Ish;i, T. lbaraki and H. Mine 

An Algorithm for the In~eger Fractional Programming Problem 

Step 1 

SteJ2 2 

( " . t)t Inl.tl.all.ze : 
I I 

Let A + N(x )/D(x) , 

I 
0 j=1,2,···,n x. , . 

] 

(Check the 
. . ) ttt 

oJ2tl.tnall.t:l : If 

(J.Oj(A) ~ 0 , j=1,2,···,n , 

go to Step 4. Otherwise, add a cut and apply a pivot operation 

according to the rule for the transition cycle of Young's SPA (see 

Appendix for details). 

SteJ2 3 

(4.4) . Return to Step 2. 

BOO 
let A + ----- and update the xO-row by 

YOO 

otherwise return to Step 2 directly. 

SteJ2 4 (Terminate) 

of P and 

Terminate. The current A is the optimal value 

t. = 0 , 
] 

i=1,2,··· ,m' 

j=1,2,"',n 

is an optimal solution of P. 

tt We assume that the tableau (4.3) obtained from the above A is primal 
feasible, Le., 

b
i 
~ 0 i=1,2,···,m. 

It obviously satisfies aoO(A) = O. If (4.3) does not provide a primal feasible 
tableau, a primal feasible tableau has to be obtained by some means. This 
point is notdi~ussed in this paper, since it is the same as the ordinary 
integer programming problem. 

ttt Whenever Step 2 is entered, aOO(A) o is always satisfied. 
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5. Example 

Consider the following problem P (see Fig. 5.1). 

Maximize 

subject to 

3 

N(x) _ 

D(x) -

x = 
3 

6 

x = 
4 

5 

xl' x 2 ' 

+ 

+ 

2(-x
1

) + J(-x
2

) 

3(-x
1

) + 2 (-x
2

) 

x
3

, x
4

, > 0 , integer 

Optimal solution of P 

(Table 5.7l"VTable 5.8) 

--~~~~~~~~~~----~~~Xl 
Table 5.1 

2xl +3x2=6 

Figure 5.1 III ustration of computation process 

for the example in Section 5 
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Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



236 H. Ishii. T. lbaraki and H. Mine 

From the constraints we have 

(5.1) 0 < x 
=~ l- ~,min [L~j , L~·J 1 (= d

l
) 

0 < x < min [L ~ J ' L ~ J = 2 (= d
2

) 
= 2 

o < x < 6 (= d ), 
= 3 = 3 

where Lxl denotes the integer part of x. 

Let and construct the initial 

tableau (Table 5.1) for 

I 
x (0, 0, 6, 5) . 

step 2: Since a
Ol 

(A)=-5/2, a
02

(A)=-6/2, the dual feasibility condi

tion is not satisfied. We have J={1,2} according to Substep 1 of 

Young's SPA since 8
1

=min{6/2, 5/3}=5/3~1, 8
2
=min{6/3, 5/2}=2~0. 

In Substep 2, x
2 

column is chosen as a pivot column though xl column 

is also possible. In Substep 5, cut 

(5.2) 

is generated and added to the tableau (see sl-row of Table 5.1) and 

execute a pivot operation (* denotes the pivot element). 

tableau is given in Table 5.2. Obviously 

follows from (5.1) and (5.2). 

The resulting 

Step 3 Thus let A+8
00

/YOO=21/l0, and recalculate the 

xO-row of Table 5.2 by using the new A. 

tableau. Return to step 2. 

Table 5.3 shows the resulting 

Step 2: a
Ol 

(A)=-7/10<0; the dual feasibility is not satisfied. 

Since J=$ in this case and the tableau does not have L-row, L-row 

XL = 3 + 1(-x
1

) + l(-sl) 
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Table 5.1. First tableau 

1 

0 -5/2 -6/2 

3 -7 -9 

2 -3 -4 

6 2 3 

5 3 2 

2 0 1* 

Table 5.3. Third tableau 

1 

0 -7/10 6/10 

21 -7 9 

10 -3 4 

0 2 -3 

1 3 -2 

2 0 1 

3 1 1 

0 1* -2 

Table 5.2. Second tableau 

1 

6 -5/2 

21 -7 

10 -3 

0 2 

1 3 

2 0 

-s 
1 

6/2 

9 

4 

-3 

-2 

1 

Table 5.4. Fourth tableau 

1 

Xo 0 7/10 -8/10 

zl 21 7 -5 

z2 10 3 -2 

x3 0 -2 1* 

x4 1 -3 4 

x2 2 0 1 

xL = 3 -1 3 

xl 0 1 -2 

237 
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238 H. lshii. T. lbaraki and H. Mine 

is added in Substep 3 (see xL-row of Table 5.3; a
LO

=3(=1+2) since 

According to the rule for the stationary cycle 

of Young's SPA., xl-column is selected as the pivot column in Substep. 4. 

Then cut row is added to the tableau (see s -row of Table 5.3). 
2 

follows from s2-row and 0~sl~2. 

operation is given in Table 5.4. 

The resulting tableau after a pivot 

Return to Step 2. 

Step 2 a
OO

(A)=-8/l0<0; the dual feasibility is not satisfied. 

Although J=~, Substep 3 is skipped since Table 5.4 has L-row. In 

Substeps 4 and 5, a cut is generated. In this case, however, the 

generated cut is the same as x
3

-row, and x
3
-row is used as the pivot 

row. After a pivot operation, Table 5.5 is obtained. 

aoo(A)=O. Return to step 2. 

a
Ol 

(A)=-9/l0<0. According to Substeps 4 and 5, add a cut 

to the tableau, and execute a pivot operation, to obtain Table 5.6. 

Step 3 
.. _----- Return to Step 2 . aOO(A)=O. 

a
02

(A)=-1/10<0. Since J={2}, in this case, a cut is 

generated according to Substeps 2 and 5. 

The generated cut is the same as x
4

-row. 

Table 5.7 is obtained. 

(Note that L-row is deleted). 

After a pivot operation, 

Step 3 aOO(A)=l/lO>O. Then let A~BOO/YOO=19/9 and recalculate 

Table 5.8 is obtained. 

a
Ol 

(A)=3/9>0, a
02

(A)=1/9>0; the dual feasibility is satisfied. 

Go to Step 4. 

Step 4 Terminate. 
o 

An optimal solution x is given by 

1 , o 

o 0 
N(x )/D(x )=A=19/9. 
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Table 5.5. Fifth tableau Table 5.6. Sixth tableau 

1 -8 
2 

-x 
1 

1 -8 
3 

-x 
3 

Xo = 0 -9/10 8/10 0 9/10 -1/10 

zl = 21 -3 5 21 3 2 

z2 10 -1 2 10 1 1 

x4 1 5 4 1 -5 1* 

x
2 

2 2 -1 2 -2 1 

Xl 0 -3 2 0 3 -1 

XL 3 5 -3 3 -5 2 

8
3 

0 1* -1 

Table 5.7. Seventh tableau Table 5.8. Eighth tableau 

1 -8 
3 

1 -8 
3 

1/10 4/10 1/10 0 3/9 1/9 

19 13 -2 19 13 -2 

9 6 -1 9 6 -1 

1 -5 1 1 -5 1 

1 3 -1 1 3 -1 

1 -2 1 1 -2 1 
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240 H. Ishii, T. lbaraki and H. Mine 

6. Proof of Finiteness and Validitx 

Theorem 6.1 {Finiteness and Validity}. The procedure given in Section 4 

terminates in a finite number of iterations and, upon termination, produces 

an optimal solution of P. 

Proof. Finiteness: {a} From Assumption 2 of Section 2, the number of 

feasible solution in S is finite. 

{b} Each p{A} has the same feasible region S, and each tableau represents a 

feasible solution since the primal feasiblity is assumed. 

in Step 3 or Step 5, the new A satisfies, 

y 00 V(x) 

where x is the feasible solution represented by the tableau. 

this new A is strictly greater than the old A. 

When A is updated 

By Theorem 3.3, 

{c} It is known that, for each A, condition aOO{A}>O {then A is updated} or 

a dual feasibility {termination} is satisfied after a finite number of pivot 

operations. (This property was first proved by Young [13, 14] under the 

assumption that all coefficients in a tableau are integers. Salkin, Schroff 

and Mehta [12] generalized this property to the case in which each a .. is 
~J 

rational. Note that aOj(A) is rational in our algorithm.} {a} {b} {c} to-

gether prove the finiteness. 

Validity When Step 6 is reached, the tableau satisfies both primal and 

dual feasibility conditions, and hence it gives an optimal solution of P{A} 

for the current A. Since the tableau also satisfies aoo{A}~O, this solution 

is an optimal solution of P by Theorem 3.1. 0 

7. Discussion 

It is shown in this paper that the primal cutting plane algorithm, Young's 

SPA, for the ordinary integer programming problem can be easily modified to 

handle the integer fractional programming problem. In view of this result, 

it appears possible to modify other primal algorithms such as Glover's 

simplified primal algorithm [4] (which is favorably compared to Young's SPA 

in [10] from the view point of computational effiCi 0nc~') in a similar manner to 

accept the fractional problem. However, a straightforward application of the 

present technique to Glover's SPA seems to cause a difficulty that the required 

property of the reference equation {which plays in Glover's SPA, a role similar 

to the L-row of Young's SPA} is no longer preserved when A is updated. 
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Thus it would be a subject for future research to find a generation method of 

the reference equation when A is updated. 
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Appendix. Description of Cut Generation Procedure by Young's SPA ([14]) 

The generation of a cut and the selection of a pivot element in Young's 

SPA are done according to the following rule. a. (j=1,2,···,n) is used to 
1 

denote the j-th column of a tableau. J computed during computation deter-

mines whether the present cycle is transit.ive or stationary; J~4> implies that , 
aoo>a

oo 
holds in the next tableau (Le., it is a transition cycle), while 

, 
J=4> implies that aOO=a

OO 
holds in the next. tableau (Le., a stationary cycle). 

Substep 1 : (This substep is entered from Step 2 of the main algorithm 

in Section 4): Calculate a .=min{a 'ola . . 10 .. . >0, i does not correspond to x
O

-
1 ~ ~1 ~1 

row, zl-row,z2-row or L-row} for each j satisfying aOj(A)<O. J+{jlaj~l}. 

Go to Substep 2 if J~4>, and go to Substep 3 if J=4>. 

Substep 2: If the current tableau has L-row, delete it from the tableau. 

Select any column a. , jO€J, as the pivot column. 
10 

Go to Substep 5. 

Substep 3: If the current tableau has L-row, go to Substep 4. 

otherwise add the following L-row to the t:ableau, and go to Substep 4. 

where 

n 

aLO + L (-t.) 
j=l 1 

n 

L 
j=l 

d. 
1 

and d j is an upper bound of t j' i. e. , O;:;}: j:;,d j for any X€S. (The eltample in 

Section 5 includes a method for obtaining d .• ) 
1 

Substep 4: Let a
Lj 

(j=1,2,···,n) denote the elements in the L-row. 

For each a
j

, j=1,2,···,n, that has aLj>O , calculate column 

J ••••• ,a.,./ 
m 1 

where T denotes transpose, and select the lexicographically smallest column 

among them as the pivot column a .• 
10 

Go t:o Substep 5. 

Substep 5: Calculate iO such that 
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244 H. IshU. T. lbaraki and H. Mine 

a .. > 0, i=l, 2 , ••• ,ID'} , 
~JO 

and generate the following Gomory cut to adjoin the tableau. 

n 

5 = La. o/~J + L 
~o j=l 

La.. ./~J (-t .) 
~oJ ] 

where ~=a. .. (>0) and lYJ denotes the integer part of y. 
~OJO 

Execute a pivot operation on the pivot element la. .• I~J (=1) of the s-row. 
~OJO 

(Then return to Step 3 of the main algorithm). 
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