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Abstract

A primal cutting plane algorithm is proposed for the integer fractional

programming problem:

n n
maximize (e, + .z cjx.)/(do +.z djx.)

j=1 Jj=1

n
subject to ) a, x., <b,, i=1,2,**+,m
2, 1377 =74

»
|v

>0, integer, 3j=1,2,°*°,n

The algorithm is obtained by slightly modifying Young's simplified primal
algorithm developed for the ordinary integer programming problem, and is based
on the parametric programming approach to the fractional problem given by

Jagannathan and Dinkelbach.

1. Introduction

Research on fractional programming problems has been concentrated on
continuous type problems with a linear fractional objective function. This
paper, however, discusses the integer programming problem with a linear fraction-

al objective function. In addtion. to the known methods ([1], [5], [6], [91)
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A Primal Cutting Plane Algorithm for Integer Fractional Programming 229

for the integer fractional programming problem or some special cases, this paper
proposes. a new method, which may be considered as an integer programming version
of the well known Martos'method for the linear fractional problems with continu-
ous variables [8]. The adaptation to the integer problem is made possible by
applying Young's simplified primal algorithm (SPA) for the integer programming
problem, in a parametric programming manner proposed by Jagannathan [7] and
Dinkelbach [2].

In Section 2, the problem description and some assumptions are given.
In Section 3, a subsidiary problem P(A) is defined, and close relations between
P(A) and the original integer fractional problem P are discussed. Based on
these relations, an algorithm is proposed in Section 4. Following an example
given in Section 5, Section 6 proves the validity of the algorithm and its

finiteness. In Section 7 some further considerations are given.

2. Integer Fractional Programming Problem

This paper treats the following integer fractional problem P:

)
c.x,+c¢C
s=1 o
maximize N(x)/D(x) =
i
d.x, +d
. i 5 0
J’=1 73
subject to xes,
where
n
S={x=(x,,x) | )} a,x,<b, , i=1,2,*++,m
1 j=1 17 7 - 1

and xj > 0, integer, j=1,2,++°,n}

The followings are assumed throughout this paper.
(1) coefficients cj' dj' bir aij are all integers.
(2) S is bounded and nonempty.

(3) D(x) > 0 for all x ¢ S.

3. Subsidiary Problem P(A) and its Relations to P

Subsidiary Problem P(A) is defined for a real number A as follows.
n

P(A) ; maximi N - AD = ¥ .- AdJ)x, + - Ad
(A) aximize (x) (x) jél(cj J) 3 o 0
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230 H. Ishii, T. Ibaraki and H. Mine

subject to x € S.

Let Z(A) be the optimal value of P(}). It is well known that P and P()) are
closely related to each other as follows. (Theorem 3.1 and Theorem 3.2 are

due to [2], [71.)

Theorem 3.1. Let A* be the optimal value of P. Then, it holds that
(i) A <A == z(}) >0,
(ii) A=At <=z =0,
(iii) A > x* <===5 Z(A) <O .
Theorem 3.2. Z(\) is a strictly decreasing convex function of A.

By theorem 3.1, the problem P reduces to finding a A such that Z(A)=0.
Theorem 3.3. For x, X € S and A=N(x)/D(x),

N(x) - AD(x) > 0

if and only if
N(x) / D(x) > N(x) / D(x) .

Proof. N(x) - AD(x) > 0 <—=> N(X) - g—g"—ju(}) >0 — ¥X_ N, ,
x D(x) D(x)
(since D(x) > 0 ). ]

The property of Theorem 3.3 plays an important role in the development

of our algorithm.

4. An Algorithm for the Integer Fractional Programming Problem

Before describing an algorithm for the integer fractional programming
problem, we shall briefly review Young's SPA used to solve the ordinary integer
programming problems ([3, 11, 13, 14]). Young's SPA starts with the following

integer programming problem as the initial tableau:

n
Maximize x =c_ + ) (-c,)(-x.)
o o .2 J J
j=1
n
(4.1) subject to x_ . =b,  + ) a, . (-x,) , i=1,2,***,m,
n+i i , ij 73
J=1
x >0, k=1,2,~° ,n+m,
x =
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A Primal Cutting Plane Algorithm for Integer Fractional Programming 231
where the primal feasibility condition

b,
i

fiv

o, i=1,2,%°**,m

is assumed, and cj, aij' bi are all integer constants.

To deal with a tableau obtained after pivot operations, in general, let

us assume that the following is the current tableau.

maximize Xg = Gp F }Z aoj(-tj)
j=1
n
! = - ¥ = sen ’
subject to u, %0 + ,Z aij( tj) , i=1,2, ,m
j=1
(4.2) tj 2 o, j=1,2,***,n
Ui > o, i=1,2,¢**,m' ,

where the primal feasibility

0,020+ J=I,2,***,n

is also assumed; ui denotes the current basic variables and tj nonbasic
variables.
If this tableau satisfies the dual feasibility condition also, i,e.,

aoj.?: o ., j=1,2,**+,n,

then the current tableau provides an optimal solution and computation termi-
nates. Otherwise, a cut is generated according to a certain rule, and a pivot
operation is performed on this cut row. (m' in(4.2) includes the number of
the generated cuts.) The resulting tableau satisfies one of the following

three conditions:

(1) It is dual feasible. Then Young's SPA terminates.

(ii) It is not dual feasible, but will be able to satisfy uéo > %50
in the next tableau, where dbo is the new coefficient aOO after the pivot

operation is executed. (This case is called a transition cycle.) Then the

same procedure is repeated by regarding the resulting tableau as (4.2) until
case (i) or case (iii) is reached. (Tf the tableau has L-row (introduced in

(iii) below), it is deleted before the pivot operation.)
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232 H. Ishii, T. Ibaraki and H. Mine

(iii) It is not dual feasible, and aéo = aoo will hold in the next

tableau. (This case is called a stationary cycle.) A pivot element is deter-

mined by a rule based on a special row, called L-row. (If the current tableau
does not have L-row, a pivot element is selected after generating L-row.)
Then pivot operation is performed. After repeating this process finite times,

it is known that either case (i) or case (ii) is eventually reached.

By repeating the above cycles, Young's SPA guarantees that case (i) is
eventually reached and an optimal solution of (4.1) is obtained. Now note
that the problem P(A) is rewritten as follows.

n
P(A) : maximize X5 = ¢y - do + jzl{(-cj) - l(—dj)}(-xj)

n
subject to z, =c,+ ) (~c)(-x,)
PR

n
(4.3) =d_+ ) (-d.)(-x)
i

z
2" %"

Xj > 0 , integer , j=1,2,+***,n+m.

This differs from (4.1) only in that the objective function is parametrized

by A, and rows z, and z, are augmented. The primal feasibility

b,
i

v

o, i=1,2,°*+,m,

is also assumed. For a fixed A, our algorithm is exactly the same as Young's
SPA. TWO rows zl and 22 corresponding to N(x) and D(x) respectively, are used

to compute the new objective row X, when A is modified. To describe a general

step of our algorithm, let the current tableau be as follows:

n
0 = GpoM) * jzlaoj(x) (-t)

. maximize X

subject to z, = 600 + ) Bo.(—tj)
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n
zZ, =Y, + Z Y, (-t.)
2 00 j=1 03 b

N e~—15

u; = o4, + aij(—tj) , i=1,2,***, 0" ,
Jj=1

t, >0, j=1121"'1n

j =

u, 20,  i=1,2,00e,m’

This tableau satisfies the primal feasibility

0,20,  i=1,2,0+,m'
and all coefficients aij' SOj' YOj are integers. The objective row xo is
related to the Zl and Z2 rows in the following way:

. N A = . - A § = oo, .
(4.4) uOJ( ) 801 AYOJ ’ j=1,2, n

Our algorithm starts with the initial tableau (4.3) with
A= co / do

(this makes aoo(k)=0). I1f the initial tableau does not satisfy the dual

feasibility condition, the above Young's SPA is applied until coefficient a,,(})

00

strictly increases (i.e.,aoo(k) > 0) or the dual feasibility condition (with

aoo(k)=0) is satisfied. As noted above, Young's SPA always produces one of
the two results in finite pivot operations. If a dual feasible tableau is
obtained, computation terminates and the resulting tableau provides an optimal

solution. 1f aoo(k) > 0+is obtained, however, A is updated to A= BOO/YOO
(this is justified by Theorem 3.3) so that aoo(k)=0 and the objective row X,

is recalculated by (4.4). Then the above procedure is repeated.
As shown in Theorem 6.1, the entire computation eventually terminates and

an optimal solution is obtained.

+ uoo(k)>0 corresponds to a60> %40 (the condition to enter the transition cycle).
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An Algorithm for the Integer Fractional Programming Problem

Step 1 (InitializeTT: Let A « N(xI)/D(xI) ’

I
X,
J

0, j=1,2,++*,n .

Step 2 (Check the optimality)++j If

anO‘) ;0 , j=1,2,***,n ,

go to Step 4. Otherwise, add a cut and apply a pivot operation
according to the rule for the transition cycle of Young's SPA (see

Appendix for details).

8

Step 3 : Ifa,.(A) >0, let A < and update the x_ -row by
00 Yoo 0

(4.4). Return to Step 2. Otherwise return to Step 2 directly.

Step 4 (Terminate) : Terminate. The current A is the optimal value
of P and

u, =0., , i=1,2,**+,m’

i io

t; =0, j=1,2,**,n

is an optimal solution of P.

+t We assume that the tableau (4.3) obtained from the above A is primal
feasible, i.e.,

b, 20 , i=1l,2,¢¢°,m .
It obviously satisfies a O(A) = 0. If (4.3) does not provide a primal feasible
tableau, a primal feasib?e tableau has to be obtained by some means. This

point is notdiscussed in this paper, since it is the same as the ordinary
integer programming problem.

i+t Whenever Step 2 is entered, aoo(k) = 0 is always satisfied.
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5. Example

Consider the following problem P (see Fig. 5.1).

3+ 7x_ + 9x

- N(x)
M
aximize D(x)
subject to Xy =
Xy =
Xll X

n

Table 5.2

R
Table 5.6

Table 5.1

Figure 5

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

6 + 2(—x1) + 3(-x2)
5 + 3(—xl) + 2(—x2)

integer .

Optimal solution of P
{Table 5.7A~~Table 5.8)

X
2 7

+2x2=5 2x]+3x2=6

3x1

.1 Illustration of computation process
for the example in Section 5
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From the constraints we have

. 6 5
(5.1) Oﬂxlémn1[L5J,L?J] =1 (=4dp,
. 6 5
O<x2;m1n[L-§J,L§-‘J]=2(=d2)
0__<=x3;6(=d3), Oix4;5(=d4) ’

where |x] denotes the integer part of x.

N(x1) g 3
Step 1 : Let X « ——>* (= ——~ = —~ ) and construct the initial
- D(xI) dO 2

tableau (Table 5.1) for

xI _ (XI I
1 ¥

I I
2 ’ X4) = (0, 0, 6, 5)

’ x3

Step 2 : Since aOI(A)=—5/2, aoz(x)=-6/2, the dual fea51b111ty condi-

tion is not satisfied. We have J={1,2} according to Substep 1 of

Young's SPA since 6 =min{6/2, 5/3}=5/321, 8,=min{6/3, 5/2}=220.

column is chosen as a pivot column though x. column

In Substep 2, x 1

2
is also possible. 1In Substep 5, cut

(5.2) s; = 2 + 0(-xl) + 1(—x2)

is generated and added to the tableau (see s,-row of Table 5.1) and

1
execute a pivot operation (* denotes the pivot element). The resulting

tableau is given in Table 5.2. Obviously

follows from (5.1) and (5.2).

Step 3 : aoo(k)=6>0. Thus let A<8 =21/10, and recalculate the

00’ Y00

x.-row of Table 5.2 by using the new A. Table 5.3 shows the resulting

0
tableau. Return to Step 2.
Step 2 : uOl(A)=—7/10<O; the dual feasibility is not satisfied.

Since J=¢ in this case and the tableau does not have L-row, L-row

X, = 3+ 1(—x1) + l(—sl)
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Table 5.1. PFirst tableau

1 -x, —X,
Xy = |0 -5/2 -6/2
zg = |3 [-7 -9
z, = |2 |-3 -4
Xy = 6 2 3
Xy = 5 3 2
s = |2 0 1%

Table 5.3. Third tableau

1 -% -3,
Xy =] O ~7/10 6/10
z; = |21 -7 9
z, = |10 -3 b
X3 = 0 2 -3
Xy = 1 3 -2
Xy = 2 0 1
X, = 3 1 1
Sy, = 0 1% =2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Table 5.2. Second tableau

1 -x —Sl
Xg = 6 |-5/2 €/2
z; =21 (-7 9
Z, = 10 | -3 4y
x3 = 0 2 -3
Xy = 1 3 -2
Xy = 2 0 1

Table 5.4. Fourth tableau

1 =) -87
Xy = 0| 7/10 -8/10
z; = |21 7 -5
Z,5 =110 3 -2
Xy = 0]-2 1%
Xy = 11]-3 4y
X5 = 2 0 1
Xy, = 3]-1 3
Xy = 0 1 -2
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238 H. Ishii, T. Ibaraki and H. Mine

is added in Substep 3 (see X, ~row of Table 5.3; aL0=3(=1+2) since

Oéglgj and 0<s,<2). According to the rule for the stationary cycle

1

of Young's SPA, x.-column is selected as the pivot column in Substep 4.

1

Then cut row is added to the tableau (see sz-row of Table 5.3).

0<s

la
>

2
follows from s,~row and 0;§1§g. The resulting tableau after a pivot

operation is given in Table 5.4.

Step 3 : aoo(k)=0. Return to Step 2.
. _ <0; PN . isfied.
Step 2 aOO(A) 8/10<0; the dual feasibility is not satisfied

Although J=¢, Substep 3 is skipped since Table 5.4 has L-row. In
Substeps 4 and 5, a cut is generated. In this case, however, the
generated cut is the same as Xy=row, and x3—row is used as the pivot

row. After a pivot operation, Table 5.5 is obtained.

Step 3 : aoo(k)=0. Return to Step 2.
Step 2 : a01(k)=—9/10<0. According to Substeps 4 and 5, add a cut

sy = 0 + 1(-52) + (—1)(—x3)

to the tableau, and execute a pivot operation, to obtain Table 5.6.

Step 3 aOO(A)=O. Return to Step 2.

: =- < i = i 1 :
Step 2 : aoz(k) 1/10<0. Since J={2}, in this case, a cut is
generated according to Substeps 2 and 5. (Note that L-row is deleted).
The generated cut is the same as x4-row. After a pivot operation,
Table 5.7 is obtained.
Step 3 : aoo(k)=1/10>0. Then let A*BOO/YOO=19/9 and recalculate
xo—row. Table 5.8 is obtained.

. - s - ; sy sqs R isfied.
Step 2 aOI(X) 3/9>0, aoz(k) 1/9>0; the dual feasibility is satisfied
Go to Step 4.

0
Step 4 : Terminate. An optimal solution x is given by
0 0 0 0
xl = x2 = x3 =1, x4 =0

N(xo)/D(x0)=X=19/9.
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Table 5.5. Fifth tableau Table 5.6. Sixth tableau
1 =S, —x3 1 —s3 -x3

Xg = 0 ]-9/10 8/10 Xg = 0}9/10 -1/10

z, = 21 -3 5 z, = 21 3 2

Z, = 10 -1 2 Z, = 10 1 1

Xy = 1 5 I Xy = 1]-5 1%

X, = 2 2 -1 X, = 2 ]-2 1

X, = 0 -3 2 Xy = 0 3 -1

x, = | 3] 5 -3 x, =| 3[-5 2

S5 = 0 1% -1

Table 5.7. Seventh tableau Table 5.8. Eighth tableau

1 -53 -X), 1 -83 -Xy
Xy = 1/10 | 4/10 1/10 Xg = 0 3/9 1/9
z, = i9 13 -2 z, = 19 | 13 -2
zZ, = 9 6 -1 z, = 91 6 -1
x3 = 1 -5 1 x3 = 11{-5 1
X, = 1 3 -1 Xy = 1 3 -1
X, = 1 -2 1 X, = 1]-=2 1
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6. Proof of Finiteness and Validity

Theorem 6.1 (Finiteness and Validity). The procedure given in Section 4
terminates in a finite number of iterations and, upon termination, produces
an optimal solution of P.

Proof. Finiteness : (a) From Assumption 2 of Section 2, the number of

feasible solution in S is finite.
(b) Each P(X) has the same feasible region S, and each tableau represents a
feasible solution since the primal feasiblity is assumed. When A is updated

in Step 3 or Step 5, the new A satisfies,

\ = B0 _ WN(x)
= =y,
Yoo p(x)
where x is the feasible solution represented by the tableau. By Theorem 3.3,

this new A is strictly greater than the old A.

(¢) It is known that, for each A, condition aoo(k)>0 (then ) is updated) or

a dual feasibility (termination) is satisfied after a finite number of pivot
operations. (This property was first proved by Young [13, 14] under the
assumption that all coefficients in a tableau are integers. Salkin, Schroff

and Mehta [12] generalized this property to the case in which each ai. is

rational. Note that aoj(A) is rational in our algorithm.) (a) (b) (c) to-
gether prove the finiteness.

Validity : When Step 6 is reached, the tableau satisfies both primal and
dual feasibility conditions, and hence it gives an optimal solution of P(})
for the current A. Since the tableau also satisfies aoo(x)=0, this solution
is an optimal solution of P by Theorem 3.1. ]

7. Discussion

It is shown in this paper that the primal cutting plane algorithm, Young's
SPA, for the ordinary integer programming problem can be easily modified to
handle the integer fractional programming problem. In view of this result,
it appears possible to modify other primal algorithms such as Glover's
simplified primal algorithm [4] (which is favorably compared to Young's SPA
in [10] from the view point of computational effidicpcy) in a similar manner to
accept the fractional problem. However, a straightforward application of the
present technique to Glover's SPA seems to cause a difficulty that the required
property of the reference equation (which plays in Glover's SPA, a role similar

to the L-row of Young's SPA) is no longer preserved when A is updated.
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Thus it would be a subject for future research to find a generation method of

the reference equation when A is updated.
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Appendix. Description of Cut Generation Procedure by Young's SPA ([14])

The generation of a cut and the selection of a pivot element in Young's
SPA are done according to the following rule. aj (j=1,2,*+*,n) is used to
denote the j-th column of a tableau. J computed during computation deter-

mines whether the present cycle is transitive or stationary; J#¢ implies that
r

a00>a00 holds in the next tableau (i.e., it is a transition cycle), while

00=a00 holds in the next tableau (i.e., a stationary cycle).

J=¢ implies that a

Substep 1 : (This substep is entered from Step 2 of the main algorithm

in Section 4): Calculate 6_=min{a, /a,,|u,,>0, i does not correspond to x -
J i0° ij' ij 0

row, Z_.-row,z

1 ,"row or L-row} for each j satisfying aoj(k)<0. J+{j|6j3;}.

Go to Substep 2 if J#¢, and go to Substep 3 if J=¢.
Substep 2 : If the current tableau has L-row, delete it from the tableau.

Select any column aj , joeJ, as the pivot column. Go to Substep 5.
0
Substep 3 : If the current tableau has L-row, go to Substep 4.

Otherwise add the following L-row to the tableau, and go to Substep 4.

n
x =a__+ ) (-t
j=1

’

j)

where

and dj is an upper bound of tj' i.e., Oéyj;gj for any xeS. (The esample in
Section 5 includes a method for obtaining dj.)

Substep 4 : Let aLj (j=1,2,+*+,n) denote the elements in the L~row.

For each aj, j=1,2,*++,n, that has aLj>0 , calculate column

Rj = ((loj / aLj , alj / aLj seeee, a

where T denotes transpose, and select the lexicographically smallest column

among them as the pivot column aj . Go to Substep 5.
0

Substep 5 : Calculate 10 such that
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244 H. Ishii, T. Ibaraki and H. Mine

a, ./ o, . =min {a,
[ i

1 / ai' I o.,., >0, i=1121."IHI'} ’
0 0’0 '

0

and generate the following Gomory cut to adjoin the tableau.

n
= nd + ; Sul(-t
s Laioo/u_! jzl Loy j/ude=t)

where u=ot1. 9 (>0) and |y) denotes the integer part of y.
0’0

Execute a pivot operation on the pivot element [ai 3 /u) (=1) of the s-row.
00

(Then return to Step 3 of the main algorithm).
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