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Abstract. A generalized Moreau-Yosida based primal-dual active set algorithm for
the solution of a representative class of bilaterally control constrained optimal control
problems with boundary control is developed. The use of the generalized Moreau-Yosida
approximation allows an efficient identification of the active and inactive sets at each
iteration level. The method requires no step-size strategy and exhibits a finite termination
property for the discretized problem class. In infinite as well as in finite dimensions a
convergence analysis based on an augmented Lagrangian merit function is given. In a
series of numerical tests the efficiency of the new algorithm is emphasized.

1. Introduction. In this paper we introduce and analyze an efficient algorithm for
the numerical solution of the following bilaterally control constrained optimal control
problem with boundary control:

minimize J(y,u) = \ J^(y-Zd)2dx+^ J (■U-Udfds, (1.1a)

dy
subject to — Ay + cy = g in — = u on rl5 y = 0 on <9f2\rx =: V2 (1.lt>)

and u e Uad C L2(Vi), (1-lc)

with a bounded domain C Rd, d < 3, and dfl =: T its (sufficiently) smooth bound-
ary. We assume that T2 C T is closed and has positive ((d — l)-dimensional) measure.
Moreover, let zj, g G L2(Q), Ud € L°°(r1), a > 0, c > c(x) > 0 for all x G f2, c G R,
a, b G L°°(ri) with

b{x) — a(x) > 0 for almost all x G IV
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The set of admissible controls is given by Uad = {u £ L2(Ti)|a(:r) < u(x) < b{x) a.e. on
ri}. Equation (1.1b) will be referred to as the state equation.

The proposed algorithm and its analysis rely on the type of objective functional,
governing state equation and the geometry of £/ad, and it also applies to general radially
unbounded convex quadratic objective functionals and state equations with any strictly
elliptic second-order differential operator. However, for the sake of a clear presentation
of the main ideas and a reduction of technicalities, we restrict ourselves to the specific
representative (1.1) of the general problem class.

Our interest in this problem comes from the fact that it frequently occurs in applica-
tions either in its own right (see, e.g., [18]) or as a subproblem class in numerical schemes
for efficiently solving nonlinear optimal control problems (see [13, 14, 16, 17, 25]). For
example, consider the optimal control of a simplified Ginzburg-Landau model for super-
conductivity [23]:

minimize
2̂  In^ ~ Zd^dx + f Jr u2ds

subject to — Ay + y3 + y — g in 12, —— = u on Ti, y — 0 on IV
on

If one uses a standard linearization technique for the treatment of the nonlinear state
equation above, see, e.g., [6] where the SQP-framework is invoked, then one relies on
an efficient solution of the linear-quadratic problem occurring in each iteration of the
SQP-type algorithm. For our example, we obtain

minimize - / (y — z<i)2dx + — f u2ds
2 JQ. 2 JTi

dy
subject to — Ay + (3y + \)y = g in CI, 7-— = u 011 Y1, y = 0 on T2

on

with fixed y and appropriate g. Additional control constraints of type (1.1c) yield the
model problem (1.1).

Classical methods for solving the discretized model problem are either pure primal or
dual methods; see, e.g., [8], [9]. Usually, in the case of box constraints, algorithms of
gradient projection type—see, e.g., [3], [20]—outperform the classical methods. Modifi-
cations of projection type methods for large scale problems can be found in [21], or [19].
However, in the case of degenerate solutions, the convergence rate deteriorates. Only
very recently Lin and More [19] proposed a trust region version of Newton's method
that keeps fast local convergence even if the solution is degenerate. Another type of
dual method that is applicable to large scale problems was proposed in [11] and [12], In
contrast to the gradient projection methods, it finds exact solutions. However, imple-
mentable versions require a suitable regularization. Finally, we mention interior point
methods—see [26], [27], [28] and the references therein—which are very efficient in solv-
ing large convex quadratic minimization problems with linear constraints. Primal-dual
path following variants of interior point methods utilize both the primal and the dual
variables when following the central path towards the optimal solution. Typically, ap-
proximate solutions are found. Unfortunately, the convergence rate is only linear in the
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case of degenerate solutions. All above-mentioned methods were introduced and ana-
lyzed in finite dimensions. Some of them, like interior point methods, are intrinsically
finite dimensional.

In [22], [7], and [16], an infinite-dimensional version of the projected Newton method in
[3] is analyzed. Since the projected Newton method is designed for the minimization of a
sufficiently smooth objective functional subject to box constraints, problems of type (1.1)
must be transformed into a reduced form. For this purpose, let S denote the solution
operator of the state equation, i.e., y = <S(u). Then the reduced version of (1.1) is

minimize J(u):=- f (S(u) — Zd)2dx + — J (u — ud)2ds (1.2a)
2 Jn 2 Jrj

subject to u E Uad- (1.2b)

Moreover, the methods in [22], [7], and [16] produce feasible iterates un, i.e., un e Uaa
for all n, satisfying a descent property by a projected line search.

In contrast to these requirements and features, our algorithm is introduced and ana-
lyzed in infinite dimensions, it does not aim at the reduced problem (1.2), the iterates
may be infeasible, and no line search is invoked. Moreover, it makes use of the primal and
the dual variables at the same time. While the reduced problem approach is a matter
of taste, the avoidance of the projected line search may speed up the performance. We
also present the finite-dimensional counterpart of the proposed algorithm and analyze its
convergence. We prove that it stops at the exact discrete solution after a finite number
of iterations. Moreover, numerical tests confirm that our strategy incorporating primal
and dual variables is very efficient and is not affected by degeneracy of optimal solutions.

The method we shall propose is based on a development due to [1]. The comprehen-
sive numerical comparison in [4] with primal-dual path following interior point methods
proves the efficiency of the algorithm in [1] for unilaterally constrained distributed con-
trol problems. In this paper, we extend the results in [1] in several ways: First, we
consider the bilaterally constrained case, which is technically significantly more involved
than the unilateral one. The conditions ensuring convergence must handle several de-
generate situations as, for instance, change of components that are active on the upper
constraint to infeasible components with respect to the lower bound. Secondly, we here
consider boundary control whereas only distributed control was analyzed in [1]. As a re-
sult, stronger conditions on a, and the operator norm |^4_1| and |r|, with A = —A + c-id
and r the trace operator, have to be imposed. Moreover, we give results on the bounded-
ness and convergence of the primal and dual iterates in infinite dimensions. Comparable
results are not included in [1], Also, a detailed discussion on several parameters involved
in the convergence conditions are given.

The paper is organized as follows: In §2 we develop the first-order conditions for
the model problem (1.1). Moreover, the basic tools for the algorithm are introduced.
The infinite-dimensional algorithm is displayed in §3. The convergence analysis for the
infinite-dimensional algorithm and a detailed discussion of the sufficient conditions for
decrease of the proposed merit function are exhibited in §4. Section 5 contains the
analysis of the finite-dimensional algorithm. A report on an excerpt of intensive numerical
tests is given in §6. Finally, in §7 conclusions for our approach are drawn.
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2. Preliminaries. This section is devoted to the development of first-order condi-
tions of the model problem (1.1). Moreover, we shall introduce all the tools needed for
the definition of our algorithm.

Throughout this paper we shall use the following notation: the L2(Vl)- and L2(Ti)-
inner products, i = 0,1, 2 with To = F, are denoted by (-, -)q and (•, By | • |q and
| • |r4 the corresponding and L2(Fi)-norms are denoted. Frequently we shall use
the duality pairing (•, -)v,v between a Hilbert space V and its dual V*. For v G H1(f2),
the zero-order trace r: Hl{Vl) —* L2(T) is given by tv. Order relations like "max" or
"<" for elements of L2(Q) or L2(F^) are understood in the pointwise almost everywhere
sense.

For the following lemma, which establishes the existence of a unique solution of the
state equation (1.1b), we define the closed subspace V of Hl(Q) by V = {v G \
TV\r2 = 0}. Here, Ti>|p2 denotes the restriction of the trace of v on T2- By (•>")v =
(■j ')h1(Ci) the inner product on V is given. In order to make the paper self-contained,
the proof of Lemma 2.1 is displayed in the appendix.

Lemma 2.1. Suppose g G L2(S7), u & L2(ri). Then the state equation (1.1b) admits a
unique solution ys G V.

Proof. See Appendix A. □
In the sequel we shall use e: V x L2(ri) —> V* defined by

(e(y,u),v)v.y = (Vy, Vu)n + (q/,u)n - (g,v)n - (u,tvirjr, for all v € V.

Then the weak form of the state equation (1.1b) becomes

e(y, u) = 0 in V*.

By e'(y,u) we denote the gradient of e(y,u) with respect to y and u:

e'M=(
\eu{y,u)J

Our next aim is to prove that e' is surjective, which is needed to guarantee the existence
of a Lagrange multiplier in the first-order conditions.

Lemma 2.2. The gradient e'(y,u) is surjective for all (y,u) 6 V x L2(Fi).

Proof. For any (y,u) 6Vx L2(Fi), consider

{e'{y,u){6y,Su),v)v,v = (V<5y, Vu)n + {c5y,v)a - (6u,rv\ri)ri,

with (Sy,Su) G V x L2(Fi). In order to prove surjectivity, we arbitrarily fix h G V*. We
then have to show that there exists (Sy,5u) G V x L2(Fi) such that

(VSy,S/v)n + (cSy,v)n-(Su,TV^1)rl=h{v) for all v G V. (2.1)

If we arbitrarily fix 5u G L2(Fj), then for Sy G V, (2.1) can be written as

a(Sy,v) = f(v) for all v G V, (2.2)

with f eV* defined by f(v) = h(v) + (Su, )ri ■ Since the bilinear form a: V xV
M, a(w,v) = (Vtu, Vv)q + (cvu,v)n, is -elliptic and bounded, by the Lax-Milgram
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Theorem, the variational equality (2.2) admits a unique solution Sy G V. This proves
the surjectivity of e'(y,u) for all (y,u) G V x L2(Ti). □

Now we are prepared to derive first-order optimality conditions. For this purpose we
make use of the Lagrangian function defined by

£(y,u,p) = J(y,u) + (e(y,u),p)v.y.

Let (y*,u*) denote the optimal solution of (1.1). Uniqueness follows from the fact that
J is strictly convex in u, (1.1b) admits a unique solution for every u, and Uaa is convex.
Next we define the active set at {y*, u*) by

A*=A*UA*b,
with

A* = {x G Ti | u(x) = a(x) a.e.} and <4J = {ieri | u(x) = b{x) a.e.},

and the inactive set at (y*,u*) by

1* = r! \^4*.
The first-order conditions are given by the next theorem.

Theorem 2.3. The unique solution (y*,u*) G V x L2(Fi) of (1.1) is characterized by
the existence of multipliers p* € Hl(fi) and A* € -^(I^) such that

dp*
-Ap* + cp* +y* = Zd in —— =0 on Fx, p* = 0 on r2, (2.3a)

on
au* + X* — rp*Tl = aud on Tj, (2.3b)

e(y*,u*) = 0, u* G £/ad, (2.3c)

< 0, > 0, X*T, = 0, (2.3d)

with A*s denoting the multiplier on a subset S of Tx.

Proof. First observe that Lemma 2.2 ensures the existence of p* G V such that

Cy(y* ,u* ,p*) = 0 and e(y*,u*) = 0.

More precisely, we have

C(y,u,p) = J(y, u) + (Vy, Vp)Q + {cy,p)Q - (g,p)n - (u,rp|ri)ri,

yielding

Cv(y*,u*,p*)6y = (y* - zd,Sy)n + (S7p*,V5y)n + (cp*,Sy)u
= {y* - Zd,Sy)n + (-Ap*,6y)n + (cp*,6y)n

for Sy G V and ^ = 0 on r1( rp*p2 = 0. This yields (2.3a). Condition (2.3c), which
denotes feasibility, is trivially satisfied.

For optimality in u the following variational inequality has to be satisfied:

Cu(y*,u*,p*)(u - u*) > 0 for all u G Uad.

This is equivalent to

(-X*,u - u*)rl ~ (a(u* - Ud) - rp*Ti,u - u*)ri > 0 for all u G U^. (2.4)
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There are three distinct cases:
(i) Consider A*a, i.e., u* = a. Define

•K = ix e ri K(x) = „W)A(A.(x)>0)}, Ag' = {x € \ A*(x) > y}

and Cla = {x E A£ \ b{x) — a(x) > j}. Now assume that A£ has positive measure

meas(.4+) > e > 0. Since meas{x E Ti | a(x) = b(x)} = 0 and Af .4+, we have
meas(C^) > 0 for sufficiently large I and Cla | A^- From the lower continuity of meas,
we deduce that there exists t > 0 such that meas(C^) > e. Next define 5+ = XceaiP ~~ a)>
which yields a < u* + s6+ < b for 0 < s < 1 (xs denotes the characteristic function of a
set S C Fi). Consider the directional derivative

dC(y*,u* + s5+ ,p*)
ds = (a(u* - ud) - rp*ri,(5+)r1 = (-A*,5+)ri < < 0.

s=0

This contradicts the optimality of u*. Hence, we must have meas(^4+) = 0.
(ii) One can prove in the same way as in (i) that meas(„4^) = 0 with

A^ = {x E rx | (u*(x) = b(x)) A (\*{x) < 0)}.

(iii) Finally, consider X*, i.e., a < u* < b, and define

2 = {x E Fi|(a(x) < u*(x) < b{x)) A (A*(x) ^ 0)}

and for I E N

X { x El ^a(x) + j < u*{x) < b{x) - y j A ^|A*(x)| > y j |

Assume that meas(I) > e > 0. Since meas{x E Fi|a(x) = b(x)} = 0, we obtain
meas(l') > 0 for sufficiently large I. From X1 1 X and the lower continuity of meas, we
deduce that there exists £ > 0 such that meas(X^) > e. Define S = (A*(x)/|A*(x)|)
implying a < u* + sS < b for 0 < s < j, and

dC(y*, u* + s6,p*)
ds = (-A*,J)ri <-!<0.

s=0

This contradicts the optimality of u*. Thus, there must be meas(X) = 0. □
Note that for the above first-order conditions, it suffices to consider one multiplier for

both inequalities characterizing feasibility. The benefit of this fact will become clear in
§5 where the discretized problem class is considered. The restriction to one multiplier
for both inequalities reduces the number of variables and consequently the amount of
memory needed by an implementable algorithm.

Before we state the algorithm, we make use of a result from convex analysis. Based
on the generalized Moreau-Yosida approximation of the indicator function of the set of
admissible controls denoted by t/ad one can replace u* E C/ad and condition (2.3d) by

A* = a[u* + <r—1 A* — 7T[/ad(u* + er-1A*)], (2.5)
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for a > 0, where
a if z < a,

7Tj/ad (z) = < z if a < z < 6,

b if z > b
denotes the Hilbert-space projection onto U&d. For more details we refer to [2], [15].

3. The algorithm. In this section we present the generalized Moreau-Yosida-based
active set algorithm. We make use of the characterization (2.5) of the optimal Lagrange
multiplier. Let superscript n denote the actual iteration level. Then we define the in-
active and b-active sets of the nth iteration by

,4™ = {x E Ti | un^1(x) + tr-1 An-1 (x) < a(x) a.e.}

A"j = {x € Ti | un'1(x) + a~1\n~1(x) > b(x) a.e.}

and An = A"UA^ and Tn = Ti\»4n. Note that the definition of An and Tn involves both
the primal variable u and the dual variable A. This strategy turns out to be very efficient
in practice (see §6). In the algorithm below, we use the identification An — -4n_1, which
is understood in the sense

Ana=Ana~1 and AZ = AT1. (3-1)

Algorithm AS
begin

(y°, u°, p°, \°) *— initialization^,TjTijCf a, Zd,Ud,g)
n <— 0

end
while (An i=- An~1) or (n < 2)

A™ <— {x € Tj | un~1{x) + a~lXn~1(x) < a{x) a.e.}

A™ <— {x G Ti | un~1(x) + a~l\n~l{x) > b(x) a.e.}

A71 A% U A£,Tn <- r!\An

u\a™ al^2'W|!4J ^ °-

Determine yn,pn and u^-n. A|^„ such that (yn,un,pn, A") satisfies (3.2a)-(3.2c).
end

Different initialization routines may be used. We use the following scheme, which
is intended to obtain a feasible start-up configuration. In parentheses an alternative is
denoted.
initialization
Input: U,T,Ti,c,a,zd,ud,g-
Output: y0,u°,p°,\°.
begin

u° <— a. (u° <— b)
Obtain y°,p° as solution to (3.2a) and (3.2c).
A° <— min{0, rp°Fi + a(ud - u°)}. (A° <— max{0, rp°Fi + a(ud - «")})

end
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The next result is a justification of the stopping rule for Algorithm AS.

Lemma 3.1. If there exists an iteration level n such that An = An+1, then Algorithm
AS stops and the last iterate satisfies

dvn
—Apn + cpn + yn = Zd in —— =0 on Fi, pn = 0 on T2 (3.2a)

on
aun + An — = aud on Ti (3.2b)

-Ayn + cyn=g in Q, = un onr1; yn = 0 on T2, (3.2c)

un € 1/^

Af^n < 0, Aj^n > 0, X"jn = 0.

Proof. By construction of the iteration sequence, the conditions (3.2a)-(3.2c) are sat-
isfied. Therefore, we only have to concentrate on the feasibility of the control and the
sign of the corresponding Lagrange multiplier. For this purpose, consider first ln+l.
Here we have Ara = 0 by construction. The set ln+l is defined as the set of x £ Ti such
that

a(x) < un(x) + a~lXn(x) < b(x),

yielding a < un < b in X". In A™ we have un = a. The way in which A™+1 is defined
yields A" < 0 in .4™. Analogous arguments yield un = b and A™ > 0 in A£. □

4. Convergence analysis. Our convergence analysis is based on an appropriately
chosen merit function. In fact, we will use the modified augmented Lagrangian functional
L: V x L2(ro x L2(rx) M defined by

L(yn, un,\n) = J(yn,un) + -L[Xs„(|(a(a - un) - Xn_)+\2Vl - |A!l|2ri)

+ Xsj (|(c(^Tl - b) + A")_(_|pi - |A" IrJ], (4.1)

where (■)_)_= max{0, •}, and further

Sa"=ru^ and S2=InUAZ.

By A+ and A_ we denote the positive and negative part of the multiplier A, which are
defined by

A+ = max{0, A} and A_ = min{0, A}.

We will prove that under the condition on a and a given by
2 2

p + a<a<a+%^~— and (tr - a)|un_1 - - a\a - 6||,„ < 0Cz p

for some p > 0, the modified augmented Lagrangian satisfies

L{yn, un, An) - L{yn-\un-\\n~l) < 0.

The set Vn is defined by (4.3).
Before we can prove the above convergence assertion, we have to establish a few

auxiliary results. The first result relates the difference of objective functionals to the
primal variables (y, u) and the dual variable A.
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Lemma 4.1. Suppose (y,u) G V x L2(Ti) satisfies

dy
-Ay + cy = g in 12, — = u on r1; y = 0 on T2.

Then for all iteration levels n > 1 we have

- Jfou) = -\\y - yn\l - ||« - un|2Fi + (« - «», A"U».

Proof. The construction of the iteration sequence of Algorithm AS and \p\2 — |g|J =
-\p-q\2 + 2(p-q,p) yield

J(yn,un) - J(y, u)

\\y-yn\l-~= -^\y-yn\h - ~^\u~ u"lri + (yn -y,yn - zd)Q + a(un - u,un - ud)Tl

= ~\\y-yn\h - <^W~un\l1 + (yn - y, Apn - cpn)n + a(un - u,un - ud)ri

= ~\\V - Vn\l ~ f l« - «n& + (A(yn -y)- c(yn - y),pn)Q

+ (~^dn^'Tp"ri) +a(u" ~u,uTl ~ud)r1

,,n|2 Qi „,n|2= -dy - l/n|n - 9 lu - M"lr! + («" - w,a(wn - «d) - rpjk)ri

= -7i\y - yn\l - o l« - + (u - An)^»,

2 " 112 2

^|y-y"ln - |l
where the last equality comes from Apr„ = 0, completing the proof. □

As we consider the difference of the objective functional of two successive iterates of
Algorithm AS, then we obtain the immediate corollary of Lemma 4.1.

Corollary 4.2. Let (y\u\ A1), i = n — 1, n, denote two successive iterates of Algorithm
AS. Then

j{yn,un)-j{yn-\un~1) = _£|un-l_un|2i+(un-l_u» An^?) (4 2)

with A" the subset of .A™ defined by

A1! = (A2\^-1)U(A!£\^-1).

Proof. The assertion immediately follows when considering un~l — un = 0 on (A™ D
A^-1) U (AS n A?'1) and A? = An\((.4™ n A^1) U {A£ n A£-1))- □

The following lemma estimates the term under brackets in the definition (4.1) of the
modified augmented Lagrangian function. For convenience we use

<7nO) = Xs?(z)(l(0-(>(» - un(x)) - A™ (z)) + |2 - |A" (x)|2)

+ Xs?(a:)(|(ff(u"(a:) -6(x)) + A![(a:))+|2 - |A^(x)|2)

for x € Ti. Moreover, we define

dn(x) = qn(x) - qn~\x).
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The analysis in the proof of the following Lemma 4.3 will show that the set In especially
is of interest in view of its history. For this purpose we use the following splitting of Ti:

Tn = (jn-1 n J») y 1 n jn ) y (^n-1 n J

JTn = ^n-1 n {x G J" | a(x) < u"(j;) < 6(ar) a.e.},

^ n {x G I" I a(x) < un(x) < 6(®) a.e.}, (4.3)

= Af1 nil,

where X" = {i G I" | u"(x) < a(x) a.e.} and I" = {i G 1" un(:c) > b(x) a.e.}. For
later use we shall define Vn = V™ U V£. Let us give a few comments on this splitting.

First of all observe that

J™ U U U Vn = In.

The splitting basically serves as a monitor for the movement of the respective sets
from one iteration level to the next.

In contrast to the unilaterally constrained problem, i.e., the problem with either u < b
or u > a defining the set of admissible controls, the sets and have to be taken into
account. Details will be given below. But for convenience let us give a schematic graph
(Fig. 1) for the meaning of V". For the sake of simplicity we assume that A^-1 = 0 in
the following exposition: First consider the set of points x G Fi where the corresponding
control un~l of iteration level n — 1 is active at the lower bound a, but the Lagrange
multiplier indicates that un~l should be inactive, i.e., An_1 > 0. This set corresponds
to the left part of in Fig. 1. Consequently this part becomes a subset of X"
in iteration level n. Now, V™ contains all x £ A™-1 fl Xn whose corresponding un(x)
exceeds the upper bound b{x) in the almost everywhere sense. The second case, i.e. V7bl,
is an analogue.

Now, we are well prepared to prove the following lemma, which gives estimates for
dn(x) for all iteration levels n.

Lemma 4.3. Let (yl,ul, A1), i = n, n — 1 denote two successive iterates of Algorithm AS.
Then

dn(x) < a2\un~l{x) - un(x)|2 for a.a. x G I", (4.4a)

dn(x) = 0 for a.a. x G U U (.4""1 n An), (4.4b)

dn(x) <<j2{\un-\x)-un(x)\2-\a{x)-b{x)\2) for a.a. x G Vn, (4.4c)

dn{x) < -a2\un~\x) - un{x)|2 for a.a. x G Tn~\ (4.4d)

with T""1 =ln~l nAn.

Proof. The proof considers the different subsets of iteration levels n and n — 1 and
finally extracts our desired result. For convenience we skip the argument x and argue
for almost all (a.a.) x in the respective sets.
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iteration level n—1:

b

iteration level n:
b

Fig. 1. Study of T>2

(i) I™-1 nl": By construction An_1 = A™ = 0 and a < un~l < b by the way in which
ln is defined. Hence

dn = |(a(un - b))+12 + \(a(a - un))+12 < v2(\(un - un'1))+\2 + Ku™"1 - un)+12)

= a2\un — un_1|2.

(ii) Aq_1 fll": By construction we have A™ = 0, un-1 = a and 0 < An_1 < a(b — a)
by the definition of I". Therefore,

dn = \(a(un-b))+\2 + \(a(a~un))+\2.

We distinguish three cases:
(a) un < a. Then

dn =a2\a~ un|2 = cj2\un~l - un|2.

(/?) a < un < b. Then dn = 0.
(7) un > b. Consider (un - b)2 = (un - a)2 + 2(un — a)(a - b) + (a — b)2, and

un — a>b — a>0 implying (un — a)(a-b) < (b — a)(a — b) = —(a — b)2. Hence,

0un - b)2 < {un - a)2 - (a - b)2,
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and consequently

dn = a2\(un - 6) + |2 < a2(\un - un~l\2 - |a- b\2).

(iii) HI": By construction we have A™ = 0, wn_1 = b and 0 > An_1 > a(a — b)
by the definition of I". Therefore,

dn = \(a(un-b))+\2 + \(a(a-un))+\2.

We distinguish three cases:
(a) un < a. Analogously to (ii'y) we find

(a — un)2 < (b — un)2 — (a — b)2

yielding

dn = a2\a - un|2 < fj2([i£n—^ - u"|2 - |a - b\2).

(l3) a < un < b. Then dn = 0.
(7) un > b. Then

dn = a2\un - b\2 = a2\un - un~1\2.

(iv) Tn~l = Xn~x fl An. We split An into its disjoint components A™ and A" and
consider therefore the following two cases:

(a) Jn_1 nA%. By construction, An_1 = 0, un = a, and un~l < a by definition of
Ana. Hence

dn = |(-A™ ) + |2 - |A™ |2 - |(a(a - un-l))+\2 = -a2\un - un"1|2.

(/3) J™-1 fl A%- By construction, A™-1 = 0, un = b, and ura_1 > b by definition of
A™. Hence

dn = |(A™ )+|2 - |A™ |2 - |(at/"1 - b))+12 = -<r2|«" - w""1!2.

(v) .4™-1 (~l ̂4™. Since the active set of each iteration level can be decomposed into
two disjoint sets, the following four cases have to be considered:

(a) ^4™_1 fl A". By construction of the iterates, we have un = u"-1 = a, and
An_1 < 0 by the definition of A™. Therefore

dn = |(-A™ )+|2 - |A™ |2 = 0.

(/?) A"-1 CiA^■ By construction, we have un~1 = a, un = b, and An_1 > a(b — a) > 0
by definition of A£. Hence

d" = |(A;)+|2-|A^|2 = 0.

(7) Ab~1 fl A2- This is the reverse situation to (v/3) yielding dn = 0.
(5) Ab"1 fl A%. By construction, un = un~l — b and A™-1 > 0. This yields

dn — |(A™)+|2 - |A" |2 = 0.

The cases (i), (iia), and (iii7) yield (4.4a). Assertion (4.4b) follows from (ii(3), (iii/?), and
(v), and (4.4c) comes from (ii7) and (iiia). Finally, case (iv) yields (4.4d). □

To estimate the descent in the modified augmented Lagrangian functional, we need
another estimate on the set I™. The next lemma provides the desired result.
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Lemma 4.4. Let (y\u\ Xl,pl), i = n,n — 1 denote two successive iterates of Algorithm
AS. Then

2
dn(x) < cr2\un(x) - un-\x)\2 < ^rlrpn(x) - Tpn~l(x)\2 for a.a. x e T™. (4.5)

a1

Proof. We again skip the argument x and argue for almost all x like in the previous
proof. The basic tool is Eq. (3.2b), which we repeat for convenience:

aun + An — TpVTi = aud on rt.

We consider now the components of I™. In all cases, the first inequality in the assertion
of the lemma comes from Lemma 4.3.

(i) In_1 nr. From (3.2b) and A™ = A™-1 = 0 we obtain

un = — rpn + Ud and wn_1 = — rpn_1 + Ud-
a a

Therefore,
a2

a2
(ii) A""1 Hi™. We have un = ^rpn+Ud by (3.2b) with An = 0 by construction. Again,

from (3.2b) we obtain rpn_1 —a(u™_1 — Ud) = An_1 > 0. This implies a — Ud< ^rpn~l.
Therefore,

dn < a2\un - un-l\2 = -^|rpn - rp""1!2.
'V'

2
dn - u2\a - un|2 < %\TPn~l - rpn

or
since

0 < un~l - un = a - un =a - -rp" - < -(rp"-1 - rpn).
a a

(iii) A^1 Hi™. Again, we have u™ = \rpnj\-Ud and Tpn~x —q(u™-1 —u^) = An_1 <0
due to (3.2b). A similar argument to case (ii) yields

.2
dn = a2\un - b\2 < —|rpn - rp"_1|2,

a1

completing the proof. □
The use of Lemma 4.4 relies on the following estimate: Consider (3.2a), which denotes

the adjoint equation, yielding
d6n

-Adp + c6p = -Sy in f2, =0 on Fi, dp = 0 on T2,

where <5™ = pn — pn_1 and 5™ = yn — yn~1. This equation is understood in the weak
sense, i.e.,

(V<£, Vv)n + (cSp, v) = (Sy, v) for all v € V.
The F-ellipticity of the bilinear form a(w,v) = (Vw,Vw)n + (cw,v)q and c > c > 0
imply

|<5p < c|<S£|n>
with some constant c > 0. Let |r| denote the operator norm of the trace operator
r: Hl(Cl) -> L2(r). Then

Irpn - rpn~\, < |r||^|Hi(n) < C|<5>, (4.6)

with C := \t\c.
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Now we are prepared to prove the main result of this section. The following theorem
gives conditions on the parameters a and a for the modified augmented Lagrangian to
be non-ascending.

Theorem 4.5. Suppose that An ^ A"-1 (in the sense of (3.1)). If

Oi 2 O?
p+a<a<a+ — and (cr — a)\un~l — un ||>„ — <r| a — b\pr < 0

C p

for some p > 0, then

L(yn, un, An) — L(yn~ ,un~ ,Xn~ ) < 0

Proof. We first relax the bound on dn in two specific situations. In (i) and (ii) below,
we skip the argument x for convenience.

(i) .4™-1 fi Ari't. We have un~1 = a and un = b by construction and, as a consequence
of the definition of A%, we obtain A™-1 > a(b — a) > 0. Therefore,

—<t2|u™_1 - un|2 + 2a(u"-1 - u™)(—An_1) = -CT2|a - b\2 + 2a(b - a)(An"1)

> — a2\a — b\2 + 2a(b — a)(a(b — a)) (4.7)

= a2\a — b\2 >dn.

(ii) 1 fi A™. In this case we have un 1 = b, un — a, and A" 1 < a(a — b) < 0. An
analogous computation to (i) results again in

—<r2|un_1 - un|2 + 2a(un~1 - un)(-A""1) > dn. (4.8)

Since A™-1 = 0 on Tn_1, the estimate (4.8) (with ">" replaced by ">") trivially holds
on Tn_1 due to (4.4d). Moreover, observe that {A™-1 fl-4.^)uMb"1 n«4") UTn_1 — A™
(for its definition, see Corollary 4.2).

Next we compute an upper bound to the inner product (u"_1 - un, Xn - An_1)^n by

(w""1 - un, \n - A""1)^ = (u""1 - un, rpn - rp""1)^ + ajw""1 - un\%

< \rpn - rpn'l\ri\un-1 -«nU- +a\un~1 -un\2A„ (4.9)

< C\8y\o,\un~l - un\A» + a|un_1 - un

where we used (3.2b) and then (4.6).
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Now let us estimate the difference of the modified augmented Lagrangian functional
for two successive iterates:

L(yn, un, An) — i(yn_1,un_1, An_1)

(=2) ~\\5ny\l - fcir,. + K1"1 - Xn)A, + i jf dnds

(<} ~ f l<^ + (w"_1 - Un,Xn)An + ||^||„ -

+ - un, -A"_1)Tn-i + ||^|3b - ||a — 6|2,„ - ||^|^s-ln^

1 n.n \n—1\ ^irni2 . (n.n— 1 „.n \n—1\+ (U«-1 _ „» -A"-1)^-!^ - 2 - u"' -A"" W-1^"

- f Kl^ + K"1 - «n, - An_1)^n + - ||<^

< |<^ + C|^|nKU« + \{a - <t)W\%

+ l(<r-<*m2Vn - a-\a-b\l„ - |=:

For the last inequality above, we used (4.5), (4.6), (4.9) and a > a. We continue by
making use of st < |(s2k_1 + nt2) for every k > 0 and obtain

v1 <\(c2<J a i) k\i + + ̂ k\%+~(«-
+ \^-aWSvn-a-\a-b\l„

1 (C
+C2°^T-1) \S% + l(CK+a-a)\5:\% + \(a-a)\S:\2Vn-^\a-b\2Vn.

 f C2 - 1 ) < 0 and p -f a — a < 0

If we set p = Ck, then L(yn, un, A") — L(yn 1,un 1,Xn x) < 0 provided that

' C2 2 a —a— +C2—=
p az

and, whenever Vn is nonempty,

(er - a)|5"jp„ - <j\a - b\pn < 0.

This proves the assertion. □
As an important consequence of Theorem 4.5 we obtain

Corollary 4.6. Suppose that A" ^ An_1 (in the sense of (3.1)). If
2 2

p + a<a<a+^- — and (a - a)|un-1 — un\pn - a\a - b\pn < 0 (4.10)
G p

for some p > 0, then

L{yn, un, A") - L(yn~1 ,un~1, Xn~1) < 0.
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If a and a satisfy the conditions of Corollary 4.6, then the modified augmented La-
grangian functional is strictly decreasing. This fact prevents Algorithm AS from chat-
tering, i.e., the algorithm will never compute the same active and inactive sets twice.

Next, we consider the uniform boundedness of the iterates of Algorithm AS. For this
purpose observe that the iterates are obtained as solutions to the auxiliary problem

minimize J(y,u)

such that — Ay + cy = g in ^=MonFi, y = 0 on r2, (4-11)

and u^»=a|^»,

with A|jn = 0. The following lemma exploits this fact.

Lemma 4.7. The iterates (yn, un,pn, A"), n e N, of Algorithm AS are uniformly bounded,
i.e., there exists a constant (3 € K+ such that

max{|yn|tfi(n), \un\ri,\pn\Hi(n), |An|ri} < P for all n.

Proof. First we construct a feasible pair (yn,un) for the auxiliary problem (4.11) at
each iteration level. First this aim put = a\j(n,u™^n = band uj^-nur2 = 0.
Moreover, let yn be the unique solution of

dy
—Ay + cy = g in fi, —— = un on Tj, y = 0 on T2.

on
Since a, b e L°°(ri), by assumption there exist constants (3a,Pb S R+ such that

|wn|ri < Pa + Pb for all n.

To prove the uniform boundedness of yn, n £ N, we choose y™ € H1(A,il) (for its
definition, see Appendix A) such that

dvn
~^=un on IV
on

Next we define y™ as the unique solution to

dy
-Ay + cy = g + Ay™ - cy" in Q, ^=° on Ti, y = 0 on T2.

Let |A| denote the operator norm of A: Hx(A,fl) —> L2(f2). Then we obtain the bound

Ij/slffVn) ^ ci(l5|n + |A||y™|Hi(A,n) + c|y™|n), (4-12)
where c\ > 0 denotes a suitable constant. Let u>: —> H1(A, 17) define the
continuous lifting operator with its operator norm denoted by |w|. Then

\llo\n < |y™< c2|w||Mn|r1 < c2(Pa + 0b)M (4.13)

for all n e N, where c2 > 0 is a suitable constant. Now observe that yn = y™ + y™ and
that this fact, together with (4.12) and (4.13), yields the uniform bound to yn in Hx(^).

Since (yn,un) is the unique solution to the auxiliary problem (4.11) we have

0< J(yn,un)< J(yn,un)<Pj,

where the nonnegativity of J follows from its definition, and the existence of the con-
stant (3j > 0 is due to the uniform boundedness of (yn,un). This proves the uniform
boundedness of yn and yn in L2(Q) and L2^!), respectively.
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A similar procedure as in the proof of the uniform boundedness of yn in H1(Q) (now
un taking the role of un) yields the uniform boundedness of yn in

Next consider the adjoint equation at each iteration level, i.e.,

dp
-Ap + cp = zd-yn in Q, ^-=0 onTi, p = 0 on r2 (4-14)

on
with pn its unique solution in the weak sense. Then

|pnUi(n) < c\zd -yn\n,

proving the uniform boundedness of pn in Hx(fl).
Finally, the uniform boundedness of A" in £2(Fi) follows from

|An|ri < |T||pn|Hi(0) + a(\ud\r1 + KlrJ for all n,

where |r| denotes the operator norm of the zero-order trace operator r: //"1(f2) —>
Hx'2{ r). □

Note that due to zd, g G L2(Q) and yn G HX(Q,), for all n G N, in (4.14) we even
obtain

pn and \pn\H*({i) < c3(\zd-yn\n + \pn\Hi(n)) < c3(\zd\n + 2(3), (4.15a)

yne\V and \yn\m(Q) < C4{\g\n + \yn\H^(Q)) < c4{\g\n + p), (4.15b)

with W = H2(Q) n V and suitable c3,c4 G K+, under suitable assumptions on the
boundary from regularity results for elliptic equations; see [24], [10].

Next, we turn towards the convergence of the iterates (yn,un,pn, An). We assume
that An+l 7^ An for all n G N, because otherwise Lemma 3.1 proves the actual iterate
to be the unique optimal solution of (1.1). We prove first an auxiliary result based on
Corollary 4.6 and Theorem 4.5.

Lemma 4.8. Suppose that An ^ An_1 for all n G N, and that there exists e > 0 such
that for all n G N,

a2 a2
p + a<a<a+-~K 

C2 p
and

(cr - a)\5™\pn - a\a - b\2Vn < -e|c5"||>» < 0

whenever Vn ^ 0. Then
(i) limn-,00 |<5™|n = 0,
(ii) limn^oo |t<5™|Fl = 0,
(iii) lim^oo |<5™|ri =0.

Proof. From Corollary 4.6 we obtain that {L(yn,un, A")}^L0 is strictly decreasing.
Since L(y, u, A) is uniformly bounded from below, there exists L* such that (L(yn, un, A")
J. L*. From the proof of Theorem 4.5 we infer that

L{yn, un, Xn) - L(yn-\un-\ A""1) < \ (y +C2^ - l) \5% < 0.

Since the left-hand side vanishes as n —> oo, assertion (i) is proved.
For the proof of (ii), we consider (4.6). Then the result immediately follows from (i).
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Note that, |£™|.4«\.4™ — 0 for all n £ N. From the choice of a. Lemma 4.4 and (ii) we
obtain

lim |^"Ujux?u-pn = 0.
n—> oo

Finally, from the definit ion of in the proof of Theorem 4.5 we obtain linin^^ |<5™ |
= 0. Combining all results for 5™ we obtain (iii). □

The convergence result for the iterates of Algorithm AS is given in the next theorem.

Theorem 4.9. Suppose that essmf{b(x)—a(x)\x eTj > e > 0 and that the assumptions
of Lemma 4.8 are satisfied. Then {(yn,pn)}%L0 converges to (y*,p*) strongly in V, and
{(un, An)}J£L0 converges to (■u*,\*) weakly in L2(Fi).

Proof. The proof is based on Lemma 4.8, i.e., the fact that the sequences of increments
{Sy}, {<5™}, and {t(5™} converge to zero in the respective norms without assuming that
the sequences {y11}, {un}, and {pn} converge.

By Lemma 4.7, (4.15a) and (4.15b), the sequence {(yn,un,pn,\n)}%L0 is uniformly
bounded in W x £2(ri) x W x L2(Fx). Hence there exist a subsequence {n(k)}^L0
and ('y,u,p,X) such that {{yn(-k\pn^)}'j£= 0 converges to (y,p) strongly in V due to the
compact embedding of H2(Q) in i?1(fi), and such that {(u71^', An(fc))}£i0 converges to
(u, A) weakly in L2(Fi). By construction of the iteration sequence we have

_ _ _ dp _
— Ap + cp + y = zd in Q, — = 0 on Ti, p = 0 on F2,

an
au + A — TjDipj = aud on Ti,

_ _ dy _ _
— Ay + cy = g in — = it on Ti, y = 0onF2.

on
Thus, primal and dual feasibility remains to be considered. We start by proving u £ Uad,
i.e., primal feasibility. For this purpose choose an arbitrary e > 0, and let

Un = {x £ Q | un < a - e or un > b + e}.

Assume that meas(J7n(fcW)) > §2 > () along a subsequence {n(k(l))}fZ0 of {n(/c)}^?=0.
Without loss of generality, we assume n{k{l)) = n{k). Then due to Un C (I" n A"+1),
by the definition of In and An+l, we obtain

0 < e5 < e^/meas(£/"«) < \un(k^+1 - un(fc)|[/n(fc) < |(5;l(fc)+1 |Fl for all k £ N. (4.16)

Since |5„|ri ~5' 0 due to Lemma 4.8, we also have |<^fc'+1|ri —> 0. This contradicts
(4.16). Thus, u £ t/ad, which establishes primal feasibility.

Finally, we turn towards feasibility of A. Let Aa = {x £ | u = a} and A" = {a: £
A, | A" > e} for arbitrarily chosen e > 0. Note that A™ C An and A" H -A™+1 = 0.
Assume that meas(A"(A:"^ n 2n(*('))+1) > > o along a subsequence {n(k(l))}^L0 of
{n(k)}T=o- Again, without loss of generality, we assume n(k(l)) = n(k). Then

0<eS< |A"(fc)+1 - A^|A„(fc)nJnW+1 < a|^(fc)+1|ri + N^+1|ri,

where we also used (3.2b). Since limn_00(a|5™|r1 + |t<5^ |ri) = 0 by Lemma 4.8, we

obtain a contradiction to our assumption on {meas(Aalfc) nXn^fc'+1)}^_0. Next (again by
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using n{k{l)) = n(k)) assume that meas(A"^ C\Aa^ fl^4^fe^+1) > S2 > 0 for all k G N.
Then

0 < Se < \a - b\An(k)nAn(k)nAn(k)+i < |5™(fc)+1|r1,

which, due to limn_»oo |J™| = 0, yields a contradiction. Finally, assume that ineas(A„"' ) n
An(k) n An(k) + lj > p > o for a]1 k eN^ Then un{k) = & Qn ^n(fe) R ^n(fc) R ^"CO+l)
for all k G N. Since {un'k'}^0 converges weakly in £2(Fi) to u with u = a on Aa, a
contradiction is obtained. Combining all results for Aa, we infer A^ < 0.

Similar arguments as for Aa yield Ai^ > 0 with Ab = {x E fl \u = b}.
Finally, consider Xe = {x£Cl\a + e<u<b — e} and Aq = {i 6 I£ | | An (a:) | > e

a.e.} for arbitrarily fixed e > 0. Note that Ze C T := {x E fi j a < u < b}, and Ag C A".
Define

AS,a,b = (Ao n a: n A?+1) u (Aq nAb n Ana+1)

and assume that meas^Q^j^) > <52 > 0 along a subsequence {n(k(l))}fl.o of {n{k)}^=0.
Without loss of generality, we again assume n(k(l)) = n{k). Then

0 < <5e < |o-6|J| < |^)+1|ril
IY0,a,b

which, due to limn_^00 \5™\ = 0, yields a contradiction. Now, with n(k(l)) = n(k) assume
that meas(Ag'fc' Pi An „4™tfc'+1) > 52 > 0 for all k 6 N. Then = a on (Aq^ n
Aa^ n^4"('fc')+1) for all k G N. But this contradicts u > a + e onIE. Analogous arguments
apply to (A£(fe) rAl[k) n^(fc)+1). Thus, when combining all preceding results, we have

A|z = 0.
In conclusion, (y,u,p, A) satisfies the first-order system of Theorem 2.3. The assertion

then follows from the uniqueness of the optimal solution (y*, u*,p*: A*) of (1.1). □
In the remainder of this section, we check that for given a, the interval of a-values

satisfying (4.10) is nonempty. Let us first closely analyze the condition

{a — a)|un_1 — un|p„ - a\a - b\^n < 0, (4-17)

which clearly depends on the iteration sequence. We investigate the components of Vn,
i.e., V™ and . First we concentrate on V™. Since V™ contains those x for which
un(x) > b(x) a.e., we obtain

|un — un~l\Vs > \b — a|-pn,

where we additionally used = a\-pjj: ■ Hence (4.17) restricted to "P™ is equivalent to

a with C e (0,1), (4.18)

where is defined as

\b~a\vz _1 \b-a\%„
>a ~~ I .n „. n. — 1 12 ~~~ ~l2 *IU" — un 1 |p„

The analogous condition to (4.18) with replaced by

|un — b\i® = 1 "
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has to hold on V™. This implies that there exist a > a being feasible for condition (4.17).
In view of p + a < a for some p > 0 we must have a > a. Hence (4.17) and the first
condition of Corollary 4.6 are not contradictory.

Since we are interested in the sequence of iterates, we additionally have to prove that

C = max{CC} (4-19)

is uniformly bounded away from 1. This is the content of the following lemma.

Lemma 4.10. Suppose that

essinf{6(x) — a(x) \ x G Vn} > e > 0 for all n € N. (essinf = +oo if meas(Pn) = 0.)

Then there exists 0 < £ < 1 such that 0 < £n < £ for all iteration levels n.

Proof. We will only argue for since similar arguments apply for
First observe that (4.15a) implies pn £ C(Q) by Sobolev's Embedding Theorem. Con-

sequently, the bound

\un - a\Vn < (f3Ui + a 1/3p|r| + 0a) v/meas(73™)

is valid, where the existence of the uniform bounds /30j/3udi/3p > 0 is due to Ud,a £
L°°(ri) and pn £ C(fl) and the uniform boundedness of pn in On the other
hand, due to our assumption we obtain

|6 — a\-pn > ey/meas('Pj) for all n e N.

Therefore,
Ib - a\j,n e2£n = 1  J-S- < 1 _ A- -• £ <1

?a |u" - a|£„ - Ml '

with Ma = PUd + a~lf3p\r\ + /3a■ In the same manner, we obtain ££ < < 1.
Taking £ = max{£a,£b} < 1 completes the proof. □
To proceed in our discussion of the conditions on a and a, we consider a + a2C~2 —

a2p_1, p > 0, the upper bound on a in the first condition of Corollary 4.6. Since we
have a > a + p > Oby the lower bound, we obtain

7>L <420)

Inserting this expression for p in

a2 a2
p + Q. < a + —r — —

C* p

and putting z — p/oc, one obtains the following condition as a result:

1 Q
z<d with d=—. (4-21)

z O

Consequently, for a > 2C2, there exist z 6 M+ satisfying (4.21). Fig. 2 gives a graphical
illustration. The curve for c?2 corresponds to a = 2C2, i.e., c?2 = 2, while c?i > 2 and
d,3 < 2.
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Fig. 2. Condition (4.21)

It remains to combine both conditions of Corollary 4.6. Considering the uniform
bound on £™, condition (4.18) becomes

cr£ < a. (4.22)

We assume that C is sufficiently large. Then (4.22) and p + a < a yield

£(p + a) < £cr < a.

This implies
aC2 ^l-l

- ~rQ-
Suppose now that a = qC2,q > 2. From the inequality above, we deduce

(1 — Q(a + C2) ^ (g + !)_(!-g)
c2e e

From (4.20) we know that 7 > 1 has to be satisfied. Hence, for our choice of a, the
condition £ < (q + l)/(q + 2) must hold.

A final observation concerning the parameter p is the fact that

p = a maximizes the length of the interval
a2 a2

p + a, a + -
L* p

5. The finite-dimensional algorithm. For implementation reasons, one must dis-
cretize the infinite-dimensional problem (1.1) by finite differences or finite elements. After
discretization, the quadratic programming problem denoted by

minimize Q(Y, U) := \\\mH\y - Zd)\\l + f IIMlT'\u - Ud)||2
subject to SqY = G — SrU (5-1)
and A < U < B

is obtained. In (5.1) we used Y,Zd,G G Rk and U,Ud,A,B e 1R'. The matrices Afn e
Rkxk and Mr E M.lxl are symmetric and positive definite, the matrix Sn £ Rkxk is
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symmetric and nonsingular, and Sr G Rfcx'. The norms || ■ jjfc and || ■ ||; denote the
Euclidean norms of Rfc and R , respectively. For the corresponding inner product, we
use (w,z)k = wTv in Rfc and analogously for R'. By 1015 we denote the components u>;
with i G S C {1,..., 1} =: Np- The norm ||w||s is defined as ||«J||; with wJ|g = w\s and
uJj5/ = 0, where S' — NrV^.

As an immediate consequence of our assumptions, we can ensure the existence of the
unique solution (Y*,U*) G Rfc x R' of (5.1) characterized by the following first-order
conditions:

Mn{Y* - Zd) + SQP* = 0,

aMv(U* - Ud) + S^P* + A* = 0,
SqY* + SrU* - G = 0,

A* = a[U* + a'1 A* - nUad(?7* + fj—1 A*)],

where P* G Rfc, A* 6 R' denote the Lagrange multipliers, and II(yad stands for the
componentwise projection onto C/aa := {i G Nr | A; < Ui < Bi}. The discretized active
and inactive sets are defined by

Ana = {1 G Nr|U?-1 + < Ai},

A" = {i G NrlC/f"1 + ct"1 A?"1 > Bi},
An = Ana U Anh and /" = Nr\An.

The finite-dimensional version of Algorithm AS becomes
Algorithm AS_finite
Output: exact optimal solution (Y*,U*).
begin

(Y°, U°, P°, A°) <— initialization^d, G, Ud, A, B, Mq, Mr, Sn, Sr, a)
n <— 0

end
while (An An~l) or (n < 2)

Compute A™, A% and set An <— A™ U A£, In <— Nr\An.
Determine (Yn,Un,Pn, A") such that

Mn(Yn - Zd) + SnPn = 0,

aMr(Un - Ud) + Sf Pn + An = 0,
SnYn + SrUn -G = 0

with UfA„ <— A\An, UfAn <— B\An, and A|/« <- 0.
end

The identification An = An~l is understood in the (discretized) sense of (3.1). An
example for a simple initialization strategy is the following procedure (min is understood
in the componentwise sense). In parentheses we denote an alternative.
initialization
Input: Zd, G, Ud, A, B, Mq, Mr, Sn, Sr, a.
Output: Y°, U°, P°, A°.
begin
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U° *- A. (■U° <- B)
Compute Y° and P° as solution to

SnY = G — SrU°,
SnP + MnY\ = MnZd

A° 4- min(0, -aMr{U° - Ud) - SfP°). (A0 «- raax(0, -aMr(U° - Ud) - S£P°))
end

The convergence analysis of Algorithm AS-finite is based on the same ideas as in
the infinite-dimensional context. We make use of the discrete analogue of the modified
augmented Lagrangian function of the previous section:

L(Yn,Un, A") = Q(Yn, Un) + ^[(||(a(A - Un) - A^)+|||„ - ||AH|||„)

+ (\\(a(Un — B) + A™ )+|||n — ||A™ |||n )],

where (•)+ is understood componentwise, and 5" = In U A%, analogously for 5™.
The following convergence theorem states that Algorithm AS-finite stops after a finite

number of iterations in the exact solution of problem (5.1). We denote by A > 0 the
smallest and by A the largest eigenvalue of Mr- The set V is the discrete analogue of
Vn of Sec. 4.

Theorem 5.1. Suppose that A" ^ An_1 and inf{£?j — A,t \ i € V") > e > 0 hold. If

^_cfa_2
4 Pc 2

for some p > 0, then
L(Yn,Un,An)-L(Yn-1,Un~1,An-1) < 0,

where c\ = j|5p S^M^W and C2 = WM^1 Sf Sq1 Mq2\\. Moreover, if (5.2) holds for all
n > n, n G N, then Algorithm AS_finite stops after a finite number of iterations at the
exact solution (Y*,U*) of (5.1).

Proof. First observe that if there exists an iteration level n such that An~1 = An,
then the discrete algorithm stops at the exact solution.

Next we establish the descent property of the discrete modified augmented Lagrangian
function. We will only display the major steps since the ideas and computations are
similar to the infinite-dimensional case. For convenience we define Ay = Y" — Yn~1 and
A"=£/"- Un~\ We have

Q(Yn,Un) - Q(Yn-\Un~l) = -\\\MH2^\\l - f HM^A^If - (A&.A"),
and the following estimate for the inner product:

(-A£,An - A-1), < Q:||A/p/2Ay ll^n + C\ ||Ay-||^n \\Mq2 Ay\\k,

where A™ is the discrete analogue of A™. On the discrete analogue of I™, we have

IIA&ll/n < f P4/2 A^llfc.

a\ + p<a< Aa+^-^4" and {a - a\)\\Un - Un~l |||n - a\\A - B\\^ < 0 (5.2)
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Therefore, the following estimate is valid:

L(Yn,Un,An) -L(Yn-1,Un~l,An-1) < ^ ^ - i) llMn/2Ayllfc

+ l(a-Xa)\\A^n-^\\A-B\\^,

with p = KCi. Hence, condition (5.2) is sufficient for L(Yn, Un, An)—L(Yn~1, Un~l, An_1)
< 0 for all n G N.

Finally, since there exists only a finite number of possible active and inactive sets, and
we have strict descent of the discrete modified augmented Lagrangian function under
(5.2), Algorithm AS_finite has to stop after a finite number of iterations. □

Note that (5.2) also states a condition for the discretization of the control space, since
the eigenvalues of Mr are involved.

Remark 5.2. If one considers the specific discretization with Mq, = h2Ek and Mr =
hEi, where Ek,Ei denote the unit matrices of Rfcxfc and M.lxl, respectively, and h is the
mesh-size, then A = h, A = h, and Ci = h\\Sp Sq1 || = hc2 =: hl^2Ch- Hence, condition
(5.2) becomes

2 2
a + p < a < a + ^ ~ and (a - a)||A£,||^n - (?\\A - B||^n < 0,

ch P
with p = h~1p,a = h~1cr, which is the discrete analogue of condition (4.10) of Corollary
4.6 and can be analyzed similarly.

6. Numerical tests. We shall now report on numerical testing of Algorithm
AS_finite on a DECAlpha 500 workstation with machine precision £m « 1.1 • 10~16.
The implementation was done in MATLAB 5.2. We will display the results for a rep-
resentative selection of test examples. The domain fl was chosen to be £1 = (0, l)2. In
all tests below, the control was taken to act on Ti = (0,1) x {0}. The discretization
of the Laplacian was realized by the five-point star. The discretization of the normal
derivative was based on symmetric differences. Moreover, for numerical integration, i.e.,
discretization of the objective functional, we chose h~2Mq and /i_1 Mr (compare (5.1))
to be the unit matrices of the respective finite-dimensional space. Therefore, considering
Remark 5.2, the constant Ch appearing in the sufficient conditions for descent of the
modified augmented Lagrangian function becomes Ch = /i1^2||5p Sq1 ||. Unless otherwise
specified, the mesh-size was h = 1/50 and the initialization with U° = B was used.

6.1. Test examples. In all test examples specified below, we used g = 0 for convenience.
Example 6.1.

Bounds: a = —0.75, b = 0.75. Desired state: Zd = | sin^Trxj) sin(27TX2)e2:ri. Desired
control: Ud = cos(57rxf). Potential term: c = 1. Parameter values: a = 10-3,a = 10_1.
Remark: The example is constructed such that there exist several active and inactive
regions in the interior and on the boundary of Ti. Moreover, both bounds are active at
the optimal (numerical) solution. Table 1 displays the values for Ch = 1II f°r
several mesh-sizes h.
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ch
10-1

0.02634
20-l

0.00959
30"

0.00526
40-l

0.00342
50-l

0.00245
Table 1. Values for Ch = /i1/2| 11| for varying h

2.4920e - 1
0.0000
0.0000

\K
34
34

69
69
69

W

0

Jn

4.225353e - 2
4.225588e - 2
4.225588e - 2

3.939324e - 2
4.225588e - 2
4.225588e - 2

Table 2. Performance for Example 6.1

Example 6.2.
Bounds: a = —0.05, b = 0.05. Desired state: Zd = ^sm(2irxi)sm(2nx2)e2xi. Desired
control: Ud = 0. Potential term: c = 1. Parameter values: a — lO^1, several values for
a are tested.

Example 6.3.
Bounds: a(xi) = —0.1| sin(67rxi)|, b(xi) = 2 + cos(ll7rxi) for 0 < x\ < 1. Desired state:

Zd =

0 for xi <

1 for | < x\ <
— 1 for xi > |.

Desired control: Ud = 0. Potential term: c = 10xi + 100x2- Parameter values: a = 10~5,
a = 10-2. Remark: The example is constructed such that B is nowhere active at the
optimal solution. The choice of B yields an oscillating initial value for U if the algorithm
is started with U° = B. For h = 1/50 we obtain Ch = 0.00245.

Example 6.4.
Bounds: a(a:i) = sin(87ra:1), b(xi) = 2 + cos(^ +87r:ri) for 0 < x\ < 1. The desired state
and control are chosen as in Example 6.3. Potential term: c = 1. Parameter values:
a = 10—4, a = 10~2. Remark: The bounds are chosen such that there exist Xx e (0,1)
with a(xi) = fr(xi) and such that meas{xi e (0, l)|a(xi) = b(xi)} = 0.

6.2. Results. Table 2 gives the results for a run of Algorithm AS_finite for Example
6.1 and h = 1/200. By C Nr, we denote the number of components i of Un
with i € Sn. Thereby rn is the maximal violation of the bound constraints. If we
extrapolate Table 1, then a = 10-3 satisfies a > 2(see the discussion in §4) for
h < 1/20. The algorithm also exhibits a descent behavior of L for h = 1/10. Moreover,
for all hi = l/i, i = 10,20,..., 200, only two iterations are needed until the algorithm
stops with the optimal discrete solution. This mesh-independent behavior for control
constrained examples is also observed in [4] for distributed and unilaterally constrained
optimal control problems. The low number of iterations is typical for most of the test
runs.

Next we test Example 6.2 for various values of a. From Table 1 we know that a >
1.1972 ■ 10~5 has to be satisfied for the sufficient conditions (see Theorem 5.1). Indeed,
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3.6086c+l
0.0000
7.7727
0.0000
0.0000

\K
20
20
22
22

27
29
27
27
27

W

0

J"
4.192950e - 2
4.223890e - 2
4.223668e - 2
4.223884e - 2
4.223884e - 2

r
4.334799e + 2
4.223890e - 2

3.691441
4.223884e - 2
4.223884e - 2

TABLE 3. Example 6.2 for a = 10 6

for a < 10~5 the following behavior displayed in Table 3 can be observed. Although the
algorithm stops at the exact solution, the merit function is not strictly decreasing. Since
V ^ 0 for = 3 we shall further analyze the dependence on a. The second condition
of Theorem 5.1, which involves V ^ 0, also depends on the difference a — a. Hence, we
reduce <r to a = 1.1 • 10~6 (for a = 10-6), and find that L exhibits a descent behavior
in each iteration. Note that, due to our initialization, i.e., U° = B, the choice of a has
no influence on the sequence of iterates. It only guarantees that L is strictly decreasing.
In Fig. 3 we give plots for the optimal control U* and the corresponding multiplier A*
for h = 1/50 and a = 10~6. The left graph of Fig. 3 shows a "bang-bang" control,
which is the result of the increasing singularity of the problem for decreasing a. Hence,
there is a switching point where U* jumps from the lower bound to the upper bound.
Consequently, the inactive set at the optimal solution is empty.

Optimal control 1Q-e X

Fig. 3. Optimal state and multiplier for Example 6.2 with a = 10 6

Now we turn to Example 6.3. The aim of the construction is twofold: first, we want
to test the influence of the nonconstant c; secondly, only the lower bound is active at
the optimal solution, and the iteration process is started with U° set to the "wrong"
bound which, in addition, is rather oscillatory. Let us give the plots of the optimal state,
adjoint state, control and multiplier in Fig. 4. The algorithm stops after two iterations
at the exact (discrete) solution. This behavior is again independent of the mesh-size. A
reduction of a to a = 10~5, which clearly violates a > 2C%, yields the result of Table
4. Now there is also a part of B that is active at the optimal solution. Although a
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Optimal state Optimal control

x-axis

Adjoint state

Fig. 4. Plots of the optimal solution of Example 6.3

5.1502e+ 1
0.0000

\K

37
12
12

\V

0

Jn

2.366900e - 1
2.397982e - 1

0.0000 37 12 0 2.397982e - 1 2.397982e -1

r
1.276744e + 3
2.397982e - 1

Table 4. Example 6.3 for a = 10 5

is less than 2C^, the modified augmented Lagrangian function is decreasing. Moreover,
the identification and correction process is very efficient again. Let us remark that we
also tested the case where c = 0. The constants of Table 1 change only slightly (in the
last digit). In all cases, i.e., hi = 1/i, i = 10,... ,50, the algorithm stopped after two
iterations at the exact (discrete) solution.

We consider Example 6.4. There exist points x\ such that the Slater condition, i.e., the
interior of Uad is nonempty, does not hold. Since meas{a:i £ (0,1) | a(xi) = &(^i)} = 0,
the lack of the Slater condition is benign. The mesh-size h was chosen such that there
exist components i with Ai = Bi numerically. Again, the algorithm terminates after two
iterations at the exact (discrete) solution. Fig. 5 displays the optimal control (together
with the bounds A and B) and the corresponding multiplier for h = 1/100.
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Optimal control (solid) with bounds (dotted) x

Fig. 5. Plots of the optimal solution of Example 6.4

Finally, we consider the aspect of lack of strict complementarity, i.e., there exists i € A*
such that A* = 0. Sometimes this fact is referred to as degeneracy of the problem. It is
known for the methods based on gradient projection (see, for instance, [20]) that their
performance degrades with increasing degree of degeneracy. Since the sequence of iterates
of Algorithm AS_finite depends on the sign of A™ for i G An and the sign of f7" — Bi,
respectively [/" — At, for i € In, and since the precision of An,Un essentially depends on
the condition number of Sq and round-off errors, the active and inactive sets may start
to chatter near the optimal solution with lack of strict complementarity. Therefore, we
introduce an additional stopping criterion, which is similar to a rule developed in [4]. For
this purpose define

Sn = {i € A% | A"<0}u{i e A™ | A">0} and Tn = {i e Jn | (U? >Bi)V(U? <A;)}

and
rg = max{|A?|} and = max{min{|t/f - B;|,\U? - Aj|}}.

If we find that rg and rj are of the order of the precision expected for the solution of the
linear system that has to be solved in each iteration of Algorithm AS_finite, we cannot
rely on the determination of active and inactive sets. Hence we stop the algorithm. We
constructed examples with lack of strict complementarity at the exact solution. The
algorithm immediately detects the correct active and inactive sets and terminates after
one iteration.

7. Conclusion. Algorithms for solving optimal control problems with inequality con-
straints on the control are still a significant challenge. In this paper we have developed
an efficient, easy to implement algorithm for a representative class of control constrained
optimal control problems. We have proved global convergence, i.e., convergence from
any starting point to the optimal solution, in finite dimensions and in infinite dimensions
under certain conditions on the parameters involved, respectively. In finite dimensions,
the algorithm has a finite termination property. Based on a very well suited identification
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strategy for the active and inactive sets, which allows multiple activation and inactiva-
tion of constraints, in the discrete case the new algorithm proved to be very competitive
in practice, exhibits a low number of iterations needed to find the exact optimal solution
and turns out to be very robust even in the case of lack of strict complementarity.

Appendix A.
Proof of Lemma 2.1. Define the bilinear form a: V x V —> R. by

a(w, v) = (Vw, Vv)n + (cw, v)q.

From c > c > 0 and the Poincare-Friedrichs Inequality, we immediately find a to be
V-elliptic and bounded. Next, we define the linear functional /: V —> R by

f(v) = {g,v)n + (u.rwirjiv

The continuity of / follows from the continuity of the trace map r: H:(ft) —> L2(Y).
By the Lax Milgram Theorem, the variational problem

a(y,v) = f(v) for all v G V (A.l)

admits a unique solution ys G V.
From (A.l) we immediately detect —Ay + cy = g in the weak sense and y = 0 on T2

by the definition of V. Define

H\A,ft) = {w G H\n) | Aw G L2(ft)}

endowed with the norm

Mffi(A,n) = (|w|ffi(fi) + |Au|^)1/2.

Essentially following the arguments of [5], we find that the trace mapping ta : H1 (A, ft) —>
tf~1/2(r), T/\w = |^|r is continuous and that the generalized Green's formula holds:

I~'rw)= J (Ay ~ °y)vdx + a{y, v)
for all y 6 if1(A,$7) and v € -ff1(S7). Hence, for the solution of (A.l) we have

= J u(rv\ri)ds for all v G V,

which yields =«on This completes the proof. □
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