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Abstract
A new primal-dual interior-point algorithm applicable to nonsymmetric conic opti-
mization is proposed. It is a generalization of the famous algorithm suggested by
Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for
nonsymmetric cones proposed by Tunçel. We specialize Tunçel’s primal-dual scalings
for the important case of 3 dimensional exponential-cones, resulting in a practical algo-
rithm with good numerical performance, on level with standard symmetric cone (e.g.,
quadratic cone) algorithms. A significant contribution of the paper is a novel higher-
order search direction, similar in spirit to a Mehrotra corrector for symmetric cone
algorithms. To a large extent, the efficiency of our proposed algorithm can be attributed
to this new corrector.

Keywords Nonsymmetric cone optimization · Exponential-cone optimization ·
Interior-point methods

Mathematics Subject Classification 90C99

1 Introduction

In 1984 Karmarkar [11] presented an interior-point algorithm for linear optimization
with polynomial complexity. This triggered the interior-point revolution which gave
rise to a vast amount research on interior-point methods. A particularly important
result was the analysis of so-called self-concordant barrier functions, which led to
polynomial-time algorithms for linear optimization over a convex domain with a self-
concordant barrier, provided that the barrier function can be evaluated in polynomial
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time. This was proved by Nesterov and Nemirovski [19], and as a consequence convex
optimization problems with such barriers can be solved efficently by interior-point
methods, at least in theory.

However, numerical studies for linear optimization quickly demonstrated that
primal-dual interior-point methods were superior in practice, which led researchers
to generalize the primal-dual algorithm to general smooth convex problems. A major
breakthrough in that direction is the seminal work by Nesterov and Todd (NT) [20,21]
who generalized the primal-dual algorithm for linear optimization to self-scaled cones,
with the same complexity bound as in the linear case. Güler [8] later showed that the
self-scaled cones correspond to the class of symmetric cones, which has since become
themost commonly used term. The good theoretical performance of primal-dualmeth-
ods for symmetric cones has since been confirmed computionally, e.g., by [2,28].

The class of symmetric cones has been completely characterized and includes 5
different cones, where the three most interesting ones are the nonnegative orthant,
the quadratic cone, and the cone of symmetric positive semidefinite matrices, as well
as products of those three cones. Although working exclusively with the symmetric
cones is a limitation, they cover a great number of important applications, see, e.g.,
Nemirovski [16] for an excellent survey of conic optimization over symmetric cones.

Some convex sets with a symmetric cone representation are more naturally char-
acterized using nonsymmetric cones, e.g., semidefinite matrices with chordal sparsity
patterns, see [32] for an extensive survey. Thus algorithmic advancements for han-
dling nonsymmetric cones directly could hopefully lead to both simpler modeling and
reductions in computational complexity. Many other important convex sets cannot
readily be modeled using symmetric cones, e.g., convex sets involving exponentials or
logarithms, for which no representation using symmetric cones is known. In terms of
practical importance, the three dimensional power- and exponential-cones are perhaps
the most important nonsymmetric cones; Lubin et al. [12] showed how all instances
in a large benchmark library can modeled using the three symmetric cones as well the
three dimensional power- and exponential cone.

Generalizing methods from symmetric to nonsymmetric cones is not straightfor-
ward, however. In [22] Nesterov et al. suggest a long-step algorithm using both the
primal and dual barriers effectively doubling the size of the linear system solved at each
iteration. For small-dimensional cones (such as the exponential cone) this overhead
might be acceptable.

More recently Nesterov [18] proved the existence of a NT-like primal-dual scaling
in the vicinity of the central path, leading to an algorithm that uses only a single barrier,
but is restricted to following the central path closely. Compared to [22] this method
has a main advantage of reducing the size of the linear system to the same size of the
algorithms for symmetric cones; a similar advantage is shared by algorithms using
explicit primal-dual scalings, e.g., scalings by Tunçel [30] considered later. At each
iterationNesterov’smethod [18] has a centering phase, which brings the current iterate
close to the central path, which is followed by one affine step which brings the iterate
closer to optimum. From a practical perspective this is a significant drawback of the
method since the centering phase is computationally costly.

Hence, the centering and affine steps should be combined as in the symmetric cone
case. Also both algorithms [18,22] are feasible methods, i.e., they require either a
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strictly feasible known starting point or some sort of phase-I method to get a feasible
starting point. Skajaa and Ye [27] extended Nesterov’s method [18] with a homo-
geneous model, which also simplifies infeasibility detection. In practice, however,
the method of Skaajaa and Ye is not competitive with other methods [3] due to the
centering steps.

In more recent work Serrano and Ye [26] improves the algorithm in [27] such that
explicit centering steps are not needed, but instead restricting iterates to a vicinity of
the central path. This method has been implemented as part of the ECOS solver [6]
and will be used for comparison in Sect. 8.

A different approach to non-symmetric conic optimization was proposed by Tunçel
[30], who extends the concepts of the NT algorithm in a more direct fashion. Nesterov
and Todd [20,21] showed existence of a primal-dual scaling defined by a single scaling
pointw satifying two secant equations s = F ′′(w)x and F ′(x) = F ′′(w)F ′∗(s), where
F ′ and F ′′ denotes the first- and second-order derivatives of the barrier. Furthermore,
the scaling F ′′(w) is shown to be bounded, which is a key property of establishing
polynomial-time complexity of the NT algorithm. Tunçel later showed in [30] that
such a scaling point w exists for any convex cone K , but satisfying only one secant
equation s = F ′′(w)x , and if the barrier has negative curvature then w is unique [23].
To enforce both secant equations in the nonsymmetric case, Tunçel [30] considered a
sequence of low-rank quasi-Newton updates to a general positive definite matrix.

These ideaswere further explored byMyklebust andTunçel [15] and also in [14] and
form the basis of our proposed algorithm. Following this line of work, the essential
difference from a symmetric NT algorithm is the computation of a general positve
definite scaling matrix, satisfying the same secant equations, but without relying on
a given scaling-point w. Furthermore, such scaling matrices should be bounded to
ensure polynomial-time complexity.

For three-dimensional cones these scaling matrices are particularly simple and
characterized by a single scalar, as shown in Sect. 5. Uniform boundedness of the
scaling matrices is not established in this correspondence, but we comment on an
efficientmethod for computing themost bounded scalingmatrix using the formulations
developed in Sect. 5.

It is also possible to develop algorithms for convex optimization specified on func-
tional form. This has been done by several authors, for example by [3,4,7,9] who all
solve the KKT optimality conditions of the problem in functional form. The algo-
rithms all require a sort of merit or penalty function, which often require problem
specific parameter tuning to work well in practice. Another strain of research is the
work Nemirovski and Tunçel [17] and very recently Karimi and Tunçel [10] who
advocate a non-linear convex formulation instead of a conic formulations, explicitly
using self-concordant barriers for the convex domains.

From a theoretical point of view the different algorithms for nonsymmetric cones
(including the functional formulations) all share the same best-known complexity
bounds as the symmetric counterparts. Whether these methods are competetive in
practice with algorithms for symmetric cones is still an unanswered question, though.

The algorithmwe consider herein uses the scalingmatrices byTunçel [30], resulting
in an algorithm that is similar to the symmetric counterpart; the linear system solved
at each iterations is very similar and both the residuals and the complementarity gap
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decrease at the same rate. The algorithm is a natural extension of the Nesterov-Todd
algorithm implemented for symmetric cones in, e.g., SeDuMi [28] and MOSEK [3].

It is well known that the Mehrotra predictor-corrector idea [13] leads to vastly
improved computational performance in the symmetric cone case. One of our main
contributions is a new corrector for nonsymmetric cones, closely tied to Tunçel’s
primal dual scalings. It is derived from a second-order approximation of the centrality
condition sμ = −μF ′(xμ) and thus involves third-order directional derivatives. The
proposed corrector loosely follows the central path, without restricting the size of
the neighborhood, thereby allowing the algorithm to take longer steps, and it shares
similarities with the standardMehrotra corrector; in particular they coincide if F(x) =
−∑i log xi denotes the standard barrier for linear optimization.

We demonstrate numerically that the proposed corrector offers a substantial and
consistent reduction in the number of iterations required to solve the problems in all our
numerical studies. Skajaa and Ye [27] suggest a different corrector by characterizating
the full central path as a differential equation, solved by a Runge-Kutta method. An
immediate draw-back of Skajaa’s Runge-Kutta method is that it requires additional
factorizations of the full KKT system, which significantly adds to the overall solution
time.

The remaining paper is structured as follows. We define basic properties for the
exponential cone in Sect. 2, and we discuss the homogeneouous model, the central
path and related metrics in Sect. 3. In Sect. 4 we discuss search-directions assuming a
primal-dual scaling is known, and we derive a our new corrector and provide a simple
numerical example that illustrates how the corrector algorithm makes more steady
progress. In Sect. 5 we discuss new characterizations of the primal-dual scalings from
[15,30], which reduce to univariate characterizations for three-dimensional cones.

In Sect. 6 we give a collected overview of the suggested path-following algorithm.
This is followed by a discussion of some implementation details. Next in Sect. 8
we present numerical results on a moderately large collection of exponential-cone
problems. We conclude in Sect. 9, and in the appendix we give details of the first-,
second- and third-order derivatives of the barrier for the exponential cone.

2 Preliminaries

In this section we list well-known properties of self-concordant and self-scaled barri-
ers, which are used in the remainder of the paper. The proofs can be found in references
such as [20,21]. We consider a pair of primal and dual linear conic problems

minimize 〈c, x〉
subject to Ax = b

x ∈ K ,

(P)

and

maximize 〈b, y〉
subject to c − AT y = s

s ∈ K ∗,
(D)
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where y ∈ Rm , s ∈ Rn and K ⊂ Rn is a proper cone, i.e., a pointed, closed, convex
cone with non-empty interior. We assume throughout the paper that A has full rank,
i.e., the rows A are linearly independent. The dual cone K ∗ is

K ∗ = {z ∈ Rn | 〈x, z〉 ≥ 0,∀x ∈ K }.

If K is proper then K ∗ is also proper. A cone K is called self-dual if there is positive
definite map between K and K ∗, i.e., if T K = K ∗, T 
 0. A function F : int(K ) �→
R, F ∈ C3 is a ϑ-logarithmically homogeneouos self-concordant barrier (ϑ-LHSCB)
for int(K ) if

|F ′′′(x)[u, u, u]| ≤ 2(F ′′(x)[u, u])3/2

and

F(τ x) = F(x) − ϑ log τ

holds for all x ∈ int(K ) and for all u ∈ Rn . For a pointed cone ϑ ≥ 1. We will
refer to a LHSCB simply as a self-concordant barrier. If F1 and F2 are ϑ1 and ϑ2-
self-concordant barriers for K1 and K2, respectively, then F1(x1) + F2(x2) is a (ϑ1 +
ϑ2)-self-concordant barrier for K1 × K2. Some straightforward consequences of the
homogeneouos property include

F ′(τ x) = 1

τ
F ′(x), F ′′(τ x) = 1

τ 2
F ′′(x),

F ′′(x)x = −F ′(x), F ′′′(x)x = −2F ′′(x),
〈F ′(x), x〉 = −ϑ.

If F is a ϑ-self-concordant barrier for K , then the Fenchel conjugate

F∗(s) = sup
x∈int(K )

{−〈s, x〉 − F(x)} (1)

is a ϑ-self-concordant barrier for K ∗. Futhermore, if (x, s) ∈ int(K ) × int(K ∗) then
(−F ′(x),−F ′∗(s)) ∈ int(K ∗) × int(K ).

For a ϑ-self-concordant barrier, the so-called Dikin ellipsoid

E(x; r) = {z ∈ Rn | 〈F ′′(x)(z − x), z − x〉 ≤ r}

is included in the cone for r < 1, i.e., E(x, r) ⊂ int(K ) for r < 1, and F is almost
quadratic inside this ellipsoid,

(1 − r)2F ′′(x) � F ′′(z) � 1

(1 − r)2
F ′′(x)

for all z ∈ E(x, r).
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A cone is called self-scaled if it has a ϑ-self-concordant barrier F such that for all
w, x ∈ int(K ),

F ′′(w)x ∈ int(K ∗)

and

F∗(F ′′(w)) = F(x) − 2F(w) − ϑ.

Self-scaled cones are equivalent to symmetric cones and they satisfy the stronger
long-step Hessian estimation property

1

(1 + ασx (−p))2
F ′′(x) � F ′′(x − α p) � 1

(1 − ασx (p))2
F ′′(x)

for any α ∈ [0; σx (p)−1) where

σx (p) := 1

sup{α : x − α p ∈ K }
denotes the distance to the boundary.Many properties of symmetric cones follow from
the fact that the barriers have negative curvature F ′′′(x)[u] � 0 for all x ∈ int(K ) and
all u ∈ K . An interesting property proven in [23] is that if both the primal and dual
barrier has negative curvature then the cone is symmetric.

In addition to the three symmetric cones (i.e., the nonnegative orthant, the quadratic
cone and the cone of symmetric positive semidefinite matrices) we mainly consider
the nonsymmetric exponential cone studied by Charez [5] in the present work.

Kexp = cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0},

with a 3-self-concordant barrier,

F(x) = − log(x2 log(x1/x2) − x3) − log x1 − log x2. (2)

The dual exponential cone is

K ∗
exp = cl{z ∈ R3 | e · z1 ≥ −z3 exp(z2/z3), z1 > 0, z3 < 0}.

The exponential cone is not self-dual, but T Kexp = K ∗
exp for

T =
⎡

⎣
e 0 0
0 0 −1
0 −1 0

⎤

⎦ � 0.

For the exponential cone the conjugate barrier F∗(s) or its derivatives cannot be eval-
uated on closed-form, but it can be evaluated numerically to high accuracy (e.g., with
a damped Newton’s method) using the definition (1), i.e., if
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xs = argmin{−〈s, x〉 − F(x) : x ∈ int(K )}

then
F ′∗(s) = −xs, F ′′∗ (s) = [F ′′(xs)

]−1
.

Weconclude this survey of introductorymaterial by listing someof themany convex
sets that can be represented using the exponential cone, or a combination of exponential
cones and symmetric cones. The epigraph t ≥ ex can be modelled as (t, 1, x) ∈ Kexp
and similarly for the hypograph of the logarithm t ≤ log x ⇔ (x, 1, t) ∈ Kexp. The
hypograph of the entropy function, t ≤ −x log x is equivalent to (1, x, t) ∈ Kexp,
and similarly for relative entropy t ≥ x log(y/x) ⇔ (y, x,−t) ∈ Kexp. The soft-plus
function log(1 + ex ) can be thought of as a smooth approximation of max{0, x}. Its
epigraph can be modelled as t ≥ log(1+ex ) ⇔ u+v = 1, (u, 1, x − t), (v, 1,−t) ∈
Kexp. The epigraph of the logarithm of a sum exponentials can modelled as

t ≥ log(ex1 + · · · + ex1) ⇐⇒
n∑

i=1

ui = 1, (ui , 1, xi − t) ∈ Kexp, i = 1, . . . , n,

These examples all have auxiliary variables and constraints in their conic represen-
tations, which might suggest that an algorithm working directly with a barrier of the
convex domain (e.g., [10]) is more efficient. However, a conic formulation has the
advantage of nicer conic duality, and it is easy to exploit the special (sparse) structure
from the additional constraints and variables in the linear algebra implementation,
thereby eliminating the overhead in a conic formulation.

3 The homogeneousmodel and central path

In the simplified homogeneous model we embed the KKT conditions for (P) and (D)
into the homogeneous self-dual model

⎡

⎣
0 A −b

−AT 0 c
bT −cT 0

⎤

⎦

⎡

⎣
y
x̂
τ

⎤

⎦−
⎡

⎣
0
ŝ
κ

⎤

⎦ = 0

x̂ ∈ K1 × · · · × Kk, ŝ ∈ K ∗
1 × · · · × K ∗

k , y ∈ Rm, τ, κ ≥ 0,

(3)

where x̂ = (x1, . . . , xk) is a concatenation of conic variables, xi ∈ Ki . We denote the
primal-dual variables by (x̂, ŝ) to distinguish them from augmented variables defined
next. Let

xk+1 := τ, sk+1 := κ, Kk+1 := R+, Fk+1(xk+1) := − log(xk+1), ϑk+1 = 1.

We than have

x := (x1, . . . , xk+1) ∈ K , s := (s1, . . . , sk+1) ∈ K ∗.
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where K := K1 × · · · × Kk+1 has a barrier

F(x) =
k+1∑

i=1

Fi (xi ).

with complexity ϑ =∑k+1
i=1 ϑi . Let z := (x, s, y) and define

G(z) :=
⎡

⎣
0 A −b

−AT 0 c
bT −cT 0

⎤

⎦

⎡

⎣
y
x̂
τ

⎤

⎦−
⎡

⎣
0
ŝ
κ

⎤

⎦ .

The KKT conditions can then be expressed succinctly as

G(z) = 0, z ∈ D,

where D := K × K ∗ × Rm . Given an initial z0 ∈ int(D) we consider a central path
zμ as the solution to

G(zμ) = μG(z0) (4)

sμ = −μF ′(xμ), xμ = −μF ′∗(sμ), (5)

parametrized by μ ∈ (0, 1], and on the central path we have

〈xμ, sμ〉/ϑ = μ.

The following lemma gives an equivalent variational characterization of the central
path.

Lemma 1 Given z0 ∈ int(D). Let

Ψ (z) := 〈x0, s〉 + 〈x, s0〉 + F(x) + F∗(s).

Then

zμ := argmin
z∈D

{Ψ (z) : G(z) = μG(z0)}.

Weomit the proof, which follows from the optimality conditions for minimizingΨ (z).
In [22] the central path is defined from the variational characterization in Lemma
1, and they prove that the definition in (4)–(5) is equivalent. From the variational
characterization zμ is well-defined, and limμ→0 zμ = z� satisfies (see, e.g., [22]),

1. 〈x�, s�〉 = 0.
2. If τ � > 0 then x̂�/τ � is an optimal solution for (P) and (y�, ŝ�)/τ � is an optimal

solution for (D).
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3. If κ� > 0 then 〈b, y�〉 > 0 and (P) is infeasible, or 〈c, x̂�〉 < 0 and (D) is infeasible,
or both.

In the following neighborhood definitions and subsequent algorithms we consider
iterates (x, s, y) that are generally not on the central path, and we define

μ := 〈x, s〉/ϑ.

A neighborhood used by Skajaa and Ye [27] is then

‖s + μF ′(x)‖∗
x = 〈s + μF ′(x), F ′′(x)−1(s + μF ′(x))〉1/2 ≤ βμ, (6)

which characterizes the central path for β = 0. We can think of (6) as a generalization
of the standard two-norm neighborhood

‖XSe − μe‖2 ≤ βμ

from linear optimization [33].
A different neighborhood is due to Nesterov and Todd [21]. We define shadow

iterates (following [30])

x̃ := −F ′∗(s), s̃ := −F ′(x) (7)

and
μ̃ := 〈x̃, s̃〉/ϑ

for an iterate (x, s, y) ∈ D. Nesterov and Todd [21] then showed that μμ̃ ≥ 1 with
equality only on the central path. This leads to a different neighborhood βμμ̃ ≤ 1 for
β ∈ (0; 1], or equivalently

βμ〈x̃, s̃〉 ≤ ϑ.

This is satisfied if

βμ〈x̃i , s̃i 〉 ≤ ϑi , i = 1, . . . , k + 1,

leading to another neighborhood definition

N (β) =
{
(x, s) ∈ K × K ∗ | ϑi 〈F ′(xi ), F ′∗(si )〉−1 ≥ βμ, i = 1, . . . , k + 1

}
,

which (in contrast (6)) characterizes the central path for β = 1. We use the neigh-
borhood N (β), which can be seen as a generalization of the one-sided ∞-norm
neighborhood.

Both the central path and the neighborhood depend on the initial values. A simple
choice is y0 = 0 and

x0 = s0 = −F ′(x0),
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which are optimality conditions for minimizing

f (x) := (1/2)xT x + F(x).

If Ki = Kexp this can be solved off-line using a backtracking Newton’s method to get

[x0]i = [s0]i ≈ (1.290928, 0.805102,−0.827838).

For the symmetric cones and the three-dimensional power-cone such a central starting
point can be found analytically. Then 〈x0, s0〉/ϑ = 1 and (x0, s0) ∈ N (1).

4 Search-directions using a primal-dual scaling

In this section we define search directions, assuming a primal-dual scaling is known;
how to compute such scalings is discussed in Sect. 5.We consider an iterate (x, s, y) ∈
int(D) and nonsingular primal-dual scalings Wi satisfying double secant equations

Wi xi = W−T
i si , Wi x̃i = W−T

i s̃i , i = 1, . . . , k + 1

where x̃i and s̃i are the shadow iterates defined in (7). Let

W :=
⎡

⎢
⎣

W1
. . .

Wk+1

⎤

⎥
⎦

We can then express the primal-dual scaling succinctly as

v = Wx = W−T s, ṽ = Wx̃ = W−T s̃. (8)

where Wk+1 := √
κ/τ and

vk+1 = √
τκ, ṽk+1 = 1√

τκ
.

Whenever we encounter a scaling W in the remainder of this paper, it is assumed that
W satisfies the double secant equation (8) for the current iterate.

To linearize the centrality condition we consider

s + Δs = −μF ′(x + Δx),

with a linearization given by

s + Δs = −μF ′(x) − μF ′′(x)Δx . (9)
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On the central path we can express (9) as

WΔx + W−TΔs = μṽ − v (10)

withW := [μF ′′(x)]−1/2. If (x, s) is not on the central path then (10) is anapproximate
linearization of the symmetric centrality condition

v = μṽ

with a quality determined by the distance ‖WTW − μF ′′(x)‖. Thus, the assumption
thatWTW ≈ μF ′′(x) is important for our proposed algorithm, including the corrector
studied later in this section.

We next define different search-directions used in the proposed algorithm. The
affine search-direction is the solution to

G(Δza) = −G(z), WΔxa + W−TΔsa = −v, (11)

and is characterized by the following lemma.

Lemma 2 The solution to (11) satisfies

〈s,Δxa〉 + 〈x,Δsa〉 = −〈x, s〉, 〈Δxa,Δsa〉 = 0, (12)

and for all α ∈ R,
〈x + αΔxa, s + αΔsa〉 = (1 − α)〈x, s〉.

Proof It follows from (11) that

〈s,Δxa〉 + 〈x,Δsa〉 = −〈v, v〉 = −〈x, s〉,

and skew-symmetry implies that

−〈[y + Δya, x + Δxa],G(z + Δza)〉 = 〈x + Δxa, s + Δsa〉 = 0,

which combined shows that 〈Δxa,Δsa〉 = 0. The last part follows directly from (12).
��

Lemma 2 shows that a full affine step step (z+Δza) satisfies both G(z+Δza) = 0
and 〈x + Δxa, s + Δsa〉 = 0. Thus, if (z + Δza) ∈ D then (z + Δza) is optimal (i.e.,
a solution to (3)).

We next consider a higher-order corrector for nonsymmetric cones, with some
similarities to a Mehrotra corrector for symmetric cones. We consider the first- and
second-order derivatives of sμ = −μF ′(xμ) with respect to μ,

ṡμ + μF ′′(xμ)ẋμ = −F ′(xμ),

s̈μ + μF ′′(xμ)ẍμ = −2F ′′(xμ)ẋμ − μF ′′′(xμ)[ẋμ, ẋμ] (13)
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From (13) we have

μẋμ = −[F ′′(xμ)]−1(F ′(xμ) + ṡμ) = xμ − [F ′′(xμ)]−1ṡμ,

resulting in an expression for the third-order directional derivative,

μF ′′′(xμ)[ẋμ, ẋμ] = F ′′′(xμ)[ẋμ, xμ] − F ′′′(xμ)[ẋμ, (F ′′(xμ))−1ṡμ] (14)

= −2F ′′(xμ)ẋμ − F ′′′(xμ)[ẋμ, (F ′′(xμ))−1ṡμ] (15)

where (15) follows from the homogeneity property F ′′′(x)[x] = −2F ′′(x). This
results in an alternative expression for the second-order derivative of the centrality
condition, i.e.,

s̈μ + μF ′′(xμ)ẍμ = F ′′′(xμ)[ẋμ, (F ′′(xμ))−1ṡμ].

Assuming that WTW ≈ μF ′′(x) and comparing (11) and (13) we interpret Δsa =
−ṡμ/μ and Δxa = −ẋμ/μ, leading to the definition of our corrector term

η := −1

2
F ′′′(x)[Δxa, (F ′′(x))−1Δsa]. (16)

Thus a pure corrector search-direction can be defined as the solution to

G(Δzc) = 0, WΔxc + W−TΔsc = −W−T η, (17)

and satisfies properties given in the following lemma.

Lemma 3 The solution to (17) satisfies

〈s,Δxc〉 + 〈x,Δsc〉 = 0, 〈Δxc,Δsc〉 = 0.

Proof From (17) we have that

〈s,Δxc〉 + 〈x,Δsc〉 = (1/2)〈x, F ′′′(x)[Δxa, (F ′′(x))−1Δsa]〉 = −〈Δxa,Δsa〉 = 0,

using the homogeneity property F ′′′(x)[x] = −2F ′′(x), and skewsymmetry implies
that 〈Δxc,Δsc〉 = 0. ��
We note that

W 2
k+1Δxck+1 − Δsck+1 = −ηk+1

reduces to the familiar expression κΔτ c + τΔκc = −Δτ aΔκa.
For a given centering parameter γ > 0 we define a combined search-direction as

the solution to

G(Δz) = −(1 − γ )G(z), WΔx + W−TΔs = −v + γμṽ − W−T η, (18)
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with properties given in the following lemma.

Lemma 4 The solution to (18) satisfies

〈s,Δx〉 + 〈x,Δs〉 = 0, 〈Δx,Δs〉 = 0

and for all α ∈ R,

G(z + αΔz) = (1 − α(1 − γ ))G(z),

〈x + αΔx, s + αΔs〉 = (1 − α(1 − γ ))〈x, s〉.

Proof From (18) and Lemma 3 we have that

〈s,Δx〉 + 〈x,Δs〉 = −(1 − γ )〈x, s〉 − (1/2)〈x, F ′′′(x)[Δxa, (F ′′(x))−1Δsa]〉
= −(1 − γ )〈x, s〉,

and skewsymmetry implies that

〈(1 − γ )x + Δx, (1 − γ )s + Δs〉 = (1 − γ )2〈x, s〉 + (1 − γ )[〈s,Δx〉 + 〈x,Δs〉]
+〈Δx,Δs〉 = 0,

i.e., 〈Δx,Δs〉 = 0. The last part now follows. ��
The search-direction (18) forms the basis of our algorithm. For a given step-size
α ∈ (0, 1] the residuals and the complementarity gap decrease at the same rate. More
explicitly, for μk := 〈xk, sk〉/ϑ the residuals are the kth iteration are

G(zk) = μkG(z0),

which should be compared with central path definition in Lemma 1. Similarly, the
complementarity gap at the kth iteration is

〈xk, sk〉 = μkϑ.

This is in contrast with other methods [18,26,27], which do not decrease the comple-
mentarity gap at the same rate. Also, no explicit merit function as in [9] is required to
ensure a balanced decrease of the residuals and the complementarity gap.

Tunçel [30] showed polynomial complexity of an infeasible method (without a
corrector) assuming boundedness of the scaling matrices. These results were further
extended by Myklebust and Tunçel [15] to include an analysis for scaling matri-
ces obtained by a BFGS scaling (such scalings are considered in the next section).
Although we use slightly different scaling matrices, their analysis could be be applied
in a small neighborhood around the central path. Thus a short-step algorithm using
the search directions herein would likely inherit good theoretical performance. It is
also possibility that future studies will prove a conjucture that the scaling matrices
considered herein are bounded, which would simplify a complexity analysis.
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To gain some insight into the corrector η we note that in the case of the nonnegative
orthant we have the familiar expression

1

2
F ′′′(x)[Δxa, (F ′′(x))−1Δsa] = −diag(x)−1diag(Δxa)Δsa,

and similarly for the semidefinite cone we have

1

2
F ′′′(x)[Δxa, (F ′′(x))−1Δsa] = −1

2
x−1ΔxaΔsa − 1

2
ΔsaΔxax−1

= −(x−1) ◦ (ΔxaΔsa),

using the generalized product associated with the Euclidean Jordan algebra, see, e.g.,
[31] for a discussion of Euclidean Jordan algebra in a similar context as ours. For the
Lorentz cone we have

F ′′′(x)[(F ′′(x))−1u] = − 2

xT Qx
(uxT Q + QxuT − (xT u)Q)

with Q = diag(1,−1, . . . ,−1). Let ek denote the kth standard basis-vector (i.e., the
vector with value 1 in position k and 0 elsewhere). Then

F ′′′(x)[(F ′′(x))−1u]e1 = −2(x−1) ◦ u,

again using the notation of the generalized product [31]. We defer the derivation and
implementation specific details for the exponential cone to the appendix.

As an illustration of the proposed corrector we consider a simple example,

minimize x1 + x2
subject to x1 + x2 + x3 = 1

(x1, x2, x3) ∈ Kexp.

(19)

In Table 1 we list the complementarity gap 〈xk, sk〉 for the iterates produced using
the search direction (18) with and without the proposed corrector, using the scaling
matrices defined in Sect. 5.

InFig. 1weplot the same iterates xk/τ� projected onto the hyperplane x1+x2+x3 =
1. Although some iterates appear close to the boundary they are all within the defined
neighborhood, i.e., no cut-back is performed to stay within the neighborhood. We see
how the corrector algorithm makes significantly more progress and thereby reduces
the required number of iterations. A similar observation is made for a wide selection
of test-problems in Sect. 8.

5 Primal-dual scalings

In this section we review key results for primal-dual scalings by Tunçel [30], we make
connections to the theory of multiple secant-equation updates by Schnabel [25], and
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Table 1 Complementarity gap
for the iterates in example (19),
with and without corrector

k W. corrector W/o. corrector

0 4.0e+00 4.0e+00

1 9.3e−01 1.2e+00

2 4.3e−02 3.6e−01

3 2.1e−04 7.6e−02

4 2.7e−08 8.7e−-03

5 5.5e−10 4.8e−03

6 8.4e−15 1.1e−03

7 5.3e−06

8 8.5e−07

9 1.3e−07

10 1.0e−08

11 1.2e−10

12 1.2e−13

Fig. 1 Central path, boundary, and iterates for example (19), projected onto the hyperplane x1+x2+x3 = 1.
The iterates using the corrector direction are plotted in the darker solid line, and iterates without the corrector
are plotted in ligher solid line

we present new formulations, which were used collaboratively in [24] to compute
optimally bounded scaling matrices specifically for three-dimensional cones.

Tunçel [30] defines a set of scalings

T1(x, s) := {T : T 
 0, T 2s = x, T 2F ′(x) = F ′∗(s)}, (20)

i.e., positive definite scalings satisfying double secant equations. Tunçel further defines
a set of bounded scalings parametrized by ξ ,
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T2(x, s, ξ) :=
{
T ∈ T1(x, s) : (ξδF )−1F ′′∗ (s) � T 2 � ξδF

[
F ′′(x)

]−1
}

, (21)

where δF := [ϑ(μμ̃ − 1) + 1]/μ. Let

ξ� := inf
ξ
T2(x, s, ξ). (22)

In the case where ξ� ∈ O(1) over all (x, s) ∈ int(K ) × int(K ∗), Tunçel proved
an iteration complexity bound of O(

√
ϑ log(1/ε)) for an infeasible-start primal-dual

interior point algorithm (coincidingwith the best known complexity bound for interior-
point methods). The parameter δF and set T2(x, s, ξ) are further addressed towards
the end of this section in the context of finding optimally bounded scaling matrices.

A self-scaled cone has a unique Nesterov-Todd scaling point w satisfying double
secant equations,

s = F ′′(w)x, F ′(x) = F ′′(w)F ′∗(s).

Furthermore, F ′′(w) is bounded (see [20,21,30]) in the sense that

[F ′′(w)]−1 ∈ T2(x, s, 4/3).

A barrier F(x) is said to have negative curvature if for all x ∈ int(K ) and for u ∈ K
we have

F ′′′(x)[u] � 0

and F(x) is self-scaled if and only if F(x) and F∗(s) both have negative curvature
[23]. Barriers with negative curvature (but which are not self-scaled) still have a unique
scaling point w satisfying exactly one secant equation

s = F ′′(w)x

but not the other. The exponential-cone barrier does not have negative curvature, as can
be seen be considering x̂ := (1, e−2, 0) ∈ Kexp and û := (1, 0, 0) ∈ Kexp \ int(Kexp).
Then it can be verified using the expressions in the appendix that

F ′′′(x̂)[û] =

⎡

⎢
⎢
⎢
⎣

−4 e2
2

e2
2

e2
2 0 0

e2
2 0 − e4

4

⎤

⎥
⎥
⎥
⎦

,

which is indefinite, for example

F ′′′(x̂)[û, v̂, v̂] = 4

for v̂ := (1, 8e−2, 4e−2).
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Thus for general nonsymmetric cones the essential question is how to define
bounded scalingmatrices satisfying both secant equations, without relying on a scaling
point w. Tunçel [30] partly answers that question by deriving scalings T ∈ T1(x, s)
using BFGS update equations, resulting in a rank-4 update to a given positive definite
matrix. It is still instructive, however, to review work by Schnabel on quasi-Newton
methods withmultiple secant equations. In particular, the following theorem from [25]
is used repeatedly in the following discussion.

Theorem 1 Let S,Y ∈ Rn×p have full rank p. Then there exists H 
 0 such that
H S = Y if and only if Y T S 
 0.

As a consequence we can write any such H 
 0 as

H = Y (Y T S)−1Y T + Z ZT , ST Z = 0, rank(Z) = n − p

or in factored form H = WTW with

W = [Y (Y T S)−1/2, Z
]T

.

One may verify that given any Ω 
 0 satisfying ΩS = Y , the following identify
holds

W−1 = [ S(Y T S)−1/2, Ω−1Z(ZTΩ−1Z)−1
]
,

and therefore

H−1 = S(Y T S)−1ST + RRT , Y T R = 0, rank(R) = n − p,

where RRT = Ω−1Z(ZTΩ−1Z)−2ZTΩ−1. One of the most popular quasi-Newton
update rules is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) step in (23), where
H 
 0 denotes an approximation of the Hessian.

HBFGS := Y (Y T S)−1Y T + H − HS(ST HS)−1ST H (23)

It is well known (see, e.g., [25]) that the update (23) is the solution to

minimize ‖Ω1/2(H−1+ − H−1)Ω1/2‖F
subject to H−1+ Y = S,

H−1+ 
 0
(24)

for anyΩ 
 0 satisfyingΩS = Y . In the following theoremwe show how (23) can be
computed using a sequence of updates, similar to quasi-Newton updates with a single
secant equation.

Theorem 2 Given Y0, S0 ∈ Rn×p with Y T
0 S0 
 0. Then

Y0(Y
T
0 S0)

−1Y T
0 = VV T

S0(Y
T
0 S0)

−1ST0 = UUT ,

123



358 J. Dahl, E. D. Andersen

where V := (v1 · · · vp
)
, U := (u1 · · · u p

)
and

vk := Yk−1ek
〈Yk−1ek, Sk−1ek〉1/2

, Yk := Yk−1 − vkv
T
k Sk−1 (25)

uk := Sk−1ek
〈Yk−1ek, Sk−1ek〉1/2

, Sk := Sk−1 − uku
T
k Yk−1 (26)

for k = 1, . . . , p.

Proof The proof is constructive and follows from a Cholesky factorization of Y T
0 S0.

Let

L :=
(

Y T
0 S0e1

〈Y0e1,S0e1〉1/2 , · · · ,
Y T
p−1Sp−1ep

〈Yp−1ep,Sp−1ep〉1/2
)

.

In the proof we first show that Y T
0 S0 = LLT , and we then show second that LV T =

Y T
0 , which in turn implies (25).
We start by showing that the recursion (25), (26) is well-defined. Let Ψk be the

principal submatrix obtained from the last p − k rows and columns of Y T
k Sk , where

Ψ0 = Y T
0 S0 
 0 by assumption. Expanding Y T

k Sk we have

Y T
k Sk = Y T

k−1Sk−1 − (Y T
k−1Sk−1ek)(Y T

k−1Sk−1ek)T

〈Yk−1ek, Sk−1ek〉 , (27)

i.e., Ψk is the Schur-complement of the first element of Ψk−1 and therefore positive
definite.

We next make a simplifying observation, namely that the first k columns of Yk and
Sk are zero. From (25), (26) we immediately have that Ykek = Skek = 0, k = 1, . . . p,
and that sparsity propagates to subsequent steps, i.e., Y j ek = S j ek = 0, j > k.

We can now prove that LLT = Y T
0 S0. We have

LLT ek =
k−1∑

i=0

Y T
i Si ei+1(Y T

i Si ei+1)
T ek

〈Yi ei+1, Si ei+1〉

=
k−2∑

i=0

Y T
i Si ei+1(Y T

i Si ei+1)
T ek

〈Yi ei+1, Si ei+1〉 + Y T
k−1Sk−1ek . (28)

Repeated use of (27) in (28) then shows that

LLT ek =
k−2∑

i=0

Y T
i Si ei+1(Y T

i Si ei+1)
T ek

〈Yi ei+1, Si ei+1〉 + Y T
k−1Sk−1ek

=
k−3∑

i=0

Y T
i Si ei+1(Y T

i Si ei+1)
T ek

〈Yi ei+1, Si ei+1〉 + Y T
k−2Sk−2ek = · · · = Y T

0 S0ek .
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We finally show that LV T = Y T
0 . From repeated use of (25) it follows that

LV T = Y T
0 − Y T

0 + ST0 Y0e1(Y0e1)
T

〈Y0e1, S0e1〉 + ST1 Y1e2(Y1e2)
T

〈Y1e2, S1e2〉 + . . .

+ STp−1Yp−1ep(Yp−1ep)T

〈Y T
p−1ep, Sp−1ep〉

= Y T
0 − Y T

1 + ST1 Y1e2(Y1e2)
T

〈Y1e2, S1e2〉 + · · · + STp−1Yp−1ep(Yp−1ep)T

〈Y T
p−1ep, Sp−1ep〉

= · · · = Y T
0 − Y T

p = Y T
0 .

Since LV T = Y T
0 we have that Y0(LLT )−1Y T

0 = Y0(Y T
0 S0)−1Y T

0 = VV T . Equation
(26) follows similarly. ��

Primal-dual scalings can then be derived similarly to Tunçel [30] and Myklebust
and Tunçel [15]. In our context we derive non-singular (factored) scalingsW satisfying

W−T s = Wx, −W−T F ′(x) = −WF ′∗(s), (29)

i.e., (WTW )−1 ∈ T1(x, s) defined in (20). We define

H := μF ′′(x), S := [ x, x̃ ] , Y := [ s, s̃ ] ,
where we remind the reader that x̃ := −F ′∗(s) and s̃ := −F ′(x).

The condition Y T S 
 0 is equivalent to assuming that (x, s) is not on the central
path1. We next define

δx := x − μx̃, δs := s − μs̃

also used in [15]. To compute (23) we first use Theorem 2 with S0 := S, Y0 := Y
resulting in

Y (ST Y )−1Y T = ssT

〈x, s〉 + δsδ
T
s

〈δx , δs〉 .

We next define

ρx := x̃ − 〈x, Hx̃〉
〈x, Hx〉 x .

If we use Theorem 2 again, this time with S0 := S and Y0 := HS we get

HS(ST HS)−1ST H = Hx(Hx)T

〈x, Hx〉 + Hρx (Hρx )
T

〈ρx , Hρx 〉 ,

1 If (x, s) is on the central path, then WTW = μF ′′(x) is a scaling with (WTW )−1 ∈ T2(x, s, 1), see
(21).
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leading to an expression for the BFGS update as a rank 4 update to H 
 0 (for a
general H ),

HBFGS = H + ssT

〈x, s〉 + δsδ
T
s

〈δx , δs〉 − Hx(Hx)T

〈x, Hx〉 − Hρx (Hρx )
T

〈ρx , Hρx 〉 .

Considering (24), we see that the BFGS update to H := μF ′′(x) has the desirable
property of minimizing

‖W−1W−T − (μF ′′(x))−1‖Ω,

measured in a weighted norm; for simplicity we can assume that Ω = WTW . With
this choice of H we have

HBFGS = μF ′′(x) + ssT

〈x, s〉 + δsδ
T
s

〈δx , δs〉 − μ

ϑ
s̃ s̃T − μ

(F ′′(x)x̃ − μ̃s̃)(F ′′(x)x̃ − μ̃s̃)T

〈x̃, F ′′(x)x̃〉 − ϑμ̃2 ,

which curiously reduces to a rank 3 update,

HBFGS = μF ′′(x) + 1

2μϑ
δs(s + μs̃ + 1

μμ̃ − 1
δs)

T + 1

2μϑ
(s + μs̃ + 1

μμ̃ − 1
δs)δ

T
s

−μ
(F ′′(x)x̃ − μ̃s̃)(F ′′(x)x̃ − μ̃s̃)T

〈x̃, F ′′(x)x̃〉 − ϑμ̃2 . (30)

We conclude this section by considering the three-dimensional case, for which the
expressions simplify significantly. It follows from Theorem 1 that any scaling (29) has
the form

WTW = Y (Y T S)−1Y T + t zzT , W−1W−T = S(Y T S)−1ST + t−1rrT

where ST z = 0,Y T r = 0 and 〈r , z〉 = 1, i.e., the scaling is essentially characterized by
t > 0. For simplicity, we assume ‖z‖ = 1. We compute z and r using cross-products,

z = x ⊗ x̃

‖x ⊗ x̃‖ , r = s ⊗ s̃

〈s ⊗ s̃, z〉 .

In the three dimensional case we can devise a simple algorithm for finding scalings
achieving the bound (22). For notational convinience we introduce Q := [

r , S
]
,

which is nonsingular. We can then solve

inf
ξ

{

ξ : (ξδF )−1QF ′′(x)QT �
[
t 0
0 Y T S

]

� (ξδF )Q[F ′′∗ (s)]−1QT
}

(31)

using a simple bisection algorithm. Consider the monotonically decreasing function,

ξ l(t) := inf
ξ

{

ξ : (ξδF )−1QF ′′(x)QT �
[
t 0
0 Y T S

]}

,
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and the monotonically increasing increasing function

ξu(t) := inf
ξ

{

ξ : (ξδF )Q[F ′′∗ (s)]−1QT �
[
t 0
0 Y T S

]}

.

Given upper and lower bounds on t , the solution to (31) can then be found using
bisection on t to solve ξ l(t) = ξu(t). Such a bisection method was considered in [24],
where it was conjectured that ξ� ≈ 1.253 for the exponential cone.

The BFGS scaling corresponds to

t = μ

∥
∥
∥
∥F

′′(x) − s̃ s̃T

ϑ
− (F ′′(x)x̃ − μ̃s̃)(F ′′(x)x̃ − μ̃s̃)T

〈x̃, F ′′(x)x̃〉 − ϑμ̃2

∥
∥
∥
∥
F

. (32)

We have tried both the optimal scaling and the BFGS scaling for all numerical test
problems in Sect. 8, without noticing a significant difference in required number of
iterations or quality of the solution. For all the problems the largest observed bound on
ξ was 1.72 for the BFGS scaling; for simplicity we only report results for the simpler
BFGS scaling in the following. In preliminary experiments we have observed similarly
encouraging numerical results for higher dimensional non-symmetric cones using the
BFGS scaling. The bisection algorithm is still valuable as a reference, however, andwe
hope that future studies will prove the conjecture, and possibly derive similar bounds
for other three dimensional cones (including a tighter bound than 4/3 for quadratic
cones).

6 A primal-dual algorithm for exponential cone optimization

In this section we give a collected overview of the suggested path-following primal-
dual algorithm. The algorithm is specialized for three-dimensional cones (in particular,
the exponential cone) by using cross-products for computing the BFGS scalings. By
computing the scaling matrices as a general rank 3 update (30) the algorithm is readily
adapted to other non-symmetric cones.

We fix β to a constant low value, for example β = 10−6. The different essential
parts of the method are i) finding a starting point, ii) computing a search-direction and
step-size, and iii) checking the stopping criteria for termination.

– Starting point. Find a starting point on the central path

x = s = −F ′(x)

and y = 0, τ = κ = 1. Then z := (x̂, ŝ, y, τ, κ) ∈ N (1).
– Scaling matrices. Compute BFGS scaling matrices

Wk =
[

sk√〈xk ,sk 〉 ,
δsk√〈δxk ,δsk 〉 ,

√
tk · zk

]T
, W−1

k =
[

xk√〈xk ,sk 〉 ,
δxk√〈δxk ,δsk 〉 ,

rk√
tk

]T
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where zk = (xk ⊗ x̃k)/‖xk ⊗ x̃k‖, rk = (sk ⊗ s̃k)/〈sk ⊗ s̃k, zk〉 and tk is chosen
from (32). Note that {zk} and z are unrelated; the later denotes the aggregation of
all primal and dual variables.

– Search-direction and step-size. Compute an affine direction Δza as the solution to
(11),

G(Δza) = −G(z), WΔxa + W−TΔsa = −v.

From Δza we compute a corrector (16),

η := −1

2
F ′′′(x)[Δxa, (F ′′(x))−1Δsa],

similar to Mehrotra [13], where details on evaluting the derivatives are given in
the appendix, see (34). We define a centering parameter γ as

γ := (1 − αa)min{(1 − αa)
2, 1/4},

where αa is the stepsize to the boundary, i.e.,

αa = sup{α | (x + αΔxa) ∈ K , (s + αΔsa) ∈ K ∗, α ∈ [0; 1]}

which we approximate using a bisection procedure. We then compute a combined
centering-corrector search direction Δz as the solution to (18),

G(Δz) = −(1 − γ )G(z), WΔx + W−TΔs = −v + γμṽ − W−T η

and we update z := z+αΔz with the largest step α ∈ [0; 1) inside a neighborhood
N (β) of the central path.

– Checking termination. Terminate if the updated iterate satisfies the termination
criteria (given in Sect. 7.3) or else take a new step.

7 Implementation

MOSEK is software package for solving large scale linear and conic optimization
problems. It can solve problems with a mixture of linear, quadratic and semidefinite
cones, and the implementation is based on the homogeneous model, the NT search
direction and a Mehrotra like predictor-corrector algorithm [2].

Our implementation has been extended to handle the three dimensional exponential
cone using the algorithm above. We use the usual NT scaling for the symmetric cones
and the Tunçel scalings for the nonsymmetric cones. Except for small differences in the
linearization of the complementarity conditions, the symmetric and nonsymmmetric
cones are handled completely analogously. Our extension for nonsymmetric cones
also includes the three dimensional power cone, but this is not discussed further here.
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7.1 Dualization, presolve and scaling

Occasionally it is worthwhile to dualize the problem before solving it, since it will
make the linear algebra more efficient. Whether the primal or dual formulation is
more efficient is not easily determined in advance. MOSEK makes a heuristic choice
between the two forms, and the dualization is transparent to the user.

Furthermore, a presolve step is applied to the problem, which often leads to a
significant reduction in computational complexity [1]. The presolve step removes
obviously redundant constraints, tries to remove linear dependencies, etc. Finally,
many optimization problems are badly scaled, soMOSEK rescales the problem before
solving it. The rescaling is very simple, essentially normalizing the rows and columns
of the A.

7.2 Computing the search direction

Usually the most expensive operation in each iteration of the primal-dual algorithm is
to compute the search direction, i.e., solving the linear system

⎡

⎣
0 A −b

−AT 0 c
bT −cT 0

⎤

⎦

⎡

⎣
Δy
Δx
Δτ

⎤

⎦−
⎡

⎣
0

Δs
Δκ

⎤

⎦ =
⎡

⎣
rp
rd
rg

⎤

⎦

WΔx + W−TΔs = rxs, τΔκ + κΔτ = rτκ ,

whereW is block-diagonal scaling matrix for a product of cones. Eliminating Δs and
Δκ from the linearized centrality conditions results in the reduced bordered system

⎡

⎣
WTW −AT c
A 0 −b

−cT bT τ−1κ

⎤

⎦

⎡

⎣
Δx
Δy
Δτ

⎤

⎦ =
⎡

⎣
rd + WTrxs

rp
rg + τ−1rτκ

⎤

⎦ ,

which can be solved in different ways. Given a (sparse) LDLT factorization of the
symmetric matrix

[−WTW AT

A 0

]

it is computationally cheap to compute the search direction. In the case that the factor-
ization breaks down due to numerical issues we add regularization to the system, i.e.,
we modify the diagonal, which is common in interior-point methods. If the resulting
search direction is inaccurate (i.e., the residuals are not decreased sufficiently) we use
iterative refinement, which inmost cases improves the accuracy of the search direction.
We omit details of computing the LDT T factorization, since it is fairly conventional
and close to the approach discussed in [2].

The algorithm is implemented in the C programming language, and the Intel MKL
BLAS library is used for small dense matrix operations; the remaining portions of
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the code are developed internally, and the most computationally expensive parts have
been parallelized.

7.3 The termination criteria

Wenext discuss the termination criteria employed inMOSEK. Let (εp, εd , εg, εi ) > 0
be given tolerance levels for the algorithm, and denote by (x̂ k , ŝk, yk, τ k, κk) ∈ int(D)

the kth interior-point iterate. Consider the metrics

ρk
p := min

{

ρ |
∥
∥
∥
∥A

x̂k

τ k
− b

∥
∥
∥
∥∞

≤ ρεp(1 + ‖b‖∞)

}

,

ρk
d := min

{

ρ |
∥
∥
∥
∥A

T yk

τ k
+ ŝk

τ k
− c

∥
∥
∥
∥∞

≤ ρεd(1 + ‖c‖∞)

}

,

and

ρk
g := min

{

ρ | min

( 〈x̂ k, ŝk〉
(τ k)2

,

∣
∣
∣
∣
〈c, x̂ k〉

τ k
− 〈b, yk〉

τ k

∣
∣
∣
∣

)

≤ ρεg max

(

1,
min

(∣
∣〈c, x̂ k〉∣∣ , ∣∣〈b, yk〉∣∣)

τ k

)}

.

If
max(ρk

p, ρ
k
d , ρ

k
g) ≤ 1

then

∥
∥
∥A x̂k

τ k
− b
∥
∥
∥∞ ≤ εp(1 + ‖b‖∞),

∥
∥
∥AT yk

τ k
+ ŝk

τ k
− c
∥
∥
∥∞ ≤ εd(1 + ‖c‖∞),

min
( 〈x̂ k ,ŝk 〉

(τ k )2
,

∣
∣
∣
〈c,x̂ k 〉

τ k
− 〈b,yk 〉

τ k

∣
∣
∣
)

≤ εg max

(

1,
min
(∣
∣〈c,x̂ k 〉∣∣,∣∣〈b,yk 〉∣∣)

τ k

)

,

and hence (x̂ k, yk, ŝk)/τ k is an almost primal and dual feasible solution with small
duality gap. Clearly, the quality of the approximation is depends on the problem
and the specified tolerances (εp, εd , εg, εi ). Therefore, ρk

p and ρk
d measure how far

the kth iterate is from being approximately primal and dual feasible, respectively.
Furthermore, ρk

g measure how far the kth iterate is from having a zero duality gap.
Similarly, define infeasibility metrics

ρk
pi := min

{
ρ |

∥
∥
∥AT yk + ŝk

∥
∥
∥∞ ≤ ρεi 〈b, yk〉, 〈b, yk〉 > 0

}
,

ρk
di := min

{
ρ |

∥
∥
∥Ax̂k

∥
∥
∥∞ ≤ −ρεi 〈c, x̂ k〉, 〈c, x̂ k〉 < 0

}
,

123



A primal-dual interior-point algorithm... 365

and

ρk
ip := min

⎧
⎨

⎩
ρ |

∥
∥
∥
∥
AT yk + ŝk

Ax̂k

∥
∥
∥
∥∞

≤ ρεi

∥
∥
∥
∥
∥
∥

yk

ŝk

x̂k

∥
∥
∥
∥
∥
∥∞

,

∥
∥
∥
∥
∥
∥

yk

ŝk

x̂k

∥
∥
∥
∥
∥
∥∞

> 0

⎫
⎬

⎭
.

If ρpi ≤ 1 then

∥
∥
∥AT yk + ŝk

∥
∥
∥∞ ≤ εi 〈b, yk〉, 〈b, yk〉 > 0.

Thus, for

ȳ := yk

〈b, yk〉 , s̄ := ŝk

〈b, yk〉
we have

bT ȳ ≥ 1,
∥
∥
∥AT ȳ + s̄

∥
∥
∥ ≤ εi , s̄ ∈ K ∗

i.e., (ȳ, s̄) is an approximate certificate of primal infeasibility. Similarly, if ρdi ≤ 1
we have an approximate certificate of dual infeasibility. Finally, assume that ρi p ≤ 1.
Then

∥
∥
∥
∥
AT yk + ŝk

Ax̂k

∥
∥
∥
∥∞

≤ εi

∥
∥
∥
∥
∥
∥

yk

ŝk

x̂k

∥
∥
∥
∥
∥
∥∞

,

∥
∥
∥
∥
∥
∥

yk

ŝk

x̂k

∥
∥
∥
∥
∥
∥∞

> 0

is an approximate certificate of ill-posedness. For example, if
∥
∥yk
∥
∥∞ � 0 then a tiny

perturbation in bwill make the problem infeasible. Hence, the problem is by definition
unstable.

8 Numerical results

We investigate the numerical performance of our implementation on a selection of
exponential cone problems from the Conic Benchmark Library (CBLIB) [29], as well
as a selection of customer provided problems. Some of those problems have integer
variables, in which case we solve their continuous relaxations, i.e., we ignore the
integrality constraints. In the study we compare the performance of MOSEK 9.2, both
with andwithout the proposed corrector. In the casewithout a corrector we also disable
the standard Mehrotra corrector effecting linear and quadratic cones; otherwise the
residuals will not decrease at the same rate. We also compare our implementation with
the open-source solver ECOS [6], which implements the algorithm by Serrano [26].
Since ECOS only supports linear, quadratic and exponential cones we limit the test-set
to examples with combinations of those cones; there are also instances in CBLIB with
both exponential and semidefinite cones.
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Fig. 2 Histograms of solver iterations for 326 test problems with exponential cones. MOSEK (including
corrector) succesfully solved all instances and generally required the fewest iterations. MOSEK N/C (no
corrector) solved 300 instances, and ECOS solved 201 instances. The number of iterations was limited to
400 in all solvers

Fig. 2 shows histograms of the number of iterations required to the solve the prob-
lems for ECOS and MOSEK (with and without the proposed corrector). The figure
shows a substantial advantage of the proposed corrector over a wide selection of test
problems, both in terms of stability and required number of iterations.

9 Conclusions

Based on previous work by Tunçel we have presented a generalization of the
Nesterov-Todd algorithm for symmetric conic optimization to handle the nonsym-
metric exponential cone. Our main contribution is a new Mehrotra-like corrector
search direction for the to nonsymmetric case, which improves practical perfor-
mance significantly.Moreover,we presented a practical implementationwith extensive
computational results documenting the efficiency of proposed algorithm. Indeed the
suggested algorithm is significantly more robust and faster than the current state of
the art software for nonsymmetric conic optimization ECOS.

Possible future work includes establishing the complexity of the algorithm and
applying it to other nonsymmetric cone types, possibly of larger dimensions. One
such is example is the nonsymmetric cone of semidefinite matrices with sparse chordal
structure [32], which could extend primal-dual solvers like MOSEK with the ability
to solve large sparse semidefinite programs.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
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A Barrier function and derivatives

We consider derivatives up to third order of the exponential-cone barrier (2).

A.1 First-order derivatives

Let ψ(x) = x2 log(x1/x2) − x3, g(x) = − log(ψ(x)) and h(x) = − log x1 − log x2,
i.e., F(x) = g(x) + h(x). Then F ′(x) = g′(x) + h′(x) with

g′(x) = −ψ ′(x)
ψ(x)

and ψ ′(x) = (x2/x1, log(x1/x2) − 1,−1), h′(x) = −(1/x1, 1/x2, 0). Sometimes we
will omit the arguments for these functions and their derivatives when it is implicitly
given.

A.2 Second-order derivatives

F ′′(x) = − 1

ψ(x)

(

ψ ′′(x) − ψ ′(x)ψ ′(x)T

ψ(x)

)

+ h′′(x)

with h′′(x) = diag(1/x21 , 1/x
2
2 , 0) and

ψ ′′(x) =
⎡

⎢
⎣

− x2
x21

1
x1

0
1
x1

− 1
x2

0
0 0 0

⎤

⎥
⎦ .

Let ψ̂ ′(x) and ψ̂ ′′(x) denote the leading parts of ψ ′(x) and ψ ′′(x), respectively, i.e.,

ψ̂ ′(x) :=
[

x2/x1
log(x1/x2) − 1

]

,

ψ̂ ′′(x) :=
[− x2

x21

1
x1

1
x1

− 1
x2

]

= −
[ √

x2
x1

− 1√
x2

]
[ √

x2
x1− 1√
x2

]T

= −v(x)v(x)T

and similarly for ĥ′ and ĥ′′. We can then write F ′′(x) as

F ′′(x) = 1

ψ(x)2

[
A(x) + ψ̂ ′(x)ψ̂ ′(x)T −ψ̂ ′(x)

−ψ̂ ′(x)T 1

]
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where

A(x) := ψ(x)2ĥ′′(x) + ψ(x)v(x)v(x)T .

We can factor A(x) = V (x)V (x)T with

V (x) = ψ(x)

⎡

⎣
1−√

1+2x2/ψ
2x1

1+√
1+2x2/ψ
2x1

1+√
1+2x2/ψ
2x2

1−√
1+2x2/ψ
2x2

⎤

⎦ ,

which gives a factored expression of F ′′(x) = R(x)R(x)T where

R(x) = 1

ψ(x)

[
V (x) ψ̂ ′(x)
0 −1

]

=

⎡

⎢
⎢
⎢
⎣

1−√
1+2x2/ψ
2x1

1+√
1+2x2/ψ
2x1

1
ψ

x2
x1

1+√
1+2x2/ψ
2x2

1−√
1+2x2/ψ
2x2

log(x1/x2)−1
ψ

0 0 − 1
ψ

⎤

⎥
⎥
⎥
⎦

.

A.3 Third-order directional derivatives

We have F ′′′(x)[u] = d
dt F

′′(x + tu)

∣
∣
∣
∣
t=0

with F ′′(x) = g′′(x) + h′′(x). Then

F ′′′(x)[u] = −2
〈ψ ′(x), u〉

ψ(x)
g′′(x) − 〈ψ ′(x), u〉

ψ(x)2
ψ ′′(x) − 1

ψ(x)
ψ ′′′(x)[u]

+ 1

ψ(x)2

(
ψ ′(x)uTψ ′′(x) + ψ ′′(x)uψ ′(x)T

)
+ h′′′(x)[u]

with

ĥ′′′(x)[u] =
[
dĥ′′(x)
dx1

û dĥ′′(x)
dx2

û
]

= −2

⎡

⎣

u1
x31

0

0 u2
x32

⎤

⎦

ψ̂ ′′′(x)[u] =
[
dψ̂ ′′(x)
dx1

û dψ̂ ′′(x)
dx2

û
]

=
⎡

⎣

2x2u1
x31

− u2
x21

− u1
x21

− u1
x21

u2
x22

⎤

⎦ . (33)

To evalutate the corrector (16) we compute

η = −(1/2)F ′′′(x)[u, v] (34)

using (33) where u := Δxa and F ′′(x)v = Δsa. For stability we solve for v using the
factored expression of F ′′(x).
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