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A Primal-Dual Interior-Point Linear Programming Algorithm for MPC

Kristian Edlund, Leo Emil Sokoler and John Bagterp Jørgensen

Abstract— Constrained optimal control problems for linear
systems with linear constraints and an objective function
consisting of linear and l1-norm terms can be expressed as
linear programs. We develop an efficient primal-dual interior
point algorithm for solution of such linear programs. The
algorithm is implemented in Matlab and its performance is
compared to an active set based LP solver and linprog in
Matlab’s optimization toolbox. Simulations demonstrate that
the new algorithm is more than one magnitude faster than the
other LP algorithms applied to this problem.

I. INTRODUCTION

In MPC applications, the performance and reliability of

the optimization algorithm solving the constrained optimal

control problem is important as the optimization problem is

solved repeatedly online. In this paper we develop a primal-

dual interior-point algorithm for model predictive control

(MPC) with input and input-rate constraints and an objective

function consisting of linear stage costs as well as l1-norms

penalizing deviation from target and movements [1], [2],

[3]. The primal-dual interior point algorithm is based on

Mehrotra’s predictor-corrector algorithm [4], [5], [6], [7], [8].

Linear programs for MPC have previously been considered

by [9], [10], [11]. Interior-point algorithms based on Riccati

iterations for solution of an l2 constrained regulation problem

[12] and a robust l1 constrained regulation problem [13]

have been reported. In this paper, we use state elimination to

construct a structured linear program with upper and lower

limits on the decision variables, and highly structured general

constraints. The special structure of the constraints in this

linear program is utilized by the primal-dual interior-point

algorithm.

A. Power Portfolio Control

DONG Energy is the main power generating company in

Denmark. It operates a portfolio of power plants and wind

turbine farms for electricity and district heating production.

The wind turbines constitute a large share: 30% of the

installed generation capacity in Western Denmark. The share

is expected to increase even further as a new wind turbine

park is added to the portfolio at the end of 2009. In addition

a large pool of electric cars are added to the power network.

In a liberalized electricity market, such an interconnected

power and heating system with significant stochastic gen-

erators and consumers needs an agile and robust control

system to coordinate the most economic power generation
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respecting constraints, long-term contracts, and short-term

demand-fluctuations.

By simulation Model Predictive Control has been demon-

strated as a very promising technology for dynamic regu-

lation and coordination of power generation in the DONG

Energy portfolio [3]. This controller is called the DONG

Energy portfolio balance controller. The controller reduces

the deviation between sold and actual production in the most

economical way. This is an example of Model Predictive

Control with an economical rather than a traditional target

deviation objective function [14].

The models used in this paper has been derived in [15].

To test different optimization algorithms, and the possibility

to exploit the structure of the problem, we consider a

single subsystem of the entire power generation portfolio.

The subsystem is a single boiler load effectuator with the

simplification that rate-of-movement limits can be specified

as parameters [15].

B. Paper Organization

In Section II we state the constrained optimal control prob-

lem with a linear cost and l1-norm penalties. We derive the

LP problem used to compute the solution of the constrained

optimal control problem. Section III describes the interior-

point algorithm for an inequality constrained linear program.

Section IV specializes the operations in this algorithm to

the LP problem for the constrained optimal control problem

with linear cost and l1-penalties. Section V compares the

developed interior-point algorithm for the MPC-LP to off-

the-shelf LP solvers. Section VI concludes on the results.

II. PROBLEM DEFINITION

We state the control problem that is to be used in the power

balance controller in controlling one power generating unit

(a power plant). The problem and the models are described

in detail in [3], [15]. The power balance controller is a Model

Predictive Controller in which a constrained optimal control

problem is solved at each sampling instant. Only the input

associated to the first time period is implemented and the

computations are repeated at the next sampling instant. We

consider long horizons to have economic performance as

well as stability. This implies that the constrained optimal

control problem solved at each sampling instant is relatively

large. It is important that this large constrained optimal

control problem is solved robustly and fast as it is embedded

in a real-time system.

The objective function used to measure the quality of a
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power trajectory is

φ =
N−1
∑

k=0

c′k+1zk+1+‖zk+1 − rk+1‖1,qk+1
+‖∆uk‖1,sk

(1)

zk is the output (power production), rk is the reference

(planned power production), and uk is the input (modified

power production to meet short term fluctuations in demand).

k is a time index and we consider these cost for a finite

period, N = {0, 1, . . . , N − 1}, characterized by the control

and prediction horizon, N .

The first term represent the production costs, i.e. the cost

of fuel, emission taxes etc. The second term describes the

costs for deviating from the production plan computed by the

production planner. The last term is a cost related to plant

wear that penalizes excessive movement of the input.

The models describing the dynamics of the system are lin-

ear. The inputs have bound and rate-of-movement constraints

[15]. Therefore, the constrained optimal control problem

solved at each sampling period is

min
{uk}

N−1

k=0

φ = φ({uk}
N−1
k=0 ;x0, u−1, {dk,rk+1}

N−1
k=0 ) (2a)

s.t. xk+1 = Axk +Buk + Edk k ∈ N (2b)

zk+1 = Cxk+1 k ∈ N (2c)

umin,k ≤ uk ≤ umax,k k ∈ N (2d)

∆umin,k ≤ ∆uk ≤ ∆umax,k k ∈ N (2e)

N = {0, 1, . . . , N − 1}. Note that the input bounds and the

rate-of-movement constraints are time varying.

Combination of (2b) and (2c) yields

zk = CAkx0 +
k−1
∑

i=0

Hu,k−iui +
k−1
∑

i=0

Hd,k−idi (3)

with k = 1, 2, ..., N and the impulse response coefficients

defined in the usual way

Hu,i = CAi−1B i = 1, 2, . . . , N (4a)

Hd,i = CAi−1E i = 1, 2, . . . , N (4b)

Define the vectors

U =











u0

u1

...

uN−1











D =











d0

d1

...

dN−1











∆U =











∆u0

∆u1

...

∆uN−1











Z =











z1
z2
...

zN











R =











r1
r2
...

rN











V =











v1
v2
...

vN











W =











w1

w2

...

wN











and the matrices

Φ =











CA

CA2

...

CAN−1











Γα =











Hα,1 0 . . . 0
Hα,2 Hα,1 . . . 0

...
...

Hα,N Hα,N−1 . . . Hα,1











with α ∈ {u, d}. Using (3) the stacked outputs, Z , may be

expressed by the linear relation

Z = Φx0 + ΓuU + ΓdD (5)

Introduce the matrices (shown for the case N = 5)

I0 =













I

0
0
0
0













Ψ =













I 0 0 0 0
−I I 0 0 0
0 −I I 0 0
0 0 −I I 0
0 0 0 −I I













to have the following expression

∆U = ΨU − I0u−1 (6)

Consequently, the constrained optimal control problem (2)

may be expressed as

min
U

φ = c′Z + ‖Z −R‖1,q + ‖∆U‖1,s (7a)

s.t. Z = Φx0 + ΓuU + ΓdD (7b)

∆U = ΨU − I0u−1 (7c)

Umin ≤ U ≤ Umax (7d)

∆Umin ≤ ∆U ≤ ∆Umax (7e)

Theorem 2.1 (Linear Program for l1-approximation):

The l1-approximation problem

min
x∈Rn

φ = ‖Ax− b‖1 (8)

with A ∈ R
m×n and b ∈ R

m can be represented as the linear

program

min
x,y

φ = e′y (9a)

s.t. − y ≤ Ax− b ≤ y (9b)

with x ∈ R
n, y ∈ R

m, and e =
[

1 . . . 1
]′

.

Proof: The l1-approximation problem (8) is equivalent

to minx,y {φ = e′y : y ≥ |Ax− b|}. The constraint y ≥
|Ax − b| may be written as the linear constraints −y ≤
Ax− b ≤ y.

Corollary 2.2 (l1-approximation as LPs in standard form):

The l1-approximation problem (8) may be expressed as the

linear program in the form

min
x,y

φ =

[

0
e

]′ [
x

y

]

(10a)

s.t.

[

A I

−A I

] [

x

y

]

≥

[

b

−b

]

(10b)

(8) may also be expressed as the linear program in the form

min
x,y

φ =

[

0
e

]′ [
x

y

]

(11a)

s.t.

[

b

−∞

]

≤

[

A I

A −I

] [

x

y

]

≤

[

∞
b

]

(11b)

Proof: Follows by rearrangement of (9).
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Using Theorem 2.1 we may express (7) as

min
U,V,W

φ = c′Z + s′V + q′W (12a)

s.t. Z = Φx0 + ΓuU + ΓdD (12b)

∆U = ΨU − I0u−1 (12c)

Umin ≤ U ≤ Umax (12d)

∆Umin ≤ ∆U ≤ ∆Umax (12e)

− V ≤ ∆U ≤ V (12f)

−W ≤ Z −R ≤W (12g)

which by elimination of Z and ∆U is equivalent to the

inequality constrained linear program

min
U,V,W

φ = c′(Φx0 + ΓuU + ΓdD) + s′V + q′W (13a)

s.t. Umin ≤ U ≤ Umax (13b)

∆Umin ≤ ΨU − I0u−1 ≤ ∆Umax (13c)

− V ≤ ΨU − I0u−1 ≤ V (13d)

−W ≤ Φx0 + ΓuU + ΓdD −R ≤W (13e)

This linear program along with Corollary 2.2 may be used

to arrive at the following linear program

min
x

ψ = g′x (14a)

s.t. xl ≤ x ≤ xu (14b)

bl ≤ Ax ≤ bu (14c)

with the variables and data defined as

x =





U

V

W



xl =





Umin

0
0



xu =





Umax

∞
∞



 g =





gu

s

q



 (15a)

A =













Ψ 0 0
Ψ I 0
Ψ −I 0
Γu 0 I

Γu 0 −I













(15b)

bl =













∆Umin + I0u−1

I0u−1

−∞
b

−∞













bu =













∆Umax + I0u−1

∞
I0u−1

∞
b













(15c)

gu = Γ′
uc (15d)

b = R− (Φx0 + ΓdD) (15e)

The original objective function is φ = ψ − c′b where c′b is

a constant.

Consequently, we may solve the constrained optimal con-

trol problem (2) by solution of the linear program (14). The

coefficient matrix (15b) is highly structured. It is composed

of the matrices Ψ and Γu which themselves are structured

matrices. We develop a primal-dual interior-point algorithm

that exploits this structure to efficiently solve the constrained

optimal control problem (2) in the MPC.

III. INTERIOR-POINT METHODS

Before proceeding to a description of the interior-point

algorithm applied to (14), we describe the interior-point

algorithm for the structural simpler linear program

min
x∈Rn

φ = g′x (16a)

s.t. Ax ≥ b (16b)

The algorithm and its principles are discussed in [8].

A. Optimality Conditions

The Lagrangian of (16) is

L(x, λ) = g′x− λ′(Ax − b) (17)

and a stationary point of the Lagrangian satisfies

∇xL(x, λ) = g −A′λ = 0 (18)

Consequently, the first order necessary and sufficient opti-

mality conditions may be stated as

g −A′λ = 0 (19a)

Ax− b ≥ 0 ⊥ λ ≥ 0 (19b)

in which ⊥ is used to denote complementarity. Introduce

slack variables defined as

s = Ax− b ≥ 0 (20)

and let

S =











s1
s2

. . .

sm











Λ =











λ1

λ2

. . .

λm











(21)

such that the complementarity conditions siλi for i =
1, 2, . . . ,m may be stated compactly as SΛe = 0 with e =
[

1 . . . 1
]′

. Consequently, the optimality conditions (19)

may be stated as the systems of equations and inequalities

rL = g −A′λ = 0 (22a)

rs = s− Ax+ b = 0 (22b)

rsλ = SΛe = 0 (22c)

(s, λ) ≥ 0 (22d)

B. Newton Step

Given an iterate (x, λ, s) satisfying (s, λ) > 0, (22) may be

solved by a sequence of Newton steps with modified search

directions and step lengths.

The Newton direction is computed as the solution of




0 −A′ 0
−A 0 I

0 S Λ









∆x
∆λ
∆s



 = −





rL
rs
rsλ



 (23)

The structure of this linear system of equations may be

utilized to solve it efficiently. Note that the second block

row of (23) yields

∆s = −rs +A∆x (24)
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Using that S > 0 and easily invertible as it is a diagonal

matrix with positive entries, the third block row of (23) along

with (24) yield

∆λ = −S−1 (rsλ + Λ∆s)

= S−1 (−rsλ + Λrs)− S
−1ΛA∆x

(25)

Finally, the first block row of (23) along with (25) yield

−rL = −A′∆λ

=
(

A′S−1ΛA
)

∆x−A′S−1 (−rsλ + Λrs)

= H̄∆x+ r̄

(26)

in which

H̄ = A′(S−1Λ)A (27a)

r̄ = A′
[

S−1(rsλ − Λrs)
]

(27b)

Consequently, (23) may be solved by solution of

H̄∆x = −ḡ = −(rL + r̄) (28)

for ∆x and subsequent computation of ∆s by (24) and ∆λ
by (25). The next iterate in the Newton iteration is computed

as




x

λ

s



←





x

λ

s



 + α





∆x
∆λ
∆s



 (29)

with the step length α ∈ (0, αmax)∩ (0, 1] selected such that

(λ, s) > 0, i.e. with the maximum step length computed as

s+ αmax∆s ≥ (1− τ)s (30a)

λ+ αmax∆λ ≥ (1− τ)λ (30b)

with τ → 1 as the iterate approaches the solution.

C. Predictor-Corrector Interior-Point Algorithm

To avoid being restricted to small step lengths as is often

the case when (22) is solved directly, the complementarity

conditions are modified such that the pairs siλi decrease at

the same rate for all i. Instead of solving (22c), we solve

rsλ = SΛe− σµe = 0 µ =
s′λ

m
=

∑m

i=1 siλi

m
(31)

for some value of σ ∈ (0, 1]. In Mehrotra’s predictor-

corrector algorithm, σ is selected adaptively based on the

duality gap reduction for an affine step (σ = 0). This

affine step may also be used to predict rsλ and introduce

a correction such that the step direction is computed by

solution of (23) with

rsλ = SΛe+ ∆S∆Λe− σµe (32)

∆S and ∆Λ are the step directions computed in the affine

step (σ = 0).

D. Primal-Dual Interior-Point Algorithm

Algorithm 1 specifies the steps in this procedure for

solution of (16).

The main computational efforts in Algorithm 1 are 1)

formation of the matrix H̄ = A′DA with D = S−1Λ being

a diagonal matrix with positive entries on the diagonal and

2) Cholesky factorization of H̄.

Algorithm 1 Interior-point algorithm for (16).

Require: (g ∈ R
n, A ∈ R

m×n, b ∈ R
m)

Residuals and Duality Gap:

rL = g −A′λ, rs = s−Ax+ b, rsλ = SΛe
Duality gap: µ = s′λ

m

while Not Converged do

Compute H̄ = A′(S−1Λ)A
Cholesky factorization: H̄ = L̄L̄′

Affine Predictor Step:

Compute r̄ = A′(S−1(rsλ − Λrs)), −ḡ = −(rL + r̄)
Solve: L̄L̄′∆x = −ḡ
∆s = −rs +A∆x
∆λ = −S−1(rsλ + Λ∆s)
Determine the maximum affine step length

λ+ αmax∆λ ≥ 0 s+ αmax∆s ≥ 0

Select affine step length: α ∈ (0, αmax]

Compute affine duality gap: µa = (λ+α∆λ)′(s+α∆s)
m

Centering parameter: σ =
(

µa

µ

)3

Center Corrector Step:

Modified complementarity:

rsλ ← rsλ + ∆S∆Λe− σµe

Compute r̄ = A′(S−1(rsλ − Λrs)), −ḡ = −(rL + r̄)
Solve: L̄L̄′∆x = −ḡ
∆s = −rs +A∆x
∆λ = −S−1(rsλ + Λ∆s)
Determine the maximum affine step length

λ+ αmax∆λ ≥ 0 s+ αmax∆s ≥ 0

Select affine step length: α ∈ (0, αmax]
Step: x← x+ α∆x, λ← λ+ α∆λ, s← s+ α∆s
Residuals and Duality Gap:

rL = g −A′λ, rs = s−Ax+ b, rsλ = SΛe
Duality gap: µ = s′λ

m

end while

Return: (x, λ)

IV. INTERIOR-POINT ALGORITHM FOR MPC-LP

The constrained optimal control problem (2) (which is

equivalent with (14)) gives the following A-matrix and b-

vector in the standard LP formulation (16)

A =

































I 0 0
−I 0 0
0 I 0
0 0 I

Ψ 0 0
−Ψ 0 0
Ψ I 0
−Ψ I 0
Γu 0 I

−Γu 0 I

































b =

































Umin

−Umax

0
0

∆Umin + I0u−1

−(∆Umax + I0u−1)
I0u−1

−I0u−1

b

−b

































(33)
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This A-matrix is highly structured. Therefore, we may spe-

cialize the steps in Algorithm 1 that involves operations with

the A-matrix. The following theorems state the computa-

tional simplifications used in Algorithm 1 when A has the

structure in (33). For notational convenience we use Matlab

like notation in some of the theorems.

Lemma 4.1 (Hessian matrix, H̄ , in MPC-LP):

Let A have the structure in (33). Let D =
diag ([d1; d2; . . . ; d10]) = Λ−1S be a diagonal matrix with

positive entries and let Di = diag(di) for i = 1, 2, . . . , 10
be sub-matrices of D corresponding to the division of A in

(33).

Then

H̄ = A′DA =

[

H̄11 H̄12

H̄21 D̄

]

(34)

with the sub-matrices

H̄11 = D̄1 + Ψ′D̄2Ψ + Γ′
uD̄3Γu (35a)

H̄12 = H̄ ′
21 =

[

Ψ′D̄4 Γ′
uD̄5

]

(35b)

D̄ =

[

D̄6

D̄7

]

(35c)

and

D̄1 = D1 +D2 D̄2 = D5 +D6 +D7 +D8

D̄3 = D9 +D10 D̄4 = D7 −D8

D̄5 = D9 −D10 D̄6 = D3 +D7 +D8

D̄7 = D4 +D9 +D10

Proof: Follows by straightforward matrix multiplica-

tions using A in (35).

Theorem 4.2 (Cholesky Factorization in MPC-LP):

Solution of H̄x = b corresponds to solution of the system
[

H̄11 H̄12

H̄21 D̄

] [

x1

x2

]

=

[

b1
b2

]

(36)

This system may be factorized by

1) Compute D̂2 = D̄2 − D̄4D̄
−1
6 D̄4

2) Compute D̂3 = D̄3 − D̄5D̄
−1
7 D̄5

3) Compute Ĥ11 = D̄1 + Ψ′D̂2Ψ + Γ′
uD̂3Γu

4) Cholesky factorize Ĥ11: Ĥ11 = L̂L̂′

and solved by

1) Solve L̂L̂′x1 = b1 − D̄−1b2 for x1 by back substitu-

tions

2) Compute x2 = D̄−1

(

b̄2 −

[

D̄4(Ψx1)
D̄5(Γux1)

])

Proof: The results are obtained by application of the

Schur complement to (36) and the matrix definitions (35).

Theorem 4.3 (Matrix-vector operations in MPC-LP):

1) Let A have the structure in (33). Let x = [U ; V ; W ].
Then Ax = [U ; −U ; V ; W ; z1; −z1; z3; z4; z5; z6]
with z1 = ΨU , z2 = ΓuU , z3 = z1+V , z4 = −z1+V ,

z5 = z2 +W , and z6 = −z2 +W .

2) Let A have the structure in (33).

Let v = [v1; v2; . . . ; v10]. Then

A′v =





v̄1 + Ψ′v̄2 + Γ′
uv̄3

v3 + v7 + v8
v4 + v9 + v10



 (37)

with v̄1 = v1−v2, v̄2 = v5−v6+v7−v8, v̄3 = v9−v10
Proof: Follows by straightforward matrix-vector ma-

nipulations.

Theorem 4.4 (Operations with Ψ): For illustration con-

sider Ψ for N = 4 and let D = diag([d1; d2; d3; d4]) be

a diagonal matrix with Di = diag(di) for i ∈ {1, 2, 3, 4}
also being diagonal matrices. Then

Ψ′DΨ =









D1 +D2 −D2 0 0
−D2 D2 +D3 −D3 0

0 −D3 D3 +D4 −D4

0 0 −D4 D4









(38)

Let x = [x1; x2; x3; x4] then

Ψx =
[

x1; x2 − x1; x3 − x2; x4 − x3

]

(39a)

Ψ′x =
[

x1 − x2; x2 − x3; x3 − x4; x4

]

(39b)

Proof: Straightforward matrix-matrix and matrix-vector

operations with Ψ.

The operations Γ′
uDΓu, ΓuU , and Γ′

uZ for some diag-

onal matrix D, some vector U , and some vector Z are

implemented using straightforward matrix operations even

though Γu is structured. In the current Matlab implemen-

tation Γ′
uDΓu is the computational bottleneck. Γ′

uDΓu is

implemented using that D is a diagonal matrix but without

using the structure of Γu.

Remark 4.5 (Operations with Γu): Γu is a matrix of the

impulse response parameters, {Hu,k = CAk−1B}Nk=1. Z =

ΓuU transfers a set of inputs {uk}
N−1
k=0 to a set of outputs

{zk}
N

k=1 for the system (k = 0, 1, . . . , N − 1)

xk+1 = Axk +Buk x0 = 0 (40a)

zk+1 = Cxk+1 (40b)

Similarly. U = Γ′
uZ corresponds to

x̄k−1 = A′x̄k + C′zk x̄N = 0 (41a)

uk−1 = B′x̄k−1 (41b)

going backwards with k = N,N − 1, . . . , 1.

V. RESULTS

Using the boiler load effectuator of a power plant [15],

we test the developed interior-point MPC-LP algorithm (Al-

gorithm 1) utilizing the structure of A in (33) for solution of

the constrained optimal control problem (2). We compare our

MPC-LP algorithm to the solution of (2) using linprog in

Matlab’s optimization toolbox and an active set LP solver

applied to (14).

The boiler effectuator is a SISO system and we use a

control horizon of N = 50. The number of decision variables

(U, V,W ) in the LP to be solved is 3N = 150. The sampling

time is Ts = 5s and we run the test problem in closed-loop

for 2000 samples. Figure 1 illustrates the benchmark case

for which we have compared the tree different LP solvers.

All three LP solvers give the same result indicating that our

solver is implemented correct. The case study and controller

tuning is chosen such that some of the constraints are usually

active as indicated to the right in Figure 1.
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Fig. 1. Input and output for the benchmark case.

Fig. 2. CPU times for the different LP algorithms solving (2).

Fig. 3. CPU-time as function of the number of decision variables in the
LP corresponding to (2).

As can be read from Figure 2, the runtime of our MPC-LP

(IPmpc) solver is about one order of magnitude faster than

both the active set LP solver and linprog. Furthermore, the

variance of the CPU-time is much smaller for MPC-LP than

for both linprog and the active set LP solver. In real-time

applications it is desirable to have a predictable computing

time. MPC-LP and linprog are implemented in Matlab.

The active set LP solver is a highly efficient LP solver for

general LPs in the form (14) that is implemented in Fortran

and equipped with a mex-interface.

Figure 3 illustrates the CPU-time for the three different LP

solvers for (2) as function of the number of decision variables

in the LP (14) and (16), respectively. The interior-point

MPC-LP algorithm (IPmpc) is significantly faster than the

other algorithms, typically more than one order of magnitude

faster.

VI. CONCLUSION

We have developed computationally efficient primal-dual

interior point algorithms for constrained optimal control

problems that have linear dynamics, input constraints, rate-

of-movement constraints, and objective functions containing

linear stage costs and l1-norm deviation penalties on the

set-point and the input movement. MPC for dynamic reg-

ulation, coordination and optimization of power generation

solves such problems in real-time repeatedly. Fast and robust

optimization algorithms are important in these applications.

The new primal-dual interior point algorithm is implemented

in Matlab and its performance is compared to an active set

based LP solver and linprog in Matlab’s optimization tool-

box. Simulations demonstrate that the new algorithm is more

than one magnitude faster than the other LP algorithms.

REFERENCES

[1] J. M. Maciejowski, Predictive Control with Constraints. Harlow,
England: Prentice Hall, 2002.

[2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
UK: Cambridge University Press, 2004.

[3] K. Edlund, J. D. Bendtsen, S. Børresen, and T. Mølbak, “Introducing
Model Predictive Control for Improving Power Plant Portfolio Perfor-
mance,” Proceedings of the 17th IFAC World Congress, Seoul, Korea,
2008.

[4] S. Mehrotra, “On the implementation of a primal-dual interior point
method,” SIAM J. Optimization, vol. 2, pp. 575–601, 1992.

[5] S. J. Wright, Primal-Dual Interior-Point Methods. Philadelphia:
SIAM, 1997.

[6] Y. Zhang, “Solving large-scale linear programs by interior-point
methods under the matlab environment,” Optimization Methods and

Software, vol. 10, pp. 1–31, 1998.
[7] J. Czyzyk, S. Mehrotra, M. Wagner, and S. J. Wright, “PCx: An

interior-point code for linear programming,” Optimization Methods

and Software, vol. 11&12, pp. 397–430, 1999.
[8] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New

York: Springer, 2006.
[9] A. M. Morshedi, C. R. Cutler, and T. A. Skrovanek, “Optimal solu-

tion of dynamic matrix control with linear programming techniques
(LDMC),” in Americal Control Conference. ACC, 1985, pp. 199–208.

[10] J. Allwright and G. Papavasiliou, “On linear programming and robust
model-predictive control using impulse-responses,” Systems & Control

Letters, vol. 18, pp. 159–164, 1992.
[11] C. V. Rao and J. B. Rawlings, “Linear programming and model

predictive control,” Journal of Process Control, vol. 10, pp. 283–289,
2000.

[12] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Application of interior-
point methods to model predictive control,” Journal of Optimization

Theory and Applications, vol. 99, pp. 723–757, 1998.
[13] L. Vandenberghe, S. Boyd, and M. Nouralishadi, “Robust linear

programming and optimal control,” in 15th IFAC World Congress.
Barcelona: IFAC, 2002.

[14] J. B. Rawlings and R. Amrit, “Optimizing process economic per-
formance using model predictive control,” in International Workshop

on Assessment and Future Direction of Nonlinear Model Predictive

Control, L. Magni, D. Raimondo, and F. Allgöwer, Eds., Pavia, Italy,
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