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Abstract

In this paper, we consider a primal-dual interior point method for solving nonlin-
ear semidefinite programming problems. By combining the primal barrier penalty
function and the primal-dual barrier function, a new primal-dual merit function
is proposed within the framework of the line search strategy. We show the global
convergence property of our method. Finally some numerical experiments are given.
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1 Introduction

This paper is concerned with the following nonlinear semidefinite programming (SDP)
problem:

minimize f(x), x ∈ Rn,
subject to g(x) = 0, X(x) ⪰ 0

(1)

where we assume that the functions f : Rn → R, g : Rn → Rm and X : Rn → Sp are
sufficiently smooth, where Sp denotes the set of pth order real symmetric matrices. By
X(x) ⪰ 0 and X(x) ≻ 0, we mean that the matrix X(x) is positive semidefinite and
positive definite, respectively.

The problem (1) is an extension of the linear SDP problem. For the case of the linear
SDP problems, the matrix X(x) is defined by

X(x) =
n∑

i=1

xiAi −B
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with given matrices Ai ∈ Sp, i = 1, . . . , n, and B ∈ Sp. The linear SDP problems include
linear programming problems, convex quadratic programming problems and second order
cone programming problems, and they have many applications. Interior point methods
for the linear SDP problems have been studied extensively by many researchers, see for
example [1, 12, 13, 14, 16] and the references therein.

On the other hand, researches on numerical methods for nonlinear SDP are much more
recent, and a few researchers have been studying these methods. For example, Kočvara
and Stingl [9] developed a computer code PENNON for solving nonlinear SDP, in which
the augmented Lagrangian function method was used. Correa and Ramirez [3] proposed
an algorithm which used the sequentially linear SDP method. Related researches include
Jarre [6], in which examples of nonlinear SDP problems were introduced, and Freund
and Jarre [5]. Fares, Noll and Apkarian [4] applied the sequential linear SDP method to
robust control problems. Recently Kanzow, Nagel, Kato and Fukushima [7] presented a
successive linearization method with a trust region-type globalization strategy. However,
no interior point type method for general nonlinear SDP problems has been proposed yet
to our knowledge.

In this paper, we propose a globally convergent primal-dual interior point method
for solving nonlinear SDP problems. The method is based on a line search algorithm
in the primal-dual space. The present paper is organized as follows. In Section 2, the
optimality conditions for problem (1) are described. In Sections 3 and 4, our primal-
dual interior point method is proposed. Specifically, Section 3 presents the algorithm
called SDPIP which constitutes the basic frame of primal-dual interior point methods.
Section 4 gives the algorithm called SDPLS based on the line search strategy, which is
an inner iteration of algorithm SDPIP given in Section 3. In Section 4.1, we describe
the Newton method for solving nonlinear equations that are obtained by modifying the
optimality conditions given in Section 2. In Section 4.2, we propose a new primal-dual
merit function that consists of the primal barrier penalty function and the primal-dual
barrier function. Then Section 4.3 presents algorithm SDPLS, and Section 5 shows its
global convergence property. Furthermore, some numerical experiments are presented in
Section 6. Finally, we give some concluding remarks in Section 7.

Throughout this paper, we define the inner product ⟨X,Z⟩ by ⟨X,Z⟩ = tr(XZ) for
any matrices X and Z in Sp, where tr(M) denotes the trace of the matrix M . In this
paper, (v)i denotes the ith element of the vector v if necessary.

2 Optimality conditions

Let the Lagrangian function of problem (1) be defined by

L(w) = f(x)− yTg(x)− ⟨X(x), Z⟩ ,

where w = (x, y, Z), and y ∈ Rm and Z ∈ Sp are the Lagrange multiplier vector and matrix
which correspond to the equality and positive semidefiniteness constraints, respectively.
We also define matrices

Ai(x) =
∂X

∂xi
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for i = 1, . . . , n. Then Karush-Kuhn-Tucker (KKT) conditions for optimality of problem
(1) are given by the following (see [2]):

r0(w) ≡

 ∇xL(w)
g(x)
X(x)Z

 =

 0
0
0

(2)

and
X(x) ⪰ 0, Z ⪰ 0.(3)

Here ∇xL(w) is given by

∇xL(w) = ∇f(x)− A0(x)
Ty −A∗(x)Z,

A0(x) =

 ∇g1(x)T
...

∇gm(x)T

 ∈ Rm×n,

where A∗(x) is an operator which yields

A∗(x)Z =

 ⟨A1(x), Z⟩
...

⟨An(x), Z⟩

 .

In the following we will occasionally deal with the multiplication X(x)◦Z which is defined
by

X(x) ◦ Z =
X(x)Z + ZX(x)

2

instead of X(x)Z. It is known that X(x) ◦ Z = 0 is equivalent to the relation X(x)Z =
ZX(x) = 0.

We call w = (x, y, Z) satisfying X(x) ≻ 0 and Z ≻ 0 the interior point. The al-
gorithm of this paper will generate such interior points. To construct an interior point
algorithm, we introduce a positive parameter µ, and we replace the complementarity con-
dition X(x)Z = 0 by X(x)Z = µI, where I denotes the identity matrix. Then we try to
find a point that satisfies the barrier KKT (BKKT) conditions:

r(w, µ) ≡

 ∇xL(w)
g(x)

X(x)Z − µI

 =

 0
0
0

(4)

and
X(x) ≻ 0, Z ≻ 0.

3 Algorithm for finding a KKT point

We first describe a procedure for finding a KKT point using the BKKT conditions. In
this section, the subscript k denotes an iteration count of the outer iterations. We define
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the norm ∥r(w, µ)∥ by

∥r(w, µ)∥ =

√∥∥∥∥( ∇xL(w)
g(x)

)∥∥∥∥2 + ∥X(x)Z − µI∥2F ,

where ∥ · ∥ denotes the l2 norm for vectors and ∥ · ∥F denotes the Frobenius norm for
matrices. We also define ∥r0(w)∥ by ∥r0(w)∥ = ∥r(w, 0)∥.

Now we present the algorithm called SDPIP which calculates a KKT point.

Algorithm SDPIP

Step 0. (Initialize) Set ε > 0, Mc > 0 and k = 0. Let a positive sequence {µk} , µk ↓ 0
be given.

Step 1. (Approximate BKKT point) Find an interior point wk+1 that satisfies

∥r(wk+1, µk)∥ ≤Mcµk.(5)

Step 2. (Termination) If ∥r0(wk+1)∥ ≤ ε, then stop.

Step 3. (Update) Set k := k + 1 and go to Step 1. 2

We note that the barrier parameter sequence {µk} in Algorithm SDPIP needs not
be determined beforehand. The value of each µk may be set adaptively as the iteration
proceeds. We call condition (5) the approximate BKKT condition, and call a point that
satisfies this condition the approximate BKKT point.

If the matrix A0(x∗) is of full rank and there exists a nonzero vector v ∈ Rn such that

A0(x∗)v = 0 and X(x∗) +
n∑

i=1

viAi(x∗) ≻ 0,

then we say that the Mangasarian-Fromovitz constraint qualification (MFCQ) condition
is satisfied at a point x∗ (see [3] for example).

The following theorem shows the convergence property of Algorithm SDPIP.

Theorem 1 Assume that the functions f and g are continuously differentiable. Let {wk}
be an infinite sequence generated by Algorithm SDPIP. Suppose that the sequence {xk}
is bounded and that the MFCQ condition is satisfied at any accumulation point of the
sequence {xk}. Then the sequences {yk} and {Zk} are bounded, and any accumulation
point of {wk} satisfies KKT conditions (2) and (3).

Proof. To prove this theorem by contradiction, we suppose that either {yk} or {Zk} is
not bounded, i.e.

γk ≡ max {|(yk)1|, . . . , |(yk)m|, λmax(Zk)} → ∞,(6)
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where λmax(Zk) denotes the largest eigenvalue of the matrix Zk. It follows from (5) that
the boundedness of {xk} implies

lim sup
k→∞

∥∥A0(xk)
Tyk +A∗(xk)Zk

∥∥ <∞.

Then we have ∥A0(xk)
Tyk/γk + A∗(x∗)Zk/γk∥ → 0. Letting an arbitrary accumulation

point of {xk, yk/γk, Zk/γk} be (x∗, y∗, Z∗), we have

A0(x∗)
Ty∗ +A∗(x∗)Z∗ = 0 and X∗Z∗ = Z∗X∗ = 0,(7)

where X∗ = X(x∗). We will prove that Z∗ = 0. For this purpose, we assume that
λmax(Z∗) > 0 holds. Since the matrices X∗ and Z∗ commute, they share the same eigen-
system. Thus the matrices X∗ and Z∗ can be transformed to the diagonal matrices by
using the same orthogonal matrix P as follows:

X∗ ≡ PX∗P
T = diag(λ1, ..., λp) and Z∗ ≡ PZ∗P

T = diag(τ1, ..., τp),

where λ1 ≤ λ2 ≤ ... ≤ λp and τ1 ≤ τ2 ≤ ... ≤ τp are the nonnegative eigenvalues of X∗
and Z∗, respectively. It follows from the assumption that there exists an integer p′ such
that 1 ≤ p′ < p, λp′ = 0 and λp′+1 > 0 hold. Furthermore, the MFCQ condition implies
that there exists a nonzero vector v ∈ Rn which satisfies

A0(x∗)v = 0 and X∗ +
n∑

i=1

viAi(x∗) ≻ 0.

Therefore, we get

(X̄∗)jj +
n∑

i=1

vi(Ai(x∗))jj > 0(8)

for j = 1, . . . , p, where Ai(x∗) = PAi(x∗)P
T . Since the following holds

0 = λj = (X∗)jj for j = 1, . . . , p′,

equation (8) yields
n∑

i=1

vi(Ai(x∗))jj > 0 for j = 1, ..., p′.(9)

By premultiplying (7) by vT , we have

0 = vTA0(x∗)
Ty∗ + vTA∗(x∗)Z∗ = vTA∗(x∗)Z∗ =

n∑
i=1

vitr {Ai(x∗)Z∗}

=
n∑

i=1

vitr
{
Ai(x∗)Z∗

}
=

p∑
j=1

n∑
i=1

vi(Ai(x∗))jjτj

=

p′∑
j=1

n∑
i=1

vi(Ai(x∗))jjτj +

p∑
j=p′+1

n∑
i=1

vi(Ai(x∗))jjτj.
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Since the complementarity condition X∗Z∗ = 0 implies τj = 0 for j = p′ + 1, . . . , p, the
equation above yields

p′∑
j=1

n∑
i=1

vi(Ai(x∗))jjτj = 0.

By (9), we have τj = 0 for j = 1, . . . , p′, which contradicts the assumption λmax(Z∗) > 0.
Therefore we obtain Z∗ = 0, which yields A0(x∗)

Ty∗ = 0 from (7). Since the matrix
A0(x∗) is of full rank, we have y∗ = 0. This contradicts the fact that some element of y∗
or Z∗ is not zero by (6). Therefore, the sequences {yk} and {Zk} are bounded.

Let ŵ be any accumulation point of {wk}. Since the sequences {wk} and {µk} satisfy
(5) for each k and µk approaches zero, r0(ŵ) = 0 follows from the definition of r(w, µ).

Therefore the proof is complete. 2

4 Algorithm for finding a barrier KKT point

As same as the case of linear SDP problems, we consider a scaling of the primal-dual
pair (X(x), Z) in applying the Newton method to the system of equations (4). In what
follows, we denote X(x) simply by X if it is not confused. We define a transformation
T ∈ Rp×p, and we scale X and Z by

X̃ = TXT T and Z̃ = T−TZT−1

respectively. Using the transformation T , we replace the equation XZ = µI by a form
X̃ ◦ Z̃ = µI, and deal with the scaled symmetrized residual:

r̃S(w, µ) ≡

 ∇xL(w)
g(x)

X̃ ◦ Z̃ − µI

 =

 0
0
0

(10)

instead of (4) to form Newton directions as described below.

4.1 Newton method

In this section, we consider a method for solving the BKKT conditions approximately for
a given µ > 0, which corresponds to the inner iterations of Step 1 of Algorithm SDPIP.
Throughout this section, we assume that X ≻ 0 and Z ≻ 0 hold.

We apply a Newton-like method to the system of equations (10). Let the Newton
directions for the primal and dual variables by ∆x ∈ Rn and ∆Z ∈ Sp, respectively. We
define ∆X =

∑n
i=1∆xiAi(x) and we note that ∆X ∈ Sp. We also scale ∆X and ∆Z by

∆X̃ = T∆XT T and ∆Z̃ = T−T∆ZT−1.

Since (X̃ +∆X̃) ◦ (Z̃ +∆Z̃) = µI can be written as

(X̃ +∆X̃)(Z̃ +∆Z̃) + (Z̃ +∆Z̃)(X̃ +∆X̃) = 2µI,
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neglecting the nonlinear parts ∆X̃∆Z̃ and ∆Z̃∆X̃ implies the Newton equation for (10)

G∆x− A0(x)
T∆y −A∗(x∗)∆Z = −∇xL(x, y, Z)(11)

A0(x)∆x = −g(x)(12)

∆X̃Z̃ + Z̃∆X̃ + X̃∆Z̃ +∆Z̃X̃ = 2µI − X̃Z̃ − Z̃X̃,(13)

where G denotes the Hessian matrix of the Lagrangian function L(w) or its approximation
(see Remark 2 in Section 4.3).

Similarly to usual primal-dual interior point methods for linear SDP problems, we
derive an explicit form of the direction ∆Z ∈ Sp from equation (13) and substitute it into
equation (11) in order to obtain the Newton direction ∆w = (∆x,∆y,∆Z) ∈ Rn×Rm×Sp.
For this purpose, we make use of relations described in [1] and Appendix of [13]. For
U ∈ Sp, nonsingular P ∈ Rp×p and Q ∈ Rp×p, we define the operator

(P ⊙Q)U =
1

2
(PUQT +QUP T )

and the symmetrized Kronecker product

(P ⊗S Q)svec(U) = svec((P ⊙Q)U),

where the operator svec is defined by

svec(U) = (U11,
√
2U21, . . . ,

√
2Up1, U22,

√
2U32, . . . ,

√
2Up2, U33, . . . , Upp)

T ∈ Rp(p+1)/2.

We note that, for any U, V ∈ Sp,

⟨U, V ⟩ = tr(UV ) = svec(U)T svec(V )(14)

holds. By using the operator, the matrices X̃, Z̃, ∆X̃ and ∆Z̃ can be represented by

X̃ = (T ⊙ T )X, Z̃ = (T−T ⊙ T−T )Z,(15)

∆X̃ = (T ⊙ T )∆X and ∆Z̃ = (T−T ⊙ T−T )∆Z.(16)

Let P ′ ∈ Rp×p and Q′ ∈ Rp×p be nonsingular, and V ∈ Sp. By denoting the inverse
operator of svec by smat, we have

(P ⊙Q)U = smat ((P ⊗S Q)svec(U)) .(17)

We also define
(P ⊙Q)−1U = smat

(
(P ⊗S Q)

−1svec(U)
)
.(18)

The expressions above give

(P ⊙Q)(P ′ ⊙Q′)U = smat ((P ⊗S Q)svec((P
′ ⊙Q′)U))

= smat ((P ⊗S Q)(P
′ ⊗S Q

′)svec(U))

and
{(P ⊙Q)(P ′ ⊙Q′)}−1U = (P ′ ⊙Q′)−1(P ⊙Q)−1U.
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Furthermore, we get

⟨U, (P ⊙Q)V ⟩ = tr {U(P ⊙Q)V }

=
1

2
tr{U(PV QT +QV P T )}

=
1

2
tr{QTUPV + P TUQV }

= tr
{
((P T ⊙QT )U)V

}
=

⟨
(P T ⊙QT )U, V

⟩
(19)

and ⟨
U, (P ⊙Q)−1V

⟩
= tr

{
U(P ⊙Q)−1V

}
= tr

{
((P T ⊙QT )(P T ⊙QT )−1U)(P ⊙Q)−1V

}
= tr

{
((P T ⊙QT )−1U)(P ⊙Q)(P ⊙Q)−1V

}
= tr

{
((P T ⊙QT )−1U)V

}
=

⟨
(P T ⊙QT )−1U, V

⟩
.

Now we have the following theorem that gives the Newton directions.

Theorem 2 Suppose that the operator X̃ ⊙ I is invertible. Then the direction ∆Z̃ ∈ Sp

is given by the form

∆Z̃ = µX̃−1 − Z̃ − (X̃ ⊙ I)−1(Z̃ ⊙ I)∆X̃,(20)

or equivalently

∆Z = µX−1 − Z − (T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )∆X,(21)

and the directions (∆x,∆y) ∈ Rn × Rm satisfy(
G+H −A0(x)

T

−A0(x) 0

)(
∆x
∆y

)
= −

(
∇f(x)− A0(x)

Ty − µA∗(x)X−1

−g(x)

)
,(22)

where the elements of the matrix H are represented by the form

Hij =
⟨
Ãi(x), (X̃ ⊙ I)−1(Z̃ ⊙ I)Ãj(x)

⟩
(23)

with Ãi(x) = TAi(x)T
T .

Furthermore, if the matrix G + H is positive definite and the matrix A0(x) is of
full rank, then the Newton equations (11) – (13) give a unique search direction ∆w =
(∆x,∆y,∆Z) ∈ Rn × Rm × Sp.
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Proof. By equation (13), we have

2(Z̃ ⊙ I)∆X̃ + 2(X̃ ⊙ I)∆Z̃ = 2µ(X̃ ⊙ I)X̃−1 − 2(X̃ ⊙ I)Z̃,

which implies that

(X̃ ⊙ I)
(
Z̃ +∆Z̃ − µX̃−1

)
= −(Z̃ ⊙ I)∆X̃.

Thus we obtain equation (20). Since (T−T ⊗S T
−T )−1 = (T−T )−1⊗S (T

−T )−1 = T T ⊗S T
T

holds (see Appendix of [13]), it follows from (18) and (17) that for any U ∈ Sp,

(T−T ⊙ T−T )−1U = smat
(
(T−T ⊗S T

−T )−1svec(U)
)

= smat
(
(T T ⊗S T

T )svec(U)
)

= (T T ⊙ T T )U.

By (15) and (16), equation (20) implies that

∆Z = µX−1 − Z − (T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )∆X,

which means equation (21). Then we have

A∗(x)∆Z = µA∗(x)X−1 −A∗(x)Z −A∗(x)(T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )∆X

= µA∗(x)X−1 −A∗(x)Z

−
n∑

j=1

A∗(x)(T T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)∆xj

= µA∗(x)X−1 −A∗(x)Z −H∆x,(24)

where the elements of the matrix H are defined by the form

Hij = tr
{
Ai(x)(T

T ⊙ T T )(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)
}

= tr
{
((T ⊙ T )Ai(x))(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)

}
= tr

{
Ãi(x)(X̃ ⊙ I)−1(Z̃ ⊙ I)Ãj(x)

}
=

⟨
Ãi(x), (X̃ ⊙ I)−1(Z̃ ⊙ I)Ãj(x)

⟩
with Ãi(x) = TAi(x)T

T . This implies (23). By substituting (24) into (11), the Newton
equations reduce to equation (22).

Furthermore, it is well known that the coefficient matrix of the linear system of equa-
tions (22) becomes nonsingular if the matrix G + H is positive definite and the matrix
A0(x) is of full rank.

Therefore the proof is complete. 2

We note that if the matrix G is updated by a positive definite quasi-Newton formula (see
Remark 2 in Section 4.3) and the matrix H is chosen as a positive definite matrix, then
Theorem 2 guarantees that the Newton direction is uniquely determined.
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The following theorem shows the positive definiteness of the matrixH. In what follows,
we assume that the matrices A1(x), . . . , An(x) are linearly independent, which means that
n∑

i=1

viAi(x) = 0 implies vi = 0, i = 1, . . . , n.

Theorem 3 Suppose that X̃ and Z̃ are symmetric positive definite, and that X̃Z̃+Z̃X̃ is
symmetric positive semidefinite. Suppose that the matrices Ai(x), i = 1, . . . , n are linearly
independent. Then the matrix H is positive definite.

Furthermore, if X̃Z̃ = Z̃X̃ holds, then H becomes a symmetric matrix.

Proof. If X̃ is symmetric positive definite, then the operator X̃ ⊙ I is invertible (see Ap-

pendix 9 of [13]). Let Ũ =
n∑

i=1

uiÃi(x) for any u(̸= 0) ∈ Rn. Since the linear independence

of the matrices Ai(x) for i = 1, . . . , n is equivalent to the linear independence of the matri-

ces Ãi(x) for i = 1, . . . , n, u ̸= 0 guarantees that Ũ ̸= 0. By defining V = (X̃⊙I)−1Ũ ̸= 0,
the quadratic form of H is written as

uTHu =
n∑

i=1

n∑
j=1

uitr
{
Ãi(x)(X̃ ⊙ I)−1(Z̃ ⊙ I)Ãj(x)

}
uj

= tr
{
Ũ(X̃ ⊙ I)−1(Z̃ ⊙ I)Ũ

}
= tr

{
((X̃ ⊙ I)−1Ũ)(Z̃ ⊙ I)(X̃ ⊙ I)(X̃ ⊙ I)−1Ũ

}
= tr

{
V (Z̃ ⊙ I)(X̃ ⊙ I)V

}
=

1

2

{
tr
{
V (Z̃ ⊙ I)(X̃ ⊙ I)V

}
+ tr

{
V (X̃ ⊙ I)(Z̃ ⊙ I)V

}}
.

It follows from property 6 of Symmetrized Kronecker product in Appendix of [13] and
relation (14) that

(25)

uTHu =
1

4

{
tr
{
V ((Z̃X̃ ⊙ I) + (Z̃ ⊙ X̃))V

}
+ tr

{
V ((X̃Z̃ ⊙ I) + (X̃ ⊙ Z̃))V

}}
=

1

4
svec(V )T

(
((X̃Z̃ + Z̃X̃)⊗S I) + (X̃ ⊗S Z̃) + (Z̃ ⊗S X̃)

)
svec(V ).

It follows from Property 11 of Symmetrized Kronecker product in Appendix of [13] that

if X̃ and Z̃ are symmetric positive definite, then X̃ ⊗S Z̃ and Z̃ ⊗S X̃ are symmetric
positive definite. It also follows from Property 9 that if X̃Z̃ + Z̃X̃ is symmetric positive
semidefinite, then (X̃Z̃ + Z̃X̃)⊗S I is symmetric positive semidefinite. Thus the matrix
H is positive definite.

Next, we assume that X̃Z̃ = Z̃X̃ holds. Since the relation (X̃ ⊙ I)(Z̃ ⊙ I) = (Z̃ ⊙
I)(X̃ ⊙ I) holds, we have

(X̃ ⊙ I)−1(Z̃ ⊙ I) = (Z̃ ⊙ I)(X̃ ⊙ I)−1.(26)
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For any vectors u, v ∈ Rn, we define

Ũ ≡
n∑

i=1

uiÃi(x), Ṽ ≡
n∑

i=1

viÃi(x), Ũ ′ = (X̃ ⊙ I)−1Ũ and Ṽ ′ = (X̃ ⊙ I)−1Ṽ .

Then in a similar way to the above, we obtain

uTHv = tr
{
Ũ(X̃ ⊙ I)−1(Z̃ ⊙ I)Ṽ

}
= tr

{
Ũ(Z̃ ⊙ I)(X̃ ⊙ I)−1Ṽ

}
(from (26))

= tr
{
(Z̃ ⊙ I)(X̃ ⊙ I)−1Ṽ Ũ

}
= tr

{
Ṽ (X̃ ⊙ I)−1(Z̃ ⊙ I)Ũ

}
(from (19))

= vTHu.

Letting u = ei and v = ej yields Hij = Hji, which implies that the matrix H is symmetric.
Therefore the theorem is proved. 2

We note that Theorems 2 and 3 correspond to Theorem 3.1 in [13].
The following theorem claims that a BKKT point is obtained if the Newton direction

satisfies ∆x = 0.

Theorem 4 Assume that ∆w solves (11) - (13). If ∆x = 0, then (x, y+∆y, Z +∆Z) is
a BKKT point.

Proof. It follows from the Newton equations that

∇f(x)− A0(x)
T (y +∆y)−A∗(x)(Z +∆Z) = 0,

g(x) = 0.

Since equation (21) implies
Z +∆Z = µX−1,

we have
X ◦ (Z +∆Z) = µI and Z +∆Z ≻ 0.

Therefore the point (x, y +∆y, Z +∆Z) satisfies the BKKT conditions. 2

In the subsequent discussions, we assume that the nonsingular matrix T is chosen so
that X̃ and Z̃ commute, i.e., X̃Z̃ = Z̃X̃. In this case, the matrices X̃ and Z̃ share the same
eigensystem. To end this section, we give the two concrete choices of the transformation
T that satisfy such a condition (see [13]).

(i) If we set T = X−1/2, then we have X̃ = I and Z̃ = X1/2ZX1/2. In this case, the
matrices H and ∆Z can be represented by the form:

Hij = tr
(
Ai(x)X

−1Aj(x)Z
)
,

∆Z = µX−1 − Z − 1

2
(X−1∆XZ + Z∆XX−1).
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(ii) If we set T = W−1/2 with W = X1/2(X1/2ZX1/2)−1/2X1/2, then we have X̃ =

W−1/2XW−1/2 = W 1/2ZW 1/2 = Z̃. Note that this choice is proposed by Nesterov and
Todd. In this case, the matrices H and ∆Z can be represented by the form:

Hij = tr
{
Ai(x)W

−1Aj(x)W
−1
}
,

∆Z = µX−1 − Z −W−1∆XW−1.

4.2 Primal-dual merit function

In what follows, we assume that the matrix T is so chosen that X̃Z̃ = Z̃X̃ is satisfied.
To force the global convergence of the algorithm described in Section 4, we use a merit
function in the primal-dual space. For this purpose, we propose the following merit
function:

F (x, Z) = FBP (x) + νFPD(x, Z),(27)

where FBP (x) and FPD(x, Z) are the primal barrier penalty function and the primal-dual
barrier function, respectively, and they are given by

FBP (x) = f(x)− µ log(detX) + ρ∥g(x)∥1,(28)

FPD(x, Z) = ⟨X,Z⟩ − µ log(detXdetZ),(29)

where ν and ρ are positive parameters. It follows from the fact X̃Z̃ = TXZT−1 that⟨
X̃, Z̃

⟩
= ⟨X,Z⟩ and FPD(x̃, Z̃) = FPD(x, Z) hold.

The following lemma gives a lower bound on the value of the primal-dual barrier
function (29) and the asymptotic behavior of the function.

Lemma 1 The primal-dual barrier function satisfies

FPD(x, Z) ≥ pµ(1− log µ)(30)

for any X ≻ 0 and Z ≻ 0. The equality holds in (30) if and only if XZ = µI is satisfied.
Furthermore, the following hold

lim
⟨X,Z⟩↓0

FPD(x, Z) = ∞ and lim
⟨X,Z⟩↑∞

FPD(x, Z) = ∞.(31)

Proof. Let λi and τi for i = 1, . . . , p denote the eigenvalues of the matrices X̃ and Z̃,
respectively. We note that the matrices X̃ and Z̃ share the same eigensystem. Then the
matrix X̃Z̃ has eigenvalues λiτi, i = 1, . . . , p, and we have

FPD(x, Z) =
⟨
X̃, Z̃

⟩
− µ log(detX̃detZ̃)(32)

=

p∑
i=1

λiτi − µ log

(
p∏

i=1

λiτi

)

=

p∑
i=1

(λiτi − µ log λiτi) .
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It is easily shown that the function ϕ(ξ) = ξ − µ log ξ (ξ > 0) is convex and achieves a
minimum value at ξ = µ. Thus we obtain

FPD(x, Z) ≥
p∑

i=1

(µ− µ log µ)(33)

= p (µ− µ log µ) .

It is clear that the equality holds in inequality (33) if and only if λiτi = µ, i = 1, . . . , p are

satisfied. Since X̃ and Z̃ commute, they can be represented by the forms X̃ = PDXP
T

and Z̃ = PDZP
T for an orthogonal matrix P , where DX and DZ are diagonal matrices

whose diagonal elements are λi and τi, i = 1, . . . , p, respectively. Thus, by noting the
relations X̃Z̃ = PDXDZP

T , we can show that X̃Z̃ = µI is equivalent to the equations
λiτi = µ, i = 1, . . . , p. Furthermore, X̃Z̃ = µI is equivalent to XZ = µI. Therefore, the
first part of this lemma is proved.

It follows from the algebraic and geometric mean
1

p

p∑
i=1

λiτi ≥

(
p∏

i=1

λiτi

)1/p

that

− log

(
p∏

i=1

λiτi

)
≥ −p log

(
p∑

i=1

λiτi

)
+ p log p

= −p log ⟨X,Z⟩+ p log p.

We use the inequality above and equation (32) to obtain

FPD(x, Z) ≥ ⟨X,Z⟩ − µp log ⟨X,Z⟩+ µp log p.

Therefore, the expressions (31) hold. This completes the proof. 2

Now we introduce the first order approximation Fl of the merit function by

Fl(x, Z; ∆x,∆Z) = F (x, Z) + ∆Fl(x, Z; ∆x,∆Z),

which is used in the line search procedure. Here ∆Fl(x, Z; ∆x,∆Z) corresponds to the
directional derivative and it is defined by the form

∆Fl(x, Z; ∆x,∆Z) = ∆FBPl(x; ∆x) + ν∆FPDl(x, Z; ∆x,∆Z),

where

∆FBPl(x; ∆x) = ∇f(x)T∆x− µtr(X−1∆X)(34)

+ρ (∥g(x) + A0(x)∆x∥1 − ∥g(x)∥1) ,
∆FPDl(x, Z; ∆x,∆Z) = tr(∆XZ +X∆Z − µX−1∆X − µZ−1∆Z).

We show that the search direction is a descent direction for both the primal barrier
penalty function (28) and the primal-dual barrier function (29). We first give an estimate
of ∆FBPl(x; ∆x) for the primal barrier penalty function.
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Lemma 2 Assume that ∆w solves (11) – (13). Then the following holds

∆FBPl(x; ∆x) ≤ −∆xT (G+H)∆x− (ρ− ∥y +∆y∥∞)∥g(x)∥1.

Proof. It is clear from (12) and (34) that

∆FBPl(x; ∆x) = ∇f(x)T∆x− µtr(X−1∆X)− ρ∥g(x)∥1.(35)

It follows from (11) that

∇f(x)T∆x = −∆xTG∆x+∆xTA0(x)
T (y +∆y) + ∆xTA∗(x)(Z +∆Z).

Since A∗(x)(Z + ∆Z) = µA∗(x)X−1 − H∆x holds by (24), the preceding expression
implies that

∇f(x)T∆x = −∆xT (G+H)∆x− g(x)T (y +∆y) + µ∆xTA∗(x)X−1.

By using the relations

∆xTA∗(x)X−1 =
n∑

i=1

∆xitr(Ai(x)X
−1) = tr((

n∑
i=1

∆xiAi(x))X
−1) = tr(X−1∆X),

equation (35) yields

∆FBPl(x; ∆x) = −∆xT (G+H)∆x− g(x)T (y +∆y)

+µtr(X−1∆X)− µtr(X−1∆X)− ρ∥g(x)∥1
≤ −∆xT (G+H)∆x− (ρ− ∥y +∆y∥∞)∥g(x)∥1.

The proof is complete. 2

Next we estimate the difference ∆FPDl(x, Z; ∆x,∆Z) for the primal-dual barrier func-
tion (29).

Lemma 3 Assume that ∆w solves (11) – (13). Then the following holds

∆FPDl(x, Z; ∆x,∆Z) ≤ 0.(36)

The equality holds in (36) if and only if the matrices X and Z satisfy the relation XZ =
µI.

Proof. It follows from the Newton equation (13) that

∆FPDl(x, Z; ∆x,∆Z) = tr
{
(I − µX̃−1Z̃−1)(Z̃∆X̃ + X̃∆Z̃)

}
=

1

2
tr
{
(I − µX̃−1Z̃−1)(Z̃∆X̃ + X̃∆Z̃ +∆X̃Z̃ +∆Z̃X̃)

}
= tr

{
(I − µX̃−1Z̃−1)(µI − X̃Z̃)

}
= −tr

{
X̃−1Z̃−1(µI − X̃Z̃)2

}
= −tr

{
(X̃Z̃)−1/2(µI − X̃Z̃)2(X̃Z̃)−1/2

}
.
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Since the matrix (X̃Z̃)−1/2(µI − X̃Z̃)2(X̃Z̃)−1/2 is symmetric positive semidefinite, we
have

∆FPDl(x, Z; ∆x,∆Z) ≤ 0.

It is clear that the equality holds in the above if and only if the matrix µI− X̃Z̃ becomes
the zero matrix. Therefore the proof is complete. 2

Now we obtain the following theorem by using the two lemmas given above. This
theorem shows that the Newton direction ∆w becomes a descent search direction for the
proposed primal-dual merit function (27).

Theorem 5 Assume that ∆w solves (11) – (13) and that the matrix G + H is positive
definite. Suppose that the penalty parameter ρ satisfies ρ > ∥y+∆y∥∞. Then the following
hold:

(i) The direction ∆w becomes a descent search direction for the primal-dual merit func-
tion F (x, Z), i.e. ∆Fl(x, Z; ∆x,∆Z) ≤ 0.

(ii) If ∆x ̸= 0, then ∆Fl(x, Z; ∆x,∆Z) < 0.

(iii) ∆Fl(x, Z; ∆x,∆Z) = 0 holds if and only if (x, y +∆y, Z) is a BKKT point.

Proof. (i) and (ii) : It follows directly from Lemmas 2 and 3 that

∆Fl(x, Z; ∆x,∆Z) ≤ −∆xT (G+H)∆x(37)

−(ρ− ∥y +∆y∥∞)∥g(x)∥1
≤ 0.

The last inequality becomes a strict inequality if ∆x ̸= 0. Therefore the results hold.
(iii) If ∆Fl(x, Z; ∆x,∆Z) = 0 holds, then ∆FBPl(x; ∆x) = 0 and ∆FPDl(x, Z; ∆x,∆Z) =
0 are satisfied, and equation (37) yields

∆x = 0 and g(x) = 0.

It follows from Lemma 3 that ∆FPDl(x, Z; ∆x,∆Z) = 0 impliesX◦Z = µI, i.e. XZ = µI.
Thus equation (21) yields ∆Z = 0. Then equation (11) implies that ∇f(x)−A0(x)

T (y+
∆y)−A∗(x)Z = 0. Hence (x, y +∆y, Z) is a BKKT point.

Conversely, suppose that (x, y + ∆y, Z) is a BKKT point. Equations (11) and (24)
imply that

G∆x−A∗(x)∆Z = 0 and A∗(x)∆Z = −H∆x.

It follows that (G + H)∆x = 0 holds, which yields ∆x = 0. Using equation (35) and
Lemma 3, we have

∆FBPl(x; ∆x) = 0 and ∆FPDl(x, Z; ∆x,∆Z) = 0,

which implies ∆Fl(x, Z; ∆x,∆Z) = 0. Therefore, the theorem is proved. 2
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4.3 Algorithm SDPLS that uses the line search procedure

To obtain a globally convergent algorithm to a BKKT point for a fixed µ > 0, we modify
the basic Newton iteration. Our iterations take the form

xk+1 = xk + αk∆xk, Zk+1 = Zk + αk∆Zk and yk+1 = yk +∆yk

where αk is a step size determined by the line search procedure described below. Through-
out this section, the index k denotes the inner iteration count for a given µ > 0. We note
that Xk ≻ 0 and Zk ≻ 0 are maintained for all k in the following. We also denote X(xk)
by Xk for simplicity.

The main iteration is to decrease the value of the merit function (27) for fixed µ.
Thus the step size is determined by the sufficient decrease rule of the merit function.
Specifically, we adopt Armijo’s rule. At the current point (xk, Zk), we calculate the initial
step size by

ᾱxk =

{
− γ

λmin(X
−1
k ∆Xk)

if X(x) is linear

1 otherwise
(38)

and
ᾱzk = − γ

λmin(Z
−1
k ∆Zk)

,(39)

where λmin(M) denotes the minimum eigenvalue of the matrix M , and γ ∈ (0, 1) is a
fixed constant. If the minimum eigenvalue in either expression is positive, we ignore the
corresponding term.

A step to the next iterate is given by

αk = ᾱkβ
lk , ᾱk = min {ᾱxk, ᾱzk, 1} ,

where β ∈ (0, 1) is a fixed constant, and lk is the smallest nonnegative integer such that
the sufficient decrease condition

F (xk + ᾱkβ
lk∆xk, Zk + ᾱkβ

lk∆Zk) ≤ F (xk, Zk) + ε0ᾱkβ
lk∆Fl(xk, Zk; ∆xk,∆Zk)(40)

and the positive definiteness condition

X(xk + ᾱkβ
lk∆xk) ≻ 0,(41)

where ε0 ∈ (0, 1). Lemma 4 (ii) given below guarantees that an integer lk exists.
Now we give a line search algorithm called Algorithm SDPLS. This algorithm should

be regarded as the inner iteration of Algorithm SDPIP (see Step 1 of Algorithm SDPIP).
We also note that ε′ given below corresponds to Mcµ in Algorithm SDPIP.

Algorithm SDPLS

Step 0. (Initialize) Let w0 ∈ Rn × Rm × Sp (X0 ≻ 0, Z0 ≻ 0), and µ > 0, ρ > 0, ν > 0.
Set ε′ > 0, γ ∈ (0, 1), β ∈ (0, 1) and ε0 ∈ (0, 1). Let k = 0.

Step 1. (Termination) If ∥r(wk, µ)∥∗ ≤ ε′, then stop.
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Step 2. (Compute direction) Calculate the matrix Gk and the transformation Tk. De-
termine the direction ∆wk by solving (11) – (13).

Step 3. (Step size) Find the smallest nonnegative integer lk that satisfies the criteria
(40) and (41), and calculate

αk = ᾱkβ
lk .

Step 4. (Update variables) Set

xk+1 = xk + αk∆xk, Zk+1 = Zk + αk∆Zk and yk+1 = yk +∆yk.

Step 5. Set k := k + 1 and go to Step 1. 2

Remark 1. Theorem 2 can be used to calculate the direction ∆wk in Step 2. Specifically,
we compute the directions (∆xk,∆yk) by solving linear system of equations (22), and we
obtain ∆Zk from equation (21). It follows from Theorem 4 that if ∆xk = 0 is obtained,
then we can get the BKKT point (xk, yk +∆yk, Zk +∆Zk) and stop the procedure of the
algorithm.
Remark 2. When the matrix Gk approximates the Hessian matrix ∇2

xL(wk) of the
Lagrangian function by using the quasi-Newton updating formula in Step 2, we have the
following secant condition

Gk+1sk = qk,

where sk = xk+1 − xk and

qk = ∇xL(xk+1, yk+1, Zk+1)−∇xL(xk, yk+1, Zk+1)

= (∇f(xk+1)− A0(xk+1)
Tyk+1 −A∗(xk+1)Zk+1)− (∇f(xk)− A0(xk)

Tyk+1 −A∗(xk)Zk+1)

= ∇f(xk+1)−∇f(xk)− (A0(xk+1)− A0(xk))
Tyk+1 − (A∗(xk+1)−A∗(xk))Zk+1.

We note that it is easy to calculate the vector qk. In order to preserve the positive
definiteness of the matrix Gk, we can use the modified BFGS update proposed by Powell,
which is given by the form

Gk+1 = Gk −
Gksks

T
kGk

sTkGksk
+
q̂kq̂

T
k

sTk q̂k
,

where

q̂k = ψkqk + (1− ψk)Gksk,

ψk =


1 if sTk qk ≥ 0.2sTkGksk
0.8sTkGksk

sTk (Gksk − qk)
otherwise.

Remark 3. If we want to use the Hessian matrix ∇2
xL(wk) for the matrix Gk, we adopt

Levenberg-Marqurardt type modification of ∇2
xL(wk) to obtain a positive semi-definite

Gk for global convergence property shown in the next section. Namely, we compute a
parameter β ≥ 0 which gives a positive semidefinite ∇2

xL(wk) + βI. The procedure used
in the numerical experiments below is as follows:
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Step 0. Calculate the Cholesky decomposition of ∇2
xL(wk). If it is successful, set β = 0,

and stop. If not, set β = 1.0, and go to Step 1.

Step 1. Calculate the Cholesky decomposition of ∇2
xL(wk)+βI. If it is successful, go to

Step 2. Otherwise go to Step 3.

Step 2. Repeat β := β/2 until the Cholesky decomposition fails. Set β := 2β, and stop.

Step 3. Repeat β := 2β until the Cholesky decomposition succeeds. Stop. 2

This method is used to solve large scale nonconvex problems in the following.
Remark 4. If the matrix X(x) is linear with respect to x, the step size rules (38) and (39)
are usual ones used for the linear SDP problems. From the viewpoint of the numerical
accuracy and computational cost, we calculate the minimum eigenvalue of the symmetric
matrix L−1∆ZL−T in computing the minimum eigenvalue in (39) based on the fact that
the spectrum of the nonsymmetric matrix Z−1∆Z is same as that of the symmetric matrix
L−1∆ZL−T , where Z = LLT is the Cholesky factorization of Z. We can also calculate
the minimum eigenvalue of the matrix X−1∆X in equation (38) in the same way if X(x)
is linear.

5 Global convergence to a barrier KKT point

In this section, we prove global convergence of Algorithm SDPLS. For this purpose, we
make the following assumptions.

Assumptions

(A1) The functions f , gi, i = 1, ...,m, and X are twice continuously differentiable.

(A2) The sequence {xk} generated by Algorithm SDPLS remains in a compact set Ω of
Rn.

(A3) For all k on Ω, the matrix A0(xk) is of full rank and the matrices A1(xk), . . . , An(xk)
are linearly independent.

(A4) The matrix Gk is uniformly bounded and positive semidefinite.

(A5) The transformation Tk is chosen such that X̃k and Z̃k commute, and both of the
sequences {Tk} and {T−1

k } are bounded.

(A6) The penalty parameter ρ is sufficiently large so that ρ > ∥yk +∆yk∥∞ holds for all
k.

2
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Assumption (A2) assures the existence of an accumulation point of the generated
sequence {xk}. The boundedness of the generated sequence {xk} is derived if there exist
upper and lower bounds on the variable x, which is a reasonable assumption in practice.
We should note that if a quasi-Newton approximation is used for computing the matrixGk,
then we only need the continuity of the first order derivatives of functions in assumption
(A1).

In order to show the global convergence property, we first present the following lemma
that gives a base for Armijo’s line search rule. The merit function is differentiable except
for the part ∥g(x)∥1, so we can prove this lemma in the same way as Lemmas 2 and 3 in
[17].

Lemma 4 Let dx ∈ Rn and Dz ∈ Rp×p be given. Define F ′(x, Z; dx, Dz) by

F ′(x, Z; dx, Dz) = lim
t↓0

F (x+ tdx, Z + tDz)− F (x, Z)

t
.

Then the following hold:
(i) There exists a θ ∈ (0, 1) such that

F (x+ dx, Z +Dz) ≤ F (x, Z) + F ′(x+ θdx, Z + θDz; dx, Dz),

whenever X(x+ dx) ≻ 0 and Z +Dz ≻ 0.
(ii) Let ε0 ∈ (0, 1) be given. If ∆Fl(x, Z; dx, Dz) < 0, then

F (x+ αdx, Z + αDz)− F (x, Z) ≤ ε0α∆Fl(x, Z; dx, Dz),

for sufficiently small α > 0. 2

The following lemma shows the boundedness of the sequence {wk} and the uniformly
positive definiteness of the matrix Hk.

Lemma 5 Suppose that assumptions (A1), (A2) and (A6) are satisfied. Let the sequence
{wk} be generated by Algorithm SDPLS. Then the following hold.
(i) lim infk→∞ det(Xk) > 0 and lim infk→∞ det(Zk) > 0.
(ii) The sequence {wk} is bounded.

In addition, if assumptions (A3), (A4) and (A5) are satisfied, the following hold.
(iii) There exists a positive constant M such that

1

M
∥v∥2 ≤ vT (Gk +Hk)v ≤M∥v∥2 for any v ∈ Rn

for all k ≥ 0.
(iv) The sequence {∆wk} is bounded.
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Proof. (i) Since the sequence {FPD(xk, Zk)} is bounded below from Lemma 1, the sequence
{FBP (xk)} is bounded above, because the function value of F (xk, Zk) decreases monotoni-
cally. Therefore it follows from the log barrier term in FBP (x) that detXk is bounded away
from zero, and we have lim infk→∞ detXk > 0. This implies that lim infk→∞ detZk > 0 also
holds, because {FPD(xk, Zk)} is bounded above and below and ⟨Xk, Zk⟩ ≥ 0 is satisfied.

(ii) The boundedness of the sequences {Zk} and {yk} follows from assumptions (A2),
(A6) and the monotone decreasing of F (xk, Zk). Therefore the sequence {wk} is bounded.

(iii) From Appendix 9 of [13] that the operator X̃ ⊙ I is invertible. For the vector V
defined in the proof of Theorem 3, svec(V ) can be represented by the form

svec(V ) = svec
(
smat((X̃ ⊗S I)

−1Ũ)
)

= (X̃ ⊗S I)
−1

n∑
i=1

uisvec(Ãi(x)),

where Ũ ≡
n∑

i=1

uiÃi(x) ̸= 0. Letting

Ã(x) =
(
svec(Ã1(x)), . . . , svec(Ãn(x))

)
∈ Rp(p+1)/2×n

and
u = (u1, . . . , un)

T ,

we have
svec(V ) = (X̃ ⊗S I)

−1Ã(x)u.

Therefore it follows from (25) that

uTHku = uT Ã(xk)
T ((X̃k ⊗S I)

−1)T Ĥk(X̃k ⊗S I)
−1Ã(xk)u,

where
Ĥk = ((X̃kZ̃k + Z̃kX̃k)⊗S I) + (X̃k ⊗S Z̃k) + (Z̃k ⊗S X̃k).

The boundedness of the sequence {wk} guarantees the uniformly positive definiteness and

boundedness of the matrix ((X̃k⊗S I)
−1)T Ĥk(X̃k⊗S I)

−1. Since the linear independence of
the matrices Ai(xk) for i = 1, . . . , n is equivalent to the linear independence of the vectors

svec(Ãi(xk)) for i = 1, . . . , n, the matrix Ã(xk) is of column full rank. This implies that
there exist positive constants λmin and λmax, which are independent of k, such that

λmin∥u∥2 ≤ uTHku ≤ λmax∥u∥2

holds. Thus by assumption (A4), we obtain the result.
(iv) Since, by results (ii) and (iii) shown above, the sequence {wk} is bounded and

{Gk +Hk} is uniformly bounded and positive definite, Theorem 2 guarantees the desired
result. 2

By Theorem 4, ∆xk = 0 guarantees that (xk, yk +∆yk, Zk +∆Zk) is a BKKT point.
Thus in what follows, we assume that ∆xk ̸= 0 for any k ≥ 0. The following theorem
gives the global convergence of an infinite sequence generated by Algorithm SDPLS.
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Theorem 6 Suppose that assumptions (A1) – (A6) hold. Let an infinite sequence {wk}
be generated by Algorithm SDPLS. Then there exists at least one accumulation point of
{wk}, and any accumulation point of the sequence {wk} is an BKKT point.

Proof. In the proof, we define the following notations

uk =

(
xk
Zk

)
and ∆uk =

(
∆xk
∆Zk

)
for simplicity. By Lemma 5 (ii), the sequence {wk} has at least one accumulation point.
The boundedness of the sequence {wk} implies that all eigenvalues of Xk and Zk are
bounded above. It follows from Lemma 5 (i) that each smallest eigenvalue of Xk and
Zk is bounded away from zero. By Lemma 5 (iv), ∥∆wk∥∗ is uniformly bounded above.
Hence, we have lim infk→∞ ᾱk > 0. Furthermore, the sequence {lk} that satisfies X(xk +
ᾱkβ

lk∆xk) ≻ 0 is uniformly bounded above.
It follows from Lemma 5 (iii) that there exists a positive constant M such that

1

M
∥v∥2 ≤ vT (Gk +Hk)v ≤M∥v∥2

for any v ∈ Rn and all k ≥ 0. Thus by (37), we have

∆Fl(uk; ∆uk) ≤ −∥∆xk∥2

M
< 0,

and inequality (40) yields

F (uk+1)− F (uk) ≤ ε0ᾱkβ
lk∆Fl(uk; ∆uk)(42)

≤ −ε0ᾱkβ
lk
∥∆xk∥2

M
< 0.

Because the sequence {F (uk)} is monotonically decreasing and bounded below, the
left-hand side of (42) converges to 0, which implies that

lim
k→∞

βlk∆Fl(uk; ∆uk) = 0.

If there exists a finite numberN such that lk < N for all k, then we have lim
k→∞

∆Fl(uk; ∆uk) = 0.

Now we suppose that there exists a subsequence K ⊂ {0, 1, · · ·} such that lk → ∞, k ∈ K.
Then we can assume lk > 0 for sufficiently large k ∈ K without loss of generality, which
means that the point uk+ θ

′
kαk∆uk/β does not satisfy condition (40) for some θ′k ∈ (0, 1).

Thus, we get

F (uk + θ′kαk∆uk/β)− F (uk) > ε0θ
′
kαk∆Fl(uk; ∆uk)/β.(43)

By Lemma 4, there exists a θk ∈ (0, 1) such that for k ∈ K,

F (uk + θ′kαk∆uk/β)− F (uk) ≤ θ′kαkF
′(uk + θkθ

′
kαk∆uk/β; ∆uk)/β

≤ θ′kαk∆Fl(uk + θkθ
′
kαk∆uk/β; ∆uk)/β.(44)
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Then, from (43) and (44), we see that

ε0∆Fl(uk; ∆uk) < ∆Fl(uk + θkθ
′
kαk∆uk/β; ∆uk).

This inequality yields

∆Fl(uk + θkθ
′
kαk∆uk/β; ∆uk)−∆Fl(uk; ∆uk) > (ε0 − 1)∆Fl(uk; ∆uk) > 0.(45)

Thus by the fact lk → ∞, k ∈ K, we have αk → 0 and thus ∥θkθ′kαk∆uk/β∥∗ → 0, k ∈ K,
because ∥∆uk∥∗ is uniformly bounded. Here ∥∆uk∥∗ is defined by ∥∆uk∥∗ = ∥∆xk∥ +
∥∆Zk∥F . This implies that the left-hand side of (45) and therefore ∆Fl(uk; ∆uk) converges
to zero when k → ∞, k ∈ K.

By the discussions above, we have proved that

lim
k→∞

∆Fl(uk; ∆uk) = 0.(46)

Since equation (46) implies that

∆FBPl(xk; ∆xk) → 0 and ∆FPDl(xk, zk; ∆xk,∆zk) → 0,

it follows from equations (37), (12) and Lemma 3 that

∆xk → 0, g(xk) → 0, XkZk → µI (X̃kZ̃k → µI).

Therefore, equation (21) yields
∆Zk → 0.

By equation (11), we have

∇xL(xk, yk +∆yk, Zk) → 0,

which implies that
r(xk, yk +∆yk, Zk, µ) → 0.

Since xk+1 = xk + αk∆xk, Zk+1 = Zk + αk∆Zk,∆xk → 0,∆Zk → 0 and yk+1 = yk +∆yk,
the result follows. Therefore, the theorem is proved. 2

The preceding theorem guarantees that any accumulation point of the sequence {(xk, yk, Zk)}
satisfies the BKKT conditions. If we adopt a common step size αk as wk+1 = wk+αk∆wk

in Step 4 of Algorithm SDPLS, where αk is determined in Step 3, then the result of
the theorem is replaced by the statement that any accumulation point of the sequence
{(xk, yk +∆yk, Zk)} satisfies the BKKT conditions.

6 Numerical Experiments

The algorithm of this paper is implemented and brief numerical experiments are done in
order to verify the theoretical results of the proposed algorithm. The program is written
in C++, and is run on 3.2GHz Pentium IV PC with LINUX OS.
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In the following experiments, initial values of various quantities are set as follows:
µ0 = 1.0, X0 = I, Z0 = I. The barrier parameter is updated by the rule µk+1 = µk/10.0
after an approximate barrier KKT point is obtained in Step 1 of Algorithm SDPIP where
we set Mc = 0.1 and γ = 0.9, and the transformation is set to be T = X−1/2 at each
iteration of Algorithm SDPLS.

The first problem is Gaussian channel capacity problem which is described in [15]:

minimize 1
2
(log det(X +R)− log detR),

subject to tr(X) ≤ nP,X ⪰ 0,

where noise covariance R ∈ Sn is known and given, and input covariance X ∈ Sn is the
variable to be determined. The parameter P ∈ R gives a limit on the average total power
in the input. If all channels are independent, i.e., all covariances are diagonal, and the
noise covariance depends on X as Rii = ri + aiXii, ai > 0 (case of near-end cross-talk),
the above problem can be written as

minimize 1
2

n∑
i=1

log(1 +
Xii

ri + aiXii

),

subject to
n∑

i=1

Xii ≤ nP,Xii ≥ 0.

This problem can be transformed to SDP type one:

minimize 1
2

n∑
i=1

log(1 + ti),

subject to

n∑
i=1

Xii ≤ nP,Xii ≥ 0, ti ≥ 0,(
1− aiti

√
ri√

ri aiXii + ri

)
⪰ 0, i = 1, ..., n.

In our experiment, ri and ai are set to uniform random numbers between 0 and 1. P
is set to 1. We solved problems with n = 10, 20, ... , 10240 using exact Hessian of the
Lagrangian as the matrix G, and the results are shown below.

Table 1. Gaussian channel capacity problem
n iteration CPU (sec)
10 28 0.03
20 26 0.17
40 31 0.11
80 39 0.32
160 48 1.07
320 52 3.8
640 40 10.2
1280 44 41.3
2560 38 137
5120 43 607
10240 45 2559
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The second problem is minimization of the minimal eigenvalue problem defined as:

minimize λmin(M(q)),
subject to q ∈ Q,

where q ∈ Rn, Q ⊂ Rn, and M ∈ Sm is a function of q. We formulate this problem as
follows:

minimize tr(ΠM(q)),

subject to
tr(Π) = 1,
Π ⪰ 0,
q ∈ Q,

where Π ∈ Sm is an additional Matrix variable (Leibfritz and Maruhn 2005). In our
experiment, we set q = (x, y)T , and M = xyA+ xB + yC with given A,B,C ∈ Sm. The
elements of matrices A,B and C are set from uniform random numbers in [−5, 5]. The
constraint region Q for the variable q is set to [−1, 1]× [−1, 1]. We solved problems with
the sizes of M,Π, A,B,C equal to 10, 20, 40, 80 respectivly, with BFGS quasi-Newton
update for the matrix G.

Table 2. Minimization of the minimal eigenvalue problem
m iteration CPU (sec)
10 30 0.12
20 32 0.88
40 69 46.9
80 56 1176

The third problem is a real financial one and taken from [8]. The model is to discrim-
inate failure and non-failure companies by a Logit model using a positive semidefinite
quadratic discriminant function. The problem for learning is defined by

maximize
∑M

i=1(yiz(xi)− log(1 + ez(xi))), a ∈ R, b ∈ Rq, Q ∈ Sq,
subject to Q ⪰ 0,

where z(x) = a+bTx+ 1
2
xTQx, and xi = (x1, ..., xq)i gives financial data of each company

i = 1, ...,M . The value of yi gives failure or non-failure as follows:

yi = 0 ⇔ (x1, ..., xq)i ∈M0(non− failure),

yi = 1 ⇔ (x1, ..., xq)i ∈M1(failure).

In [8], Konno et.al. proposed a method that used a cutting plane approximation of positive
semidefinite condition and solved resulting linearly constrained problems using an interior
point NLP algorithm in NUOPT. In Tables 1 and 2, we list two examples. Tables 1 and 2
show the results with both BFGS update (bfgs) and exact Hessian (hesse) for the matrix
G. In each table, the algorithms used, the final objective function value, the minimum
eigenvalue of the obtained matrix Q, the total inner iteration counts and the run time
(sec) are given. The learning experiments were done by Japan Credit Rating Agency, Ltd.
with their own financial data including the data provided by Tokyo Shoko Research, Ltd.
These tables show that our methods solve the problems efficiently and that our method
(hesse) performs better than our method (bfgs).
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Table 3.1. Logit model/Example 1: number of variables = 28,
q = 6,M = 6084,M0 = 6053

algorithm final objective final λmin(Q) iteration time (sec)
cutting plane -153.0808 -9.59e-05 − 7.77
ours (bfgs) -153.0828 1.76e-09 117 1.65
ours (hesse) -153.0828 1.77e-09 27 0.80

Table 3.2. Logit model/Example 2: number of variables = 45,
q = 8,M = 6084,M0 = 6053

algorithm final objective final λmin(Q) iteration time (sec)
cutting plane -143.7445 -9.17e-05 − 30.3
ours (bfgs) -143.7468 3.88e-09 233 4.2
ours (hesse) -143.7468 4.01e-09 30 1.5

Tables 3.1 and 3.2 show the required iteration counts for each value of µ. It is clear
that majority of iterations are required at the first few values of µ.

Table 3.3. Logit model: iteration counts for each µ in Example 1
µ bfgs hesse

1.0e0 75 17
1.0e-1 25 2
1.0e-2 14 2
1.0e-3 4 2
1.0e-4 3 1
1.0e-5 3 2
1.0e-6 1 1
1.0e-7 1 1

Table 3.4. Logit model: iteration counts for each µ in Example 2
1.0e0 150 19
1.0e-1 35 3
1.0e-2 23 2
1.0e-3 9 1
1.0e-4 11 2
1.0e-5 3 2
1.0e-6 2 1
1.0e-7 1 1

The forth problem in our experiment is from the nearest correlation matrix problem:

minimize 1
2
∥X − A∥F ,

subject to
X ⪰ ϵI,
Xii = 1, i = 1, ..., n,

where A ∈ Sn is given, and we want to obtain X ∈ Sn which is nearest to A, and satisfies
the given constraints. In the above problem, eigenvalues of X should not be less than
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ϵ > 0, and the diagonals of X is equal to 1. There exists special purpose algorithms for
solving this type of problem (e.g., [10]). Therefore we add additional constraints which
gives an upper bound on the condition number of the matrix X:

minimize 1
2
∥X − A∥F ,

subject to

zI ⪯ X ⪯ yI,
y ≤ κz, z ≥ ϵ
X ⪰ ϵI,
Xii = 1, i = 1, ..., n,

where y and z denote the maximal and minimal eigenvalue of X respectively, and the
upper bound of their ratio (condition number) κ > 0 is given. Elements of the matrix A are
uniform random numbers in [−1, 1] with Aii = 1, i = 1, ..., n. We set ϵ = 10−3, κ = 10.0.
Results of various values of n are given below, where the exact Hessian is used for the
matrix G.

Table 4. Nearest correlation matrix problem
n iteration CPU (sec)
10 22 0.05
20 19 0.80
40 18 24.88
80 19 594.08

The fifth problem area is the so called static output feedback (SOF) problems from
COMPLeib library. The following is the SOF-H2 type problem:

minimize tr(X),
subject to Q ⪰ 0,

A(F )Q+QA(F )T +B1B
T
1 ⪯ 0,(

X C(F )Q
QC(F )T Q

)
⪰ 0,

where X ∈ Snz×nz , F ∈ Rnu×ny and Q ∈ Snx×nx are variable matrices to be determined.
The matrices A ∈ Rnx×nx , B ∈ Rnx×nu , B1 ∈ Rnx×nw , C ∈ Rny×nx , C1 ∈ Rnz×nx , D11 ∈
Rnz×nw , D12 ∈ Rnz×nu andD21 ∈ Rny×nw are give constant matrices, and form the matrices
A(F ), B(F ), C(F ), D(F ) which appear in the problem definition as follows:

A(F ) = A+BFC,

B(F ) = B1 +BFD21,

C(F ) = C1 +D12FC,

D(F ) = D11 +D12FD21.

The initial interior points are not known for this type of problem, and it turns out that
it is not easy to find them. So we try various starting points, and solve the problems for
which we can find initial interior points. We list the results for these problems below.
Iterations are stopped when the norm of KKT conditions is less than 10−6. In [11] ,
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numerical results for these problems performed by PENBMI, a specialized BMI-version of
PENNON is reported. We list CPU data of PENBMI multiplied by a factor 2.5/3.2 which
is a ratio of CPU speeds used in two experiments. We note that the various conditions of
these experiments are not equal, so the PENBMI’s CPU data is listed to crudely observe
how our algorithm performs compared with PENBMI.

Table 5.1. SOF-H2 problem
problem n nx ny nu nw nz iteration CPU(sec) CPU(PENBMI)
AC1 27 5 3 3 3 2 38 0.11 0.62
AC2 39 5 3 3 3 5 138 0.64 1.25
AC3 38 5 4 2 5 5 41 0.19 0.56
AC6 64 7 4 2 7 7 68 0.69 2.53
AC17 22 4 2 1 4 4 117 0.26 0.27
HE1 15 4 1 2 2 2 174 0.31 0.17
HE2 24 4 2 2 4 4 33 0.09 0.59
HE3 115 8 6 4 1 10 269 7.94 1.53
REA1 26 4 3 2 4 4 76 0.21 0.74
DIS1 88 8 4 4 1 8 47 0.93 5.04
DIS2 16 3 2 2 3 3 43 0.08 0.18
DIS3 58 6 4 4 6 6 252 2.33 1.93
DIS4 66 6 6 4 6 6 30 0.38 2.91
AGS 160 12 2 2 12 12 43 2.28 130
BDT1 96 11 3 3 1 6 46 1.07* 2.78
MFP 26 4 2 3 4 4 112 0.33 0.46
EB1 59 10 1 1 2 2 55 0.68 16.2
EB2 59 10 1 1 2 2 50 0.61 21.0
PSM 49 7 3 2 2 5 46 0.29 2.01
NN2 7 2 1 1 2 2 27 0.03 0.22
NN4 26 4 3 2 4 4 32 0.09 0.30
NN8 16 3 2 2 3 3 63 0.12 0.27
NN11 157 16 5 3 3 3 188 12.19* 223
NN15 20 3 2 2 1 4 64 0.13 0.27
NN16 62 8 4 4 8 4 124 1.51 36.4

The CPU data with * means norm tolerance is set to 10−5.
We next describe the results for SOF-H∞ problem which is defined by the following:

minimize γ,
subject to Q ⪰ 0,

γ ≥ 0, A(F )TQ+QA(F ) QB(F ) C(F )T

B(F )TQ −γI D(F )T

C(F ) D(F ) −γI

 ⪰ 0,

where Q ∈ Snx×nx and F ∈ Rnu×ny are variable matrices to be determined. As in the
SOF-H2 type problems, we report the results for problems with feasible initial point
obtained.
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Table 5.2. SOF-H∞ problems
problem n nx ny nu nw nz iteration CPU(sec) CPU(PENBMI)
AC4 13 4 2 1 2 2 188 0.34 0.64
HE2 15 4 2 2 4 4 64 0.15 0.13
DIS2 11 3 2 2 3 3 156 0.24 8.00
AGS 83 12 2 2 12 12 116 6.84 3.27
MFP 17 4 2 3 4 4 102 0.27 0.42
EB1 57 10 1 1 2 2 277 4.63 1.43
EB2 57 10 1 1 2 2 74 1.21 1.79
PSM 35 7 3 2 2 5 78 0.39 0.58
NN2 5 2 1 1 2 2 27 0.03 0.06

The last set of problems is obtained from SDPLIB to check our algorithms for large
scale problems. SDPLIB is a library for linear SDP problems. We add the quadratic term
xTQx to the original linear objective function cTx to form nonlinear objective function
xTQx/2 + cTx where the matrix Q is sparse and symmetric positive definite. The values
of the diagonal elements of Q are set to 1, and those of the off-diagonal elements are
uniform random numbers from [0, 1], and if generated random number is greater than
0.03, the value is set to 0. Therefore the density of nonzero elements of the matrix Q is
approximately 3%.

Table 6. SDPLIB with nonlinear objective
problem n p iteration CPU(sec)
arch8 174 335 51 14.10

control7 136 45 33 95.38
maxG11 800 800 27 252.44
mcp500-1 500 500 39 84.17
qap10 1021 101 35 65.85
ss30 132 426 47 44.71
theta6 4375 300 68 3695.86
truss8 496 628 31 14.89

¿From the above set of experiments, we think the proposed method works as described
in this paper, and hope the method is similarly efficient as existing primal-dual interior
point methods for ordinary nonlinear programming [17].

7 Concluding Remarks

In this paper, we have proposed a primal-dual interior point method for solving nonlinear
semidefinite programming problems. Within the line search strategy, we have proposed
the primal-dual merit function that consists of the primal barrier penalty function and the
primal-dual barrier function, and we have proved the global convergence property of our
method. Reported numerical experiments show the practical efficiency of our method.

Analysis of the rate of convergence and more extensive numerical experiments of our
method are under further research. In addition, we plan to construct a method within
the framework of the trust region globalization strategy.
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