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Abstract We describe a novel framework for the design and analysis of online learning
algorithms based on the notion of duality in constrained optimization. We cast a sub-family
of universal online bounds as an optimization problem. Using the weak duality theorem
we reduce the process of online learning to the task of incrementally increasing the dual
objective function. The amount by which the dual increases serves as a new and natural
notion of progress for analyzing online learning algorithms. We are thus able to tie the
primal objective value and the number of prediction mistakes using the increase in the dual.

Keywords Online learning · Mistake bounds · Duality · Regret bounds

1 Introduction

Online learning of linear classifiers is an important and well-studied domain in machine
learning with interesting theoretical properties and practical applications (Cesa-Bianchi et
al. 2002; Crammer et al. 2005; Gentile 2001, 2002; Grove et al. 2001; Helmbold et al. 1999;
Kivinen et al. 2002; Kivinen and Warmuth 1997; Li and Long 2002). An online learning
algorithm observes instances in a sequence of trials. After each observation, the algorithm
predicts a yes/no (+/−) outcome. The prediction of the algorithm is formed by a hypothesis,
which is a mapping from the instance space into {+1,−1}. This hypothesis is chosen by the
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online algorithm from a predefined class of hypotheses. Once the algorithm has made a
prediction, it receives the correct outcome. Then, the online algorithm may choose another
hypothesis from the class of hypotheses, presumably improving the chance of making an
accurate prediction on subsequent trials. The quality of an online algorithm is measured by
the number of prediction mistakes it makes along its run.

In this paper we introduce a general framework for the design and analysis of on-
line learning algorithms. Our framework emerges from a new view on relative mistake
bounds (Kivinen and Warmuth 1997; Littlestone 1989), which are the common thread in
the analysis of online learning algorithms. A relative mistake bound measures the perfor-
mance of an online algorithm relatively to the performance of a competing hypothesis. The
competing hypothesis can be chosen in hindsight from a class of hypotheses, after observ-
ing the entire sequence of examples. For example, the original mistake bound of the Per-
ceptron algorithm (Rosenblatt 1958), which was first suggested over 50 years ago, was de-
rived by using a competitive analysis, comparing the algorithm to a linear hypothesis which
achieves a large margin on the sequence of examples. Over the years, the competitive analy-
sis techniques were refined and extended to numerous prediction problems by employing
complex and varied notions of progress toward a good competing hypothesis. The flurry of
online learning algorithms sparked unified analyses of seemingly different online algorithms
by Littlestone, Warmuth, Kivinen and colleagues (Kivinen and Warmuth 1997; Littlestone
1988). Most notably is the work of Grove, Littlestone, and Schuurmans (Grove et al. 2001)
on a quasi-additive family of algorithms, which includes both the Perceptron (Rosenblatt
1958) and the Winnow (Littlestone 1988) algorithms as special cases. A similar unified
view for regression was derived by Kivinen and Warmuth (1997, 2001). Online algorithms
for linear hypotheses and their analyses became more general and powerful by employing
Bregman divergences for measuring the progress toward a good hypothesis (Gentile 2002;
Grove et al. 2001; Kivinen et al. 2002).

We propose an alternative view of relative mistake bounds which is based on the notion
of duality in constrained optimization. Online mistake bounds are universal in the sense
that they hold for any possible predictor in a given hypothesis class. We therefore cast the
universal bound as an optimization problem. Specifically, the objective function we cast is
the sum of an empirical loss of a predictor and a complexity term for that predictor. The
best predictor in a given class of hypotheses, which can only be determined in hindsight, is
the minimizer of the optimization problem. In order to derive explicit quantitative mistake
bounds we make an immediate use of the fact that dual objective lower bounds the primal
objective. We therefore switch to the dual representation of the optimization problem. We
then reduce the process of online learning to the task of incrementally increasing the dual
objective function. The amount by which the dual increases serves as a new and natural
notion of progress. By doing so we are able to tie together the primal objective value and
the number of prediction mistakes using the increase in the dual objective. The end result
is a general framework for designing online algorithms and analyzing them in the mistake
bound model.

We illustrate the power of our framework by studying two schemes for increasing the dual
objective. The first performs a fixed-size update which is based solely on the last observed
example. We show that this dual update is equivalent to the primal update of the quasi-
additive family of algorithms (Grove et al. 2001). In particular, our framework yields the
tightest known bounds for several known quasi-additive algorithms such as the Perceptron
and Balanced Winnow. The second update scheme we study moves further in the direction
of optimization techniques in several accounts. In this scheme the online learning algorithm
may modify its hypotheses based on multiple past examples. Moreover, the update itself
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is constructed by maximizing, or approximately maximizing, the increase in the dual. This
second approach still entertains the same mistake bound of the first scheme. Moreover, it
also serves as a vehicle for deriving new online algorithms which attain regret bounds with
respect to the hinge-loss.

This paper is organized as follows. In Sect. 2 we begin with a formal presentation of
online learning. Our new framework for designing and analyzing online learning algorithms
is introduced in Sect. 3. Next, in Sect. 4, we derive the family of quasi-additive algorithms
(Grove et al. 2001) by utilizing the newly introduced framework and show that our analysis
produces the best known mistake bounds for these algorithms. In Sect. 5 we derive new
online learning algorithms based on our framework. We analyze the performance of these
algorithms in the mistake bound model as well as in the regret bound model in which the
cumulative loss of the online algorithm is compared to the cumulative loss of any competing
hypothesis. We recap and draw connections to earlier analysis techniques in Sect. 6. Possible
extensions of our work and concluding remarks are given in Sect. 7.

2 Problem setting

In this section we introduce the notation used throughout the paper and formally describe
our problem setting. We denote scalars with lower case letters (e.g. x and ω), and vectors
with bold face letters (e.g. x and ω). The set of non-negative real numbers is denoted by R+.
For any k ≥ 1, the set of integers {1, . . . , k} is denoted by [k].

Online learning of binary classifiers is performed in a sequence of trials. At trial t the
algorithm first receives an instance xt ∈ R

n and is then required to predict the label asso-
ciated with that instance. We denote the prediction of the algorithm on the t ’th trial by ŷt .
For simplicity and concreteness we focus on online learning of binary classifiers, namely,
we assume that the labels are in {+1,−1}. After the online learning algorithm has predicted
the label ŷt , the true label yt ∈ {+1,−1} is revealed and the algorithm pays a unit cost if its
prediction is wrong, that is, if yt �= ŷt . The ultimate goal of the algorithm is to minimize the
total number of prediction mistakes it makes along its run. To achieve this goal, the algo-
rithm may update its prediction mechanism after each trial so as to be more accurate in later
trials.

In this paper, we assume that the prediction of the algorithm at each trial is determined
by a margin-based linear hypothesis. Namely, there exists a weight vector ωt ∈ Ω ⊂ R

n

where ŷt = sign(〈ωt ,xt 〉) is the actual binary prediction and |〈ωt ,xt 〉| is the confidence in
this prediction. The term yt 〈ωt ,xt 〉 is called the margin of the prediction and is positive
whenever yt and sign(〈ωt ,xt 〉) agree. We evaluate the performance of a weight vector ω

on a given example (x, y) in one of two ways. First, we may check whether the prediction
based on ω results in a mistake which amounts to checking whether y = sign(〈ω,x〉) or
not. Throughout this paper, we use M to denote the number of prediction mistakes made by
an online algorithm on a sequence of examples (x1, y1), . . . , (xm,ym). The second way we
evaluate the predictions of an hypothesis is by using the hinge-loss function, defined as,

�γ
(
ω; (x, y)

) =
{

0 if y〈ω,x〉 ≥ γ ,
γ − y〈ω,x〉 otherwise.

(1)

The hinge-loss penalizes an hypothesis for any margin less than γ . Additionally, if y �=
sign(〈ω,x〉) then �γ (ω; (x, y)) ≥ γ . Therefore, the cumulative hinge-loss suffered over a
sequence of examples upper bounds γM . Throughout the paper, when γ = 1 we use the
shorthand �(ω; (x, y)).
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As mentioned before, the performance of an online learning algorithm is measured by the
cumulative number of prediction mistakes it makes along its run on a sequence of examples
(x1, y1), . . . , (xm,ym). Ideally, we would like to think of the labels as if they are generated
by an unknown yet fixed weight vector ω� such that yi = sign(〈ω�,xi〉) for all i ∈ [m].
Moreover, in the utopian case where the cumulative hinge-loss of ω� on the entire sequence
is zero, the predictions that ω� makes are all correct and with a confidence level of at least γ .
In this case, we would like M , the number of prediction mistakes of our online algorithm, to
be independent of m, the number of examples. Usually, in such cases, M is upper bounded
by F(ω�) where F : Ω → R is a function which measures the complexity of ω�. In the
more realistic case there does not exist ω� which correctly predicts the labels of all observed
instances. In this case, we would like the online algorithm to be competitive with any fixed
hypothesis ω. Formally, let λ and C be two positive scalars. We say that our online algorithm
is (λ,C)-competitive with the set of vectors in Ω , with respect to a complexity function F

and the hinge-loss �γ , if the following bound holds,

∀ω ∈ Ω, λM ≤ F(ω) + C

m∑

i=1

�γ (ω; (xi , yi)). (2)

The parameter C controls the trade-off between the complexity of ω (measured through F )
and the cumulative hinge-loss of ω. The parameter λ is introduced for technical reasons that
are provided in the next section. The main goal of this paper is to develop a general paradigm
for designing online learning algorithms and analyze them in the mistake bound framework
given in (2).

3 A primal-dual view of online learning

In this section we describe our methodology for designing and analyzing online learning
algorithms for binary classification problems. Let us first rewrite the bound in (2) as follows,

λM ≤ min
ω∈Ω

P(ω), (3)

where P(ω) denotes the right-hand side of (2). Let us also denote by P� the right-hand side
of (3). To motivate our construction we start by analyzing a specific online learning algo-
rithm, denoted Follow-the-Regularized-Leader or FoReL in short. Intuitively, we view the
online learning task as incrementally solving the optimization problem minω P(ω). How-
ever, while P(ω) depends on the entire sequence of examples {(x1, y1), . . . , (xm,ym)}, the
online algorithm is confined to use on trial t only the first t − 1 examples of the sequence.
To do this, the FoReL algorithm simply ignores the examples {(xt , yt ), . . . , (xm,ym)} as
they are not provided to the algorithm on trial t . Formally, let Pt (ω) denote the following
instantaneous objective function,

Pt (ω) = F(ω) + C

t−1∑

i=1

�γ (ω; (xi , yi)).

The FoReL algorithm sets ωt to be the optimal solution of Pt (ω) over ω ∈ Ω . Since Pt (ω)

depends only on the sequence of examples {(x1, y1), . . . , (xt−1, yt−1)} it indeed adheres with
the main requirement of an online algorithm. The role of this algorithm is to emphasize the
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difficulties encountered in employing a primal algorithm and to pave the way to our ap-
proach which is based on the dual representation of the optimization problem minω P(ω).
The FoReL algorithm can be viewed as a modification of the follow-the-leader algorithm,
originally suggested by Hannan (1957). In contrast to follow-the-leader algorithms, our reg-
ularized version of the algorithm also takes the complexity of ω in the form of F(ω) into
account when constructing its predictors. We would like to note that in general follow-
the-leader algorithms may not attain a mistake bound while under the assumptions out-
lined below the regularized version of follow-the-leader does yield a mistake bound. Be-
fore proceeding to the mistake bound analysis, we also would like to mention that when
F(ω) = 1

2‖ω‖2
2 the algorithm reduces to a simple (and rather inefficient) adaptation of the

SVM algorithm to an online setting (see also Li and Long 2002; Cesa-Bianchi et al. 2005;
Vovk 2001). When the loss function is the squared-loss and the task is linear regression, the
FoReL algorithm is similar to the well known online ridge regression algorithm.

We now turn to the analysis of the FoReL algorithm. First, we need to introduce addi-
tional notation. Let (x1, y1), . . . , (xm,ym) be a sequence of examples and denote by E the
set of trials on which the algorithm made a prediction mistake,

E = {t ∈ [m] : sign(〈ωt ,xt 〉) �= yt }. (4)

To remind the reader, the number of prediction mistakes of the algorithm is denoted by
M and thus M = |E|. To prove a bound of the form given in (3) we associate a scalar,
denoted vt , with each weight vector ωt . Intuitively, the scalar vt measures the quality of ωt

in predicting the labels. To ensure proper normalization of the quality assessment we require
that the quality value of the initial weight vector is 0 and that the quality values of all weight
vectors is at most P�. The following lemma states that a sufficient condition for proving
a mistake bound is that the sequence of quality values v1, . . . , vm+1 corresponding to the
weight vectors ω1, . . . ,ωm+1 never decreases.

Lemma 1 Assume that an arbitrary online learning algorithm is presented with the se-
quence of examples (x1, y1), . . . , (xm,ym) and let E be as defined in (4). Assume in addition
that we can associate a scalar vt with each weight vector ωt constructed by the online
algorithm such that the following requirements hold:

(i) v1 = 0; (ii) v1 ≤ v2 ≤ · · · ≤ vm+1; (iii) vm+1 ≤ P�.

Then, λM ≤ P� where

λ = 1

M

∑

t∈E
(vt+1 − vt ).

Proof Combining the three requirements and using the definition of λ give that

P� ≥ vm+1 = vm+1 − v0 =
m∑

t=1

(vt+1 − vt ) ≥
∑

t∈E
(vt+1 − vt ) = Mλ. �

The above lemma underlines a method for obtaining mistake bounds by finding a se-
quence of quality values v1, . . . , vm+1 each of which is associated with a weight vector used
for prediction. These values should satisfy the conditions stated in the lemma in order to
prove mistake bounds. We now follow this line of proof for analyzing the FoReL algorithm
by defining vt = Pt (ωt ).
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Since the hinge-loss �γ (ω; (xt , yt )) is non-negative we get that for any vector ω, Pt (ω) ≤
Pt+1(ω) and in particular Pt (ωt+1) ≤ Pt+1(ωt+1). The optimality of each vector ωt with re-
spect to Pt (ω) implies that Pt (ωt ) ≤ Pt (ωt+1). Combining the last two inequalities we get
that Pt (ωt ) ≤ Pt+1(ωt+1) and therefore the second requirement in Lemma 1 holds. Assum-
ing that minω F(ω) = 0, it is immediate to show that P1(ω1) = 0 (first requirement). Finally,
by definition we have that Pm+1(ωm+1) = P� and thus the third requirement holds as well.
We have thus obtained a (hypothetical) mistake bound of the from given in (3). While this
approach seems aesthetic, it is rather difficult to reason about the increase in the instanta-
neous primal objective functions due to the change in ω and thus λ might be excessively
small and the bound is vacuous. In addition, we obtained the monotonicity property of the
sequence P1(ω1), . . . ,Pm+1(ωm+1) (second requirement in Lemma 1) by relying on the op-
timality of each ωt with respect to Pt (ω). The optimality of ωt is a specific property of
the FoReL algorithm and does not hold for many other online learning algorithms. These
difficulties surface the alternative dual-based approach which we explore throughout this
paper.

The notion of duality, commonly used in optimization theory, plays an important role in
obtaining lower bounds for the minimal value of the primal objective (see for example Boyd
and Vandenberghe 2004). As we show in the sequel, the benefit in using the dual represen-
tation of P(ω) is twofold. First, we are able to express the increase in the instantaneous dual
representation of P(ω) through a simple recursive update of the dual variables. Second, dual
objective values are natural candidates for obtaining lower bounds for the optimal primal
objective values. Thus, by switching to the dual representation we obtain a monotonically
increasing sequence of dual objective values each of which is bounded above by P�.

We now present an alternative view of the FoReL algorithm based on the notion of dual-
ity. This dual view would pave the way for analyzing online learning algorithms by setting vt

in accordance to the instantaneous dual objective values. We formally show in Appendix 1
that the dual of the problem minω P(ω) is

max
α∈[0,C]m

D(α) where D(α) = γ

m∑

i=1

αi − G

(
m∑

i=1

αiyixi

)

. (5)

The function G is the Fenchel conjugate (Rockafellar 1970) of the function F and is defined
as follows,

G(θ) = sup
ω∈Ω

〈ω, θ〉 − F(ω). (6)

The weak duality theorem states that the maximum value of the dual problem is upper-
bounded by the minimum value of the primal problem. Therefore, any value of the dual
objective is upper bounded by the optimal primal objective. That is, for any α ∈ [0,C]m
we have that D(α) ≤ P�. Building on the definition of the instantaneous primal objective
values, we denote by Dt the dual objective value of Pt which amounts to,

Dt (α) = γ

t−1∑

i=1

αi − G

(
t−1∑

i=1

αiyixi

)

. (7)

The instantaneous dual value Dt can also be cast as a mapping from [0,C]t−1 into the
reals. However, in contrast to the definition of the primal values, the instantaneous dual
value Dt can be expressed as a specific assignment of the dual variables for the full dual
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problem D. Specifically, we obtain that for (α1, . . . , αt−1) ∈ [0,C]t−1 the following equality
immediately holds,

Dt ((α1, . . . , αt−1)) = D((α1, . . . , αt−1,0, . . . ,0)).

Thus, the FoReL algorithm can alternatively be viewed as the process of finding a solution
for the dual problem, maxα∈[0,C]m D(α), where at the end of trial t the online algorithm seeks
a maximizer for the dual function confined to the first t variables,

max
α∈[0,C]m

D(α) s.t. ∀i > t, αi = 0. (8)

Analogous to our construction of instantaneous primal solutions, we construct a sequence
of instantaneous assignments for the dual variables which we denote by α1,α2, . . . ,αm+1

where αt+1 is the maximizer of (8). The property of the dual objective that we utilize is that
it can be optimized in a sequential manner. Namely, if on trial t we ground αt

i to zero for i ≥ t

then D(αt ) does not depend on examples which have not been observed yet. Throughout the
paper we assume that the supremum of G(θ) as defined in (6) is attainable. We show in
Appendix 1, that the primal vector ωt can be derived from the dual vector αt through the
equality,

ωt = argmax
ω∈Ω

(〈ω, θ t 〉 − F(ω)) where θ t =
m∑

i=1

αt
i yixi . (9)

Furthermore, when F(ω) is convex, then strong duality holds and thus ωt as given in (9) is
indeed the optimum of Pt (ω) provided that αt is the optimum of (8).

We have thus presented two views of the FoReL algorithm through the prism of incre-
mental optimization. In the first view the algorithm constructs a sequence of primal solu-
tions ω1, . . . ,ωm+1 while in the second the algorithm constructs a sequence of dual solutions
which we analogously denote by α1, . . . ,αm+1. The weak duality immediately enables us
to cast an upper bound on the sequence of the corresponding dual values, ∀t,D(αt ) ≤ P�,
without resorting to or relying on optimality of any of the instantaneous dual solutions. Thus,
by setting vt = D(αt ) we immediately get that the third requirement from Lemma 1 holds.
Next we show that the first requirement from Lemma 1 holds as well. Recall that F(ω) is our
“complexity” measure for the vector ω. A natural assumption on F is that minω∈Ω F(ω) = 0.
The intuitive meaning of this assumption is that the complexity of the “simplest” hypothesis
in Ω is zero. Since α1 is the zero vector we get that

v1 = D(α1) = 0 − G(0) = inf
ω∈Ω

F(ω) = 0, (10)

which implies that the first requirement from Lemma 1 hold. The monotonicity requirement
from Lemma 1 follows directly from the fact that αt+1 is the optimum of D(α) over [0,C]t ×
{0}m−t while αt ∈ [0,C]t × {0}m−t .

In general, any sequence of feasible dual solutions α1, . . . ,αm+1 can define an online
learning algorithm by setting ωt according to (9). Naturally, we require that αt

i = 0 for all
i ≥ t since otherwise ωt would depend on future examples which have not been observed
yet. A key advantage of the dual representation is that we no longer need to find an optimal
solution for each instantaneous dual problem Dt . To prove that an online algorithm which
operates on the dual variables entertains the mistake bound given in (3) it suffices to require
that D(αt+1) ≥ D(αt ). We show in the coming sections that few well studied algorithms can
be analyzed using our primal-dual perspective. We do so by showing that the algorithms
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Fig. 1 The template algorithm for online classification

guarantee a lower bound on the increase in the dual objective function on trials with predic-
tion mistakes. Thus, all of the algorithms we analyze confine with the mistake bound given
in (3) and differ in their choice of F and in their mechanism for increasing the dual objective
function.

To recap, we now describe a template algorithm for online classification which incremen-
tally increases the dual objective function. Our algorithm starts with the trivial dual solution
α1 = 0. On trial t , we use αt for defining the weight vector ωt as given in (9). Next, we use
ωt for predicting the label of xt , ŷt = sign(〈ωt ,xt 〉). Finally, in case of a prediction mistake
we find a new dual solution αt+1. This new dual solution is obtained by keeping the suffix
of m − t elements of αt+1 at zero. The monotonicity requirement we imposed implies that
the new value of the dual objective, D(αt+1), can only increase and cannot be smaller than
D(αt ). Moreover, the average increase in the dual objective over erroneous trials should be
strictly positive. In the next section we provide sufficient conditions which guarantee a min-
imal increase of the dual objective whenever the algorithm makes a prediction mistake. Our
template algorithm is summarized in Fig. 1. We conclude this section by providing a general
mistake bound for any algorithm which belongs to our framework.

Theorem 1 Let (x1, y1), . . . , (xm,ym) be a sequence of examples. Assume that an online
algorithm of the form given in Fig. 1 is run on this sequence with a function F : Ω → R

which satisfies minω∈Ω F(ω) = 0. Let E = {t ∈ [m] : ŷt �= yt } and denote by λ the average
increase of the dual objective over the trials in E ,

λ = 1

|E|
∑

t∈E
(D(αt+1) −D(αt )).

Then,

λM ≤ inf
ω∈Ω

(

F(ω) + C

m∑

t=1

�γ (ω; (xt , yt ))

)

.

Proof For all t ∈ [m+1] define vt = D(αt ). We prove the claim by applying Lemma 1 using
the above assignments for the sequence v1, . . . , vm+1. To do so, we need to show that the
three requirements given in Lemma 1 hold. As in (10), the first requirement follows from the
fact that α1 = 0 and our assumption that minω∈Ω F(ω) = 0. The second requirement follows
directly from the definition of the online algorithm in Fig. 1. Finally, the last requirement is
a direct consequence of the weak duality theorem. �
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The bound in Theorem 1 becomes useless when λ is excessively small. In the next section
we analyze a few known online algorithms. We show that these algorithms tacitly impose
sufficient conditions on F and on the sequence of input examples. These conditions guaran-
tee a minimal increase of the dual objective which result in meaningful mistake bounds for
each of the algorithm we discuss.

4 Analysis of quasi-additive online algorithms

In the previous section we introduced a general framework for online learning based on
the notion of duality. In this section we analyze the family of quasi-additive online algo-
rithms described in (Grove et al. 2001; Kivinen and Warmuth 1997, 2001) using the newly
introduced dual view. This family includes several known algorithms such as the Percep-
tron algorithm (Rosenblatt 1958), Balanced-Winnow (Grove et al. 2001), and the family of
p-norm algorithms (Gentile 2002).

Building on the exposition provided in the previous section we cast the online learning
problem as the task of incrementally increasing the dual objective function given by (5).
We show in this section that all quasi-additive online learning algorithms can be viewed
as employing the same procedure for incrementing (5). The core difference between the
algorithms we analyze distills to the complexity function F which leads to different forms of
the function G. We exploit this common ground by providing a unified analysis and mistake
bounds to all the above algorithms. The bounds we obtain are as tight as the bounds that
were derived for each algorithm individually yet our proofs are simpler than prior proofs.

To guarantee an increase in the dual as given by (5) on erroneous trials we devise the
following procedure. First, if on trial t the algorithm did not make a prediction mistake we
do not change α and thus set αt+1 = αt . If on trial t there was a prediction mistake, we
change only the t ’th component of α and set it to C. Formally, for t ∈ E the new vector αt+1

is defined as,

αt+1
i =

{
αt

i if i �= t ,
C if i = t .

(11)

This form of update implies that the components of α are either zero or C.
In order to continue with the derivation and analysis of online algorithms, we now provide

sufficient conditions for the update given by (11). The conditions guarantee an increase of
the dual objective for all t ∈ E which is substantial enough to yield a mistake bound. Let
t ∈ E be a trial on which α was updated. From the definition of D(α) we get that the change
in the dual objective due to the update is,

D(αt+1) −D(αt ) = γC − G(θ t + Cytxt ) + G(θ t ), (12)

where, to remind the reader, θ t = ∑t−1
i=1 αt

i yixi . Throughout this section we assume that G

is twice differentiable. (This assumption indeed holds for the algorithms we analyze.) We
denote by g(θ) the gradient of G at θ and by H(θ) the Hessian of G, that is, the matrix of
second order derivatives of G with respect to θ . We would like to note in passing that the
vector function g(·) is often referred to as the link function (see for instance Azoury and
Warmuth 2001; Gentile 2002; Kivinen and Warmuth 1997, 2001).

Using Taylor expansion of G around θ t , we get that there exists θ for which,

G(θ t + Cytxt ) = G(θ t ) + Cyt 〈xt ,g(θ t )〉 + 1

2
C2〈xt ,H(θ)xt 〉. (13)
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Plugging the above equation into (12) gives that,

D(αt+1) −D(αt ) = C(γ − yt 〈xt ,g(θ t )〉) − 1

2
C2〈xt ,H(θ)xt 〉. (14)

We next show that ωt = g(θ t ) and therefore the second term in the right-hand of (13) is
negative. Put another way, moving θ t infinitesimally in the direction of ytxt decreases G.
We then cap the amount by which the second order term can influence the dual value. To
show that ωt = g(θ t ) note that from the definition of G and ωt , we get that for all θ the
following holds,

G(θ t ) + 〈ωt , θ − θ t 〉 = 〈ωt , θ t 〉 − F(ωt ) + 〈ωt , θ − θ t 〉 = 〈ωt , θ〉 − F(ωt ). (15)

In addition, G(θ) = maxω∈Ω〈ω, θ〉−F(ω) ≥ 〈ωt , θ〉−F(ωt ). Combining (15) with the last
inequality gives the following,

G(θ) ≥ G(θ t ) + 〈ωt , θ − θ t 〉. (16)

Since (16) holds for all θ it implies that ωt is a sub-gradient of G at θ t . In addition, since G is
differentiable its only possible sub-gradient at θ t is its gradient, g(θ t ), and thus ωt = g(θ t ).
The simple form of the update and the link between ωt and θ t through g can be summarized
as the following simple yet general quasi-additive update:

If ŷt = yt Set θ t+1 = θ t and ωt+1 = ωt ,
If ŷt �= yt Set θ t+1 = θ t + Cytxt and ωt+1 = g(θ t+1) .

Getting back to (14) we get that,

D(αt+1) −D(αt ) = C(γ − yt 〈ωt ,xt 〉) − 1

2
C2〈xt ,H(θ)xt 〉. (17)

Recall that we assume that t ∈ E and thus yt 〈xt ,ωt 〉 ≤ 0. In addition, we later on show
that ∀x ∈ Ω : 〈x,H(θ)x〉 ≤ 1 for all the particular choices of G we analyze under certain
assumptions on the norm of x. We therefore can state the following corollary.

Corollary 1 Let G be a twice differentiable function whose domain is R
n. Denote by H

the Hessian of G and assume that for all θ ∈ R
n and for all xt (t ∈ E) we have that

〈xt ,H(θ)xt 〉 ≤ 1. Then, under the conditions of Theorem 1 the update given by (11) ensures
that,

λ ≥ γC − 1

2
C2.

We now provide concrete analyses for specific complexity functions F . For each choice
of F we derive the specific form the update given by (11) takes and briefly discuss the
implications of the resulting mistake bounds.

Example 1 (Perceptron) The Perceptron algorithm (Rosenblatt 1958) can be derived from
(11) by setting F(ω) = 1

2‖ω‖2, Ω = R
n, and γ = 1. Note that the conjugate function of F

for this choice is, G(θ) = 1
2 ‖θ‖2. Therefore, the gradient of G at θ t is g(θ t ) = θ t , which

implies that ωt = θ t . The update ωt+1 = g(θ t+1) thus amounts to, ωt+1 = ωt + Cytxt ,
which is a scaled version of the well known Perceptron update. We now case the com-
mon assumption that the norm of all the instances is bounded and in particular we assume
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that ‖xt‖2 ≤ 1 for all t ∈ [m]. Since the Hessian of G is the identity matrix we get that,
〈xt ,H(θ)xt 〉 = 〈xt ,xt 〉 ≤ 1. Therefore, we obtain the following mistake bound,

(
C − 1

2
C2

)
M ≤ min

ω∈Rn

1

2
‖ω‖2 + C

m∑

i=1

�(ω; (xi , yi)). (18)

On a first sight the above bound does not seem to take the form of one of the known mistake
bounds for the Perceptron algorithm. We next show that since we are free to choose the
constant C, which acts here as a simple scaling, we do obtain the tightest mistake bound
that is known for the Perceptron. Note that on trial t , the hypothesis of the Perceptron can
be rewritten as,

ωt = C
∑

i∈E:i<t

yixi .

The above form implies that the predictions of the Perceptron algorithm do not depend
on the actual value of C so long as C > 0. Therefore, we can choose C to be the minimizer
of the bound given in (18) and rewrite the bound as,

∀ω ∈ R
n,M ≤ min

C∈(0,2)

(
1

C(1 − 1
2 C)

)(
1

2
‖ω‖2 + C

m∑

i=1

�(ω; (xi , yi))

)

, (19)

where the domain (0,2) for C ensures that the bound does not become vacuous. Finding the
optimal value of C for the right-hand side of the above and plugging this value back into the
equation yields the following theorem.

Theorem 2 Let (x1, y1), . . . , (xm,ym) be a sequence of examples such that ‖xi‖ ≤ 1 for all
i ∈ [m] and assume that this sequence is presented to the Perceptron algorithm. Let ω be an
arbitrary vector in R

n and define L = ∑m

i=1 �(ω; (xi , yi)). Then, the number of prediction
mistakes of the Perceptron is upper bounded by,

M ≤ L + 1

2
‖ω‖2(1 +

√
1 + 4L/‖ω‖2).

The proof of the theorem is given in Appendix 2. We would like to note that this bound
is identical to the best known mistake bound for the Perceptron algorithm (see for example
(Gentile 2002)). However, our proof technique is vastly different. Furthermore, the new
technique also enables us to derive mistake and loss bounds for new algorithms such as the
ones discussed in Sect. 5.

Example 2 (Balanced Winnow) We now analyze a version of the Winnow algorithm called
Balanced-Winnow (Grove et al. 2001) which is also closely related to the Exponentiated-
Gradient algorithm (Kivinen and Warmuth 1997). For brevity we refer to the algorithm we
analyze simply as Winnow. To derive the Winnow algorithm we choose,

F(ω) =
n∑

i=1

ωi log

(
ωi

1/n

)
, (20)

and Ω = Δn = {ω ∈ R
n+ : ∑n

i=1 ωi = 1}. The function F is the relative entropy between the
probability vector ω and the uniform vector ( 1

n
, . . . , 1

n
). The relative entropy is non-negative
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and measures the entropic divergence between two distributions. It attains a value of zero
whenever the two vectors are equal. Therefore, the minimum value of F(ω) is zero and is
attained for ω = ( 1

n
, . . . , 1

n
). The conjugate of F is the logarithm of the sum of exponentials

(see for example Boyd and Vandenberghe 2004, p. 93),

G(θ) = log

(
1

n

n∑

i=1

exp(θi)

)

. (21)

The k’th element of the gradient of G is,

gk(θ) = exp(θk)∑n

i=1 exp(θi)
.

Note that g(θ) is a vector in the n-dimensional probability simplex and therefore ωt =
g(θ t ) ∈ Ω . The k’th element of ωt+1 can be rewritten using a multiplicative update rule,

ωt+1,k = 1

Zt

exp(θt,k + Cytxt,k) = ωt,k

Zt

exp(Cytxt,k), (22)

where Zt is a normalization constant which ensures that ωt+1 is in the probability simplex.

To analyze the algorithm we need to show that 〈xt ,H(θ)xt 〉 ≤ 1. The next lemma pro-
vides us with a general tool for bounding 〈xt ,H(θ)xt 〉. The lemma gives conditions on G

which imply that its Hessian is diagonal dominant. A similar analysis of the Hessian was
given in (Grove et al. 2001).

Lemma 2 Assume that G(θ) can be written as,

G(θ) = Ψ

(
n∑

r=1

φ(θr)

)

,

where φ and Ψ are twice differentiable scalar functions. Denote by φ′, φ′′,Ψ ′,Ψ ′′ the first
and second order derivatives of Ψ and φ. If Ψ ′′(

∑
r φ(θr )) ≤ 0 for all θ then,

〈x,H(θ)x〉 ≤ Ψ ′
(

n∑

r=1

φ(θr )

)
n∑

i=1

φ′′(θi)x
2
i .

The proof of this lemma is given in Appendix 2.
We now rewrite G(θ) from (21) as G(θ) = Ψ (

∑n

r=1 φ(θr )) where Ψ (s) = log(s/n) and
φ(θ) = exp(θ). Note that Ψ ′(s) = 1/s, Ψ ′′(s) = −1/s2, and φ′′(θ) = exp(θ). We thus get
that,

Ψ ′′
(∑

r

φ(θr )

)
= −

(∑

r

exp(θr )

)−2

≤ 0.

Therefore, the conditions of Lemma 2 hold and we get that,

〈x,H(θ)x〉 ≤
n∑

i=1

exp(θi)∑n

r=1 exp(θr )
x2

i ≤ max
i∈[n]

x2
i .
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Thus, if ‖xt‖∞ ≤ 1 for all t ∈ E then we can apply corollary 1 and get the following mistake
bound,

(
γC − 1

2
C2

)
M ≤ min

ω∈Ω

(
n∑

i=1

ωi log(ωi) + log(n) + C

m∑

i=1

�γ (ω; (xi , yi))

)

.

Since
∑n

i=1 ωi log(ωi) ≤ 0, if we set C = γ , the above bound reduces to,

M ≤ 2

(
log(n)

γ 2
+ min

ω∈Ω

1

γ

m∑

i=1

�γ (ω; (xi , yi))

)

.

The bound above is typical of online algorithms which update their prediction mechanism in
a multiplicative form as given by (22). The excessive loss suffered by the online algorithm
above over the loss of any competitor scales logarithmically with the number of features.

Example 3 (p-norm algorithms) We conclude this section with the analysis of the family of
p-norm algorithms (Gentile 2002; Grove et al. 2001). This family can be viewed as a bridge
between the Perceptron algorithm and the Winnow algorithm. As we show in the sequel, the
Perceptron algorithm is a special case of a p-norm algorithm, obtained by setting p = 2,
while the Winnow algorithm can be approximated by setting p to a very large number.
Formally, let p,q ≥ 1 be two scalars such that 1

p
+ 1

q
= 1. Define,

F(ω) = 1

2
‖ω‖2

q = 1

2

(
n∑

i=1

|ωi |q
)2/q

,

and let Ω = R
n. The conjugate function of F in this case is, G(θ) = 1

2 ‖θ‖2
p (for a proof

see Boyd and Vandenberghe 2004, p. 93) and the i’th element of the gradient of G is,

gi(θ) = sign(θi)|θi |p−1

‖θ‖p−2
p

. (23)

To analyze the p-norm algorithm we again use Lemma 2 and rewrite G(θ) as

G(θ) = Ψ

(
n∑

r=1

φ(θr)

)

,

where Ψ (a) = 1
2a2/p and φ(a) = |a|p . Note that the first and second order derivatives are,

Ψ ′(a) = 1

p
a2/p−1, Ψ ′′(a) = 1

p

(
2

p
− 1

)
a2/p−2,

φ′′(a) = p(p − 1)sign(a)|a|p−2.

Therefore, if p ≥ 2 then the conditions of Lemma 2 hold and we get that,

〈x,H(θ)x〉 ≤ 1

p
(‖θ‖p

p)
2
p −1

p(p − 1)

n∑

i=1

sign(θi)|θi |p−2x2
i . (24)
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Using Holder inequality with the dual norms p

p−2 and p

2 we get that,

n∑

i=1

sign(θi)|θi |p−2x2
i ≤

(
n∑

i=1

|θi |(p−2)
p

p−2

) p−2
p

(
n∑

i=1

x
2 p

2
i

) 2
p

= ‖θ‖p−2
p ‖x‖2

p.

Combining the above with (24) gives,

〈x,H(θ)x〉 ≤ (p − 1)‖x‖2
p.

If we impose the condition that ‖x‖p ≤ √
1/(p − 1) then 〈x,H(θ)x〉 ≤ 1. Recall that θ t for

the update we employ can be written as,

θ t = C
∑

i∈E:i<t

yixi .

Denote by v = ∑
i∈E:i<t yixi . Clearly, this vector does not depend on C. Since hypothesis

ωt is defined from θ t as given by (23) we can rewrite the j ’th component of ωt as,

C
sign(vj )|vj |p−1

‖v‖p−2
p

.

Thus, similar to Example 1, the predictions of a p-norm algorithm which uses this update
do not depend on the specific value of C as long as C > 0. We now combine this fact with
the assumption that ‖x‖p ≤ √

1/(p − 1), and apply again corollary 1, to obtain that

∀ω ∈ Ω, M ≤ min
C∈(0,2)

1

C − 1
2 C2

(
1

2
‖ω‖2

q + C

m∑

i=1

�(ω; (xi , yi))

)

.

As in the proof of Theorem 2, we can substitute C with the minimizer of the above bound
and obtain a general bound for the p-norm algorithm,

M ≤ L + 1

2
‖ω‖2

q(1 +
√

1 + 4L/‖ω‖2
q),

where as before L = ∑m

i=1 �(ω; (xi , yi)).

5 Deriving and analyzing new online learning algorithms

In the previous section we described the family of quasi-additive online learning algorithms.
The algorithms are based on the simple update procedure defined in (11) which leads to a
conservative increase of the dual objective since we modify a single variable of α by setting
it to a constant value. Furthermore, such an update takes place solely on trials for which
there was a prediction mistake (t ∈ E). The purpose of this section is two fold. First, we
describe a broader and, in practice, more powerful update procedures which, based on the
actual predictions, may modify multiple elements of α. Second, we provide an alternative
analysis in the form of regret bounds, rather than mistake bounds. The motivation for the
new algorithms is as follows. Intuitively, update schemes which yield larger increases of the
dual objective value on each online trial are likely to “consume” more of the upper bound
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on the total possible increase in the dual as set by P�. Thus, they are in practice likely to
suffer smaller number of mistakes. Moreover, setting the dual variables in accordance to the
loss that is suffered on each trial allows us to derive bounds on the cumulative loss of the
online algorithms rather than merely bounding the number of mistakes the algorithms make.
We start this section with a very brief overview of the regret model in which the loss of the
online algorithm is compared to the loss of any fixed competitor. We then describe a few
new online update procedures and analyze them in the regret model.

The mistake bounds presented thus far are inherently deficient as they provide a bound on
the number of mistakes through the hinge-loss of the competitor. In contrast, regret bounds
measure the performance of the online algorithm and the competitor using the same loss
function. The regret of an online algorithm compared to a fix predictor, denoted ω, is defined
to be the following difference,

1

m

m∑

i=1

�γ (ωi; (xi , yi)) − 1

m

m∑

i=1

�γ (ω; (xi , yi)).

The right-hand summand in the above expression reflects the loss that is suffered by using
a fix predictor ω for all i ∈ [m]. In particular, the vector ω can be set in hindsight to be
the vector which minimizes the cumulative loss on the observed sequence of m instances.
Naturally, the problem of finding the vector ω which minimizes the right-hand summand
above depends on the entire sequence of examples. The regret thus reflects the amount of
excess loss suffered by the online algorithm due lack of knowledge of the entire sequence.
In this paper we derive regret bounds which are tailored to the hinge-loss function. The
bounds follow again our primal-dual perspective which incorporates a complexity term for
ω through a function F : Ω → R. The regret bound we present in this section takes the form,

∀ω ∈ Ω,
1

m

m∑

i=1

�γ (ωi; (xi , yi)) − 1

m

m∑

i=1

�γ (ω; (xi , yi)) ≤
√

2F(ω)

m
. (25)

Thus, this bound implies that the regret of the online algorithm with respect to any vector
whose complexity grows slower than m approaches zero as m goes to infinity.

5.1 Aggressive quasi-additive online algorithms

The update scheme we described in Sect. 4 for increasing the dual modifies α only on trials
on which there was a prediction mistake (t ∈ E). The update is performed by setting the
t ’th element of α to C and keeping the rest of the variables intact. This simple update can
be enhanced in several ways. First, note that while setting αt+1

t to C guarantees a sufficient
increase in the dual, there might be other values αt+1

t which would lead to even larger in-
creases of the dual. Furthermore, we can also update α on trials on which the prediction
was correct so long as the loss is non-zero. Last, we need not restrict our update to the t ’th
element of α. We can instead update several dual variables as long as their indices are in [t].

We now describe and briefly analyze a few new updates which increase the dual more
aggressively. The goal here is to illustrate the power of the approach and the list of new
updates we outline is by no means exhaustive. We start by describing an update which sets
αt+1

t adaptively, depending on the loss suffered on trial t . This improved update constructs
αt+1 as follows,

αt+1
i =

{
αt

i if i �= t ,
min{�γ (ωt ; (xt , yt )),C} if i = t .

(26)
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Fig. 2 The mitigating function μ(x) (left) and its inverse (right) for different values of C

In contrast to the previous update which modified α only when there was a prediction mis-
take, the new update modifies α whenever �γ (ωt ; (xt , yt )) > 0. As before, the above update
can be used with various complexity functions for F , yielding different aggressive quasi-
additive algorithms. This more aggressive approach leads to a more general loss bound
while still attaining the same mistake bound of the previous section. The mistake bound
still holds since whenever the algorithm makes a prediction mistake its loss is at least γ .

We now provide a unified analysis for all algorithms which are based on the update given
by (26). To do so we define the following function,

μ(x) = 1

C

(
min{x,C}

(
x − 1

2
min{x,C}

))
.

The function μ(·) is invertible on R+ and we denote its inverse function by μ−1(·).
A straightforward calculation gives that

μ−1(x) =
{

x + 1
2C if x ≥ 1

2C,√
2Cx otherwise.

The functions μ(·) and μ−1(·) are illustrated in Fig. 2. Applying μ to losses smaller than C

lessens the extent of the loss. Therefore, we also refer to μ as a mitigating function. Note,
though, that μ(·) and μ−1(·) become very similar to the identity function for small values
of C. The following theorem provides a bound on the cumulative sum of �γ (ωt , (xt , yt )).

Theorem 3 Let (x1, y1), . . . , (xm,ym) be a sequence of examples and let F : Ω → R be a
complexity function which satisfies minω∈Ω F(ω) = 0. Assume we run an online algorithm
whose update is based on (26) while using G as the conjugate function of F . If G is twice
differentiable and its Hessian satisfies, 〈xt ,H(θ)xt 〉 ≤ 1 for all θ ∈ R

n and t ∈ [m], then the
following bound holds,

∀ω ∈ Ω,
1

m

m∑

t=1

�γ (ωt ; (xt , yt )) ≤ μ−1

(
1

m

m∑

t=1

�γ (ω; (xt , yt )) + F(ω)

Cm

)

.
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Proof We first show that

m∑

t=1

μ(�γ (ωt ; (xt , yt ))) ≤
m∑

t=1

�γ (ω; (xt , yt )) + F(ω)

C
, (27)

by bounding D(αm+1) from above and below. The upper bound D(αm+1) ≤ P� follows
again from weak duality theorem. To derive a lower bound, note that the conditions stated
in the theorem imply that D(α1) = 0 and thus D(αm+1) = ∑m

t=1(D(αt+1) −D(αt )). Define
τt = min{�γ (ωt ; (xt , yt )),C} and note that the sole difference between the updates given by
(26) and (11) is that τt replaces C. Thus, the derivation of (17) in Sect. 4 can be repeated
almost verbatim with τt replacing C to obtain that,

D(αt+1) −D(αt ) ≥ τt (γ − yt 〈ωt ,xt 〉) − 1

2
τ 2
t . (28)

Summing over t ∈ [m], rewriting τt as the minimum between C and the loss at time t , and
rearranging terms while using the definition of μ(·), we get that,

D(αm+1) =
m∑

t=1

(D(αt+1) −D(αt )) ≥ C

m∑

t=1

μ(�γ (ωt ; (xt , yt ))).

Comparing the lower and upper bounds on D(αm+1) and rearranging terms yield the in-
equality provided in (27). We now divide (27) by m and use the fact that μ is convex to get
that

μ

(
1

m

m∑

t=1

�γ (ωt ; (xt , yt ))

)

≤ 1

m

m∑

t=1

μ(�γ (ωt ; (xt , yt )))

≤ 1

m

m∑

t=1

�γ (ω; (xt , yt )) + F(ω)

mC
. (29)

Finally, since both sides of the above inequality are non-negative and since μ−1 is a
monotonically increasing function we can apply μ−1 to both sides of (29) to get the bound
stated in the theorem. �

While the bound stated in the above theorem is no longer in the form of a mistake bound, it
nonetheless does not provide a regret bound of the form given by (25). We now show that the
bound of Theorem 3 can indeed be distilled and cast in the form of a loss bound, similar to
(25), by choosing appropriately the parameter C. To do so, we note that μ−1(x) ≤ x + 1

2C.
Therefore, the right-hand side of the bound in Theorem 3 is bounded above by

1

m

m∑

t=1

�γ (ω; (xt , yt )) + F(ω)

Cm
+ 1

2
C. (30)

Note that C both divides the complexity function F(ω) as well as appears as an independent
term. Choosing C such that the terms F(ω)

Cm
and 1

2C yields the tightest loss bound for this
update, we obtain the following corollary.
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Corollary 2 Assume we run an online algorithm whose update is based on (26) under the
same conditions stated in Theorem 3 while choosing

C =
√

2F(ω)

m
,

then,

1

m

m∑

t=1

�γ (ωt ; (xt , yt )) − 1

m

m∑

t=1

�γ (ω; (xt , yt )) ≤
√

2F(ω)

m
.

We can also derive a mistake bound from (29). To do so, we note that �γ (ωt ; (xt , yt )) ≥ γ

whenever the algorithm makes a prediction mistake. Since μ is a monotonically increasing
function and since �γ (·) is a non-negative function, we get that

∑

t∈E
μ(γ ) ≤

m∑

t=1

μ(�γ (ωt ; (xt , yt ))) ≤ F(ω)

C
+

m∑

t=1

�γ (ω; (xt , yt )).

Thus, we obtain the mistake bound,

M ≤ P�

λ
where λ ≥ Cμ(γ ) =

{
γC − 1

2C2 if C ≤ γ ,
1
2γ 2 if C > γ .

(31)

Our focus thus far was on an update which modifies a single dual variable, albeit aggres-
sively. We now examine another implication of our analysis which suggests the modification
of multiple dual variables on each trial. A simple argument presented below implies that this
broader family of updates also achieves the mistake and regret bounds above.

5.2 Updating multiple dual variables

The new update given in (26) is advantageous over the previous conservative update given
in (11) since in addition to the same increase in the dual on trials with a prediction mistake it
is also guaranteed to increase the dual by μ(�(·)) on the rest of the trials. Yet, both updates
are confined to the modification of a single dual variable on each trial. We nonetheless can
increase the dual more dramatically by modifying multiple dual variables on each trial. We
now outline two forms of updates which modify multiple dual variables on each trial.

In the first update scheme we optimize the dual over a set of dual variables It ⊆ [t] which
includes t . Given It , we set αt+1 to be,

αt+1 = argmax
α∈[0,C]m

D(α) s.t. ∀i /∈ It , αi = αt
i . (32)

This more general update also achieves the bound of Theorem 3 and the minimal increase
in the dual as given by (31). To see this, note that the requirement that t ∈ It implies,

D(αt+1) ≥ max{D(α) : α ∈ [0,C]m and ∀i �= t, αi = αt
i }. (33)

Thus the increase in the dual D(αt+1) − D(αt ) is guaranteed to be at least as large as the
increase due to the previous updates. The rest of the proof of the bound is literally the
same.
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Let us examine a few choices for It . Setting It = [t] for all t gives the FoReL algorithm
we mentioned in Sect. 3. This algorithm makes use of all the examples that have been ob-
served and thus is likely to make the largest increase in the dual objective on each trial. It
does require however a full-blown optimization procedure. In contrast, (32) can be solved
analytically when we employ the smallest possible set, It = {t}, with F(ω) = 1

2‖ω‖2. In this
case αt+1

t turns out to be the minimum between C and �(ωt ; (xt , yt ))/‖xt‖2. This algorithm
was described in (Crammer et al. 2005) and belongs to a family of Passive Aggressive algo-
rithms. The mistake bound that we obtain as a by product in this paper is however superior
to the one in (Crammer et al. 2005). Naturally, we can interpolate between the minimal and
maximal choices for It by setting the size of It to a predefined value k and choosing, say,
the last k observed examples as the elements of It . For k = 1 and k = 2 we can solve (32)
analytically while gaining modest increases in the dual. The full power of the update is un-
leashed for large values of k. However, (32) cannot be solved analytically and requires the
usage of numerical QP solvers based on, for instance, interior point methods.

The second update scheme modifies multiple dual variables on each trial as well, alas it
does not require solving an optimization problem with multiple variables. Instead, we per-
form kt mini-updates each of which focuses on a single variable from the set [t]. Formally,
let i1, . . . , ikt be a sequence of indices such that i1 = t and ij ∈ [t] for all j ∈ [kt ]. We define
a sequence of dual solutions in a recursive manner as follows. We start by setting α̂

0 = αt

and then perform a sequence of single variable updates of the form,

α̂
j = argmax

α∈[0,C]m
D(α) s.t. ∀p �= ij , α̂

j
p = α̂j−1

p .

Finally, we update αt+1 = α̂
kt . In words, we first decide on an ordering of the dual variables

that defined ωt and incrementally increase the dual by fixing all the dual variables but the
current one that is considered. For this variable we find the optimal solution of the con-
strained dual. The first dual variable we update is αt thus ensuring that the first step in the
row of updates is identical to the Passive Aggressive update which was mentioned above.
Indeed, note that for kt = 1 this update is identical to the update given in (32) with It = {t}.
Since at each operation we can only increase the dual we immediately conclude that Theo-
rem 3 holds for this composite update scheme as well. The main advantage of this update
is its simplicity since each operation involves optimization over a single variable which can
be solved analytically. The increase in the dual due to this update is closely related to the so
called row action methods in optimization (see for example Censor and Zenios 1997).

6 On the connection to previous analyses

The main contribution of this paper is the introduction of a framework for the design and
analysis of online prediction algorithms. There exist though voluminous amounts of work
that employ different approaches for the analysis of online algorithms. In this section, we
draw a few connections to earlier analysis techniques by modifying the primal problem
defined on the right hand side of (2). Our modifications naturally lead to modified dual
problems. We then analyze the increase in the modified duals to draw connections to prior
work and analyses.

To remind the reader, in order to obtain a mistake bound of the from given in (3) we
associated a quality value, vt , with each weight vector ωt . We then analyzed the progress
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of the online algorithm by monitoring the difference Δt
def= vt+1 − vt . Our quality values are

based on the dual objective values of the primal problem,

min
ω

P(ω) where P(ω) = F(ω) + C

m∑

i=1

(γ − yi〈ω,xi〉)+.

Concretely, we set vt = D(αt ) and use the increase in the dual as our notion of progress.
Furthermore, the mistake and regret bounds above were derived by reasoning about the
increase in the dual due to prediction mistakes.

Most if not all previous work analyzed online algorithms by measuring the quality of
ωt based on the correlation or distance between ωt and a fixed (yet unknown to the online
algorithm) competitor, denoted here by u. For example, Novikoff’s analysis of the Percep-
tron (Novikoff 1962) is based on the inner product between u and the current prediction ωt ,
vt = 〈ωt ,u〉. Another quality measure, which has been vastly used in previous analyses of
online algorithms, is based on the squared Euclidean distance, vt = ‖ωt − u‖2 (see for ex-
ample Azoury and Warmuth 2001; Gentile 2002; Kivinen and Warmuth 1997, 2001 and the
references therein). We show in the sequel that we can represent these previous definitions
of vt as an instantaneous value of a dual objective by modifying the primal problem.

The first simple modification of the primal problem that we present replaces the single
margin parameter γ with trial dependent parameters γ1, . . . , γm. Each trial dependent margin
parameter, γi , is set in accordance to example i and the fixed competitor u. Formally, let u
be a fixed competitor and set γi = yi〈u,xi〉. We now define the loss on trial t to be the hinge-
loss for a target margin value of γt . With this modification on hand we obtain the following
primal problem,

P(ω) = F(ω) + C

m∑

i=1

(γi − yi〈ω,xi〉)+

= F(ω) + C

m∑

i=1

(yi〈u,xi〉 − yi〈ω,xi〉)+.

By construction, the loss suffered by u on each trial i is zero since the margin u attains is
exactly γi . Thus, the primal objective attained by u consists solely of the complexity term
of u, F(u). Since P(u) upper bounds the optimal value of the primal we get that,

min
ω

P(ω) ≤ P(u) = F(u).

Moving to the dual of this newly introduced primal problem, we get that the dual of the
aforementioned primal problem is

D(α) =
m∑

i=1

γiαi − G(θ) where θ =
m∑

i=1

αiyixi .

Note that the mere difference between the above dual form and the dual of the original prob-
lem as described by (5) distills to replacing the fixed margin value γ with a trial dependent
one γi . Since γi = yi〈u,xi〉, we can further rewrite the dual as follows,

D(α) =
〈

u,

m∑

i=1

αiyixi

〉

− G(θ) = 〈u, θ〉 − G(θ). (34)
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We now embark on a specific connection to prior work by examining the case where F(ω) =
1
2 ‖ω‖2. For this choice of F , the Fenchel conjugate G amounts to G(θ) = 1

2‖θ‖2 and we get
that the dual further simplifies to the following form,

D(α) = 〈u, θ〉 − 1

2
‖θ‖2 = −1

2
‖θ − u‖2 + 1

2
‖u‖2.

The change in the value of the dual objective due to a change in the dual variables from αt

to αt+1 amounts to,

Δt = D(αt+1) −D(αt ) = 1

2
(‖θ t − u‖2 − ‖θ t+1 − u‖2).

Furthermore, the specific choice of F implies that ωt = θ t (see also the analysis of the
Perceptron algorithm in Sect. 4). Thus, the change in the dual can be written solely in terms
of the primal vectors ωt , ωt+1 and the competitor u,

Δt = 1

2
(‖ωt − u‖2 − ‖ωt+1 − u‖2).

We thus ended up with the notion of progress which corresponds to the quality measure
vt = ‖ωt − u‖2.

Before proceeding to deriving the next quality measure from our framework, we would
like to underscore the fact that our primal-dual perspective readily leads to a mistake bound
for this choice of primal problem. Concretely, since minω∈Ω

1
2 ‖ω‖2 = 0, the initial vector

ω1, which is obtained by setting all the dual variables α1
i to zero, corresponds to a dual

objective function whose value is zero. Combining the form of the increase in the dual with
the fact that the minimum of the primal is bounded above by F(u) = 1

2‖u‖2 we get that,

m∑

t=1

(‖ωt − u‖2 − ‖ωt+1 − u‖2) ≤ ‖u‖2. (35)

If we now use the Perceptron’s update, ωt+1 = ωt + Cytxt we get that the left hand side of
(35) further upper bounds the following expression,

∑

t∈E
(2Cyt 〈u,xt 〉 − C2‖xt‖2). (36)

As in the original mistake bound proof of the Perceptron, let us assume that the norm of the
competitor u is 1 and that it classifies the entire sequence correctly with a margin of at least
γ . Thus yt 〈u,xt 〉 ≥ γ for all t . Assume in addition that all the instances reside in a ball of
radius R we get that (36) is bounded below by

M(2Cγ − C2R2) = MC(2γ − CR2).

Choosing C = γ /R2 and recalling (35) we obtain the well known mistake bound of the
Perceptron,

M
γ

R2

(
2γ − γ

R2
R2

)
≤ ‖u‖2 = 1 ⇒ M ≤

(
R

γ

)2

.

To recap, we have shown that a simple modification of the primal problem leads to a notion
of progress that amounts to the change in the distance between the competitor and the primal
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vector that is used for prediction. We also illustrated that our framework can be used again
to derive a mistake bound by casting a simple bound on the primal objective function, and
bounding from below the increase in the dual.

Next, we show that Novikoff’s measure of quality, vt = 〈ωt ,u〉, employed in the analysis
of the Perceptron (Novikoff 1962) can be obtained from our framework by a different choice
of F . Our starting point is again the choice of trial-dependent hinge-loss which resulted the
following bound,

m∑

t=1

Δt ≤ F(u). (37)

Next, note that for the purpose of our analysis we are free to choose the complexity func-
tion F in hindsight. In particular, we use the predictors constructed by the online algo-
rithm in the definition of F . Let us defer the specific form of F and initially define it in
the following, rather abstract, form, F(ω) = U‖ω‖. In addition, we keep using the trial-
dependent margin losses. The dual objective thus again takes the form given by (34), namely,
D(α) = 〈u, θ〉 − G(θ). The Fenchel conjugate of the 2-norm is a barrier function (see again
(Boyd and Vandenberghe 2004)). Concretely, for our choice of F we get that its Fenchel
conjugate is,

G(θ) =
{

0 ‖θ‖ ≤ U ,
∞ otherwise.

Therefore, we get that D(α) = 〈θ ,u〉 so long as θ is inside the ball of radius U and otherwise
D(α) = −∞. In addition, let us choose ωt = θ t for all t ∈ [T ]. (Note that here we do not use
the definition of ωt as in (9). Nevertheless, our general primal-dual framework does not rely
on this particular choice.) To ensure that G(θ t ) is finite we now define U to be maxt∈[T ] ‖ωt‖
and thus D(αt ) = 〈ωt ,u〉 for all t ∈ [T ]. These specific choices of F and U imply that the
increase in the dual objective takes the following simple form,

Δt = D(αt+1) −D(αt ) = 〈ωt+1,u〉 − 〈ωt ,u〉.
The reader familiar with the original mistake bound proof of the Perceptron would imme-
diately recognize the above term as the measure of progress used by the proof. Indeed,
plugging the Perceptron update in the above equation we get that on trials with a prediction
mistake Δt is,

Δt = 〈ωt + ytxt ,u〉 − 〈ωt ,u〉 = yt 〈xt ,u〉.
On the rest of the trials there is no change in the dual objective and thus Δt = 0. We now
assume, as in the original mistake bound proof of the Perceptron algorithm, that the norm of
the competitor u is 1 and that it classifies the entire sequence correctly with a margin of at
least γ . The second assumption translates to the classical lower bound,

m∑

t=1

Δt =
∑

t∈E
yt 〈u,xt 〉 ≥ Mγ.

From the mistake bound proof of the Perceptron we know that the norm of ωt (which equals
θ t ) is at most

√
MR where R is the radius of the ball encapsulating all of the examples. We

therefore get the following upper bound on the primal objective,

P(u) = F(u) =
(

max
t

‖ωt‖
)
‖u‖ ≤ √

MR.
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We now tie the lower bound on
∑

t Δt with its upper bound using (37) to get that,

Mγ ≤
m∑

t=1

Δt ≤ F(u) ≤ √
MR ⇒ √

M ≤ R

γ
,

which after squaring yields the celebrated Perceptron’s mistake bound.
We have thus shown that two well studied quality measures and their corresponding no-

tions of progress can be derived and analyzed using the primal-dual paradigm suggested in
this paper. The core difference in the two analyses amounts to two different choices of the
complexity function F . We conclude this section by drawing a connection between online
methods that construct their prediction as a sequence of instantaneous optimization prob-
lems and our framework. We start by reviewing the notion of Bregman divergences.

A Bregman divergence (Bregman 1967) is defined via a strictly convex function F :
Ω → R defined on a closed, convex set Ω ⊆ R

n. A Bregman function F needs to satisfy
a set of constraints. We omit the description of the specific constraints and refer the reader
to (Censor and Zenios 1997). The Bregman divergence is derived through the function F as
follows,

BF (ω||u) = F(ω) − (F (u) + 〈∇F(u), (ω − u)〉).
That is, BF measures the difference between F at ω and its first-order Taylor expansion
about u, evaluated again at ω. Bregman divergences generalize some commonly studied
distance and divergence measures.

Kivinen and Warmuth (1997) provided a general scheme for online learning. In their
scheme the predictor ωt+1 constructed at the end of trial t from the current prediction ωt is
defined as the solution to the following problem,

ωt+1 = argmin
ω∈Ω

BF (ω||ωt ) + C�(ω; (xt , yt )). (38)

That is, the new predictor should maintain a small Bregman divergence to the current pre-
dictor while attaining a small loss. The constant C mitigates between these two, typically
conflicting, requirements. We now show that when the loss function is the hinge-loss, the
problem defined by (38) can be viewed as a special case of our framework. For the hinge-loss
we can rewrite (38) as follows,

min
ω∈Ω,ξt ∈R+

BF (ω||ωt ) + Cξt s.t. yt 〈ω,xt 〉 ≥ γ − ξt .

In Appendix 1 we show that the dual of the above problem is the following problem,

max
ηt ∈[0,C]

γ ηt − G(θ t + ηtytxt ).

Furthermore, θ t satisfies the following recursive form,

θ t = θ t−1 + ηtytxt .

An examination of the above dual problem immediately reveals that this dual problem can
be obtained from the dual problem defined in (34) by setting αi = ηi for i ≤ t and αi = 0 for
i > t . Therefore, the problem defined by Kivinen and Warmuth can be viewed as a special
case of one of the schemes discussed in Sect. 5.2. Concretely, we update only the variable αt

t

by setting it to ηt and leave the rest of the dual variables intact, in particular αt
i = αt+1

i = 0
for all i > t .
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7 Discussion

We presented a new framework for the design and analysis of online learning algorithms.
Our framework yields the tightest known bounds for quasi-additive online classification
algorithms. The new framework also paves the way to new algorithms. There are various
possible extensions of the work that we plan to pursue. Our framework can be naturally
extended to other prediction problems such as regression, multiclass categorization, and
ranking problems. Our framework is also applicable to settings where the target hypothesis
is not fixed but rather drifting with the sequence of examples. In addition, the hinge-loss was
used in our derivation in order to make a clear connection to the quasi-additive algorithms.
The choice of the hinge-loss is rather arbitrary and it can be replaced with other losses
such as the logistic loss. We also plan to explore possible algorithmic extensions and new
update schemes which manipulate multiple dual variables on each online update. Finally,
our framework can be used with non-differentiable conjugate functions which might become
useful in settings where there are combinatorial constraints on the number of non-zero dual
variables (see Dekel et al. 2005).

Acknowledgements Thanks to the anonymous reviewers for helpful comments. This work was supported
by the Israeli Science Foundation, grant No. 039-7444.

Appendix 1 Derivations of the dual problems

In this section we derive the dual problems of the main primal problems introduced in this
paper. We start with the dual of the minimization problem minω∈Ω P(ω) where

P(ω) = F(ω) + C

m∑

i=1

�γ (ω; (xi , yi)). (39)

Using the definition of �γ we can rewrite the optimization problem as,

inf
ω∈Ω,ξ∈R

m+
F(ω) + C

m∑

i=1

ξi s.t. ∀i ∈ [m], yi〈ω,xi〉 ≥ γ − ξi . (40)

We further rewrite this optimization problem using the Lagrange dual function,

inf
ω∈Ω,ξ∈R

m+
sup

α∈R
m+
F(ω) + C

m∑

i=1

ξi +
m∑

i=1

αi(γ − yi〈ω,xi〉 − ξi)

︸ ︷︷ ︸
def=L(ω,ξ ,α)

. (41)

Equation (41) is equivalent to (40) due to the following fact. If the constraint yi〈ω,xi〉 ≥
γ − ξi holds then the optimal value of αi in (41) is zero. If on the other hand the constraint
does not hold then αi equals ∞, which implies that ω cannot constitute the optimal primal
solution. The dual objective function is defined to be,

D(α) = inf
ω∈Ω,ξ∈R

m+
L(ω, ξ ,α). (42)
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Using the definition of L, we can rewrite the dual objective as a sum of three terms,

D(α) = γ

m∑

i=1

αi − sup
ω∈Ω

(〈

ω,

m∑

i=1

αiyixi

〉

− F(ω)

)

+ inf
ξ∈R

m+

m∑

i=1

ξi(C − αi).

The last term is equal to zero for αi ∈ [0,C] and to −∞ for αi > C. Since our goal is to
maximize D(α) we can confine ourselves to the case α ∈ [0,C]m and simply write,

D(α) = γ

m∑

i=1

αi − sup
ω∈Ω

(〈

ω,

m∑

i=1

αiyixi

〉

− F(ω)

)

.

The second term in the above presentation of D(α) can be rewritten as G(
∑m

i=1 αiyixi )

where G is the Fenchel conjugate1 of F(ω), as given in (6). Thus, for α ∈ [0,C]m the dual
objective function can be written as,

D(α) = γ

m∑

i=1

αi − G

(
m∑

i=1

αiyixi

)

. (43)

Next, we derive the dual of the problem introduced at the end of Sect. 6. To remind the
reader, the primal problem is,

min
ω∈Ω,ξt ∈R+

BF (ω||ωt ) + Cξt s.t. yt 〈ω,xt 〉 ≥ γ − ξt . (44)

Following the same line of derivation used for obtaining the dual of the previous problem,
we form the Lagrangian and separate it into terms, each of which depends only on a subset
of the problem variables. Denoting the Lagrange multiplier for the single constraint in (44)
by ηt , we obtain the following,

D(ηt ) = γ ηt − sup
ω∈Ω

(〈ω, ηtytxt 〉 − BF (ω||ωt )),

where ηt should reside in [0,C]. We now write explicitly the Bregman divergence term and
omit constants to obtain the more direct form,

D(ηt ) = γ ηt − sup
ω∈Ω

(〈ω, ηtytxt 〉 − F(ω) + 〈∇F(ωt ),ω〉).

The gradient of F , ∇F , is typically denoted by f . The mapping defined by f is the inverse
of the link function g introduced in Sect. 4 (see also the list of references pointed to at that
section). We thus denote by θ t the image of ωt under f , θ t = ∇F(ωt ) = f (ωt ). Equipped
with this notation we can rewrite D(ηt ) as follows,

D(ηt ) = γ ηt − sup
ω∈Ω

(〈ω, θ t + ηtytxt 〉 − F(ω)).

Using G again to denote the Fenchel conjugate of F we get that the dual of the problem
defined in (44) is,

D(ηt ) = γ ηt − G(θ t + ηtytxt ). (45)

1In cases where F is differentiable with an invertible gradient, G is also called the Legendre transform of F .
See for example (Boyd and Vandenberghe 2004).
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Let us denote by ωt+1 the optimum of the primal problem. Since F is twice differentiable,
it is immediate to verify that the vector ωt+1 must satisfy the following condition,

f (ωt+1) = f (ωt ) + ηtytxt ⇒ θ t+1 = θ t + ηtytxt . (46)

Appendix 2 Technical proofs

Proof of Theorem 2 First note that if L = 0 then the setting C = 1 in (19) yields the bound
M ≤ ‖ω‖2 which is identical to the bound stated by the theorem for the case L = 0. We
thus focus on the case L > 0 and we prove the theorem by finding the value of C which
minimizes the right-hand side of (19) for C. To simplify our notation we define B = L/‖ω‖2

and denote,

ρ(C) = 1

(1 − 1
2C)

(
1

2C
‖ω‖2 + L

)
= ‖ω‖2

(1 − 1
2 C)

(
1

2C
+ B

)
. (47)

The function ρ(C) is convex in C and to find its minimum we can simply take its derivative
with respect to C and find the zero of the derivative. The derivative of ρ with respect to C is,

ρ ′(C) = ‖ω‖2

2(1 − 1
2C)2

(
B − 1 − C

C2

)
.

Comparing ρ ′(C) to zero while omitting multiplicative constants gives the following
quadratic equation,

BC2 + C − 1 = 0.

The larger root of the above equation is,

C =
√

1 + 4B − 1

2B
=

(√
1 + 4B − 1

2B

)(√
1 + 4B + 1√
1 + 4B + 1

)

= 4B

2B(
√

1 + 4B + 1)
= 2√

1 + 4B + 1
. (48)

It is easy to verify that the above value of C is always in (0,2) and therefore it is the
minimizer of ρ(C) over (0,2). Plugging (48) into (47) and rearranging terms gives,

ρ(C) = ‖ω‖2

(
1

1 − 1√
1+4B+1

)(√
1 + 4B + 1

4
+ B

)

= ‖ω‖2

4

(√
1 + 4B + 1√

1 + 4B

)
(
√

1 + 4B + (1 + 4B))

= ‖ω‖2

4
(
√

1 + 4B + 1)2 = ‖ω‖2

4
(2 + 4B + 2

√
1 + 4B).

Finally, the definition of B implies that,

ρ(C) = L + 1

2
‖ω‖2 + 1

2

√
‖ω‖4 + 4L‖ω‖2.

This concludes our proof. �



Mach Learn (2007) 69: 115–142 141

Proof of Lemma 2 Using the chain rule we get that,

gi(θ) = Ψ ′
(

n∑

r=1

φ(θr)

)

φ′(θi).

Therefore, the value of the element (i, j) of the Hessian for i �= j is,

Hi,j (θ) = Ψ ′′
(

n∑

r=1

φ(θr)

)

φ′(θi)φ
′(θj ),

and the i’th diagonal element of the Hessian is,

Hi,i(θ) = Ψ ′′
( n∑

r=1

φ(θr )

)

(φ′(θi))
2 + Ψ ′

(
n∑

r=1

φ(θr )

)

φ′′(θi).

We therefore get that,

〈x,H(θ)x〉 = Ψ ′′
(

n∑

r=1

φ(θr )

)(∑

i

φ′(θi)xi

)2

+ Ψ ′
(

n∑

r=1

φ(θr )

)
∑

i

φ′′(θi)x
2
i

≤ Ψ ′
(

n∑

r=1

φ(θr )

)
∑

i

φ′′(θi)x
2
i ,

where the last inequality follows from the assumption that Ψ ′′(
∑

r φ(θr )) ≤ 0. This con-
cludes our proof. �
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