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Abstract 

We describe a potential reduction method for convex optimization problems involving matrix 
inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and gener- 
alizes Gonzaga and Todd's method for linear programming. A worst-case analysis shows that the 
number of iterations grows as the square root of the problem size, but in practice it appears to grow 
more slowly. As in other interior-point methods the overall computational effort is therefore dominated 
by the least-squares system that taust be solved in each iteration. A type of conjugate-gradient 
algorithm can be used for this purpose, which results in important savings for two reasons. First, it 
allows us to take advantage of the special structure the problems often have (e.g., Lyapunov or 
algebraic Riccati inequalities). Second, we show that the polynomial bound on the number ofiterations 
remains valid even if the conjugate-gradient algorithm is not run until completion, which in practice 
can greatly reduce the computational effort per iteration. 

We describe in detail how the algorithm works for optimization problems with L Lyapunov 
inequaliües, each of size m. We prove an overall worst-case operation count of O(mSSLl5). The 
average-case complexity appears to be closer to O(m4Ll5). This estimate is justified by extensive 
numerical experimentation, and is consistent with other researchers' experience with the practical 
performance of interior-point algorithms for linear programming. 

This result means that the computational cost of extending current control theory based on the 
solution of Lyapunov or Riccati equations to a theory that is based on the solution of (multiple, 
coupled) Lyapunov or Riccati inequalities is modest. 
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1. Introduction 

1.1. Motivation 

- A  T P - p A - Q  
BTp 

where 

Many problems in systems and control theory can be formulated (or reformulated) as 
optimization problems involving linear matrix inequalities, i.e., constraints requiring an 
affine combination of symmetric matrices to be positive semidefinite. Reference [9] gives 
a broad survey of such problems. 

These matrix inequalities are usually highly structured. One typical example is the (con- 
vex) Lyapunov inequality which has the form 

APB +BTPA T +D >i O, 

where the square matrices A, B and D are given, D is symmetric, and the symmetric matrix 
P is the optimization variable. Another important example is the (convex) algebraic Riccati 
inequality: 

A TP + PA + PBR - 1BTp +Q <~ O , 

where A, B, Q and Rare given, Q is symmetric, R is positive definite, and the matrix P is 
the optimization variable. This quadratic matrix inequality can be recast as a linear matrix 
inequality which is very similar in form to the Lyapunov inequality: 

PBR]=APB+IBTPÄT+D>~O , 

Ä~Eó] ù « ù  ù ,  õ=[o ~ o] 
Lyapunov and Riccati inequalities arise, for example, in stability analysis of dynamical 
systems. 

1.2. A typical problem 

In this paper we describe a potential reduction method for general convex optimization 
problems involving matrix inequalities such as Lyapunov or Riccati inequalities. We give 
complete details for the typical problem of minimizing a linear functional of an m × m matrix 
P subject to L Lyapunov inequalities: 

min T r E P ,  A~PBk +B~PA~ +D k>10, k = l  . . . . .  L ,  (1) 

where E, A» B» D» k = 1 . . . . .  L, are m × m matrices with E and Dk symmetric. 
We will show that, in the worst case, the algorithm we describe takes O(mSSL 15) 

operations to solve the optimization problem (1). The average case complexity appears to 
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increase much more slowly with m, as O(m~L'/), with 13=4 and y ~  1.5. To appreciate 
these numbers, consider the following. A single Lyapunov equation APB + B TPA T + D = 0 

(which is just a set of ½ra(m+ 1) linear equations for the ½ra(m+ 1) variables in P) can 
be solved in O(m 3) operations by exploiting the special structure of the equations (see, 
e.g., [20]). Therefore, it takes O(m3L) operations to solve L independent Lyapunov 
equations. Comparing this operation count to O(m4LLS), we see that the relative cost of 
solving L coupled Lyapunov inequalities, compared to solving L independent Lyapunov 
equations, is only a factor of mL °». A similar statement holds for Riccati inequalities. 

Much of modern control theory involves the solution of Riccati and Lyapunov equations. 
Our results show that the computational cost of extending current control theory to a theory 
based on the solution of (multiple, coupled) Lyapunov or Riccati inequalities is modest. 
(Extensive discussion of this topic can be found in [9] .) 

We also note that the problem (1) includes linear programming as a special case. When 
E, A» Bk, D» k=  1 . . . . .  L are all diagonal matrices, the problem reduces to minimizing a 
linear function subject to a set of linear inequalities. 

1.3. A brief historical overview 

A fairly complete history of matrix inequalities arising in control theory can be found in 
[9]. Problems of this type also occur in statistics [ 12,13,35] and structural analysis and 
design [7,31,32]. In a very early paper, Bellman and Fan [6] discuss matrix inequalities 
from an optimization viewpoint, and describe optimality conditions, duality, and theorems 
of alternatives. 

Interest in interior-point polynomial time methods for more general nonlinear convex 
problems, and problems involving matrix inequalities in particular, started soon after the 
publication of interior-point methods for linear programming. Initial efforts were directed 
towards generalizing the method of centers and other central path-following methods 
[ 8,10,24,30]. More recently, potential reduction methods have been extended to problems 
involving matrix inequalities. Nesterov and Nemirovsky [30, Chapter 4] describe three 
potential reduction algorithms for problems involving matrix inequalities: a generalization 
of Karmarkar's method, a projective method, and a generalization of the method of Ye 
[ 36 ]. In [ 2,3 ], Alizadeh describes several potential reduction methods for problems involv- 
ing matrix inequalities, emphasizing their similarity to the analogous methods for linear 
programming. These potential reduction methods all share an important advantage over the 
eärlier path-following methods: they allow so-called "large steps," i.e., the use of (com- 
putationally cheap) line search procedures to reduce the potential function at each iteration 
by an amount that is often substantially more than is guaranteed by the complexity analysis. 

The algorithm that we describe in this paper involves two important extensions beyond 
the methods described by Nesterov, Nemirovsky and Alizadeh. First, it takes advantage of 
the special structure of the matrix inequalities we encounter, e.g., Lyapunov or Riccati. 
Second, it allows the use of approximate search directions, which can be computed by a 
conjugate gradient algorithm. 
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The algorithm can also be considered as extending Gonzaga and Todd's primal-dual 
algorithm for linear programming [22] in two ways: to handle problems involving linear 
matrix inequalities, and to use approximate search directions. The use of approximate search 
directions is related to the "relaxed version" of Karmarkar's method for linear program- 
ming, as described by Goldfarb and Mehrotra [ 17,18]. 

1.4. Outline 

In Section 2 we describe the problem and the algorithm in general terms, deferring proofs 
and fnrther details to the Appendix or later sections. In Section 3 we give the details of 
computing a suitable search direction via an appropriate conjugate gradient method. This 
is the key to exploiting the special structure of the matrix inequalities as well as reducing 
the computational effort per iteration by using approximate search directions. In Section 4 
we describe an efficient plane search technique for computing step lengths at each iteration. 

In Section 5 we return to the specific problem (1) of minimizing a linear function of a 

matrix subject to a set of Lyapunov inequalities, giving details of the conjugate gradient 
algorithm. In Section 6 we present the results of some numerical experiments that support 
our claim that the average number of operations needed to solve problems like (1) increases 
only as O(m4LlS).  

1.5. Notation 

• The integer n determines the size of the general problem. When it is not relevant or not 
varying, we will suppress the dependence on n in notation. 

• ~ will denote the space of symmetric n × n matrices. When we need to be specific 
about n, we will write it as gaù. 

• 9 will denote the cone of symmetric n × n positive-semidefinite matrices. 
• ! will denote the identity matrix, with size determined from context. 
• The inner product of two matrices in g~ is defined as (X, Z)  = Tr(XZ). The correspond- 

ing norm is the Frobenius norm, denoted IIxII = (Tr X 2) a/z. 

• X a/z denotes the symmetric square root of X ~ ~ .  

• The direct sum of two matrices X and Z is written as 

Similarly, i f 2  1 and _~2 are subspaces in ~ '  we write 

• The orthogonal complement of a subspace ~ c _ _ ~  will be denoted S v j-, i.e., 

~ J - =  {Z~S'~[ ( X , Z ) = O f o r a l l X ~ 5 Q .  



L. Vandenberghe, S. Boyd / Mathematical Programming 69 (1995) 205-236 209 

2. Algorithm: general formulation 

2.1. Conic formulation 

We will express the general problem using the conic formulation of Nesterov and Nem- 
irovsky [30, §4.1]: 

min(C, X ) ,  X ~ B N  ( S e + D ) .  (2) 

Here C, D are given elements in S ~ and Se is a subspace o f S  ~. The associated dual problem 
is: 

min(Z, D ) ,  Z ~ ~ N ( S e  -L + C ) .  (3) 

Matrices X and Z will be caUed (primal and dual) feasible if they belong to ~ n (Se + D) 
and ~ n (Sex + C), and strictlyfeasible ifin addition they lie in int ~ .  For a pair of feasible 
matrices X, Z, the quantity (X, Z) is the duality gap for the primal and dual problems. We 
note the following facts. 

• Since X, Z ~ ~ ,  (X, Z) >~0 and (X, Z) =0  ifand only i fXZ=0.  
• The duality gap is actuaUy affine in X, Z, and not a bilinear form as it appears at first sight: 

X ~ S e + D , Z ~ S e ±  +C ~ ( X , Z ) = ( C , X ) + ( Z , O ) - ( C , O ) .  (4) 

• (X, Z) is an upper bound on the difference between the value of the primal objective with 
X and the optimal value of the primal problem, i.e., 

(C, X) - in f{  (C, X) I X ~ ~ N  (Se+D)} ~<(X, Z ) .  

Similarly, 

( Z , D ) - i n f {  ( Z , D )  I Z ~ ~ N ( S e J - + C ) } < < . ( X , Z ) .  

(These follow immediately from the two preceding observations.) 

We make the foUowing assumption about the pair of problems (2) and (3). 

Assumption 1. We are given strictly feasible primal and dual matrices X (°) and Z (o). 

This is precisely the assumption made by Nesterov and Nemirovsky in their potential 
reduction algorithms [ 30, Chapter 4]. It has the following implications [30, §4.2]. 

• The feasible sets ~ N (se +D)  and 9 N ( 2  ± + C) have nonempty relative interiors. 
• The primal and dual objective functions are bounded below on the feasible sets. 
• The primal and dual problems are solvable. X solves (2) if and only if there exists a dual 
feasible Z with (X, Z ) = 0 .  Similarly, Z solves (3) if and only if there exists a primal 
feasible X with (X, Z) = 0. 

Several methods are known to circumvent this assumption. The easiest is to precede the 
algorithm with a phase I algorithm to find feasible initial points (see, e.g., [30, §4.3.5] ). 
In other approaches both phases are combined; see, e.g., [4,14,26,28]. 
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Problems (2) and (3) together are therefore equivalent to a linear optimization problem 
with known optimal value zero: 

min(X, Z ) ,  X ~ , ~ N  ( . ~ + D ) ,  Z~~@N ( ~ J -  + C ) .  

2.2. Central path 

The material of this section is not needed either in the description of the algorithm or in 
the proofs. We present it because it allows us to give important interpretations and useful 
insight. 

For X ~ Int 9 we define 

F(X)  = log riet X -  1. 

F is strictly convex and converges to ~ as X approaches the boundary of ~ ,  i.e., F is a 
barrier function for the positive definite cone Int 5~. This function has very simple first and 
second derivatives. The gradient at a point X ~ Int :~ is 

VF( X)  = - X -  1 

The Hessian VzF(X), when considered as a mapping from 5 ~ to 5 °, is given by a congruence 
operation: for H ~  5 p, 

VzF(X)H = X - 1HX - a. (5) 

For a > 0 consider the set of strictly feasible pairs X, Z with(X, Z)  = a. Since (2(, Z)  = 
is an affine constraint on X, Z, this set is the intersection ofInt ~ @ I n t  ~ with an affine set. 
It can be shown that under Assumption 1 this set is nonempty and bounded. The analytic 

center ofthis set is the minimizer ofF(X) + F(Z) ,  or equivalently, the matrix with maximum 
determinant. We denote the analytic center as (X* («) ,  Z * (a )  ): 

( X * ( a ) ,  Z * ( a ) )  = argmin F(X)  + F ( Z ) .  (6) 
x ~ ~ n  (,Z~ + D )  

Z ~ , ~  n ( . .~  -L + C )  

<x , , z )  = a 

(Since the feasible set here is bounded, F(X)  + F(Z)  is bounded below.) Thus, among all 
feasible pairs X, Z with the duality gap c~, the pair X*, Z*  maximizes det(XZ). Roughly 
speaking, we can consider (X*, Z*)  as the pair with duality gap a that is "most feasible". 

The curve given by (X*, Z *) for a >~ 0 is called the path ofcenters for the problems (2) 
and (3). Evidently (X*, Z* )  converge to a primal and dual optimal pair as a ~ 0 .  The 
central pair (X*, Z* )  has many important properties. For our purposes here we need the 

following theorem. 

Theorem 1. ( X * ( « ) Z * ( « ) )  = (ce/n)L Conversely, if  X and Z area feasible pair and 

X Z =  ( « /n  )L then X=X*(c~) and Z = Z * (  cO. 

In other words, centrality is characterized by X and Z being inverses of each other, up to 
a constant. The proof is given in the Appendix. 
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Now consider a feasible pair (X, Z),  and define a = (X, Z). Then ( X * ( a ) ,  Z * ( a ) )  is 
the central pair with the same duality gap as X, Z. Therefore, 

F(X)  + F(Z)  >1 F ( X *  ( a) ) + F (Z*  ( a ) )  = - log det(X*Z*) 

= n log n - n  log(X, Z ) ,  

with equality holding only when X, Z are central. We will see that the difference between 
F(X)  + F(Z)  and F ( X *  (ct)) + F (Z*  (cO) can be interpreted as a measure of the deviation 
of (X, Z) from centrality. This difference is: 

ip(X, Z) = F ( X )  + F ( Z )  +n log(X, Z ) - n  log n .  

We have already observed that ip(X, Z) >~ 0 for all feasible X, Z and ip(X, Z) = 0 only ifX, 
Z is on the central path. Moreover, ip approaches c~ as the pair (X, Z) approaches the 
boundary of ~ ~ 5 ~ .  Therefore ip satisfies some basic requirements for a measure of devi- 
ation from centrality. We will see below a rauch more specific interpretation of ip as a 
measure of deviation from centrality. 

We note that ip is not convex or quasiconvex (except of course when restricted to (X, Z)  
constant). We also note that ip depends only on the eigenvalues A1 . . . . .  A n of XZ: 

(Œn=lAi)/n 
Ip(X, Z) = n  log (i._[ i= i n  t~i) l/n" 

Thus Ip(X, Z) is n times the logarithm of the ratio of the arithmetic to geometric mean of 
the eigenvalues ofXZ. (From which we see again that Ip is nonnegative, and zero only when 
XZ is a multiple of the identity.) We can also think of Ip as a smooth measure of condition 
number of the matrix XZ since 

log K-- 2 log 2 ~< Ip(X, Z) ~< ( n -  1) log K, 

where K = Amax/Amin is the condition number of XZ. 
We can give a nice interpretation of Ip using Nesterov and Nemirovsky's theory. We 

consider the problem of computing X*, Z* given X, Z. In [30, §2.2] Nesterov and 
Nemirovsky give a very simple damped Newton algorithm for computing X*, Z* that has 
the following properties. 

. Until the region of quadratic convergence is reached, the objective F(X)  + F(Z)  decreases 
at least by the absolute constant 0.3068 at each Newton step. (By absolute constant we 
mean it does not depend on n, the problem data, or the required accuracy of computing X*, 
Z*.)  
• Once the region of quadratic convergence is reached, at most a constant number c of 
Newton steps is required to compute X*, Z* to a given accuracy. (The constant c does not 
depend on n or the problem data, but only the required accuracy e. Since the convergence 
is quadratic in this region, c grows as log log 1/e if e decreases.) 

As a consequence we see that the number of Newton steps required to compute X*, Z* 
given X, Z can be bounded in terms of F( X) + F( Z) - F( X * )  - F ( Z * ) = Ip(X, Z): 
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#Newton steps ~< c + 3.26~0(X, Z ) ,  (7) 

where c depends only on the required accuracy of computing X*, Z*  and grows extremely 
slowly. In other words: ~O(X, Z) is, up to a constant, an upper bound on the compatational 
effort required to "center" (X, Z) (meaning, compute the central pair with the same duality 
gap). 

2.3. Potential function 

Let v~> 1. For strictly feasible X and Z, we define the primal-dual potential function as 

~b(X, Z) = ufnn log(X, Z)  + ~0(X, Z) (8) 

= ( n +  vf~n) log(X, Z)+F(X)  +F(Z) - n  log n (9) 

= ( n +  v~n) log  ~ A i -  ~ log A i - n  log n, (I0)  
i = 1  i = l  

where ~i are the eigenvalues of XZ. 
We can interpret the two terms in (8) as follows. The first term, vfnn log(X, Z), depends 

only on the duality gap, and decreases to - oo as the duality gap approaches zero. Therefore, 
a fixed decrease in the first term corresponds to a fixed fractional reduction of the duality 
gap. 

We have already noted that the second term, ~9(X, Z), can be interpreted as a measure of 
deviation from centrality of the pair XZ, and increases from zero on the central path to + 
as X or Z approach the boundary of ~ .  A fixed decrease in the second term corresponds to 
a fixed amount of "centering" in the following sense: up to a constant, it is the reduction 
in the (bound on) computational effort required to "center" the current pair. Note that 
along the central path, ~b(X*(ce), Z * ( a ) ) =  ~~n log a which decreases to - ~  as « 
converges to zero. 

The constant v evidently determines the relative weight of the two terms, which measure 
the duality gap and the deviation from centrality. Using our interpretation (7) we can be 
more specific. If ~O decreases by one, the new pair is 3.26 Newton steps closer to centrality 
than the original pair (or, more precisely, the upper bound on the number of Newton steps 
required to center the new pair is 3.26 smaller than the upper bound for the original pair). 
If the other term, v~n log(X, Z),  decreases by one, then the duality gap is reduced by the 
factor exp ( - 1 / v~n) = 1 - 1 / (vV~n). In other words, 

vV~n fewer Newton steps to center~ 31% duality gap reduction, 

where ~ means that the left- and right-hand sides result in an equal decrease in ~b. 
By minimizing the smooth function 4', we solve the primal and dual problems (2) and 

(3). Indeed since ~p(X, Z)/> 0 for feasible X and Z, we have 

4,(x, z )  (11) 
(X, Z)  ~< exp v~n ' 
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which shows that small potential implies small duality gap. 
For notational convenience we will often use W= X ~ Z ,  and qb(W) to denote ~b(X, Z). 

For future reference we give the gradient of ~b: 

v4,(x, =(,,+ n++ ) c -  x - ' ] . (  n o -  z - '  = o ( c * o )  - w - '  
~ <x, z> / ~ <x, z> 

where we define p as 

n +  ~,~n 
p =  - -  (12) 

(x ,  z>  

2.4. Algorithm 

The basic idea of the primal-dual algorithm is to generate iterations of primal and dual 
feasible matrices satisfying 

qS(X (k+l), Z (k+l)) ~<~b(X (k), Z (k)) - 6 ,  (13) 

for some absolute positive constant & By (11) we therefore have: 

q~( X (°), Z (°)) - k6 
(X (k), Z (k)) <exp p~n = (X (°), Z(°)>CoC~, (14) 

where 

q,(X ~°~, Z ~°) ) - 6 
Co = exp v c-~/n , cl = exp u r-'vn 

We can interpret the result (14) as follows: the duality gap converges to zero at least 
exponentially at a rate given by the constant cl. The constant c o depends only on the centrality 
of the initial pair, and is one if the initial pair is central. 

In other words, we have polynomial convergence. 

Theorem 2. Assume that (13)  holds with some 6 > 0 that does not depend on n or e, where 

0<  e<  1. Then for  

p~n log( l /e )  + q,(X <°), Z <°)) 
k~> 6 

we have (X <k>, Z <~) ) < e(X <°>, Z <°)). 

Roughly speaking, we have convergence in O(~n) steps, provided the initial pair is 
sufficiently centered. 

The key task, then, is to show how to update (X (k), Z (k)) into (X (~+ ~), Z (k÷ ~)) such 
that (13) holds. 

The algorithm depends on three parameters: v>_- 1 (which is used in the definition of the 
potential function), e> 0 is the value of the duality gap used to terminate the algorithm, 
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and 0 is a parameter satisfying 0 < 0~< 0.35. (We shall see later that 0 trades off numbers 
of iterations versus work per iteration.) Define 6 =  0 -  log( 1 + 0). 

Pr imal-dual  algori thm 
given W = X ( g Z  with X ~ I n t  9 N  ( ~ + D )  and Z ~ I n t  g O  (c(J_ + C )  

repeat 
( 1 ) Find a suitable search direction. 

Compute a 6W = 6X @ 6Z ~ ~ (9-o w j- that satisfies 

(tW, V4,(W) > 
IIW-~/26WW-l/211 >~ 0. 

(2) Plane search. 

Find p, q ~ ~ such that X - p t X ~  ~.~, Z -  q tZ  ~ ~ ,  and 

qb(X-p6X,  Z - q 6 Z )  ) <~ th(X, Z) - 6 .  

(3) Update W. 

Set W= X @ Z  ;= ( X - p t X )  @ ( Z -  q tZ) .  

until (X, Z) ~< e. 

(15) 

(16) 

We must clarify two points: first, how do we find a 6W satisfying the condition (15), 

and second, how do we findp and q satisfying (16). 
We first consider the search direction problem. It turns out that we can compute the 

direction 6W~ ~ O 2  j- that maximizes the ratio on the left-hand side of (15) by solving 

a least-squares problem. Define 

6W u= argmin IIW 1/2vcb(w)w~/2-W-a/ztWw-'/211 

= arg min I IpW1/2 (C@D)W1/2-1 -W-1 /26WW-I / z I t  . (17) 

Then we have the following theorem. 

Theorem 3. 

( tw,  v4,(w) ) ( t w  N, vc~(w) ) 
~w~_~_~imax l] W- 1/ztWW- l/Zll IIW- 1/28W~W-'/211 

= IIW-'/~twuw-l/211 >1 o. 

(This theorem is proved in the Appendix.) Therefore we can always find a suitable search 
direction as required in step 1 of the algorithm by solving the least-squares problem (17). 

The direction 6W N can be interpreted as a Newton direction for a modified potential 

function. From (9) we see that ~b is the sum of the convex function F(X)  + F(Z)  - n  log 
n and the concave function (n + u~n) log(X, Z).  We first modify q~ by linearizing the 

concave term at the point W. For strictly feasible W we define 
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B(t~) = ( n +  vv~n) log(X, Z ) + p ( X - X ,  Z ) + p ( X ,  Z - Z )  

+F(X')  + F ( Z )  - n  log n 

(X and Z, and therefore p, are fixed here). This modified potential function is convex. 
Moreover, since we have replaced a concave term by its linearization, we have 
~(W) = ~b(W) and ~o(W) >~ ~b(W) for all feasible W. It follows that an update that reduces 
the modified potential ~ will reduce the potential ~b even more. 

Now consider the Newton step for ~o at the point W, i.e., the minimizer of the quadratic 
model of ~ at the point W: 

arg min (q~(W) + (Vq~(W), 6W) + ~(6W, V2q~(W)~W)). (18) 

Since Vqo(W) = Vck(W ) and V2q~(W) = V2F(W), we have, using (5),  
V29(W) 6W= W - I 6WW - i. Therefore (18) becomes: 

arg min ( ( VqS(W), ~W)-It-  I [ [ W - I ] 2 ~ W W - I / 2 1 1 2  ) 
Bw ~ .£: ~.L: ± 

= argmin ~llW l / z W ~ ( W ) W ~ / z + W - l / z ~ w W - 1 / z l l  2. 

Comparing this expression to (17), we see that this Newton step is precisely - ~W N. 
We can also give a geometric interpretation of the search direction condition (15) in 

terms of the angle between ~W and the Newton direction ~W N in an appropriate metric. 

We can rewrite (17) as 

8W N= arg min IIw-1/2(wwk(w)w-~w)w-l/211, 

that is, 8W v is the projection of the matrix WVqb(W)W onto £ :@.~J -  in the norm 

UW - 1/2(. ) W  - l/2II. F rom this we see that 

( ~ w ,  V 4 , ( w ) )  = (W-  ~/2 ~WW-1/L w 1/2 ~r4o( w) w ~/2) 

= ( W  - 1/23WW - x/2, W -  l /2~WNW- 1/2). (19) 

Therefore, 

(~W, Vck(W)) (W-~/2~WW -1/2, W-1/%wNw-I/2) 
Il W-  1/2~WW- 1/2[[ I IW-  1 /28WW- ,/2 II ' 

which is the norm of ~W ~' times the cosine of the angle between ~W and 8W N, using the 
inner product (W - 1/2 ( . )  W - 1/2, W - 1/2 ( . )  W - 1/2). Evidently, the maximum value of 

this ratio is IIW -1/2~w~w -1/~11, obtained by choosing ôW= 8W N. Therefore, in order 

to prove Theorem 3, we will need to show IIW - */28w~w - 1/~11 >/0. 
Now we turn to the question of plane search. 

Theorem 4. Suppose 8W satisfies (15). Define 

O 

P = q = ( 1 + 0) Il w -  ~ / 2 ~ w w -  1/211 " 
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Then X -  pöX ~ 9 ,  Z - qöZ ~ 9 ,  and 

th( X -  p6X, Z -  qöZ) ) < th(X, Z) - 6. 

(This theorem is proved in the Appendix.) We note that this choice o f p  and q is only 
used in the complexity analysis. In practice, an approximate minimization of the potential 

function overp  and q typically yields a much larger reduction in th than 3 (see Section 4). 

3. Search direction via conjugate gradients 

In this section we show how to use a conjugate gradient algorithm to solve the least- 

squares problem (17). Perhaps more importantly, the conjugate gradient algorithm we 
describe has the following properties. 

• The iterates 6Wk generated by the conjugate gradient algorithm are all feasible, i.e., 

B W  k ~. ~ ~ ~ 3 _ .  

• 6Wk converges to 6W N. 
• The ratio 

<6w» vth(w) > 
IIW-~/zöWkW-~/2[[ 

is known during the conjugate gradient process, and increases monotonically to its maximum 
value (which by Theorem 3 exceeds 0). 

~'An immediate consequence is that we can stop the conjugate gradient process as soon 
condition (15) holds. 

The least-squares problem (17) requires us to project the matrix 

B= pW1/2( C@D) W I / 2 - 1  

onto the subspace W - 1 / 2 ( 2 @ ~ ± )  W - 1/2. This subspace has dimension ½n (n + 1) so 
it can be represented as the range of a linear function 3¢ which maps ~n ~n + 1 )/2 into S a @ 5 ~. 
Equivalently, we pick a basis for W-1/2( .ZP@2J-)W -~/2, with the matrix 
Æy ~ W - ~/2 ( y  • 2 j- ) W - 1/2 corresponding to coordinates y ~ R" ~ n + 1 )/2. 

Then W - 1/26WNW - u/z= d 3  ~ where 3~ is the solution of the least-squares problem 

3~ = arg m i n l l d y - B l l .  (20) 

Let ~ ' *  be the adjoint of ~é', i.e., the mapping from S P ~ S  '~ into ~=~n+~)/2 defined by (H, 
s /y )  = (d*H)Ty  for all H ~ S ' ~ @ S  a and all y~~n~ù+l)/z. Then (20) can be solved via 
the normal equations 

~¢' *~¢y = ~¢'*B. (21) 

The solution of this linear set of equations forms the main computational effort of the 
algorithm. It can be solved by a variety of direct or iterative methods, but as in implemen- 
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tations of interior-point methods for linear programming, the conjugate gradient method is 
a good choice [ 1,16,25,27]. This method has the desirable property of only involving 
consecutive evaluations of the linear mappings d and d *  at given points. In particular, 
there is no need to form the matrix zC*d  which is of size ½n(n + 1). 

The following is the outline of the conjugate gradient algorithm as it can for instance be 
found in [33]. Alternatively, one might prefer to use the LSQR-method [33]. LSQR is 
theoretically equivalent to the conjugate gradient method, but has better numerical proper- 
ties. 

The residual rk = d * B  - d*zgyk  is calculated recursively. Criteria for termination will 
be discussed below. 

Conjugate gradient algorithm 
k--O; yo=O; so=B, r o = d * B  

until convergence 
k = k + l  

if  k=  1 

Pl =ro 
else 

13k = r ~ - i  T r~-l /rk-2rk-2 

p~=rk-1 + ~ P k - 1  

end 
qk = d p k  

__ T /q~qk 
Olk-- rk--l  rk-- 1 

Yk = Yk- 1 + ak Pk 
Sk =" Sk-  1 -- otkqk 

rk = ~C* sk 

end 
•W--- W 1/2(dyk)  W 1/2 

This conjugate gradient algorithm finds the solution in ½n(n + 1) steps. We note that in 
practice a suitable preconditioner should be used. A good preconditioner can considerably 
speed up convergence, especially in the presence of roundoff error. The choice of a precon- 
ditioner depends on the specific structure of the problem, so we will postpone this topic to 
Section 5. 

In the rest of this section we discuss termination criteria for the conjugate gradient 
algorithm. We have the following theorem. 

Theorem 5. Let 8Wk = W l /2(  SJyk) W 1/2 be the approximation of  8W iv obtained after k 

iterations of the conjugate gradient algorithm. Then 6Wk is a feasible direction with the 

property 

< ~w~, v4,( w) > 
II w -  '/28wkw- 1/211 = II w -  - -  ~ .  , . i= 
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Proof. The directions p,  are conjugate: 

(~ 'p» ~¢pk) = 0 ,  j = l  . . . . .  k - 1 .  

Since we have Yk = FJ[= t aipi, it follows that 
k 

<W-1/26Wk W-1/2, W-I/26W« W-1/2)  = (~'Yk, ~¢Yk)= Y'~ °t~ (~Pi, d p i )  , 
i=l 

which proves the second equality. In order to prove the first one, let 3~ be the solution of the 
normal equations (21) and observe that 

( W  - 1/2(~WkW - 1/2,  W - 1/2¢~WNW - 1 /2 )  = (~g'Yk, ~¢B) = (SJYk, &¢Yk ) + yTrk" 

The assertion now follows from (19) and from the orthogonality of the kth residual rk and 
the directions pj, j = 1, .... k (see [ 19] ). [] 

This theorem has the interesting consequence that the ratio needed in (15) is readily 
known, and is easily computed since (dpa,  d p k )  has to be computed anyway. It suggests 
basing a stopping criterion for the conjugate gradient algorithm on the quantity (22). One 
possibility is to terminate as soon as condition (15) is satisfied. The parameter 0 however 
is usually a very conservative lower bound for II w -1/28WNW -1/211, and often a much 
larger reduction in potential function can be obtained by continuing the iteration after 
condition (15) is satisfied. Running the algorithm to completion on the other hand usually 
requires an excessive number of iterations, but one typically observes that the quantity (22) 
levels oft long before the end of the algorithm. Preliminary experience therefore suggests 
terminating as soon as the relative increase in (22) becomes sufficiently small and condition 
(15) is satisfied. 

4. Step lengths via plane search 

oInst•ad of the darnped Newton step of Theorem 4 it is in general more efficient to make 
a plane search, i.e., to look for scalars p and q that minimize dé(X-p~X, Z - q~Z). This 
can be done very efficiently ifwe first compute the eigenvalues/xl . . . . .  /xn ofX - ~/Z~XX - 1/ 
2 and the eigenvalues ~1 . . . . .  vA ofZ - ~/26ZZ - ~/2. The potential function can then be written 

a s  

~b(p, q) = ( n +  u~n) log(c1 +c2p+c3q) +f(p, q) - n  log n ,  

where 

Cl = ( x ,  z ) ,  c2 = - ( z ,  ~ x ) ,  c3 = - ( x ,  ~ z ) ,  

andfis  the restriction of the barrier term to the plane, i.e., 

f(p,  q) = F ( X - p ö X )  + F ( Z -  qöZ) 

= -  ~ l o g ( l - p / z / ) -  ~ l o g ( 1 - q ~ i ) - l o g  det(XZ) . 
i=1  i=:1 
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The derivatives of these functions are straightforward to compute. We will need the first 

derivatives of qb(p, q): 

Oqb(p, q) cz (n+  u~n) x_ ~ /.t i 
- -  = ~- /.., ~ ,  (23)  

Op C 1 -i-pc 2 q- qc 3 1 - -p  l.ti i = 1  

Off(p, q )  _ c3(n+ vgr£n) + ~ vi (24) 

Oq Cl +pc2 q- qc3 1 - q u~ ' i = 1  

and the second derivatives off (p ,  q): 

02f(p, q) ~ IX 2 OZf(p, q) = ~., v~ 
Op 2 = ~ ( 1 - p l x i )  z '  Oq 2 ""  ( 1 - q u i )  2" (25) 

i = 1  i = 1  

Note that once we have computed the eigenvalues/xi and ~, i = 1 . . . . .  n, we can compute 
these derivatives in O(n) operations. 

In order to minimize 4, we apply damped Newton steps to a linearized approximation of 
th (as is done in [7,29] ). At each iteration the concave term of the potential function is 
linearized around the current (p, q) and one damped Newton step is applied to this modified 

potential. This involves the following steps. 

• Compute the derivatives (23) - (25) .  
• Compute 81) and &/from 

c3 qb O 2 f O c~ O z f 
6p=-~p  / 8 q = ~ q  / . ~p2 ' Oq2 

• Define A as 

[O2f(p ' q) oEf(p, q) ~1/2 

Oq 2 

• Then the next iterates o f p  and q are 

1 1 
p := p - ] - - ~  rp , q:= q -  ] - ~  rq . 

It can be shown that with this choice of step length, X - p S X  and Z - qrZ remain feasible 

and p, q converge to the values that minimize tk(p, q). 
There is no need to calculate the minimum of <h(P, q) very accurately. Ben Tal and 

Nemirovsky [7] suggest taking a fixed number of steps. An alternative is to continue the 

iteration until A becomes sufficiently small. 
The main cost of this scheme is in the initial computation of the eigenvalues/~i and vi. 

Once these are known, each step in the plane search can be carried out at a cost of O(n)  

operations. 

5. Algor i thm for L y a p u n o v  inequalit ies  

We now return to the more specific problem ( I ) .  We will need to make a technical 

assumption: there is at least one index j, 1 <~j<~L for which the mapping 
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H~ByHAj +ATHB T 

is invertible. This is true if and only if the matrix pencil B j -  AA T is regular and its spectrum 
o-is disjoint from its negative, o'A ( - ~ r )  = 0  (see [15] ). The assumption is justified, 
because in most applications of (1),  P also has to be positive semidefinite itself. One can 
ensure this by adding an inequality with Ak = 0.5 I, Bk = I and Dk = 0, which of course gives 
us an invertible mapping. 

Problem (1) can be written in the conic form (2) as 

L 
, +BkPAk +Dk>~O, k=l  . . . . .  L,  min ~ (Ck, Xk> Xk=AkPBk r T 

k=l  

OXL E ~k~l ~m, n =mL, and which is of the form (2) with X=X1 @"" L 

2 = AkPBk+B~PA~ P E g , ,  , D= (~ Dk, C= (~ Ck. 
k = l  k = l  

In this conversion one is free to choose the matrices Ck as long as 

L 

~_~ BkCkAk + A kr CkB kT = E .  (26) 
k = l  

This is an underdetermined set of equations. Its solution is in general not unique, but it can 
be verified that the choice of the Ck'S has no effect on the algorithm. A general way to solve 
(26) is to apply the conjugate gradient algorithm, which would produce the minimum norm 
solution. An easier but less general way is to select an index j for which 
BjC./4 i + A T C j B f  = E is solvable (we assumed above that such a j exists), compute this Cj 

(by the algorithm in [ 15,20] ), and take Ck=0, kq=j. 
':For this problem it is more natural to take GL=1 SPin as the ambient space instead of 

~,~z. The orthogonal complement of . ~  then becomes 

k=l k=l 

and we have the dual problem 

L L 

, AkZkBk +BkZkAk=E, Zk~>0, k = l  . . . . .  L .  min E (Dk'Zk) E T T 

k=l  k=l  

The total amount of work required to solve the problem (1) depends on two factors: the 
number of iterations, and the number of operations required in one iteration. We have seen 
that in the worst case the number of iterations grows with m and L as O(v/-~) ,  but in 
practice it appears to increase much more slowly. This behavior will be observed in the 
numerical experiments of the next section, and is consistent with the experience of other 
researchers with potential reduction methods (see [22,30] ). Throughout this section, then, 
w.e concentrate on the work per iteration. 
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The dominating part there is the solution of the least-squares system (20), as discussed 

in Section 3. In Section 3 the projections on ~ and S a ± were lumped together in a 
symmetrical way. This is not a good idea computationally, since usually m << L and 

therefore the dimension of ~ ±  (dim SC± = ½(L-  1 ) m ( m +  1)) is much larger than the 
dimension of SC (dim SC = ½m(m + 1) ). A closer look however shows that the computa- 
tional load of both projections is of the same order. 

5.1. Direct methods 

We can first clarify why we prefer to solve (20) by the conjugate gradient method instead 
of direct methods. 

The least-squares problem (17) consists of two parts that can be solved independently: 
6W N= 6X1VO 6Z N with 

~X N= arg m i n  [ I p X 1 / 2 C X 1 / 2 - I - X - l / 2 6 X X - 1 / 2 1 1  , 

6Z N= arg min [IpZ1/ZDZ1/2-I-Z-1/26ZZ-1/21I . 

The primal step (27) amounts to solving 

L 

-AkPBk --BkPAk)Xk 1/2  [[ 2 81)= arg min ~ [[X;1/2(pXkCkXk--Xk T T - 
P ~ ~am k = 1 

(27) 

(28) 

where A ®B denotes the Kronecker product, and vec(X) is the column vector obtained by 

appending the columns of the matrix X to one another. Problem (30) is an overdetermined 
set of equations with O(m2L) equations and O(m 2) unknowns and therefore requires 
O(m6L) operations to solve by a direct method. 

The dual step (28) is equivalent to 

= arg mi IlZk ~/2(pZkDkZ« --Zk -- 6Zk)Zk 1/2 [I 2 
"k= 1 

B A[6ZkB[ +BköZkAk =0~. 
k ~ l  

L 

[[pX« CkXk - I - A k P B k  - B ~ P Ä [  II 2 (29) = arg min ~ 1/2 1/2 - ~ 
P ~ SPm k = 1 

where the normalized data Äk = X k  1/2Ak and/)« = BkX k 1/2. From 6/) we can compute 
the Newton step 67( 'v= 6X~G.. .  • 8X~: 

8X~=AkôPB~+B~6PA~, k = l  . . . . .  L .  

A direct way to solve the least-squares problem would consist in writing (29) as 

L 

min ~ Ilvec(pX~/2CkX~/2-1)-(B~®Äk+Äk®B~) vec(P)ll 2, (30) 
P E ~ m  k = l  
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This is the projection of the matrix p Z D Z - Z  on 2 ±, but in the metric associated with Z, 
i.e.,  IIZ - 1 /2( .  ) Z  - 1/=11. Since the dimension of Se I is so much larger than the dimension 
of Se it is advantageous to compute this projection by subtracting from p Z D Z - Z  its 
projection on Z S e Z  (this is the orthogonal complement of Se± in the metric induced by 
Z). The projection on Z S e Z  amounts to calculating 

L 

6P= arg min y '  IIPZg/zDkZ~/z --l--ÄkPBk ~T ~T 2 -BkPAk II , ( 3 1 )  
P ~ 5 ~ m  k = 1 

where Äk = Z ~/2Ak and/~k = BkZ ~/2" From 61' one can find 6Z N = 6Z ~ 0 " "  • 6zN : 

BZ~ = pZkDkZk - Zk -- ZkAk 6PBkZk r T --ZkBk 3PAkZk ,  k =  l . . . . .  L . 

Using Kronecker products, problem (31 ) can again be converted to an overdetermined set 
of equations, analogous to (30). The computational cost is therefore O(m6L) as well. 

The corresponding figure, if the least-squares system is solved by the conjugate gradient 
method, is derived in the next section and will turn out to be O(mSL).  

5.2. Conjugate gradients 

.The direct method ouflined above ignores two basic properties of the problem. It computes 
an exact solution, which is more than needed in the algorithm. Secondly, it is hard to take 
into account the Kronecker structure in (30). With the conjugate gradient algorithm this 
will be much easier. We make use of the fact that solving a Sylvester equation 
A X B + B V X A T = C  where all matrices are of order m only requires O(m 3) operations 
although the number of unknowns in the matrix X is of O(rn 2) (see [ 15,20] ). 

The subspace .~  is of dimension ½ m (m + 1 ), its orthogonal complement ~ ± of dimen- 
sion ½m(m + 1) ( L -  1). In the conjugate gradient algorithm we can therefore use a repre- 
sentation 

L - -  1 2 L  

~': @Cm--' @Cm, 
k = 0  k = l  

mapping each set of L matrices Y = Y o @ Y t ~ ' " O Y L - 1  on an element of the space 
W - ~/2 ( s e  • Se  ± ) W - 1/% This is more convenient than using one single parameter vector. 

Defining Yp = Yo and Yd = Y1 0 " "  O Yz- » we can write Æ as 

Æ Y = Æ ù Y p O Æ a Y ù ,  

where the images of 

L L - - I  L 

d~:«o,-, @«oz ~d ~'«: @«ù,-, @«m 
k = l  k ~ l  k = l  

are X - wZSeX - ~/z and Z - wzSe ~-Z - wz, respectively. 
From the description of the conjugate gradient algorithm it should be clear that no explicit 

representation of these mappings is needed. It is sufficient to have an efficient way of 
evaluating them at any given point. 
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Evaluation of Æp and ~¢*. Let the scaled data matrices be Ä k = X £ - l / 2 A  k and 
Bk = BkX  £- 1/2, k = 1 . . . .  , L. If Yo ~ Saù, then S¢pY o = J~~ (9... (gJ~L with 

£I, =ÄkYoBk  - r  ~r + B k Y o A « ,  k = l  . . . . .  L .  

I f X =  J~~ (9 "'" (gi~'L ~ (9~:1 ~ m ,  then 

L 

k = l  

Evaluation of ~¢~ and d ~ ' .  Let the scaled data matrices be Ä k = Z ~ / 2 A  k and 

1~ k = BkZ  ~ la, k =  1 . . . . .  L. Pickj, 1 <~ j ~ L for which the mapping 

H ~ BjHÄj + Ä~HB~ 

is inverdble. Let Yd = YI (9"" (9 YL- I; then the computation of 

involves the following steps. 
(1) Le tC .=E~~~(BkYkÄk  ~T ~T L ~ ~ ~ T  ~T + A k Y k B k )  + Ek=j+l(  k Y k - l A k  + A k Y k - l B k ) .  
(2) Compute Zj from ~ j 2 j L  + Ä f Z j a ~  = - C. 

(3) Set Zk = Yk for k #j .  

If Z = Z~ (9... (9 ZL ~ (gf= 1S~m, then Y1 (9"" (9 YL- ~ = ~¢* Z can be computed as follows. 
< 1) Solve Äj/~B/+ aT/~Ä T = Z/for P. 

(2) Y k = Z k  -- Ä ~ P B k - B ~ P Ä ~ ,  k = l ,  ..., j - 1  and Y k _ l = Z k - Ä k P B  k -BkPA~,~T ~~T 

k = j + l  . . . . .  L. 

Each of these four mappings can be evaluated in O(m3L) operations. To estimate the 
number of iterations needed in the conjugate gradient method observe that ~¢~ ~'~ is the 
identity transformation plus a term with rank O(m2). Therefore the entire mapping et*sC 
is a rank-O(m 2) modification of the identity, which implies that the conjugate gradient 
algorithm converges in O (m 2) steps (see [ 19 ] ). The overall complexity to run the conjugate 
gradient algorithm to completion is therefore O(mSL) .  In other words, by exploiting the 
Kronecker structure of the equations, the conjugate gradient method leads to a reduction of 
the O(m6L) bound of the previous section by one order of magnitude. Moreover, several 
researchers have reported that with a good preconditioner, the conjugate gradient algorithm 
typically converges in much less than N iterations if N is the number of unknowns (e.g., 
O ( ~ )  iterations, see [25] ). In the present case, it is therefore not unreasonable to expect 
that the number of iterations in the conjugate gradient algorithm can be reduced to O(m), 
especially since there is no need to run it until completion. This would bring the overall 
complexity down to O (m4L).  

We conclude this section with some remarks concerning preconditioning. The mapping 
Æ is not the only possible choice. Finding a good preconditioner is equivalent to selecting 
a mapping ~¢ such that ~¢*s¢ is close to the identity matrix. A simple method is as follows. 
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Evaluation of d e  and ,~~'p*. We can precede the evaluation ofen" e by a linear transformation 
JE: ~,~ ~ S'~m computed by solving an equation of the form 

}1o =M(  ~ 'Yo )N  + NT ( ~ y o )  MT . 

A heuristic choice that seems to work well in practice is to take M=Äj  and N=/~y wherej 
is the index for which IIXf 'U is maximal. Then (5~'p~)*(sgp~')  can be expected to be 
closer to the identity mapping. 

Evaluation of d a  and ~¢*. In a similar way one can force d ' e g  d to be close to the 
identity transformation by selecting the indexj in the evaluation of d a  and ~¢* to be the 
index for which IIzkll is maximal. 

We have no doubt that there are more sophisticated methods of preconditioning for this 
problem. On the other hand, we will see that this method is effective enough to bring the 
average number of conjugate gradient iterations required per iteration to O(m), which 
roughly speaking is the square root of the number of variables. 

6. Some numerical experiments 

Hefe we will give the results of two numerical experiments that confirm the complexity 
estimate of O(m4L 1"5) for the problem (1). 

We consider two families of problems. Both are of the form 

min T r E P ,  X k = A k P + P A ~  +Dkp>O, k = l  . . . . .  L ,  (32) 

with dual problem 

L L 

min ~ TrDkZk,  y" Z k A « + A [ Z k = E ,  Z«>~O, k = l  . . . . .  L .  (33) 
k = l  k = l  

In the first family, the problem data are randomly generated. The second family of problems 
is derived from an application from control theory. 

6.1. A family of  random problems 

Random data were generated as follows. The Lth inequality is 2P >~I, or in other words 
Ar = I, DL = - L To get the other inequalities we first form a random positive definite matrix 
A ~ym = V ~ A  k V k. Here Ak is a diagonal matrix with diagonal elements uniformly distributed 
in the interval (0, 1). The matrix Vk is an orthonormal matrix drawn from a uniform 
distribution on the m × m orthogonal matrices. To A~, ym we add a random skewsymmetric 
matrix A~, s = S k - s T  where Sk has elements normally distributed with zero mean and 
standard deviation one. The matrixAk is then obtained aSAk =A ~y~n + A ~s. Furthermore we 
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Table 1 
Results of the first experiment: total number of conjugate gradient iterations, number of outer iterations of the 
primal-dual algorithm, and average number of conjugate gradient iterations per step of the primal-dual algorithm; 
each figure is the average of ten randomly generated problems 

m L Total number of c.g. Number of outer Average number of 
iterations iterations c.g. iterations 

5 10 25 6.3 4.4 
5 30 33 7.0 4.7 
5 50 33 7.0 4.6 
5 70 35 7.1 4.9 

10 10 74 11.7 8.0 
10 30 67 7.1 9.4 
10 50 79 7.5 10.6 
10 70 79 7.7 10.3 
15 10 92 7.0 13.2 
15 30 114 7.4 15.3 
15 50 153 8.0 19.1 
15 70 142 8.0 17.7 
20 10 124 7.0 17.7 
20 30 153 8.3 18.6 
20 50 208 8.0 26.0 
20 70 159 8.2 19.5 

take D k = 0 ,  k =  1 . . . . .  L - 1  and E =  E~=I ( A i + A T ) .  With this choice one has obvious 

primal and dual feasible solutions 

P = I ,  X k = A k + A k  r ,  Z k = l ,  k = 1  . . . .  , L .  

The parameter 0 was chosen to be 0.35, but in fact the conjugate gradient iterations were 

continued until in addition the ratio (15)  was no longer increasing. The parameter v was 

set to v = 100, although for this problem family, the value of  v did not greatly affect the 

results (see Section 6.3).  The stopping criterion was a reduction of  the initial duality gap 

by a factor of 1000, The results are listed in Table 1. Each entry is an average over ten 

instances of  the problem. For  the largest problem the number of unknowns is 

½m (m + 1) = 210 and in each iteration the least-squares problem has size 14 700 × 210. 

From Table 1 several interesting conclusions can be drawn. 

(1)  The number of  outer iterations in the pr imal-dual  method is almost constant or at 

least growing very slowly. Similar observations have been made for other potential reduction 

methods (see, e.g., [22,30] ).  This implies that the determining factor in the overall com- 

plexity is the computational  cost of one iteration. 

(2)  The number of  conjugate gradient iterations grows linearly with m, which is the 

square root of  the number of  variables in the least-squares system that is solved. This is 

consistent with results reported in [ 25 ]. 

A least-squares fit o f  these points to a curve of  the form am ~L ~ results in ct = 0.56, 

/3 = 1.06 and T =  0.11. Fig. 1 shows a scatter plot of  the average number of  conjugate 

gradient iterations per outer iteration versus 0.6 m taL°1 over the 160 experiments. 
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Fig .  1. First experiment. Average number of conjugate gradient iterations vs. 0.6 m l l L °  1. 

(3) Recall that the number of  operations required per conjugate gradient iteration is 
O(m3L). The total number of operations is therefore proportional to m3L times the total 
number of conjugate gradient iterations. (Each conjugate gradient iteration requires 4L 
m × m matrix multiplies and the solution of  four m X m Sylvester equations, so in fact the 
constant here is not too big, provided L is not very small.) 

If we fit this number to a function of the form am~L ~ we obtain a = 2 . 9 , / 3 = 4 . 2  and 

3/= 1.2. Fig. 2 shows a scatter plot of  maL times the total number of conjugate gradient 
iterations required for convergence versus 2.9 m4"2L 1"2 o v e r  the 160 experiments. 

Note that 2.9 m42L 12 predicts the effort typically within 0-25%. Even in the worst case, 

the error is only a factor of  2 or 3. 
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Fig .  2. First experiment. Total number of operations (up to a constant factor) vs. 2.9 m4"2L ]'2. 
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~ e o e ~  
d~ d~ d~ 

Fig. 3. Mechanical system withp masses, springs and dampers. The masses and dampers are constant with unit 
value. Some of the strings can vary arbitrarily over the range [0.9, 1.1 ]; the remaining springs are fixed with unit 
value. 

It is also interesting to compare this with the worst-case complexity of the ellipsoid 
method when applied to the same problem. The number of iterations in the ellipsoid method 
is O(m 4) (i.e., the number of  unknowns squared, see [23] ), and in this problem the cost 
of each iteration is O (m 3L). This results in an overall complexity of O (m 7L), much higher 

than in the interior-point method described here. 

6.2. A family of problems from system theory 

The same experiments are now repeated for a family of problems from system theory. 
We first give some general background for the problems. We consider a time varying linear 

system described by 

dx 
-~=A(t)x(t),  y=cTx, (34) 

where the m × m matrix A (t) is known to lie in the convex hull of L -  1 matrices: 

A(t) ~Co{A1 . . . . .  AL-~ }, (35) 

for all t ~  ~. (This is called a linear differential inclusion.) 
We want to bound the maximum value of the output y given a bound on the norm of the 

initial state, using a quadratic Lyapunov function. The following theorem is readily derived 

from the results of [9]. 

Theorem 6. Supflose that (34) and (35) hold, and in addition I]x(O)H <~ 1. Then for all 
t>~0, lY(t) I ~<~/awhere 

a = rain Tr ccTp. 
AlP + pAT<o, i=  1,...,L-- 1, 

P~I  

(In fact, a is the best bound that can be obtained using a quadratic Lyapunov function.) 
Therefore, the problem of computing a is of the form (32). 

Now we can describe the specific family of problems we consider. Fig. 3 shows a 

mechanical system consisting o fp  masses, springs, and dampers. The masses and dampers 
are constant with value one. Some of the springs, however, can vary arbitrarily with time, 
between the limits 0.9 and 1.1. The remaining springs are fixed with value one. The output 
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Table 2 
Results of the second experiment: total number of conjugate gradient iterations, number of outer iterations of the 
primal-dual algorithm, and average number of conjugate gradient iterations per step of the primal-dual algorithm 

m = 2p L Indices of the Total number of c.g. Number of outer Average number of 
time-varying iterations iterations c.g. iterations 
springs 

4 3 1 79 9 8.8 
4 5 1, 2 93 10 9.3 
6 3 1 163 11 14.8 
6 5 1, 2 224 12 18.7 
6 9 1, 2, 3 230 12 19.2 
8 3 I 200 12 16.7 
8 5 1, 2 259 12 21.6 
8 9 1, 2, 3 377 13 29.0 
8 17 1,2,3,4 641 16 40.1 

10 3 1 213 13 16.4 
10 5 l, 2 320 14 22.9 
10 9 1, 2, 3 489 14 34.9 
10 17 1,2,3,4 1040 18 57.8 
12 3 1 251 14 17.9 
12 5 1, 2 273 14 19.5 
12 9 1, 2, 3 381 16 23.8 
12 17 1,2,3,4 858 18 47.7 

y that concerns us is the displacement of the pth mass. For this problem, we have m = 2p 

and L = 2 r + 1, where r is the number of springs that vary. 

In our experiments we compute the bound a for several values o fp  and r (which results 

in several values of m and L). For these problems there are no obvious feasible solutions 

that can be used to start the algorithm. In order to use initial points that could be fairly 

compared across different values of m and L, we take the primal and dual central pair with 

düality gap equal to mL as the starting points, i.e., X (°) = X * ( m L )  and Z ~°» = Z * ( m L ) .  

The stopping criterion is again a reduction of the initial duality gap by a factor of 1000 (i.e., 

e =  0.001 taL). 

For this family of problems, the parameter u has a greater effect on convergence than for 

the randomly generated problems. Large values of ~, (e.g., ~,= 100) resulted in slower 

convergence than smaller values. Table 2 gives the results for the case ~ = 2. For this family 

of problems, the best fit to the total number of operations is 9.8 m4°L 1.7. Fig. 4 shows that 

this expression predicts the total number of operations very well: the average prediction 

error is about 20%. 

6,3. Influence o f  the parameter 

In this section we study the influence of the parameter u on the primal N dual algorithm. 

We take an instance of the random problem of Secfion 6.1 with m = 4 and L = 2, while 

varying the parameter u and the initial pair. One of the initial points lies on the central path, 

while the other four lie off the central path at increasing distances. 
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Fig. 4. Second experiment.  Total number of  operations (up to a constant factor) vs. 9.8 m 4°L 1.7. 

Fig. 5 shows the trajectories of the primal N dual algorithm in a two-dimensional plane 
showing duality gap (X, Z) and the function O(X, Z). Thus the horizontal axis shows the 
duality gap on a logarithmic scale, and the vertical axis shows the deviation from centrality 
(measured in units of 3.26 Newton steps, from our interpretation (7 ) ) .  From (8),  the level 
curves of ~b are straight lines in these plots, with a slope that depends on ~,. These are shown 
with the dotted lines. 

Some observations from these plots are the following. 

• After the first iteration, the potential function decreases quite linearly. The typical reduction 
in ~b per iteration increases with ~,. 

v=1 
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Fig. 5. Convergence  o f  the algorithm for four values of  v. Each plot shows  the paths fol lowed by the algorithm 
for five different initial points (full  l ines) .  The dashed line corresponds to the central path, t0(X, Z )  measures the 
deviation from the central path and the dotted lines are the level  curves o f  the potential function qS(X, Z ) .  
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• Increasing 1, places more weight on cost reduction (versus centering) and will at first 
speed up convergence. (For large values of ~, the algorithm behaves like Dikin's affine 
scaling method [ 11 ] ; convergence slows down again, because the iterates come too close 
to the boundary.) 
• The paths approach a limiting value of ~ that depends on 1, In other words, the centrality 
of the iterates eventually remains nearly constant: for 1, = 1, the iterates eventually remain 
in or very near the region of quadratic convergence surrounding the central path; for ~ = 100, 
the iterates remain about 33 Newton steps away from the region of quadratic convergence. 
Once this limiting value of ~b has been reached, the decrease in th at each iteration is entirely 
due to decrease in duality gap. We do not entirely understand the mechanism involved here, 
but it seems to be linked to the use of an almost exact plane search. 

7. Conclusions 

7.1. Extension to Riccati inequalities 

The ideas presented here can be extended to matrix inequalities other than those of the 
Lyapunov type. As an example consider a problem constrained by L algebraic Riccati 
inequalities: 

m i n T r E P ,  - A ~ P - P A k  -1 T --PBkRk BkP--Qk>~O, k = l  . . . . .  L ,  

where E, Ag, Qk E ~"~ xm, B~ ~ ~'~ x l, Rk ~ ~t x t, k = 1 . . . . .  L, and Q~ and Rk are symmetric 

with Rk positive definite. As mentioned in Section 1, we can express this problem as 

s.t. ÄPIOk +/~kVPÄ + + Dk >~ 0 , k= 1 . . . . .  L ,  (36) min Tr EP,  

where 

Ä=[ó], 
R k  " 

Problem (36) can be converted into the conic form by taking as subspace S'~: 

~ = ( ~ = a  ÄPt~k+B~PÄT[ P ~ f i z ' ~ "  

One can choose forD: 

o= , [ 0  ~. o] 
k~ 1 Rk  ' 

and for C any matrix of the form C ~  @~=1 SPù,+~ for which E~=iATC#B T +BkCkÄ=E. 
For this problem the forward mapping Æp is defined as 

L 

k ~ l  
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whereÄk =Xk- ~/zÄ, Bk = B k X  ;- ~/2, k=  1 . . . . .  L. The adjoint d *  is 

L L 

~e~ • ~~ = Ed~~~~~ +B~z~&. 
k = l  k = l  

We may assume that l ~< rn. Then we see that both ~'p and ~ *  can be computed at given 
points in O(m3L) operations. An explicit representation d d for the subspace S p± can be 
derived in similar way as we did for Lyapunov inequalities. Both d a  and its adjoint can be 
evaluated in O(m3L) operations. This implies that one can solve optimization problems 
over Riccati inequalities at the same low cost as problems with Lyapunov inequalities. 

Efficient algorithms for problem (36) allow us to extend traditional, single-model LQR 
(Linear Quadratic Regulator) controllers to the multiple model case. This will be the subject 
of a forthcoming paper. 

We note that solving the optimization problem (36) requires the solution of Lyapunov 
equations, but does not require the solution of any Riccati equations. In fact, by taking E = I 
and L = 1, the solution p°pt of the optimization problem (36) is the solution of the algebraic 
Riccati equation A Tp q_ PA + P B R  - ~B Te q_ Q = 0 for which A + B R  - ~B Tp is stable, i.e., 
all eigenvalues have negative real part. The primal-dual algorithm requires effort O(m 4) 
to compute popt, which is only one order higher than conventional algorithms (see, e.g., 
[5] ). (See [9] for a complete discussion of the primal-dual matrix inequality formulation 
of the classical LQR problem.) 

7.2. Possible modifications o f  the method 

The interior-point method itselfcan also be extended in several directions. One possibility 
isto combine the algorithm with Ye's method [36] and its dual. The directions used in 
Ye's method can be computed from the Newton directions used in the present paper, and 
the two-dimensional plane search would then be replaced by a four-dimensional search. 
This algorithm coincides with the extension of Ye's method suggested by Nesterov and 
Nemirovsky [30, Chapter 4]. 

We have also already noted the important role the parameter v can play. The optimal 
value of v is clearly problem dependent, so strategies for choosing it or adapting it during 
the algorithm are certainly worth investigating (see, for example, [34] ). 

7.3. Extension to more general problems 

In this section we make some brief remarks about how the algorithm presented in this 
paper can be extended to the more general conic formulation of Nesterov and Nemirovsky 
[30]. In this general context the cones in the primal and dual problems (2) and (3) are 
different: the cone in the dual problem is the dual of the cone in the primal problem. (We 
have not made this distinction since ~ is self-dual.) 

The primal-dual algorithm applies to cones admitting a 0-1ogarithmically homogeneous 
self-concordant barrier (see [30] ). The parameter 0 of the barrier is equal to n in our case, 
and determines the worst-case complexity (which is O (vÓ) in the general case). 



232 L. Vandenberghe, S. Boyd / Mathematical Programming 69 (1995) 205-236 

If F and F * are the barriers for the cone and its dual, the primal-dual potential function 
is defined as 

( 0 +  l,v/-Ö) log(X, Z)  + F(X)  + F * ( Z )  . 

Again the terrn 0 log(X, Z ) +  F(X)  + F * (Z) is bounded below, and attains its minimum 
for points X, Z with Z = - ( « /0 )  VF(X), X = - (a/O) VF(Z), which characterizes the 
central path. 

The complexity analysis of the algorithm given here remains valid in the general case. 
The generalizations of the relevant results either follow immediately from the general theory 
in [30] or can readily be extended from the results given in this paper. 
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Appendix. Proofs 

A. 1. Proof of Theorem 1 

The feasible sets in problem (6) are bounded and convex with nonempty relative interior. 
Moreover the objective function F(X)  + F(Z)  is a strictly convex function, and therefore 
the central points are the unique points that satisfy the optimality conditions 

- X - I  + t zC~_~ 1 , - Z - I  + tzD~.ZP, 

or, 

1 1 
- - X - I ~ . % p ± + C ,  - - Z - I ~ Z + D ,  
Ix tz 

for some value of the Lagrange multiplier/x, along with the feasibility conditions 

X E ~ N ( C ~ + D ) ,  Z ~ ~ O ( . ~ ± + C ) ,  ( X , Z ) = a .  

Nòw note that if X, Z satisfy the above conditions, then so does the pair ( 1 / / z ) Z -  1, 
( 1/ tz)X - 1. From uniqueness we conclude that 

x * ( « )  = ! z * ( o 0  -1 z * ( « )  = l x * ( « ) - 1  
/z /z 

and therefore #z=n/a.  [] 
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A.2. Proof  o f  Theorem 3 

L e m m a  1. I f x ~  R n and IIxU < 1, then ET= 1 x i -  ]~7= l log(l  +xi) ~< - Ilxll - log( 1 - M )  

Proof.  (See [21] ) 

X i - -  l o g ( l + x i )  = X i - -  Xi+ ~__~ ( - - 1 )  k 1, 1 (X/2)k/2 
i ~ l  k = 2  i = 1  

< ~ ~ IIx[[~= -log(X-[Ixll) -I[x[[, 
k = 2  

where the second inequality follows from the fact that ~7= l a p ~< (Y'-7= 1 ai) p if  ai >~ O, i = 1, 
n, andp>~l .  [] 

L e m m a  2. I f  « > 0 and X and Z are strictlyfeasible, then 

Z )  + F ( X ) + F ( Z ) > ~ n  + n  l o g ( n j .  n(x, 
ol kai  

Irin addition ]] ( n / « ) X l / 2ZX l / 2 -1[[ = e <  1, then 

Z ) + F ( X ) + F ( Z ) < ~ n + n  l o g ( n ] - e  - l o g ( l - e ) .  (37) -n(x, 
o~ \ t l /  

Proof .  Let / . t  I . . . . .  /zù be the eigenvalues of  ( n / a ) X Z - l .  Strict feasibility of  X and Z 
implies ~~ > - 1, i = 1 . . . . .  n. We have 

na ( x ,  Z )  + F( X)  + F(  Z)  = n + n log(n)  + ~ I~i - L l o g ( l + / x i )  
i = 1  i = l  

>in + n  l og (n ) ,  

because/x i -  log( 1 +/x;)  >/0 if ~i > - 1. Inequality (37) is an immediate consequence of  
Lemma 1 i f  [ l ( n i a ) X l / 2 z x l / 2 - l l [  = ( ~ ~ ' =  1 /3,2) 1 / 2 =  e <  1. [ ]  

P r o o f  of  T h e o r e m  3. We will prove the theorem by showing tbat 

max{ I l / - l126XuX - 1/=11, Uz -1/z~zN z -l/Zll }/> o, (38) 

where 6WN = 6X NQ 6zN. From this it evidenfly follows that 11W - 1/2t~ W N W - 1/211 >/0. 

The optimality condition for the least-squares problem (17) is that 

WVch(W) W -  ~WN ~ W(  2"  ± @~w) W .  

From this one can see that 

1 
X, = - ( Z - 1 6 Z N Z - I  + Z - I )  ~.ZP + D  , 

P 

~..~. 1 (X_I6XNX_I +x_I)~._~.I_ +C 
P 
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where p = ( n +  v~n) / (X ,  Z). Assume that (38) is false, then both Z - I / 2 ~ z N z - I / 2  

+ l ~ I n t  ~ and X - ~/26XNX - ~/2 + I ~  Int ~.~, because O< 1. Therefore W = X ~ Z G I n t ~  
and both .~ and Z are strictly feasible. Moreover, 

pZ1/2~ZI/2 I=Z-1/2~zNz -1/2, p X 1 / 2 ~ X I / 2 1 ~ _ X - 1 / 2 ~ x N x - I / 2 ,  

which, from Lemma 2, implies 

p(X, Z ) + F ( X )  +F(Z)  <~n+n log p -  0 - l o g ( 1 -  0 ) ,  (39) 

p(X, Z ) + F ( X )  +F(Z)  <~n+n log p -  0 -  log(1 - 0) .  (40) 

On the other hand, we also have (from the first part of Lemma 2) 

p(X, Z)  + F(X.) + F(Z)  >~n+n log p.  

Subtracting this/'rom the sum of (39) and (40) we get 

p(X, Z)  + F(X)  + F(Z) <~n + n log p - 2 0 - 2  log(1 - 0) ,  

u ~ n - l o g  detXZ<~n log(n+ vfnn) - n  log(X, Z ) - 2 0 - 2  log(1 - 0) .  (41) 

Now - 2 0 - 2  log (1 - 0) < ~ if 0 ~< 0.35 and therefore (41) would i mply 

~b(X, Z) = n log(X, Z)  - log det X Z -  n log n < n log( 1 + u~ V/-~n) - v~n + 1 

1 1 1 
<n(log( l + l /~n )  - X/~n) + ~ <.< - ~ + ~nn + -6 <~ 0,  

where we made use of the fact that log( 1 +x) <~x- ½xZ+ ½x 3 f o rx >  - 1. The assumption 
that (38) is false therefore leads to a contradiction because ~0(X, Z)/> 0 for all strictly 
feasible X, Z. [] 

A.3. Proof of Theorem 4 

We will show that 

~ ( X - p ö X ,  Z - qôZ) < q~(X, Z) - 8. 

This will prove the theorem because, as we have seen, for all feasible fr', 4'(fr') ~< q~(ff'), 
with equality for fr '= W. This foilows from the fact that q~ is obtained from 4' by linearizing 
the concave term around W. For s ~ ~ with W - s S W >  O, we have 

q~( W -  sSW) - q~( w)  

= - p(Z@X, s~W) - log d e t ( W -  söW) + log det W 

= - s ( V 4 ' ( W ) ,  6W)+ s (VF(W) ,  6 W ) -  log de t (W-s~W) + log det W 

= - s ( V 4 ' ( W ) ,  6 W ) - s ( W  -~, 6 W ) - l o g  d e t ( W - s ö W )  + log det W 

= - s ( V 4 ' ( W ) ,  6W) - s  Tr(W-~/28WW -~/2) 

- log d e t ( l -  s W -  1/26WW- 1/2) . 
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L e t / z  1 . . . . .  ]-£2n be the e igenva lues  o f  W - 1 /26WW - 1/2, and def ine/Z as 

(12_~1 '1/2 / /z= /z~~ --IIW-1/26ww-1/211. 

Then  f rom (15) ,  we  k n o w  that (Vqb(W),  6 W )  >i O/Z, and hence  

2n 2n 
~ ( W - s ö W ) - ~ ( W )  < ~ - s O / z - s  ~ ,  / z ; - l o g  I--[ ( 1 - s / z ; )  

i=1 /=I  

~< - s ( 0 +  1 ) / Z -  log(1  - s / z ) ,  

where  we have  used L e m m a  1; (hence  the inequali ty is only  val id for - 1 / / z < s <  1/ /Z) .  

The  upper  bound is m i n i m i z e d  for s = 0 /{ /Z(  1 + 0) }, which  is precisely the value  o f p  and 

q used in the theorem. W e  therefore  find with this value  o f  s, 

~ ( W - s ö W ) - ~ o ( W ) < , ~  - 0 + l o g ( 1  + 0) = - 6 .  [ ]  
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