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Abstract. We consider the primal problem of finding the zeros of the sum of a maximal
monotone operator and the composition of another maximal monotone operator with a
linear continuous operator. By formulating its Attouch-Théra-type dual inclusion problem,
a primal-dual splitting algorithm which simultaneously solves the two problems in finite-
dimensional spaces is presented. The proposed scheme uses at each iteration the resolvents
of the maximal monotone operators involved in separate steps and aims to overcome the
shortcoming of classical splitting algorithms when dealing with compositions of maximal
monotone and linear continuous operators. The iterative algorithm is used for solving
nondifferentiable convex optimization problems arising in image processing and in location
theory.

Key Words. maximal monotone operator, resolvent, operator splitting, subdifferential,
minimization algorithm, duality

AMS subject classification. 47H05, 65K05, 90C25

1 Introduction

1.1 Problem formulation and motivation

For X and Y real Hilbert spaces, A : X ⇒ X and B : Y ⇒ Y maximal monotone operators
and K : X → Y a linear continuous operator we propose in this paper an iterative scheme
for solving the monotone inclusion problem

find x ∈ X such that 0 ∈ Ax+K∗BKx, (1)

which makes separate use of the resolvents of A and B. The necessity of having such an
algorithm is given by the fact that the classical splitting algorithms have considerable limi-
tations when employed on the inclusion problem under investigation in its whole generality.
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Indeed, the Forward-Backward algorithm (see [5]) is a valuable option in this sense when
B is single-valued and cocoercive, while the use of Tseng’s Forward-Backward-Forward
algorithm (see [28]) asks for B being single-valued and Lipschitz continuous on a superset
of the image of the domain of A through K. On the other hand, the Douglas-Rachford
algorithm (see [5, 14]) asks for the maximal monotonicity of A and K∗BK and employs
the resolvent of the latter, which can be expressed by means of the resolvent of B only in
some very exceptional situations (see [5, Proposition 23.23]).

The aim of this article is to overcome this shortcoming by proposing a primal-dual
splitting algorithm for simultaneously solving this monotone inclusion problem and its
dual inclusion problem in the sense of Attouch-Théra (see [2, 4, 24])

find y ∈ Y such that 0 ∈ B−1y −KA−1(−K∗)y. (2)

In the formulation of the iterative scheme (only) simple forward evaluations of the operator
K and of its adjoint are made, while the resolvents of A and B appear separately. More
than that, the provided algorithm gives rise to a primal-dual iterative method for solving
the monotone inclusion problem

find x ∈ X such that 0 ∈
k∑
i=1

K∗i BiKix, (3)

and its dual problem

find y = (y1, ..., yk) ∈ Y1× ...×Yk such that

k∑
i=1

K∗i yi = 0 and

k⋂
i=1

(BiKi)
−1(yi) 6= ∅, (4)

where X and Yi are real Hilbert spaces, Bi : Yi ⇒ Yi are maximal monotone operators
and Ki : X → Yi are linear continuous operators, which makes use of the resolvents of Bi
and assumes only simple forward evaluations of Ki, i = 1, ..., k, (and of their adjoints).

Another primal-dual splitting algorithm which operates similarly with linear continu-
ous operators has been recently introduced in [10,13]. By using a standard product space
approach, this method basically reformulates the primal-dual pair as the problem of find-
ing the zeros of the sum of a maximal monotone operator and a monotone and Lipschitz
continuous operator, which is then solved by making use of the error-tolerant version of
Tseng’s Forward-Backward-Forward algorithm provided in [10].

When A and B are taken to be subdifferentials of proper, convex and lower semicontin-
uous functions, the primal-dual algorithm we propose in this paper becomes the iterative
method from [12]. It has the advantage that, in the context of solving nonsmooth convex
optimization problems involving compositions of proper, convex and lower semicontinuous
functions with linear continuous operators, it only asks for the proximal points of the func-
tions and not of the compositions. From this point of view, our approach proves to have a
certain similariy with the algorithm proposed in [10, 13]. In counterpart, popular decom-
position algorithms like the augmented Lagrangian method (ALM) and the alternating
direction method of multipliers (ADMM) (see [17] and, for some recent considerations
on these methods, [9, 16]) may assume the solving in each iteration of some optimization
problems, for the solutions of which no explicit or closed form are always available.

The method we propose in this paper will open the gates towards proposing easy
numerical implementations when solving regularized convex nondifferentiable problems of
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the shape

inf
x∈[0,1]m

{
‖Ax− b‖2 + λ1TV (x) + λ2‖x‖1

}
,

where TV : Rm → R is a discrete total variation functional and λ1, λ2 > 0 are regulariza-
tion parameters in the context of deblurring and denoising of images. Here, A ∈ Rm×m
describes a blur operator, b ∈ Rm represents the blurred and noisy image and the optimal
solution is an estimation of the unknown original image, each of its pixels being assumed
to range in the closed interval from 0 (pure black) to 1 (pure white). Beyond that, the
primal-dual approach is expected to have a positive impact when dealing with the mini-
mization of nonsmooth convex functions with an intricate formulation, as they occurr in
applications in signal and video processing, machine learning, multifacilty location theory,
portfolio optimization, average consensus on networks, etc.

The structure of the paper is the following. The remainder of this section is dedicated
to some elements of convex analysis and of the theory of maximal monotone operators. In
Section 2 we motivate and formulate a primal-dual splitting algorithm for solving the pair
of monotone inclusion problems (1) - (2). Further, in Section 3 we address the primal-
dual pair of monotone inclusion problems (3)-(4), while in Section 4 we employ the general
schemes for several classes of nondifferentiable convex optimization problems. Finally, we
consider applications of the presented algorithms in image deblurring and denoising and
when solving the Fermat-Weber location problem and compare their performances to the
ones of some iterative schemes recently introduced in the literature.

1.2 Monotone operators

In what follows we recall some elements of the theory of monotone operators in Hilbert
spaces and refer the reader in this respect to [5, 26].

LetX be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖·‖ =
√
〈·, ·〉.

For an arbitrary set-valued operator A : X ⇒ X we denote by GrA = {(x, u) ∈ X ×X :
u ∈ Ax} its graph, by domA = {x ∈ X : Ax 6= ∅} its domain and by A−1 : X ⇒ X its
inverse operator, defined by (u, x) ∈ GrA−1 if and only if (x, u) ∈ GrA. We say that A is
monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A monotone operator A is said
to be maximal monotone, if there exists no proper monotone extension of the graph of A
on X ×X. A single-valued linear operator A : X → X is said to be skew, if 〈x,Ax〉 = 0
for all x ∈ X. Skew operators are maximal monotone.

The resolvent of A, JA : X ⇒ X, is defined by JA = (IdX +A)−1, where IdX : X →
X, IdX(x) = x for all x ∈ X, is the identity operator on X. Moreover, if A is maximal
monotone, then JA : X → X is single-valued and maximal monotone (see [5, Proposition
23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see [5, Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA

and (see [5, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 IdX = IdX . (5)

When Y is another Hilbert space and K : X → Y is a linear continuous operator, then
K∗ : Y → X, defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ X × Y , denotes the adjoint
operator of K, while the norm of K is defined as ‖K‖ = sup{‖Kx‖ : x ∈ X, ‖x‖ ≤ 1}.
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2 A primal-dual splitting algorithm for finding the zeros of
A + K∗BK

For X and Y real Hilbert spaces, A : X ⇒ X and B : Y ⇒ Y maximal monotone operators
and K : X → Y a linear continuous operator we consider the problem of finding the pairs
(x̂, ŷ) ∈ X × Y fulfilling the system of inclusions

Kx ∈ B−1y and −K∗y ∈ Ax. (6)

If (x̂, ŷ) fulfills (6), then x̂ is a solution of the primal inclusion problem (1)

find x ∈ X such that 0 ∈ Ax+K∗BKx

and ŷ is a solution of its dual inclusion problem (2)

find y ∈ Y such that 0 ∈ B−1y −KA−1(−K∗)y.

On the other hand, if x̂ ∈ X is a solution of the problem (1), then there exists a solution ŷ
of (2) such that (x̂, ŷ) fulfills (6), while, if ŷ ∈ Y is a solution of the problem (2), then there
exists a solution x̂ of (1) such that (x̂, ŷ) fulfills (6). We refer the reader to [1,2,4,10,18,24]
for more algorithmic and theoretical aspects concerning the primal-dual pair of inclusion
problems (1)-(2).

For all σ, τ > 0 it holds

(x̂, ŷ) is a solution of (6)⇔ ŷ + σKx̂ ∈ (IdY +σB−1)ŷ and x̂− τK∗ŷ ∈ (IdX +τA)x̂

⇔ ŷ = JσB−1(ŷ + σKx̂) and x̂ ∈ JτA(x̂− τK∗ŷ).
(7)

The above equivalences motivate the following algorithm for solving (6).

Algorithm 1
Initialization: Choose σ, τ > 0 such that στ‖K‖2 < 1 and (x0, y0) ∈ X × Y .

Set x0 := x0.
For n ≥ 0 set: yn+1 := JσB−1(yn + σKxn)

xn+1 := JτA(xn − τK∗yn+1)
xn+1 := 2xn+1 − xn

Theorem 2 Assume that the system of inclusions (6) has a solution (x̂, ŷ) ∈ X × Y and
let (xn, xn, yn)n≥0 be the sequence generated by Algorithm 1. The following statements are
true:

(i) For any n ≥ 0 it holds

‖xn − x̂‖2
2τ

+ (1− στ‖K‖2)
‖yn − ŷ‖2

2σ
≤ ‖x

0 − x̂‖2
2τ

+
‖y0 − ŷ‖2

2σ
, (8)

thus the sequence (xn, yn)n≥0 is bounded.
(ii) If X and Y are finite-dimensional, then the sequence (xn, yn)n≥0 converges to a

solution of the system of inclusions (6).
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Proof. (i) The main idea of the proof relies on the following Fejér-type inequality

‖xn+1 − x̂‖2
2τ

+
‖yn+1 − ŷ‖2

2σ
≤ ‖x

n − x̂‖2
2τ

+
‖yn − ŷ‖2

2σ
+

(−1 +
√
στ‖K‖)‖y

n+1 − yn‖2
2σ

− ‖x
n+1 − xn‖2

2τ
+
√
στ‖K‖‖x

n − xn−1‖2
2τ

−〈K(xn+1 − xn),yn+1 − ŷ〉+ 〈K(xn − xn−1), yn − ŷ〉,

(9)

which we will prove below to hold for any n ≥ 0. By taking N ∈ N arbitrary such that
N ≥ 2 and by summing up the inequalities in (9) from n = 0 to N − 1 we obtain

‖xN − x̂‖2
2τ

+
‖yN − ŷ‖2

2σ
≤ ‖x

0 − x̂‖2
2τ

+
‖y0 − ŷ‖2

2σ
+

(−1 +
√
στ‖K‖)

N∑
n=1

‖yn − yn−1‖2
2σ

+ (−1 +
√
στ‖K‖)

N−1∑
n=1

‖xn − xn−1‖2
2τ

−

‖xN − xN−1‖2
2τ

− 〈K(xN − xN−1), yN − ŷ〉.

(10)

By combining (10) with

−〈K(xN − xN−1), yN − ŷ〉 ≤ ‖x
N − xN−1‖2

2τ
+
τ‖K‖2

2
‖yN − ŷ‖2,

we get
‖xN − x̂‖2

2τ
+
‖yN − ŷ‖2

2σ
≤ ‖x

0 − x̂‖2
2τ

+
‖y0 − ŷ‖2

2σ
+

(−1+
√
στ‖K‖)

N∑
n=1

‖yn − yn−1‖2
2σ

+(−1+
√
στ‖K‖)

N−1∑
n=1

‖xn − xn−1‖2
2τ

+
τ‖K‖2

2
‖yN− ŷ‖2

or, equivalently,

‖xN − x̂‖2
2τ

+ (1− στ‖K‖2)
‖yN − ŷ‖2

2σ
+

(1−√στ‖K‖)
N∑
n=1

‖yn − yn−1‖2
2σ

+ (1−√στ‖K‖)
N−1∑
n=1

‖xn − xn−1‖2
2τ

≤

‖x0 − x̂‖2
2τ

+
‖y0 − ŷ‖2

2σ
.

(11)

Since στ‖K‖2 < 1, (11) yields (8), hence (xn, yn)n≥0 is bounded.
We are going now to prove that for any n ≥ 0 the inequality (9) is fulfilled. For any

n ≥ 0 the iterations of Algorithm 1 yield that(
xn+1,

1

τ
(xn − τK∗yn+1 − xn+1)

)
∈ GrA, (12)

hence the monotonicity of A implies

0 ≤
〈
xn+1 − x̂, 1

τ
(xn − xn+1)−K∗yn+1 +K∗ŷ

〉
. (13)

5



Similarly, for any n ≥ 0 we have(
yn+1,

1

σ
(yn + σKxn − yn+1)

)
∈ GrB−1, (14)

thus

0 ≤
〈
Kxn +

1

σ
(yn − yn+1)−Kx̂, yn+1 − ŷ

〉
. (15)

On the other hand, for any n ≥ 0 we have that

‖xn+1 − x̂‖2 +

〈
xn+1 − x̂, 1

τ
(xn − xn+1)−K∗yn+1 +K∗ŷ

〉
=

〈
xn+1 − x̂, 1

τ
(xn − x̂) +

(
1− 1

τ

)
(xn+1 − x̂)−K∗yn+1 +K∗ŷ

〉
=

1

τ
〈xn+1 − x̂, xn − x̂〉+

(
1− 1

τ

)
‖xn+1 − x̂‖2 + 〈K(xn+1 − x̂),−yn+1 + ŷ〉,

hence
1

τ
‖xn+1 − x̂‖2 +

〈
xn+1 − x̂, 1

τ
(xn − xn+1)−K∗yn+1 +K∗ŷ

〉
=

1

τ
〈xn+1 − x̂, xn − x̂〉+ 〈K(xn+1 − x̂),−yn+1 + ŷ〉 =

− 1

2τ
‖xn+1 − xn‖2 +

1

2τ
‖xn+1 − x̂‖2 +

1

2τ
‖x̂− xn‖2 + 〈K(xn+1 − x̂),−yn+1 + ŷ〉,

where, for deriving the last formula, we use the identity

〈a, b〉 = −1

2
‖a− b‖2 +

1

2
‖a‖2 +

1

2
‖b‖2 ∀a, b ∈ X.

Consequently, for any n ≥ 0 it holds

1

2τ
‖xn+1 − x̂‖2 +

〈
xn+1 − x̂, 1

τ
(xn − xn+1)−K∗yn+1 +K∗ŷ

〉
=

− 1

2τ
‖xn+1 − xn‖2 +

1

2τ
‖xn − x̂‖2 + 〈K(xn+1 − x̂),−yn+1 + ŷ〉.

(16)

Thus, by combining (13) and (16), we get for any n ≥ 0

1

2τ
‖xn+1 − x̂‖2 ≤ − 1

2τ
‖xn+1 − xn‖2 +

1

2τ
‖xn − x̂‖2 + 〈K(xn+1 − x̂),−yn+1 + ŷ〉. (17)

By proceeding in analogous manner we obtain the following estimate for any n ≥ 0

‖yn+1 − ŷ‖2 +

〈
Kxn +

1

σ
(yn − yn+1)−Kx̂, yn+1 − ŷ

〉
=

〈
1

σ
(yn − ŷ) +

(
1− 1

σ

)
(yn+1 − ŷ) +Kxn −Kx̂, yn+1 − ŷ

〉
=

1

σ
〈yn − ŷ, yn+1 − ŷ〉+

(
1− 1

σ

)
‖yn+1 − ŷ‖2 + 〈K(xn − x̂), yn+1 − ŷ〉,
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hence
1

σ
‖yn+1 − ŷ‖2 +

〈
Kxn +

1

σ
(yn − yn+1)−Kx̂, yn+1 − ŷ

〉
=

1

σ
〈yn − ŷ, yn+1 − ŷ〉+ 〈K(xn − x̂), yn+1 − ŷ〉 =

− 1

2σ
‖yn+1 − yn‖2 +

1

2σ
‖yn+1 − ŷ‖2 +

1

2σ
‖ŷ − yn‖2 + 〈K(xn − x̂), yn+1 − ŷ〉.

From here we obtain for any n ≥ 0

1

2σ
‖yn+1 − ŷ‖2 +

〈
Kxn +

1

σ
(yn − yn+1)−Kx̂, yn+1 − ŷ

〉
=

− 1

2σ
‖yn+1 − yn‖2 +

1

2σ
‖yn − ŷ‖2 + 〈K(xn − x̂), yn+1 − ŷ〉.

(18)

and, thus, by combining (15) and (18), it follows

1

2σ
‖yn+1 − ŷ‖2 ≤ − 1

2σ
‖yn+1 − yn‖2 +

1

2σ
‖yn − ŷ‖2 + 〈K(xn − x̂), yn+1 − ŷ〉. (19)

Summing up the inequalities (17) and (19) and taking into account the definition of
xn we obtain for any n ≥ 0

1

2τ
‖xn+1 − x̂‖2 +

1

2σ
‖yn+1 − ŷ‖2 ≤

1

2τ
‖xn − x̂‖2 +

1

2σ
‖yn − ŷ‖2 − 1

2τ
‖xn+1 − xn‖2 − 1

2σ
‖yn+1 − yn‖2+

〈K(xn+1 + xn−1 − 2xn),−yn+1 + ŷ〉,

(20)

where x−1 := x0. Let us evaluate now the last term in relation (20). For any n ≥ 0 it
holds that

〈K(xn+1 + xn−1 − 2xn),−yn+1 + ŷ〉 =

〈K(xn+1 − xn),−yn+1 + ŷ〉+ 〈K(xn − xn−1), yn − ŷ〉+ 〈K(xn − xn−1), yn+1 − yn〉 ≤
−〈K(xn+1 − xn), yn+1 − ŷ〉+ 〈K(xn − xn−1), yn − ŷ〉+ ‖K‖‖xn − xn−1‖‖yn+1 − yn‖ ≤

−〈K(xn+1 − xn), yn+1 − ŷ〉+ 〈K(xn − xn−1), yn − ŷ〉+
√
στ‖K‖

2τ
‖xn − xn−1‖2 +

√
στ‖K‖

2σ
‖yn+1 − yn‖2.

(21)
From (20) and (21) we obtain for any n ≥ 0 the following estimation

1

2τ
‖xn+1 − x̂‖2 +

1

2σ
‖yn+1 − ŷ‖2 ≤ 1

2τ
‖xn − x̂‖2 +

1

2σ
‖yn − ŷ‖2−

1

2τ
‖xn+1− xn‖2− 1

2σ
‖yn+1− yn‖2− 〈K(xn+1− xn), yn+1− ŷ〉+ 〈K(xn− xn−1), yn− ŷ〉+
√
στ‖K‖

2τ
‖xn − xn−1‖2 +

√
στ‖K‖

2σ
‖yn+1 − yn‖2,

thus (9) holds. This concludes the proof of statement (i).
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(ii) According to (i), (xn, yn)n≥0 has a subsequence (xnk , ynk)k≥0 which converges to
some element (x∗, y∗) ∈ X×Y as k → +∞. From (11) we also obtain that limn→+∞(xn−
xn−1) = limn→+∞(yn− yn−1) = 0. Further, from (12) and (14) and using that, due to the
maximal monotonicity of A and B, GrA and GrB are closed sets, it follows that (x∗, y∗)
is a solution of the system of inclusions (6).

Further, let k ≥ 0 and N ∈ N, N > nk. Summing up the inequalities in (9), for
(x̂, ŷ) := (x∗, y∗), from n = nk to N − 1 we obtain

‖xN − x∗‖2
2τ

+
‖yN − y∗‖2

2σ
+ (1−√στ‖K‖)

N∑
n=nk+1

‖yn − yn−1‖2
2σ

−‖x
nk − xnk−1‖2

2τ
+ (1−√στ‖K‖)

N−1∑
n=nk

‖xn − xn−1‖2
2τ

+
‖xN − xN−1‖2

2τ

+〈K(xN − xN−1), yN − y∗〉 − 〈K(xnk − xnk−1), ynk − y∗〉

≤ ‖x
nk − x∗‖2

2τ
+
‖ynk − y∗‖2

2σ
,

which yields

‖xN − x∗‖2
2τ

+
‖yN − y∗‖2

2σ
≤ ‖K‖‖xN − xN−1‖‖yN − y∗‖+

‖xnk − x∗‖2
2τ

+
‖ynk − y∗‖2

2σ
+
‖xnk − xnk−1‖2

2τ
+ 〈K(xnk − xnk−1), ynk − y∗〉.

Consequently, by using also the boundedness of (xn, yn)n≥0, for any k ≥ 0 it holds

lim sup
N→+∞

(‖xN − x∗‖2
2τ

+
‖yN − y∗‖2

2σ

)
≤

‖xnk − x∗‖2
2τ

+
‖ynk − y∗‖2

2σ
+
‖xnk − xnk−1‖2

2τ
+ 〈K(xnk − xnk−1), ynk − y∗〉.

We finally let k converge to +∞, which yields

lim sup
N→+∞

(‖xN − x∗‖2
2τ

+
‖yN − y∗‖2

2σ

)
= 0

and, further, limN→+∞ xN = x∗ and limN→+∞ yN = y∗. �

We close this section by discussing another possible approach when solving the system
of inclusions (6) by employing some ideas considered in [10, 13]. To this end we define
the operators M : X × Y ⇒ X × Y , M(x, y) = (Ax,B−1y), and S : X × Y → X × Y ,
S(x, y) = (K∗y,−Kx). The operator M is maximal monotone, since A and B are maximal
monotone, while S is maximal monotone, since it is a skew linear operator. Then (x̂, ŷ) ∈
X × Y is a solution of the system of inclusions (6) if and only if it solves the inclusion
problem

find (x, y) ∈ X × Y such that (0, 0) ∈ S(x, y) +M(x, y). (22)
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Applying Algorithm 1 to the problem (22) with starting point (x0, y0, u0, v0) ∈ X ×
Y × X × Y , (x0, y0) = (x0, y0) and σ, τ > 0 gives rise for any n ≥ 0 to the following
iterations:

(un+1, vn+1) := JσM−1

[
(un, vn) + σ(xn, yn)

]
(xn+1, yn+1) := JτS

[
(xn, yn)− τ(un+1, vn+1)

]
(xn+1, yn+1) := 2(xn+1, yn+1)− (xn, yn).

Since
JσM−1 = JσA−1 × JσB

and (see [10, Proposition 2.7])

JτS(x, y) =
(
(IdX +τ2K∗K)−1(x− τK∗y), (IdY +τ2KK∗)−1(y + τKx)

)
∀(x, y) ∈ X × Y,

this yields the following algorithm:

Algorithm 3
Initialization: Choose σ, τ > 0 such that στ < 1 and (x0, y0), (u0, v0) ∈ X × Y .

Set (x0, y0) := (x0, y0).
For n ≥ 0 set: un+1 := JσA−1(un + σxn)

vn+1 := JσB(vn + σyn)
xn+1 := (IdX +τ2K∗K)−1

[
xn − τun+1 − τK∗(yn − τvn+1)

]
yn+1 := (IdY +τ2KK∗)−1

[
yn − τvn+1 + τK(xn − τun+1)

]
xn+1 := 2xn+1 − xn
yn+1 := 2yn+1 − yn

The following convergence statement is a consequence of Theorem 2.

Theorem 4 Assume that X and Y are finite-dimensional spaces and that the system
of inclusions (6) is solvable. Then the sequence (xn, yn)n≥0 generated in Algorithm 3
converges to (x∗, y∗), a solution of the system of inclusions (6), which yields that x∗ is
a solution of the primal inclusion problem (1) and y∗ is a solution of the dual inclusion
problem (2).

Remark 5 As we have already mentioned, the system of inclusions (6) is solvable if and
only if the primal inclusion problem (1) is solvable, which is further equivalent to solvability
of the dual inclusion problem (2). Let us also notice that from the point of view of the
numerical implementation Algorithm 3 has the drawback to ask for the calculation of the
inverses of IdX +τ2K∗K and IdY +τ2KK∗. This task can be in general very hard, but
it becomes very simple when K is, for instance, orthogonal, like it happens for the linear
transformations to which orthogonal wavelets give rise and which play an important role
in signal processing.

3 Zeros of sums of compositions of monotone operators with
linear continuous operators

In this section we provide via the primal-dual scheme Algorithm 1 an algorithm for solving
the inclusion problem (3)

find x ∈ X such that 0 ∈
k∑
i=1

K∗i BiKix,

9



where X and Yi are real Hilbert spaces, Bi : Yi ⇒ Yi are maximal monotone operators and
Ki : X → Yi are linear continuous operators for i = 1, ..., k. The dual inclusion problem
of (3) is problem (4)

find y = (y1, ..., yk) ∈ Y1 × ...× Yk such that
k∑
i=1

K∗i yi = 0 and
k⋂
i=1

(BiKi)
−1(yi) 6= ∅.

Following the product space approach from [10] and [5] we show that this primal-dual pair
can be reduced to a primal-dual pair of inclusion problems of the form (1)-(2).

Consider the real Hilbert space H := Xk endowed with the inner product 〈x, u〉H =∑k
i=1〈xi, ui〉X for x = (xi)1≤i≤k, u = (ui)1≤i≤k ∈ H, where 〈·, ·〉X denotes the inner

product on X. Further, let Y := Y1 × ... × Yk be the real Hilbert space endowed with
the inner product 〈y, z〉Y :=

∑k
i=1〈yi, zi〉Yi for y = (yi)1≤i≤k, z = (zi)1≤i≤k ∈ Y , where

〈·, ·〉Yi denotes the inner product on Yi, i = 1, ..., k. We define A : H ⇒ H, A := NV ,
where V = {(x, ..., x) ∈ H : x ∈ X}, B : Y ⇒ Y , B(y1, ..., yk) = (B1y1, ..., Bkyk), and
K : H → Y , K(x1, ..., xk) = (K1x1, ...,Kkxk). Obviously, the adjoint operator of K
is K∗ : Y → H, K∗(y1, ..., yk) = (K∗1y1, ...,K

∗
kyk), for (y1, ..., yk) ∈ Y . Further, let be

j : X → H, j(x) = (x, ..., x).
The operators A and B are maximal monotone and

x solves (3) if and only if (0, ..., 0) ∈ A(j(x)) +K∗BK(j(x)),

while

y = (y1, ..., yk) solves (4) if and only if (0, ..., 0) ∈ B−1y −KA−1(−K∗)y.
Applying Algorithm 1 to the inclusion problem

find (x1, ..., xk) ∈ H such that 0 ∈ A(x1, ..., xk) +K∗BK(x1, ..., xk) (23)

with starting point (x0, ..., x0, y0
1, ..., y

0
k) ∈ X × ...×X︸ ︷︷ ︸

k

×Y1 × ... × Yk, constants σ, τ > 0

and (x0
1, ..., x

0
k) := (x0, ..., x0) yields for any n ≥ 0 the following iterations:

(yn+1
i )1≤i≤k := JσB−1

(
(yni )1≤i≤k + σK(xni )1≤i≤k

)
(xn+1
i )1≤i≤k := JτA

(
(xni )1≤i≤k − τK∗(yn+1

i )1≤i≤k
)

(xn+1
i )1≤i≤k := 2(xn+1

i )1≤i≤k − (xni )1≤i≤k.

According to [10], for the occurring resolvents we have that JτA(u1, ..., uk) = j( 1
k

∑k
i=1 ui)

for (u1, ..., uk) ∈ H and JσB−1(z1, ..., zk) = (JσB−1
1
z1, ..., JσB−1

k
zk) for (z1, ..., zk) ∈ Y . This

means that for any n ≥ 1 it holds xn1 = ... = xnk and xn+1
1 = ... = xn+1

k , which shows
that there is no loss in the generality of the algorithm when assuming that the first k
components of the starting point coincide. Notice that a solution (x̂1, ..., x̂k) of (23) must
belong to domA, thus x̂1 = ... = x̂k. We obtain the following algorithm:

Algorithm 6

Initialization: Choose σ, τ > 0 such that στ
∑k

i=1 ‖Ki‖2 < 1 and

(x0, y0
1, ..., y

0
k) ∈ X × Y1 × ...× Yk. Set x0 := x0.

For n ≥ 0 set: yn+1
i := JσB−1

i
(yni + σKix

n), i = 1, ..., k

xn+1 := xn − τ
k

∑k
i=1K

∗
i y

n+1
i

xn+1 := 2xn+1 − xn

10



The convergence of Algorithm 6 is stated by the following result which is a consequence
of Theorem 2.

Theorem 7 Assume that X and Yi, i = 1, ..., k, are finite-dimensional spaces and (3) is
solvable. Then (4) is also solvable and the sequences (xn)n≥0 and (yn1 , ..., y

n
k )n≥0 generated

in Algorithm 6 converge to a solution of the primal inclusion problem (3) and to a solution
of the dual inclusion problem (4), respectively.

Remark 8 Since ‖K‖2 ≤∑k
i=1 ‖Ki‖2, the inequality στ

∑k
i=1 ‖Ki‖2 < 1 in Algorithm 6

is considered in order to ensure that στ‖K‖2 < 1.

Remark 9 The iterative schemes in Algorithm 1 and Algorithm 6 follow for some ap-
propriate initializations from the one proposed in [29], as the author of this paper kindly
pointed it out to us. The approach in [29] relies on an idea similar to the one from [10,13],
as it assumes the reformulation of the primal-dual pair as the problem of finding the ze-
ros of the sum of a maximal monotone operator and a cocoercive operator, solved via
an error-tolerant Forward-Backward algorithm. In counterpart, the technique we propose
here puts in foreground the Fejér-type inequality (9), which is of big importance in the
context of studying the convergence rates of iterative methods relying on Algorithm 1.

When particularizing the above framework to the case when Yi = X and Ki = IdX for
i = 1, .., k, the primal-dual pair of inclusion problems (3)-(4) become

find x ∈ X such that 0 ∈
k∑
i=1

Bix (24)

and

find y = (y1, ..., yk) ∈ X × ...×X such that
k∑
i=1

yi = 0 and
k⋂
i=1

B−1
i (yi) 6= ∅, (25)

respectively. In this situation H = Y , K = IdH , ‖K‖ = 1 and

x solves (24) if and only if (0, ..., 0) ∈ A(j(x)) +B(j(x)),

while

y = (y1, ..., yk) solves (25) if and only if (0, ..., 0) ∈ B−1(y)−A−1(−y).

Algorithm 6 yields in this particular case the following iterative scheme:

Algorithm 10
Initialization: Choose σ, τ > 0 such that στ < 1 and

(x0, y0
1, ..., y

0
k) ∈ X × ...×X︸ ︷︷ ︸

k+1

. Set x0 := x0.

For n ≥ 0 set: yn+1
i := JσB−1

i
(yni + σxn), i = 1, ..., k

xn+1 := xn − τ
k

∑k
i=1 y

n+1
i

xn+1 := 2xn+1 − xn

11



The convergence of Algorithm 10 follows via Theorem 7.

Theorem 11 Assume that X is a finite-dimensional space and (24) is solvable. Then
(25) is also solvable and the sequences (xn)n≥0 and (yn1 , ..., y

n
k )n≥0 generated in Algorithm

10 converge to a solution of the primal inclusion problem (24) and to a solution of the
dual inclusion problem (25), respectively.

In the last part of this section we provide a second algorithm which solves (24) and
(25) which starts from the premise that by changing the roles of A and B one has

x solves (24) if and only if (0, ..., 0) ∈ B(j(x)) +A(j(x)),

while

y = (y1, ..., yk) solves (25) if and only if (0, ..., 0) ∈ A−1(−y)−B−1(y).

Applying Algorithm 1 to the inclusion problem

find (x1, ..., xk) ∈ H such that 0 ∈ B(x1, ..., xk) +A(x1, ..., xk)

with starting point (x0
1, ..., x

0
k, y

0
1, ..., y

0
k) ∈ X × ...×X︸ ︷︷ ︸

2k

, constants σ, τ > 0 and(x0
1, ..., x

0
k):=

(x0
1, ..., x

0
k) yields for any n ≥ 0 the following iterations:

(yn+1
i )1≤i≤k = JσA−1

(
(yni )1≤i≤k + σ(xni )1≤i≤k

)
(xn+1
i )1≤i≤k = JτB

(
(xni )1≤i≤k − τ(yn+1

i )1≤i≤k
)

(xn+1
i )1≤i≤k = 2(xn+1

i )1≤i≤k − (xni )1≤i≤k.

Noticing that JσA−1 = JσN−1
V

= IdH −σJσ−1NV
◦ σ−1 IdH (see [5, Proposition 23.18]) and

Jσ−1NV
(u1, ..., uk) = JNV

(u1, ..., uk) = j( 1
k

∑k
i=1 ui) for (u1, ..., uk) ∈ H (see [10, relation

(3.27)]) and by making for any n ≥ 0 the change of variables yni := −yni for i = 1, ..., k,
we obtain the following iterative scheme:

Algorithm 12
Initialization: Choose σ, τ > 0 such that στ < 1 and

(x0
1, ..., x

0
k, y

0
1, ..., y

0
k) ∈ X × ...×X︸ ︷︷ ︸

2k

. Set (x0
1, ..., x

0
k) := (x0

1, ..., x
0
k).

For n ≥ 0 set: yn+1
i := yni − σxni + 1

k

∑k
j=1 y

n
j + σ

k

∑k
j=1 x

n
j , i = 1, ..., k

xn+1
i := JτBi(x

n
i + τyn+1

i ), i = 1, ..., k

xn+1
i := 2xn+1

i − xni , i = 1, ..., k

Theorem 13 Assume that X is finite dimensional and (24) is solvable. Then (25) is
also solvable, the sequences (xni )n≥0, i = 1, ..., k, generated in Algorithm 12 converge to the
same solution of (24) and the sequence (yn1 , ..., y

n
k )n≥0 generated by the same algorithm

converges to a solution of (25).
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4 Solving convex optimization problems via the primal-dual
algorithm

The aim of this section is to employ the iterative methods investigated above for solving
several classes of unconstrained convex optimization problems. We start by recalling some
elements of convex analysis (see [5, 6, 19,26,31]).

When X is a real Hilbert space and f : X → R := R ∪ {±∞} a proper (i.e., dom f =
{x ∈ X : f(x) < +∞} 6= ∅ and f > −∞), convex and lower semicontinuous function
f : X → R := R ∪ {±∞}, then its (convex) subdifferential, which is defined by ∂f(x) :=
{u ∈ X : f(y) ≥ f(x) + 〈u, y − x〉 ∀y ∈ X}, for x ∈ f−1(R), and ∂f(x) := ∅, otherwise,
is a maximal monotone operator (see [25]). Moreover, (∂f)−1 = ∂f∗, where f∗ : X → R,
f∗(u) = supx∈X{〈u, x〉 − f(x)} for u ∈ X, denotes the conjugate function of f . Examples
of maximal monotone operators which fail to be subdifferentials of a proper, convex and
lower semicontinuous function are nonzero skew operators defined on a Hilbert space with
a dimension greater than or equal to 2 (see [26]).

For γ > 0 and x ∈ X we denote by proxγf (x) the proximal point of parameter γ of f
at x, which is the unique optimal solution of the optimization problem

inf
y∈X

{
f(y) +

1

2γ
‖y − x‖2

}
. (26)

Notice that Jγ∂f = (IdX +γ∂f)−1 = proxγf , thus proxγf : X → X is a single-valued
operator fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdX = IdX . (27)

Let us also recall that the function f : X → R is said to be strongly convex (with modulus
γ > 0), if f − γ

2‖ · ‖2 is a convex function.
When C ⊆ X is a nonempty, convex and closed set, its indicator function δC : X → R,

is the proper, convex and lower semicontinuous function that takes the value 0 on C and
+∞ otherwise. The subdifferential of δC is the normal cone of C, that is NC(x) = {u ∈
X : 〈u, y − x〉 ≤ 0 ∀y ∈ C}, if x ∈ C and NC(x) = ∅ for x /∈ C. For γ > 0 it holds

JγNC
= JNC

= J∂δC = (IdX +NC)−1 = proxδC = PC , (28)

where PC : X → C denotes the projection operator on C (see [5, Example 23.3 and
Example 23.4]).

For the real Hilbert spaces X and Y , the proper, convex and lower semicontinuous
functions f : X → R and g : Y → R and the linear continuous operator K : X → Y
consider the optimization problem

inf
x∈X
{f(x) + g(Kx)} (29)

along with its Fenchel dual problem (see [5, 6, 19,31])

sup
y∈Y
{−f∗(−K∗y)− g∗(y)}. (30)

For this primal-dual pair weak duality always holds, i.e., the optimal objective value of the
primal problem is greater than or equal to the optimal objective value of the dual problem.

13



In order to guarantee strong duality, i.e., the situation when the optimal objective values of
the two problems coincide and the dual problem has an optimal solution one needs to ask
for the fulfillment of a so-called qualification condition. One of the weakest interiority-type
qualification conditions known in the literature reads (see [5–7,26,31])

(QC) 0 ∈ sqri(dom g −K(dom f)).

Here, for C a convex set, we denote by sqriC := {x ∈ C : ∪λ>0λ(C − x) is a closed linear
subspace of X} its strong quasi-relative interior. The strong quasi-relative interior of C
is a superset of the topological interior of C, i.e., intC ⊆ sqriC (in general this inclusion
may be strict). If X is finite-dimensional, then sqriC coincides with the relative interior
of C, which is the interior of C with respect to its affine hull. The qualification condition
(QC) is fulfilled, for instance, when there exists x′ ∈ dom f ∩K−1(dom g) such that g is
continuous at Kx′.

Algorithm 1 written for A := ∂f and B := ∂g yields the following iterative scheme:

Algorithm 14
Initialization: Choose σ, τ > 0 such that στ‖K‖2 < 1 and (x0, y0) ∈ X × Y .

Set x0 := x0.
For n ≥ 0 set: yn+1 := proxσg∗(y

n + σKxn)

xn+1 := proxτf (xn − τK∗yn+1)

xn+1 := 2xn+1 − xn

We have the following convergence result.

Theorem 15 Assume that the primal problem (29) has an optimal solution x̂ and the
qualification condition (QC) is fulfilled. Let (xn, xn, yn)n≥0 be the sequence generated by
Algorithm 14. The following statements are true:

(i) There exists ŷ ∈ Y , an optimal solution of the dual problem (30), the optimal
objective values of the two optimization problems coincide and (x̂, ŷ) is a solution of the
system of inclusions

Kx ∈ ∂g∗(y) and −K∗y ∈ ∂f(x). (31)

(ii) For any n ≥ 0 it holds

‖xn − x̂‖2
2τ

+ (1− στ‖K‖2)
‖yn − ŷ‖2

2σ
≤ ‖x

0 − x̂‖2
2τ

+
‖y0 − ŷ‖2

2σ
, (32)

thus the sequence (xn, yn)n≥0 is bounded.
(iii) If X and Y are finite-dimensional, then (xn)n≥0 converges to an optimal solution

of (29) and (yn)n≥0 converges to an optimal solution of (30).

Remark 16 (i) Statement (i) of the above theorem is well-known in the literature, (31)
being nothing else than the system of optimality conditions for the primal-dual pair (29)-
(30) (see [6, 19,31]), while the other two statements follow from Theorem 2.

(ii) The existence of optimal solutions of the primal problem (29) is guaranteed if
K(dom f) ∩ dom g 6= ∅ and, for instance, f is coercive and g is bounded below. Indeed,
under these circumstances, the objective function of (29) is coercive and the statement
follows via [31, Theorem 2.5.1(ii)]. On the other hand, when f is strongly convex, then
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f+g ◦K is strongly convex, too, thus (29) has a unique optimal solution (see [5, Corollary
11.16]).

(iii) We rediscovered above the iterative scheme and the convergence statement from
[12] as a particular instance of the general results furnished in Section 2.

For X and Yi real Hilbert spaces, gi : Yi → R proper, convex and lower semicontin-
uous functions and Ki : X → Yi linear continuous operators, i = 1, ..., k, consider the
optimization problem

inf
x∈X

k∑
i=1

gi(Kix) (33)

and its Fenchel-type dual problem

sup
yi∈Yi,i=1,...,k∑k

i=1K
∗
i yi=0

k∑
i=1

−g∗i (yi). (34)

One of the weakest qualification conditions guaranteeing strong-duality for the primal-dual
pair (33)-(34) reads (see, for instance, [6, 10,31])

(QCΣ) 0 ∈ sqri
(∏k

i=1 dom gi − {(K1x, ...,Kkx) : x ∈ X}
)

and it is fulfilled, for instance, when there exists x′ ∈ ⋂k
i=1K

−1
i (dom gi) such that gi is

continuous at Kix
′, i = 1, ..., k. By taking Bi := ∂gi, i = 1, ..., k, Algorithm 6 yields the

following iterative scheme:

Algorithm 17

Initialization: Choose σ, τ > 0 such that στ
∑k

i=1 ‖Ki‖2 < 1 and

(x0, y0
1, ..., y

0
k) ∈ X × Y1 × ...× Yk. Set x0 := x0.

For n ≥ 0 set: yn+1
i := proxσg∗i (yni + σKix

n), i = 1, ..., k

xn+1 := xn − τ
k

∑k
i=1K

∗
i y

n+1
i

xn+1 := 2xn+1 − xn

The convergence of Algorithm 17 is stated by the following result which is a conse-
quence of Theorem 7.

Theorem 18 Assume that the primal problem (33) has an optimal solution x̂ and the
qualification conditions (QCΣ) is fulfilled. The following statements are true:

(i) There exists (ŷ1, ..., ŷk) ∈ Y1× ...×Yk, an optimal solution of the dual problem (34),
the optimal objective values of the two optimization problems coincide and (x̂, ŷ1, ..., ŷk) is
a solution of the system of inclusions

Kix ∈ ∂g∗i (yi), i = 1, ..., k, and

k∑
i=1

K∗i yi = 0. (35)

(ii) If X and Y are finite-dimensional, then the sequences (xn)n≥0 and (yn1 , ..., y
n
k )n≥0

generated in Algorithm 17 converge to an optimal solution of (33) and (34), respectively.
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Considering, finally, the particular case when Yi = X and Ki = IdX , i = 1, ..., k, the
problems (33) and (34) become

inf
x∈X

k∑
i=1

gi(x) (36)

and, respectively,

sup
yi∈X,i=1,...,k∑k

i=1 yi=0

k∑
i=1

−g∗i (yi). (37)

The qualification conditions (QCΣ) looks in this case like

(QCid) 0 ∈ sqri
(∏k

i=1 dom gi − {(x, ..., x) : x ∈ X}
)

and it is fulfilled, for instance, if there exists x′ ∈ ∩ki=1 dom gi such that k − 1 of the
functions gi, i = 1, ..., k, are continuous at x′. By particularizing Algorithm 17 we obtain:

Algorithm 19
Initialization: Choose σ, τ > 0 such that στ < 1 and

(x0, y0
1, ..., y

0
k) ∈ X × ...×X︸ ︷︷ ︸

k+1

. Set x0 := x0.

For n ≥ 0 set: yn+1
i := proxσg∗i (yni + σxn), i = 1, ..., k

xn+1 := xn − τ
k

∑k
i=1 y

n+1
i

xn+1 := 2xn+1 − xn

while Algorithm 12 gives rise to the following iterative scheme:

Algorithm 20
Initialization: Choose σ, τ > 0 such that στ < 1 and

(x0
1, ..., x

0
k, y

0
1, ..., y

0
k) ∈ X × ...×X︸ ︷︷ ︸

2k

. Set (x0
1, ..., x

0
k) := (x0

1, ..., x
0
k).

For n ≥ 0 set: yn+1
i := yni − σxni + 1

k

∑k
j=1 y

n
j + σ

k

∑k
j=1 x

n
j , i = 1, ..., k

xn+1
i := proxτgi(x

n
i + τyn+1

i ), i = 1, ..., k

xn+1
i := 2xn+1

i − xni , i = 1, ..., k

We have the following convergence theorem.

Theorem 21 Assume that the primal problem (36) has an optimal solution x̂ and the
qualification conditions (QCid) is fulfilled. The following statements are true:

(i) There exists (ŷ1, ..., ŷk) ∈ X× ...×X, an optimal solution of the dual problem (37),
the optimal objective values of the two optimization problems coincide and (x̂, ŷ1, ..., ŷk) is
a solution of the system of inclusions

x ∈ ∂g∗i (yi), i = 1, ..., k, and
k∑
i=1

yi = 0. (38)

(ii) If X is finite-dimensional, then the sequences (xn)n≥0 and (yn1 , ..., y
n
k )n≥0 generated

in Algorithm 19 converge to an optimal solution of (36) and (37), respectively.
(iii) If X is finite-dimensional, then the sequences (xni )n≥0, i = 1, ..., k, generated in

Algorithm 20 converges to the same optimal solution of (36) and the sequence (yn1 , ...y
n
k )n≥0

generated by the same algorithm converges to an optimal solution of (37).
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Due to the absence of linear continuous operators in its formulation, one can consider
for the solving of the optimization problem (36) also other splitting algorithms with an
easy implementable formulation. In order to compare the structure of Algorithm 19 to
some of the most popular decomposition methods, we point out that the iterative steps
can be reformulated for n ≥ 0 as (here, x−1 := x0)

yn+1
i := proxσg∗i (yni + σ(2xn − xn−1)), i = 1, ..., k

xn+1 := xn − τ

k

k∑
i=1

yn+1
i

(i) The (parallel) Douglas-Rachford splitting algorithm, as described in [5, Proposition
25.7], applied to problem (36) gives rise for n ≥ 0 to the following iterative steps

pn =:
1

k

k∑
i=1

uni

vni =: proxγgi(u
n
i ), i = 1, ..., k

qn =:
1

k

k∑
i=1

vni

un+1
i =: uni + λn(2qn − pn − vni ), i = 1, ..., k

Taking in the primal-dual algorithm σ = τ = 1 and in the Douglas-Rachford splitting
algorithm γ = 1 and λn = 1 for any n ≥ 0, it turns out that the two iterative schemes are
equivalent in the following sense. If the sequence (xn, yn1 , ..., y

n
k )n≥0 is generated by the

primal-dual algorithm, then the sequence (un1 , ..., u
n
k , v

n
1 , ..., v

n
k )n≥0, where uni := yni +2xn−

xn−1 and vni := uni − yn+1
i , for i = 1, ..., k, is the one generated by the Douglas-Rachford

splitting algorithm. Conversely, if (un1 , ..., u
n
k , v

n
1 , ..., v

n
k )n≥0 is the sequence generated by

the Douglas-Rachford splitting algorithm, then (xn, yn1 , ..., y
n
k )n≥0, where yni := un−1

i −
vn−1
i , i = 1, ..., k, and xn := uni − yni + 1

k

∑k
i=1 y

n
i , is the one generated by the primal-dual

algorithm.
(ii) The alternating direction method of multipliers (ADMM) applied to the dual op-

timization problem (37) gives rise (see [9, Subsection 7.3.2]) for n ≥ 0 to the following
iterative steps

yn+1
i =: proxρ−1g∗i

(yni − un − xn), i = 1, ..., k

xn+1 =:
1

k

k∑
i=1

yn+1
i

un+1 =: un + xn+1

which can be equivalently written as

yn+1
i =: proxρ−1g∗i

(yni − (2un − un−1)), i = 1, ..., k

un+1 =: un +
1

k

k∑
i=1

yn+1
i .
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By defining xn := −un for all n ≥ 0, this is further equivalent to

yn+1
i =: proxρ−1g∗i

(yni + (2xn − xn−1)), i = 1, ..., k

xn+1 =: xn − 1

k

k∑
i=1

yn+1
i

Thus, the primal-dual method applied to (36) for σ = τ = 1 is equivalent to ADMM with
penalty parameter ρ = 1 applied to the dual (37).

(iii) Spingarn’s method, as described in [27, Section 5], applied to problem (36) gives
rise for n ≥ 0 to the following iterative steps (here,

∑k
i=1 y

0
i = 0)

yni =: proxg∗i (xn + yni ), i = 1, ..., k

xni =: xn + yni − yni , i = 1, ..., k

xn+1 =:
1

k

k∑
i=1

xni

yn+1
i =: yni −

1

k

k∑
i=1

yni , i = 1, ..., k

which can be equivalently written as

yni =: proxg∗i (xn + yni ), i = 1, ..., k

xn+1 =: xn − 1

k

k∑
i=1

yni

yn+1
i =: yni −

1

k

k∑
i=1

yni , i = 1, ..., k

and further as

yn+1
i =: proxg∗i (yni + 2xn+1 − xn), i = 1, ..., k.

xn+2 =: xn+1 − 1

k

k∑
i=1

yn+1
i

One can recognize in the reformulation of Spingarn’s method the same structure as for
the primal-dual method in the case when σ = 1 and τ = 1.

5 Numerical experiments

In this section we present numerical experiments involving the primal-dual algorithm and
some of its variants when solving some nondifferentiable convex optimization problems
originating in image processing and in location theory.
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5.1 Image deblurring and denoising

The first numerical experiment concerns the solving of an ill-conditioned linear inverse
problem arising in image deblurring. To this end, we consider images of size M × N as
vectors x ∈ Rm for m = MN , where each pixel denoted by xi,j , 1 ≤ i ≤ M , 1 ≤ j ≤ N ,
ranges in the closed interval from 0 (pure black) to 1 (pure white). For a given matrix
A ∈ Rm×m describing a blur operator and a given vector b ∈ Rm representing the blurred
and noisy image the task that we considered was to estimate the unknown original image
x∗ ∈ Rm solving the linear system Ax = b.

To this aim we solved the following regularized convex nondifferentiable problem

inf
x∈[0,1]m

{
‖Ax− b‖2 + λ1TV (x) + λ2‖x‖1

}
, (39)

where TV : Rm → R is a discrete total variation functional, λ1, λ2 > 0 are regulariza-
tion parameters and the regularization is done by a combination of two functionals with
different properties.

Two popular choices for the discrete total variation functional are the anisotropic total
variation TVaniso : Rm → R

TVaniso(x) =

M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

+
M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j |

and the isotropic total variation TViso : Rm → R

TViso(x) =
M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+

M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | .

We denote Y = Rm × Rm and define the linear operator L : Rm → Y, xi,j 7→
(L1xi,j , L2xi,j), where

L1xi,j =

{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =

{
xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient in the horizontal and vertical
directions. One can easily check that ‖L‖2 ≤ 8 and that its adjoint L∗ : Y → Rm is as
easy to implement as the operator itself (cf. [11]).

We concretely looked at the 256×256 cameraman test image, which is part of the image
processing toolbox in Matlab. We scaled the pixels to the interval [0, 1] and vectorized the
image, obtaining a vector of dimension m = 256 × 256 = 65536. Further, by making use
of the Matlab functions imfilter and fspecial, we blurred the image as follows:

1 H=f s p e c i a l ( ’ gauss ian ’ , 9 , 4 ) ; % gauss ian b lur o f s i z e 9 t imes 9
2 % and standard dev i a t i on 4
3 B=i m f i l t e r (X,H, ’ conv ’ , ’ symmetric ’ ) ; % B=observed b lur red image
4 % X=o r i g i n a l image
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In row 1 the function fspecial returns a rotationally symmetric Gaussian lowpass filter
of size 9 × 9 with standard deviation 4. The entries of H are nonnegative and their sum
adds up to 1. In row 3 the function imfilter convolves the filter H with the image X and
outputs the blurred image B. The boundary option ”symmetric” corresponds to reflexive
boundary conditions.

Thanks to the rotationally symmetric filter H, the linear operator A ∈ Rm×m given
by the Matlab function imfilter is symmetric, too. By making use of the real spectral
decomposition of A it shows that ‖A‖2 = 1. After adding a zero-mean white Gaussian
noise with standard deviation 10−3, we obtained the blurred and noisy image b ∈ Rm
which is shown in Figure 1. We solved (39) by applying Algorithm 17 for both instances

• α1 = α2 = 2e− 5 (für Iso und Aniso bei FBF und PD)

• PD iso: τ = 140, σ = 0.00064

• PD aniso: τ = 100, σ = 0.0009

• FBF: ε = 0.012, γ = 0.3124

• noise: 0.001

original blurred and noisy

1

Figure 1: The 256× 256 cameraman test image

of the discrete total variation functional. Thus, when considering the anoisotropic total
variation, the problem (39) can be formulated as

inf
x∈Rm

{g1(Ax) + g2(Lx) + g3(x) + g4(x)} , (40)

where g1 : Rm → R, g1(x) = ‖x − b‖2, g2 : Y → R, g2(u, v) = λ1‖(u, v)‖1, g3 : Rm → R,
g3(x) = λ2‖x‖1 and g4 : Rm → R is the indicator function of [0, 1]m.

When applying standard splitting algorithms in order to solve problem (40), one would
need determing the resolvents of A∗ ◦ ∂g1 ◦ A and L∗ ◦ ∂g2 ◦ L, for which in general no
exact formulae are available. On the other hand, the proposed primal-dual method asks
only for the proximal points of the conjugates of the particular functions, which, as it is
shown as follows, can be easily calculated.

For every p ∈ Rm we have g∗1(p) = 1
4‖p‖2 + pT b and g∗3(p) = δ[−λ2,λ2]m(p), while, for

every (p, q) ∈ Y it holds g∗2(p, q) = δ[−λ1,λ1]m×[−λ1,λ1]m(p, q). Thus, for σ > 0 and p, q ∈ Rm
we have

proxσg∗1 (p) =
2(p− bσ)

2 + σ
,

proxσg∗2 (p, q) = P[−λ1,λ1]m×[−λ1,λ1]m(p, q),

proxσg∗3 (p) = P[−λ2,λ2]m(p)
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PDaniso
100 = 3.9435 PDaniso

200 = 1.8170 PDaniso
300 = 1.0319

PDiso
100 = 3.9659 PDiso

200 = 1.9378 PDiso
300 = 1.1363

1

Figure 2: Iterations 100, 200 and 300 when solving the problems (40) and (41) via Algo-
rithm 17

and
proxσg∗4 (p) = p− σ proxσδ[0,1]m

(
1
σp
)

= p− σP[0,1]m
(

1
σp
)
.

On the other hand, when considering the isotropic total variation, the problem (39) can
be formulated as

inf
x∈Rm

{g1(Ax) + g̃2(Lx) + g3(x) + g4(x)} , (41)

where the functions g1, g3 and g4 are taken as above and g̃2 : Y → R is defined as

g̃2(u, v) = λ1‖(u, v)‖×, where ‖(·, ·)‖× : Y → R, ‖(u, v)‖× =
∑M

i=1

∑N
j=1

√
u2
i,j + v2

i,j , is a

norm on the Hilbert space Y. Thus for every (p, q) ∈ Y it holds g̃∗2(p, q) = δS(p, q) and

proxσg̃∗2 (p, q) = PS (p, q) ,

where (cf. [8])

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j ≤ λ1
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Figure 3: Improvement in signal-to-noise ratio (ISNR)

and the projection operator PS : Y → S is defined via

(pi,j , qi,j) 7→ λ1
(pi,j , qi,j)

max
{
λ1,
√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

We considered as regularization parameter λ1 = λ2 = 2 × 10−5, σ = 64 × 10−5 and
τ = 140 when solving (40) and σ = 9 × 10−4 and τ = 100 when solving (41). The top
line of Figure 2 shows the iterations 100, 200 and 300 when solving (40) via Algorithm 17,
while the bottom line of it shows the iterations 100, 200 and 300 when solving (41) via
the same algorithm, for each of them the value of the objective function at the respective
iterate being provided.

We also made some comparisons from the point of view of the quality of the recovered
images when solving (40) and (41) with Algorithm 17 and with the iterative method
from [10,13] relying on Tseng’s Forward-Backward-Forward algorithm. We considered the
latter not only because of its primal-dual nature, but also since it assumes only simple
forward evaluations of the linear continuous operators (and of their adjoints) involved in
the formulation of the optimization problems. For the iterative scheme from [10, 13] we
have chosen ε = 0.012 and γ = 0.3124. The comparisons concerning the quality of the
recovered images were made via the improvement in signal-to-noise ratio (ISNR), which
is defined as

ISNR(n) = 10 log10

(
‖x− b‖2

‖x− xn‖2

)
,

where x, b and xn denote the original, observed and estimated image at iteration n, respec-
tively. Figure 3 and Figure 4 show the evolution of the ISNR values and the decrease in
the objective function values, respectively, when solving (40) and (41) with the Algorithm
17 (PD) and with the algorithm from [10,13] (FBF), respectively. Algorithm 17 furnishes
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Figure 4: The decrease in the objective function values

after 300 iterations from the point of view of the quality of the recovered images the best
results, whereby here the isotropic total variation functional is the optimal choice. More
than that, as expected, due to the supplementary forward step, the algorithm in [10, 13]
needs at each iterate more CPU time than Algorithm 17.

5.2 The Fermat-Weber problem

The second application of the primal-dual algorithm presented in this paper is with respect
to the solving of the Fermat-Weber problem, which concerns the finding of a new facility
in order to minimize the sum of weighted distances to a set of fixed points. We considered
the nondifferentiable convex optimization problem

(PFW ) inf
x∈Rm

{
k∑
i=1

λi‖x− ci‖
}
,

where ci ∈ Rm are given points and λi > 0 are given weights for i = 1, ..., k. We solved the
optimization problem (PFW ) by using Algorithm 19 for gi : Rm → R, gi(x) = λi‖x−ci‖, i =
1, ..., k. With this respect we used that for i = 1, ..., k it holds

g∗i (y) =

{
〈y, ci〉, if ‖y‖ ≤ λi,

+∞, otherwise,
∀y ∈ Rm

and, from here, when σ > 0, that

proxσg∗i (z) =

{
z − σci, if ‖z − σci‖ ≤ λi,

λi
z−σci
‖z−σci‖ , otherwise

∀z ∈ Rm.
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• points (20,0) ω = 5; (59,0), ω = 5; (-20,48), ω = 13; (-20,-48), ω = 13;

• σ = 0.13, τ = 7.6923

• start x0 = (44, 0)

• 15 Iterationen, Abbruch bei ‖xk − x∗‖ ≤ 0.001

• x15 = (−0.000725, 0)

• optimal solution (0, 0), f∗ = 1747.0

PD0 = 2275.0
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Figure 5: The progression of iterations of Algorithm 19 when solving the Fermat-Weber
problem for points and weights given by (42)

We investigated the functionality of the algorithm on two sets of points and weights,
often considered in the literature when analyzing the performances of iterative schemes for
the Fermat-Weber problem. In the light of the theoretical considerations made at the end
of the previous section, the convergence behaviour of classical splitting algorithms will not
differ from the one of the primal-dual method. Thus, we will compare the performances
of the primal-dual algorithm with the ones of a smoothing method recently proposed in
the literature and tested in the context of the the Fermat-Weber problem. In the last
years one can notice a dramatically increase of the number of publications dealing with
smoothing approaches for solving nonsmooth convex optimization problems. They become
popular since they provide good convergence rates, especially for the sequence of objective
values, motivated by the fact that they rely on fast gradient methods. By considering the
following two examples we would like to emphasize the fact that, in counterpart to the
splitting algorithms, they seem not to be appropriate when applied to location problems.

In a first instance we considered for k = 4 the points in the plane and the weights

c1 = (59, 0), c2 = (20, 0), c3 = (−20, 48), c4 = (−20,−48) and λ1 = λ2 = 5, λ3 = λ4 = 13,
(42)

respectively. The optimal location point is x̂ = (0, 0), however, the classical Weiszfeld
algorithm (see [22,30]) with starting point x0 = (44, 0) breaks down, due to the fact that
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• points (1,0) ω = 1; (0,1), ω = 1; (1,1), ω = 1; (0,0), ω = 1; (100,100), ω = 4;

• start x0 = (50.25, 50.25)

• σ = 0.0001, τ = 9999

• 478 Iterationen, Abbruch bei ‖xk − x∗‖ ≤ 0.001

• x478 = (99.9999, 99.9999)

• optimal solution (100, 100), f∗ = 562.8606
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Figure 6: The progression of iterations of Algorithm 19 when solving the Fermat-Weber
problem for points and weights given by (43)

the sequence of generated iterates attains the point (20, 0). On the other hand, Algorithm
19 with σ = 0.13, τ = 7.6923 and y0

k = (0, 0), k = 1, ..., 4, achieved a point which is
optimal up to three decimal points after 15 iterations. Figure 5 shows the progression of
the iterations, while PDn provides the value of the objective function at iteration n.

Recently, an approach for solving the Fermat-Weber problem was proposed by Gold-
farb and Ma in [21], which assumes the approximation of each of the functions in the
objective by a convex and differentiable function with Lipschitz-continuous gradient. The
optimization problem which this smoothing method yields is solved in [21] by the classical
gradient method (Grad) and by a variant of Nesterov’s accelerated gradient method (Nest)
(see [23]) and by a fast multiple-splitting algorithm (FaMSA-s) introduced in this paper.
We applied the smoothing approach in connection with these algorithms to the example
considered in (42) with smoothness parameter ρ equal to 10−3 (chosen also in [21]) and
step sizes τ = 0.1, τ = 0.01 and τ = 0.001. We stopped the three algorithms when
achieving an iterate xn such that ‖xn − x̂‖ ≤ 10−3 and obtained in all cases the lowest
number of iterations for τ = 0.1. A point which is optimal up to three decimal points was
obtained for Nest after 308 iterations, for Grad after 175 iterations and for FaMSA-s after
54 iterations, thus none of these iterative schemes attained the performance of Algorithm
19.
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For the second example of the Fermat-Weber problem we considered in case k = 5 the
points in the plane and the weights (see [15])

c1 = (0, 0), c2 = (1, 0), c3 = (0, 1), c4 = (1, 1), c5 = (100, 100)

and λ1 = λ2 = λ3 = λ4 = 1, λ5 = 4,
(43)

respectively. The optimal location point is x̂ = (100, 100) and, by choosing the relative
center of gravity x0 = (50.25, 50.25) as starting point, we found out that not only the clas-
sical Weiszfeld algorithm, but also the approach from [21] described above in connection
to each of the methods Grad, Nest and FaMSA-s did not achieve a point which is optimal
up to three decimal points after millions of iterations. On the other hand, Algorithm 19
with σ = 0.0001, τ = 9999 and y0

k = (0, 0), k = 1, ..., 5, achieved a point which is optimal
up to three decimal points after 478 iterations. This example is more than illustrative
for the performance of the primal-dual Algorithm 19 in comparison to some classical and
recent algorithms designed for the Fermat-Weber problem. Figure 6 shows the progression
of the iterations, while PDn provides the value of the objective function at iteration n.
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[8] R.I. Boţ, C. Hendrich, Convergence analysis for a primal-dual monotone + skew split-
ting algorithm with applications to total variation minimization, arXiv:1211.1706v1
[math.OC], 2012

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Foundations
and Trends in Machine Learning 3(1), 1–122, 2010

[10] L.M. Briceño-Arias, P.L. Combettes, A monotone + skew splitting model for compos-
ite monotone inclusions in duality, SIAM Journal on Optimization 21(4), 1230-1250,
2011

[11] A. Chambolle, An algorithm for total variation minimization and applications, Jour-
nal of Mathematical Imaging and Vision, 20(1–2), 89–97, 2004

[12] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, Journal of Mathematical Imaging and Vision 40(1), 120-145,
2011

[13] P.L. Combettes, J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions
with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators,
Set-Valued and Variational Analysis 20(2), 307–330, 2012

[14] J. Douglas, H.H. Rachford, On the numerical solution of the heat conduction problem
in 2 and 3 space variables, Transactions of the American Mathematical Society 82,
421–439, 1956

[15] Z. Drezner, A note on accelerating the Weiszfeld procedure, Location Science 3(4),
275–279, 1995

[16] J. Eckstein, Augmented Lagrangian and alternating direction methods for convex op-
timization: a tutorial and some illustrative computational results, Rutcor Research
Report 32-2012, 2012

[17] J. Eckstein, D. P. Bertsekas, On the Douglas-Rachford splitting method and the prox-
imal point algorithm for maximal monotone operators, Mathematical Programming
55, 293–318, 1992

[18] J. Eckstein, M.C. Ferris, Smooth methods of multipliers for complementarity problems,
Mathematical Programming 86(1), 65–90, 1999

[19] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland
Publishing Company, Amsterdam, 1976

[20] E. Esser, X. Zhang, T.F. Chan, A general framework for a class of first order primal-
dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging
Sciences 3(4), 1015-1046, 2010

[21] D. Goldfarb, S. Ma, Fast multiple-splitting algorithms for convex optimization, SIAM
Journal on Optimization 22(2), 533–556, 2012

27



[22] R.F. Love, J.G. Morris, G.O. Wesolowsky, Facilities Location Models and Methods,
North-Holland Publishing Company, Amsterdam, 1988

[23] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer
Academic Publishers, Dordrecht, 2004

[24] T. Pennanen, Dualization of generalized equations of maximal monotone type, SIAM
Journal on Optimization 10(3), 809–835, 2000

[25] R.T. Rockafellar, On the maximal monotonicity of subdiferential mappings, Pacific
Journal of Mathematics 33(1), 209–216, 1970

[26] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, Berlin, 2008

[27] J.E. Spingarn, Partial inverse of a monotone operator, Applied Mathematics and
Optimization 10, 247–265, 1983

[28] P. Tseng, A modified forward-backward splitting method for maximal monotone map-
pings, SIAM Journal on Control and Optimization 38(2), 431-446, 2000
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