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ABSTRACT 

A PRIME FACTOR FFT ALGORITHM 

USING HIGH SPEED CONVOLUTION 

"by Dean P. Kolba 

Two recently developed ideasj the conversion of a DFT 

to convolution and the implementation of short convolutions 

with a minimum of multiplications, are combined to give 

efficient algorithms for long transforms. Three transform 

algorithms are compared in terms of number of multiplications 

and additions. Timing for a prime factor FFT algorithm 

using high speed convolution, which was programmed for an 

IBM 370 and an 8080 microprocessor,^ presented. 
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I. INTRODUCTION 

The calculation of the Discrete Fourier Transform (DFT) 

N-l 

n=0 

-fTTnk 
e 

is one of the central operations in digital signal process¬ 

ing. The development and widespread use of the Fast Fourier 

Transform, stimulated by the paper of Cooley and Tukey [l] , 

has had a major impact on signal processing. 

Recently, several new ideas have emerged which lead 

to new algorithms for the DFT. One key idea described by 

Rader [2] in 1968 was the observation that computation of 

the DFT can be changed into a circular convolution by re¬ 

arranging the data when N is prime. Thus, if one has a fast 

way to do convolution, he now has a fast way to do the DFT. 

Winograd has shown the minimum number of multi¬ 

plications required for circular convolution. New convolu¬ 

tion algorithms which often achieve this minimum are being 

developed by Agarwal and Cooley [43 . 

In a concise paper, Winograd [5j combines the conver 

sion of a DFT to convolution, for prime and prime power 

lengths, with these new convolution algorithms for short 

transforms. He proposes that long transforms be computed by 
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nesting these short, high speed transforms and presents a 

table comparing the number of operations required with the 

conventional Fast Fourier Transform (FFT). 

This thesis first reviews the two central ideas; 

conversion of a DFT to circular convolution and convolution 

with the minimum number of multiplications, then presents a 

study of various implementations of long transforms. 

An alternative to the nested algorithm proposed by 

Winograd, a prime factor FFT algorithm using high speed 

convolution for individual factors, is singled out as a 

promising approach and programmed for two machines; an IBM 

370 and an 8080 microprocessor. Tables compare this approach 

with Winograd's nesting and with the conventional power of 

2 FFT. While the idea of breaking up a one dimensional trans 

form into a multidimensional transform with prime factors is 

not new- see Good [é] and Thomas £7] » the combination of 

short, high speed convolution algorithms with this multi¬ 

dimensional expansion appears to be a promising new way to 

implement the DFT. 
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II. DOING DFT'S WITH CONVOLUTION 

A. Prime Length DFT 

The Discrete Fourier Transform 

N-l 

X(k)= ^ x(n) Wnk k=0,l, • • •,N-1 (1) 

n=0 -.12 TT 
N 

where W = e 

is a linear transformation of the N-dimensional data vector 

x(0) 
X = x(l) 

x(N-l) 

X(0) 
into the vector X = X(i) of frequency samples, 

X(N-l) 

The matrix representation of the DFT 

X(0) 

X(l) 
2 4 2(N-1) 

X(2 ) = 1 W W ••• W x(2 ) (2) 
• • • • • • 
• • • • i • 

*N_1 Ï *fM_1 ^ 

X(N-l) 

shows the complexity of the computation arises from the (N-l) 

by (N-l) lower right portion of the matrix. If 

N-l 
_ nk 
X(k) = y x(n) W k=l,2,•••,N-1 (3) 

n=l 

can be computed efficiently, then we will have a fast algo¬ 

rithm for computing (l), the DFT, since from (3), (l) can 

~1 1 1 • • • 1 x(0) " 
1 2 N-l • •

 

• x(l) 
2 4 2(N-l) 

= 
1 W W ••• W 
• • • • 

x(2 ) 
• 

• • • i 

*N-1 *2(N-1) *(N-l)(N-l) 

• 
• 

1 w w ••• W x(N-l) 
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easily be calculated: 

X(0) 

N-l 

x(n) 

n=0 

X(k) « x(0) + X(k) k=l,2,•••,N-1 

(4) 

To see how (3) may be converted to circular convolu¬ 

tion, consider the matrix representation of (3)» for N=5 

with exponents taken modulo 5* 

X(l) 

X(2) 

X(3) 

X(4) 

1 2 3 4 — 

w W w W x(l ) 
2 4 l 3 

x(2) W W w w 
3 1 4 2 

x(3) w W W W 
4 

■,3 
2 1 

x(41 w W w 

(5) 

If we interchange the last two columns of (5) and 

then interchange the last two rows, we get 

xdJ “1243" w w w x(l) 

X(2) 
2431 w w w x(2 ) 

X(4) 
4 3 12 w w** w w x(4) 

3C(3) 
3 12 4 
W W W x(3) 

We now have something like backwards circular convolu¬ 

tion, or circular correlation. By fixing x(l) and reversing 

the remaining input vector we obtain the conventional cir¬ 

cular convolution: 
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w vr w w x ( l ) 
2 114 w w vr w x(3) 
L 2 1 1 
w w vr vr x(4) 
14 2 1 vr w w w x(2) 

(7) 

The computation of (3) (and thus the DFT) has been 

changed to a circular convolution (7) by permuting the input 

and the output indices. If we have a fast way of doing con¬ 

volutions we now have a fast way of doing DFT's. 

how the permutation can always be done when N is a prime 

tegers modulo N in the exponent of W in (3). To change the 

DFT into a circular convolution a mapping of the indices is 

used to change multiplication of indices modulo N to addition 

of indices modulo N-l. The set of integers {l,2,•••,N-1\ 
forms a cyclic group with the operation of multiplication 

modulo N [8] , We can always find at least one integer Cl 

in the group with the property that any integer in the group 

may be expressed as some power of GU. By ordering the data 

according to the exponent of Cl we can always change (3) to 

circular convolution for prime N. The relationship between 

the new index m and the original n is 

This idea was first presented by Rader [2]. He showed 

N 
number. Since W = 1 we are dealing with the product of in¬ 

n =ara modulo H £îJ;?;:::;ÎS:£ 
ak / 1 for 0 <k <N-1 

aN-i = 1 

(8) 

where 
(9) 
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The permutation map (8) is an isomorphism between 

the multiplicative group of N-l integers {l,2,•*•,N-l} and 

the additive group of N-l integers [o,1,•••,N-2^. An integer 

d with the property (9) is called a primitive (N-l)st root 

of unity and is said to generate the group since any element 

can be written as some power of Ci. Just as logarithms 

change multiplication to addition, (8) changes multiplica¬ 

tion into addition of indices. When (8) is used on both in¬ 

put and output indices, (3) becomes 

xta1) 
N-2 

■Z x(ara) wa 
(l+m) 

1=0,!,*••,N-2 (10) 

m=0 

In (10) the exponents of Cl are taken modulo N-l. This 

gives, for N=5, the backward circular convolution of (6) 

when CL= 2. To obtain conventional circular convolution'we 

change the sign of m in (10) which corresponds to fixing 

X(CLP) and reversing the remaining input sequence. 

-, x( a ) 

N-2 

■Z 
m=0 

, -m. 
x(a ) 

,(l-m) 

W 1=0,!,•••,N-2 (11) 

Again, the indices in (11), (the exponents of Cl ) are taken 

modulo N-l, By combining (11) with (4) we can always convert 

the computation of a DFT of prime length into a circular 

convolution. 

B. Prime Power Length DFT 

Winograd [5] and Rader and McClellan [9] have shown 
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that the DFT may also be converted to convolution when the 

transform length N is a prime power, i.e, N = pr for a prime 

p / 2. The conversion is a bit more complicated since we 

must first remove all integers which contain a factor p from 

the set (l,2,•••,N-l3to get a cyclic group with pr“*(p-l) 

elements. This cyclic group leads to a circular convolution 

of length pr“*(p-l) as before. The remaining computation 

consists of two DFT's of length pr“*. For example with 
p 

N s= 9 = 3 » we delete the integers 3 and 6 to obtain the set 

{l,2,4,5»7.8^ which forms a cyclic group under multiplica¬ 

tion modulo 9 and is isomorphic to the additive group of 

integers [o,l,2,3,4,5} under addition modulo 6. The integer 

2 will generate the multiplicative group since the powers of 

2 modulo 9» 2m mod 9» m = 0,1,•••,5 » are 1,2,4,8,7,5 • 

In terms of the matrix representation 

x(0) 111111111 x(oi 

X(1) 1 w1 w2 w3 w4 w3 w6 w7 w8 x(l) 

X(2) 1 w2 w4 w6 w8 w1 w3 w5 w7 x(2) 

X(3) 1 W3 W6 1 w3 w6 1 w3 w6 x(3) 

X<4) s 1 w4 w8 w3 w7 w2 w6 w1 w5 x(4) 

X(5) 1 w1 w6 w2 w7 w3 w8 w4 X(5) 

X(6) 1 w6 W3 1 w6 W3 1 w6 w3 x(6) 

X(7) 1 w7 w3 w1 w8 w6 w4 w2 x(7) 

X(8) 1 w8 w7 w6 w5 w4 w3 w2 w1 x(8 ) 

we remove rows and columns corresponding to indices 0,3t and 

6 and compute the remaining length 6 transformation 
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X(1) w1 w2 w4 w7 w8 x(lT 

X(2) 

T
-l 

0
0

 

0
4

 Sc x(2 ) 

X(4) w4 w8 w7 w2 w1 w5 x(4) 

x(5) w5 W1 w2 w7 w8 w4 x(5) 

X(7) W7 W5 W1 W8 W4 W2 x(7) 

X(8)_ w8 W7 W5 W4 W2 W1 x(8)_ 

using the permutation 

(13) 

n 2m mod 9 m=0,1,2,3»4,5 t n=l,2,4,8,7*5 

to obtain the circular convolution (with input reversed as 

before) 

X(lj" w1 w7 w8 w4 w2 
x(lf 

X(2) 
2 1 < 7 8 4 

W W YT W' W W x(5) 

ï(4) 
4 2 1 *5 7 8 
W w vr vr vr W x(7) 

X(8) W8 W4 W2 W1 W7 x(8) 

X(7) w7 w8 w4 w2 w1 
x(4) 

X(5) w5 w7 w8 w4 w2 W1 x(2)_ 

(14) 

In addition to (14) we must complete the computation 

for the rows and columns removed from (12). For the deleted 

rows we have 

X(of 111111111 

X(3) — 1 W3 1 W3 W6 1 vP 

X(6) 1 / W3 1 W6 top 1 VP vP 
(15) 
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-iHLr, -Î2TT 
5 9 J
 * 

length 3 DFT of added data 

Since = e ^ = e 3 = (15) is simply a 

X(of ”i l l x(0)+ x(3)+ x(6) 

X(3) S 1 W3 W3 x(l)+ x(4)+ x(7) 

X(6) 1 w|w3 x(2 )+ x(5)+ x(8) 

deleted columns we have 

Y(0f "ill” x(of 

Y(1 ) 1 w3 w6 x(3) 

Y(2) 1 w6 w3 x(6) 

Y(3) 1 1 1 

Y(4) s 1 w3 w6 

Y(5) 1 w6 w3 

Y(6) 1 1 1 

Y(7) 1 w3 w6 

Y(8) 1 w6 w3 

For (16) a second length 3 DFT can be computed. 

Y(0)~ Y(3)“ Y(6)“ "Î 1 1 x(0)~ 

Y(l) = Y(4) = Y(7 ) = i w3 w3 x(3) 

Y(2) Y(5) Y(8) l w3 w3 x(6) 

(16) 

(17) 

Only the last two entries Y(l) and Y(2) are needed from (17) 

to complete (12) using (14) 
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x(if X(l) Y(l) 

X(2) X(2 ) Y(2) 

X(4) X(4) Y(l) 
+ 

X( 5 ) x(5) Y (2) 

X(7) X(7) Y(1 ) 

X(8) X(8) Y(2) 

This length 9 example thus requires a length 6 cir¬ 

cular convolution and 2 length 3 DFT's which can he computed 
3 

using length 2 circular convolutions. If N = 3 » we have a 

2 2 
length 3 *2 » 18 circular convolution and two length 3=9 

DFT's. These can he reduced to two length 6 convolutions 

and 4 length 3 DFT's which are calculated with length 2 

circular convolutions. If N = p^ the length N transform is 

computed with 1 length p “A(p-l) convolution, 2 length 

pr“^(p-l) convolutions, 4 length pr"^(p-l) convolutions, 

8 length p (p-l) convolutions, •••, terminating with 
r-i 

2 length p-l convolutions. 
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III. CONVOLUTION WITH THE MINIMUM 

NUMBER OF MULTIPLICATIONS 

The prime and prime power DFT algorithms are means 

of converting the calculations required in the DFT into 

circular convolution. Then, special fast circular convolu¬ 

tion techniques may be used to preform the calculations. An 

algorithm for computing a short length circular convolution 

in the minimum number of multiplications for small values of 

N is based on recent work by Winograd £3] • 

Winograd's theorem on the minimum number of multipli¬ 

cations is explained in terms of polynomial multiplication. 

To cyclicly convolve the sequences ho»*1! * * * * »hN-l and 

XQ,XJ, • • • we need only find the N coefficients of 

the polynomial 

Y(z) »H(z)*X(z) modulo (z 
N 

1) (18) 

where N-l N-l 

k=0 

(19) 

k=0 

N 
If z -1 is written in terms of the K factors which 

are irreducible over the rationals 

(20) 
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with no common factors in the Q^(z) polynomials, Winograd's 

Theorem states that the minimum number of multiplications 

required to compute the circular convolution of two length 

N sequences is 2N-K, This theorem does not count multiplica¬ 

tion by rational numbers. 

In order to reduce the computation required for (18), 

Y(z) is decomposed into K simpler parts using the polynomial 

version of the Chinese Remainder Theorem M- 
K 

Y^z) Si(z)J mod (z
N-l) (21) 

1=1 

YA(Z) = ^(z) XA(z) mod Q^(z) i = 1,2,•••,K (22) 

XA(z) = X(z) mod Q^z) 

(z) = H(z) mod (^(z) 

i = 1,2,•••,K 

i = 1,2,•••,K 
(23) 

The polynomials (z) i = 1,2,»#,,K play the role of a 

Kroneker delta 

Si(z) = 1 mod Qi(z) i = 1,2,»«*,K 
1 1 (24) 
S^(z) = 0 mod Qj(z) for all j £ i 

The S^(z) may be found by applying Euclid’s algorithm to 

polynomials M- 

As an example, we will do a length 6 circular convolu¬ 

tion of the sequences hg, h^,***, h^ and x0, X^,***, Xy 

We have the polynomials 

H(z) = h0 + h^z + ••• + h^z^ 

X(z) = XQ + x^z + ••• + x^z^ 
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First, the irreducible factors Q^(z) are found: 

z^-1 = (z+l)(z-l)(z2+z+l)(z2-z+l) 

= Q1(Z)Q2(Z) Q^(Z) Q/^z) 

& 
Next, the intermediary polynomials X^, H^, and Y^ are formed: 

X^z) = X(z) mod (z+l) = XQ 

= xQ - xt + x2 - Xj + x^ - x^ 

X2(z) = X(z) mod (z-l) = XQ 

012345 (25) 
2 3 3 

X^(z) = X(z) mod (z +z+l ) = XQ + x^ z 

* (x0 - x2 + Xj - x^) + (xt - X2 + x^ -x^)z 

X^(z) = X(z) mod (z2-z+l) = XQ + x^ z 

= (XQ- X2- X^+ X^) + (Xj+ X2- x^- x^) z 

(The H^(z) polynomials are the same in form.) 

Yj(z) = H^z) Xj(z) mod (z+l) ® yj = hj XQ 

2 2 2 
Y2(Z) = H2(Z) X2(Z) mod (z-l) = y0 = hQ x0 

Yo(z) = H*(z) Xo(z) mod (z2+z+l) = yn + y? z 
(26) 

33 33 33 33 33 
=(hQ XQ- h^ xp+(hj XQ+ hQ xj- hj xp z 

2 4 4 
Y^(z) = H^(z) X^(z) mod (z -z+l) * yQ + yt z 

tf, If. if. if. if, if. if, if. Jf, if, 

—(hQ XQ— hj Xj )+(hj XQ+ hQ Xj+ hj x^) z 

* th 
Superscripts are used to identify the i polynomial. 
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Now, the Y^(z) and ^(z) polynomials are formed direct¬ 

ly with one multiplication each. So, we have the intermediate 

variables 
1 1 

ml= h0 x0 

giving ! 
y0 = «4 

and 

and 

2 2 
m2 = h0 x0 

2 
y0 “ m2 

(2?) 

The polynomials Y^(z) and Y^(z) require only three 

multiplications each - similar to complex multiplication 

done in three real multiplications. Thus, for Y^(z) we need 

m^ 

% 

= (hQ - h^) (xj - XQ) 

v,3 3 
h0 x0 

3 3 
and m*j = h^ x^ 

(28) 

For Y^(z) we need 

m 
4 4 4 4 

6 = <h0 + hl> (xO + X1> 

.4 4 
m7 = h0 x0 

„ u4 * 
and mg » h^ x^ 

(29) 

From these intermediate variables we obtain 

3 
and 

3' 
y1 - m3 + m^ y

0 
= m4 “ 

4 
and 

4 
(30) 

yl = m6 “ m7 
y
0 = m? - m8 

At this point we have the four component polynomialsi 

Yl<z) = yo Y2(z) ** Yo 

3 3 4 4 
Y3(Z) = y0 + 

yi 2 Y4<2) = yo + yi 2 
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The final step is to express the polynomial Y(z) in 

terms of the components Y^(z). We have 

Y(z) = [YX(Z) S1(Z) + Y2(Z) S2(Z) + Y3(Z) S3(Z) 

+ Y^(z) S^(z)J mod (z6-l) (31) 

The S^(z) polynomials satisfying (24) are 

S^(z) = -l/6 (z^-z^+z^-z2+z-l) 

S2(z) = l/6 (z^+z\z
3+z2+z+l ) 

S3(z) = l/6 (z^-z^-z^+2z-^-z
2-z+l ) 

Sj^( z) = l/6 (z^+z^-z^-2z^-z2+z+l ) 

In order to show the exact operations on the original 

{xjj and {hjj the vector of coefficients of Y(z), y = yQ 

may be expressed in terms of x=Xj 

XN-1 

and h=h^ 

hN-l 

yi 

yR-i 

with two equations using ® to indicate point by point 

multiplication of column vectors:• 

m = [B] h (x) [A] x 

y = [ C ] m 

(33) 

(34) 

A length N circular convolution requiring M multiplies can 

always be expressed this way with A and B MxN matrices and 

C an NxM matrix M. 
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In order to put our example for N=6 in this matrix 

form, we first identify the intermediate m parameters 

from (26), as shown in (2?)» (28), and (29). The terms in 

(26) involving h and x are expanded according to (25) to 

obtain the matrices A and B, 

m 

’1 -1 1 -1 1 -1" h0 ~ 1 -1 1 -1 1 -1 xo~ 

1 1 1 1 1 1 hl 1 1 1 1 1 1 X1 
1 -1 0 1 -1 0 h 2 -1 1 0 -1 1 0 x2 
1 0 -1 1 0 -1 h3 © 

1 0 -1 1 0 -1 X3 

0 1 -1 0 1 -1 h/f 0 1 -1 0 1 -1 x4 
1 1 0 -1 -1 0 h5_ 1 1 0 -1 -1 0 x5_ 
1 0 -1 -1 0 1 1 0 -1 -1 0 1 

0 1 1 0 -1 -1_ 0 1 1 0 -1 -1 

(35) 

To obtain the C matrix rewrite (26) in terms of the m's 

given by (27), (28), and (29). 

Y^z) = 

Y2(z) - m2 

Y^(z) * (ity- m^) + (myt- ity) z 

Y^(z) = (m7- mg) + (m6- m?) z 

(36) 

Substitute (36) and (32) into (31)» collect powers of z to 

obtain 

y = C m 
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y
0 

1 1 -1 1 -2 1 1 -2 

-1 1 2 1 1 2 -1 -1 m2 

y2 1 
= z 

1 1 -1 -2 1 1 -2 1 m^ 

y3 -1 1 -1 1 -2 -1 -1 2 

n 1 1 2 1 1 -2 1 1 m5 

y5_ -1 1 -1 -2 1 -1 2 1 m6 

my 

m8 

We now have a length six circular convolution computed 

with 8 multiplications, which is the minimum number as 

given by Winograd's theorem* 

2N - K = 2(6) -4 =8 . 

The multiplications by the rational numbers in A, B, and C 

are not counted. 

The calculation of Y^(z).and Y^(z) may be done with a 

number of different algorithms. These will give values for 

m^ through mg different from (28) and (29) and different 

evaluations of Y-^(z) and Y^(z) in-terms of the m's. This 

freedom in the choice of calculating Y-j(z) and Y^(z) may be 

used to try to minimize the number of additions for the 

convolution algorithm. No attempt has been made here to min¬ 

imize the number of additions. 

Convolution algorithms which achieve 2N-K multiplica¬ 

tions and have simple A,B, and C matrices are known only for 

short lengths. For longer convolutions it is difficult to see 

how to keep the number of additions under control. 
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IV. APPLICATION TO THE DFT 

The polynomial method of generating a circular 

convolution algorithm which requires the minimum number of 

multiplications has been used effectively for short lengths. 

Winograd states that all known algorithms for computing 

circular convolution in the minimum number of multiplications 

N 
require a large number of additions when z -1 has large 

irreducible factors. Therefore to be of practical interest, 

the DFT length will be kept small to take advantage of the 

change to a circular convolution. DFT algorithms for small 

values of N have been written with these methods for use in 

a prime factor FFT algorithm to be described in Chapter V. 

These algorithms are different from those used for the nested 

DFT proposed by Winograd and implemented by Silverman [lo] , 
which is also described in Chapter V. Table 1 shows the 

number of operations required for short transforms intended 

for use in the prime factor FFT algorithm and for short 

transforms intended for use in the nested algorithm. Explicit 

formulas for short transforms to be used with a prime factor 

FFT are given for lengths 3*5»7» and 9 in Appendix A. These 

formulas come from combining the correction terms with special 

convolution algorithms described in Chapter III, Short trans¬ 

forms for use with the nesting algorithm are derived by 

modifying the transforms in Appendix A to reduce the number 

of W® multiplications as in (45) - (47). 
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Table 1 

Short Length DFT Operations Count 

N 

Prime Factor FFT 

Ldds 

Nested Algorithm 

Adds Multiplies Shifts t. Multiplies W° multiplies 

2 0 0 2 0 2 2 

3 1 1 6 2 1 6 

4 0 0 8 0 4 8 

5 4 2 17 5 1 17 

7 8 0 36 8 1 36 

8 2 0 26 2 6 26 

9 8 2 49 10 2 49 

To see how a DFT is implemented with a convolution 

algorithm, concider the following length 3 example* 

xcof O
 

o
 

w°" x(0)‘ 

X(l) = w° w1 w2 x(l) 

X(2)_ w° w2 w1 x(2) 

The convolution 

X(l)l 

X(2) 

w1 w2 
2 1 vr vr 

x(i) 

x(2) 9 (38) 

provides X(l) and X(2) and 
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X(0) = W°(x(0) + x(1) + x(2) ) 

X(l) = W° x(0) + X(l) (39) 

X(2) = W° x(0) + X(2) 

To get an explicit formula for the DFT, the convolution (38) 

is written in matrix form as in (33) and (34). 

(40) 

(41) 

In applying (40) and (41) to the length 3 DFT we 

absorb the factor of £ into the B matrix. Then, combining 

this convolution with (39) gives the following length 3 DFT 

algorithm for use in the prime factor FFT. 

a1 = x(l) + x(2) 

a2 B x(1) - x(2) 

Sij * x(0) + aj 

”i - - I ai 
. 

m
2 = 'J 2 a2 

Cj = x(0) + 

X ( 0 ) *= a3 

X(1) = c^ + m£ 

X(2) = Cj - m2 

(42) 

(43) 

(44) 
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Now, for the algorithm to "be used in the nested DFT 

method, the multiplications by must be accounted for as 

explained in Chapter V. Therefore, we wish t|0 minimize the 

multiplications by as well. This may be done by modifying 

the above length 3 DFT as shown below: 

= x(l) + x(2) 

a2 = x(l) - x(2) (45) 

aj = x(0) + aj 

m1 e (-i - l)at * - | at 

m2 = a2 (46) 

idj = W® a^ = l*a^ 

C1 = m3 + 

X(0) = m, 
3 (47) 

X(l) = Cj + m2 

X(2) « Cj - «2 

The algorithm used for the prime factor FFT has one 

multiplication , one shift (multiplication by £), and six 

additions , as shown in Table 1. The algorithm used for the 

nested transform has two multiplications, one multiplication 

by W°, and six additions. For complex data, the values in 

Table 1 are only doubled because the coefficients formed 

from the BW portion of the convolution are pure real or pure 

imaginary numbers. This occurs since the B matrix is such 

that the W*s occur as sums or differences of conjugate pairs. 
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These short length DFT algorithms may be written in 

a matrix form as 

X = 0 D I x (48) 

where I is the jJLxN matrix representation of the input adds 

in (42) or (45), D is a fJLxjJL diagonal matrix of the multi¬ 

plication coefficients in (43) or (46), and 0 is the NxjU. 

matrix representation of the output adds in (44) or (47). 

For our length 3 example in (45)-(47) 

X(of "Ï 0 o' ”l 0 o' 

1 1
 

 x(0)“ 

x(l) s 111 0 -I 0 Oil x(l) 

X(2)_ 1 1 -1_ 0 0 0 1 -1_ x(2)_ 

The summation form of these matrices gives another 

way to represent these algorithms. 

X(k) Ê °ki 
1=0 

x(n) (49) 

In general, /J,>N as shown by the expansion of the 

block labeled "X” in Figure 1. The input and output additions 

are indicated by blocks labeled with a "+" . 
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V. LONG TRANSFORMS FROM SHORT « 

A. Change to Multidimensions 

The short transforms described above can be combined 

in several ways to provide a long transform of length N. The 

idea is to convert a one dimensional length N = MIM2***m1 

transform into an 1-dimensional transform requiring computa¬ 

tion of 1 shorter, length Mk transforms for k = 1,2,*»*,1 . 

In this paper we use a mapping from one to 1 dimensions 

which requires that the Mjj. factors be relatively prime [H]. 

Conventional FFT algorithms map one dimension to many dimen¬ 

sions. The Cooley-Tukey algorithm [l] allows common factors 

in N, while algorithms proposed by I. J. Good [é] and Thomas 

use a mapping based on the Chinese Remainder Theorem [12] 

which requires relatively prime factors. We will use the 

Chinese Remainder mapping which will be described for two 

factors and which are relatively prime. 

the index n of the input sequence x(n) will be called the 

"input index", and the index k of the output sequence X(k) 

will be called the "output index". The mapping from one to 

two dimensions maps the input index n into a pair of 

In the DFT 

N-l 

n=0 
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indices (n^, n2). 

nl = (r^n) mod nj = 0, 1, • • •, M1-l 

n2 = (**2n) mod M2 n2 = 0, 1, • • •, M2-l 

where r^ * M2 mod Mj and r2 = mod M2 

The output index is similarly mapped into a pair (kj, k2). 

k^ = k mod k^ = 0,1, • • • 

k2 * k mod M2 k2 » 0,1,
#,*,M2-1 

The inverse mapping from two dimensions to one dimension for 

the output index is 

k = (s^kj + s2k2) mod N (50) 

where 
s^ = 1 mod Kj s2 = 1 mod M2 

and 
s^ = 0 mod M2 s2 = 0 mod 

The inverse mapping for the input index is 

n = (M2nl + ^ln2^ m0<^ N (51) 

When these mappings are used, the DFT becomes 

n2k2 njkj 
x(nltn2) W„2 WMi (52) 

nl”° n2=0 

21T 2 TT 
"JNU .. 

where WM = e and WM = e c . 

The two dimensional transform in (52) may be imple- 

Ma-1 M2- 

xckj.kj) = ÿ ÿ 
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merited by first calculating length M2 DFT's, 

Mp-l 
A-. n2k2 

y(nltk2) = \ x(n1#n2) W (53) 

n2=0 

then calculating Mg length M^ DFT's 

Xfk^kg) 
nlkl 

y(n1#k2) W (54) 

n^=0 

The short transforms in (53) and (54) can be implemented 

using convolution methods as in (49). This procedure will be 

called the prime factor FFT algorithm and is illustrated in 

Figure 2. 

Figure 2 shows a length 15 transform implemented by 

first calculating five length 3 transforms as in (49), then 

calculating three length 5 transforms as in (49). Like 

Figure 1, blocks labeled "+" indicate addition and blocks 

labeled "X" indicate multiplication in the convolution DFT 

of (48). Figure 2 is based on similar diagrams in Gold and 

Rader Qj} • 

Winograd [5] has proposed another implementation of 

(52) which uses the special structure (49) of the short trans¬ 

forms to nest all multiplications inside of input and output 

additions. When the length short transform is written in 

terms of input additions Î * , output additions o^\ and 

multiplications d^ and the length M2 transform is written 

(2) (2) (2) 
in terms of i ,0 , and d as in (49), (54) becomes 
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M2"1 M2-I 

/ x Y"”1 (2) V”* (2) 
y(nltk2) = 2^ °k2l 

dl 2^ iln2 x(nl’n2) <55) 

1=0 n2=0 

Since X(kj,k2) in (52) is a length transform of y(n^,k2) 

which can also he implemented as in (49), (54) becomes 

LL.-1 M--1 
(i) (l) <r-> (l) 

X(kj,k2) = 2^ okim dm 2_^ imnj y(nlfk2) (56) 

m=0 n^=0 

Substituting (55) into (56) we get 

Llrl Mi-1 
Y(. . x Y"' (1) *(l) V <(l) 

X(k1(k2) = ^ ok dm 2^ imn1 

m=0 

M-2-1 

n^=0 

r—* (2) (2) r—» , 
• 2^ °k2l 

dl 2, lln2 x(nl,n2) (57) 

M9-I 

(2) 

1=0 n2=0 

The summations in (57) are an explicit representation 

of the operations indicated in Figure 2. The order of the 

summation may be changed as shown by Rader and McClellan [9] 

to nest all multiplications in the center giving 

M'l”1 ? (2) 1 

x(kltk2) =2^ °k2i y; 

1=0 m=0 

(1) (1) 
'kiin dm d 

(2) 
1 

M1-l 

•E =1 

M2-I 

2] Aln2 x(nl*n2) 

n2~° 

(53) 
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As shown in Figure 3* (58) corresponds to first 

doing input adds on the rows of x(n1#n2). then input adds on 

the columns. Rows and columns are then multiplied as indi- 
(1) (2) 

cated by dm and d-^ . Finally, output additions are per¬ 

formed on columns and rows. This algorithm, proposed by 

Winograd L5]. will be called the nested algorithm in this 

paper because all multiplications are nested inside of addi¬ 

tions as shown in Figure 4. 

B. Operation Counts 

The number of multiplications required by the nested 

algorithm is essentially the product of the total number of 

multiplications for each factor in the DFT, when implemented 

as in (58). However, some savings may be made for the case 

where the DFT being computed is at a point by point multipli¬ 

cation involving a product of W° coefficients. This corre¬ 

sponds to both d's in (58) being unity. The number of multi¬ 

plications saved is the product of the number of W° multipli¬ 

cations in each short transform. Thus, the equation for the 

number of multiplications for two factors is 

Multiplications = - T)^ 7^ 

where ^ = # of multiplications by W° for length DFT 

= total # of multiplications for length DFT 

= # of additions for length DFT 
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For three factors we have 

Multiplications = ^ Tf2 7)^ 

and the pattern continues for more factors. 

An equation for the number of additions is based on 

structures of the nested algorithms in (58) and on Figure 3* 

The horizontal addition planes in Figure 3 correspond to 

length M£ transforms and there are of them (the indices 

n^ and kj take on values). This contributes addi¬ 

tions. The vertical addition planes in Figure 3 correspond 

to length transforms and there are JUL2 of them (the index 

1 takes on jLLg values). This contributes jLl2Cti additions. 

Thus for two factors, we have 

#additions = a.2 
+ /^2^1 

For three factors we have 

#additions = M^M2GL>3 
+ ^3(MJC12 + 

In the same manner, we have with four factors 

#additions = (59) 

+MJM2 a3+ jjt3 ( a2+ > 

For the number of multiplications, the ordering of the 

factors is unimportant. However, the number of additions 

required depends on the ordering of the factors. For the 

nested transform additions given in table 2, the best order¬ 

ing was used and is indicated by the order of the factors. 

For complex data, the number of real multiplications and real 
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additions is twice the number given by the above equations 

(multiplications of the complex data are with pure real or 

pure imaginary coefficients). 

In order to compare the operation counts of the 

nested algorithm with the operations required by the Cooley- 

Tukey and the prime factor FFT algorithms, we need to look 

at these latter two algorithms and determine the number of 

operations they require. In order to make the comparison 

more realistic, the radix 2 Cooley-Tukey algorithm will per¬ 

form complex multiplications in three real multiplications 

and will not count multiplications by W® or - j . For complex 

data with N=2M (log N * M), we have [l^] J 

N 3N 
^multiplications = 3(2 log N - 2 +2) 

#additions * 2N log N + 5(#multiplications) 

For the prime factor FFT algorithm we use the special 

short length transforms intended for this algorithm. (See the 

first section of Table 1.) With N * %M2M3* length 

transforms are computed, length M2 DFT's, and M^M2 

length DFT's. We have 

^multiplications = 2(M£M^ fij+MjM2^L2+MjM2 f^) (60) 

#additions = 2(M2M3<X1+ M^CLj) (61) 

for complex data. Using these equations, the three algorithms 

are compared in Table 2 for several values of N. 
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VI. COMPARISON OF DFT ALGORITHMS - 

DISCUSSION OF TABLE 2 

Comparisons in Table 2 show that the prime factor FFT 

algorithm requires from 0$ to 64$ more multiplications than 

the nested transform. However, the nested transform requires 

from 0$ to 28$ more additions than the prime factor FFT 

algorithm. In fact, if additions ’’cost" at least one half as 

much as multiplications, then the multiply-add cost for the 

prime factor FFT algorithm is smaller for all lengths shown 

in Table 2 except for lengths 30 and 840. 

To develop an understanding for how these two trans¬ 

forms are related for various choices of factors, we will 

derive expressions for the number of operations required 

per output point. From (60), the number of multiplications 

per output point for the prime factor FFT algorithm is simply 

the sum of the number of multiplications per point for each 

factor. 

For the nested algorithm, the number of multiplica¬ 

tions per point is approximately the product of the number 

of multiplications per point for each factor. 

#multiplications/point (62) 

Similarily for the prime factor FFT algorithm, 

r-' CL, 
(63) 
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#multiplications/point = TT( Mi ) (64) 

From (59). the number of additions per point for the 

nested transform is 

, a, JU« a2 u, jLto a 
#additions/point = MpBp   (65) 

For the factors used in this study, the number of 

operations per point is shown in Table 3» 

Table 3 

Prime Factor FFT Nested Algorithm 

JL O/N ^/N 

2 0 1.0 1.0 1.0 

3 0.33 2.0 1.0 2.0 

4 0 2.0 1.0 2.0 

5 0.8 3.4 1.2 3.4 

7 1.14 5.1^ 1.28 5.14 

8 0.25 3.25 1.0 3.25 

9 0.89 5.44 1.33 5.44 

With k factors and an average number of multiplica¬ 

tions per point, /-tf the nested algorithm requires jLlk 

multiplications per point. The prime factor FFT algorithm 

requires kjU, multiplications per point. When pL^>kjJi or 

when M->k-Vk the prime factor FFT algorithm requires fewer 

multiplications than the nested algorithm. 
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Since k"Vk" becomes smaller with increasing k 

(more factors) and increases for the extra factors, 

which must be large, the prime factor FFT algorithm will have 

fewer multiplications per point than the nested algorithm 

when more factors are used. 

With k factors and average number of additions per 

point, CL, the prime factor FFT algorithm requires kOL addi¬ 

tions per point. The nested algorithm requires CL + |U,Ct+* • • 

k-l JLlk-i 
+ JLL CL = ii i Editions per point for In the 

» r 
special case N = 2 »3*P where p is a prime other than 2 or 3 

and r = 1,2, or 3 • both algorithms require the same number 

of additions since jJL= 1 for the factors 2r and 3» With 

other factors the prime factor FFT algorithm will have fewer 

additions. As shown above, the difference in the number of 

additions will also increase rapidly when more factors are 

used. This comparison of additions and multiplications per 

point is further illustrated in Figure 5* 

A good strategy would be to use nesting for a few 

factors until |U began to grow, then combine, using the 

prime factor FFT algorithm, with another composite length 

intermediate transform which was done with nesting. 
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VII. PROGRAMS FOR COMPARING TRANSFORM METHODS 

A. Subroutine GOODFT 

The prime factor FFT algorithm was used to program a 

mixed radix DFT in which the short length DFT's are calculated 

using the fast convolution method previously described. A 

flow chart of the subroutine GOODFT is shown in Figure 6 and 

a program listing of the subroutine is given in Appendix B. 

The input data to be transformed is stored in two length N 

vectors, XR for the real part and XI for the imaginary part, 

where N is the length of the DFT to be calculated. N must be 

a product of at most four mutually prime factors from among 

the following possible factors» 2,3,4,5»7»8, and 9. If four 

factors are not used, the unused factors are set equal to 

one. For example, with N=M1*M2*M3*M4 = 30, we have Ml=5, 

M2=3, M3=2, and M4=l. These factors of one must be the last 

of the M’s. The number of nonunity factors is NFT, which is 

the number of dimensions in the transform. The prime factor 

FFT algorithm is described in equations (50) through (5*0 

for the two factor case. This algorithm may be extended to 

more factors. For example, when the number of mutually prime 

factors is four, the length N DFT may be calculated as 

M2*M3*M4 length Ml DFT’s, M1*M3*M4 length M2 DFT's, M1*M2*M4 

length M3 DFT's and M1*M2*M3 length M4 DFT's. 

The first transforms calculated are the length Ml 
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DFT's. For each of the possible combinations of N2, N3, and 

N4 a length Ml index vector I is calculated using an input 

mapping 

n=(M2M^M/j,n^+M^M^M^n2+M^M2M^n^+M^M2M^n/lr)mod N (66) 

The calculation of this index vector and the testing of the 

values of N2, N3, and N4 are done in the input indexing 

segments of the subroutine. 

The index vectors are used to select the proper data 

points to be transformed for each of the length Ml DFT's. 

Thus, when an index vector has been calculated, the proper 

Ml data points are selected from the length N data vectors 

XR and XI and stored in temporary vectors UR and UI. A 

length Ml DFT is then calculated for UR and UI using the 

fast convolution technique. The results of this transform 

are stored in UR and UI. Then, the index vector is used once 

again to transfer the transform results from UR and UI to 

their correct locations in XR and XI. This selection of Ml 

data points from the N input data points, the calculation of 

the Ml point DFT, and the placement of this result into the 

length N data vector is done in the short transform section 

of the subroutine. 

When all the possible combinations of N2, N3, and N4 

have been used, the length Ml DFT's have all been computed. 

The input indexing portion of the subroutine then reorders 

the factors so that M4 is now treated as the first factor 

and the length M4 DFT's are computed. Then, when these are 
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done, M3 and M2 are successively treated as the first factor 

and the required length M3 and length M2 DFT's are also cal¬ 

culated* 
\ 

When all of the short transforms for all of the 

dimensions have been calculated, the vectors XR and XI con¬ 

tain the result of the length N DFT, but in a scrambled order. 

The unscrambling of the length N transform result is done in 

the output indexing portion of the subroutine. For the case 

of four factors, the output index mapping from one to four 

dimensions is 

k. = k mod M. ko = k mod M, 
1 12 2 (67) 

k3 = k mod k/^ = k mod M^ 

For a particular value of k, the values of k^, k2, k3, and 

k^ are used in (66) for n^, n2, n3, and n^ to determine the 

position in the input array of this desired output point. 

Now, each successive value of k increments all the values of 

kj, k2, k^, and by one, starting from zero. Therefore, 

from (66) we see that the position of each successive out¬ 

put point is located in the input array in the position 

given by 

n= k( M2M^M4+M1 M^M^+M1 M2M3 ) mod N (68) 

From (68), we define an output indexing constant, 

KOUT = (M2M3M4+ M1M3M4+ M1M2M4+ MJM2M3) mod N (69) 
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So, we have 

n = (k*K0UT) mod N (70) 

The output indexing portion of the subroutine transfers the 

scrambled results of the length N DFT from XR and XI into 

A and B, which contain respectively, the real and imaginary 

parts of the length N DFT in the correct order. After com¬ 

pleting this a return is made to the main program. 

B. Timing Results 

In order to obtain some timing results, the prime 

factor FFT algorithm was programmed in Fortran and in 8080 

microprocessor assembly language. The Fortran prime factor 

FFT was compared in speed to a mixed radix FFT program writ¬ 

ten by Singleton jl5| » which uses a Cooley-Tukey mapping. 

The FFT subroutine of Singleton is 50% longer than the prime 

factor FFT subroutine. However, the prime factor FFT uses 

storage of two complex vectors of length N, while the Single- 

ton FFT subroutine requires one complex length N vector. The 

results of the time tests for several transform lengths are 

given in Table 4. These tests were run on an IBM 370 computer 

for which the ratio of multiply to add time was 3« The power 

of two algorithm was taken from Rabiner and Gold jl^j . It may 

be 15% slower than an algorithm which stores all powers of W. 

The timing for the subroutines was accoplished using an inter 

val timer on the IBM 370. The percent saving in time given 
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is the percent by which the Singleton FFT subroutine is 

slower than the prime factor FFT subroutine. The timing 

results of Table 4 are for calculating the frequency response 

of a length 32 finite impulse response digital bandpass 

filter and are taken from a single run. 

Table 4 

Time Test on IBM 370/155 

Times in Seconds 

JL Prime Factor Singleton' 
p*p^p FFT 

32 

60 0.017 0.025 

64 

128 

210 0.080 0.119 

2 56 

315 0.111 0.179 

504 0.168 0.288 

512 

840 0.344 0.509 

1024 

1260 0.5^0 0.809 

2048 

2520 1.115 

Radix 2 % Time Savings 
FFT 

0.013 

475$ 

0.027 

0.059 

491» 

0.129 

61% 

nfo 

0.280 

0.609 

50$ 

1.323 

5W 1.714 
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The times for the prime factor FFT may be calculated 

from the Table 2 values for the total number of operations 

by the following formula : 

Time (in milliseconds) = N(NFT(.052) + .028) 

+ .0096(#multiplications) + .0045(#additions) 

The input indexing for the program took 52 microseconds per 

point for each dimension of the transform (NFT equals the 

number of factors). The output indexing took 28 microseconds 

per point. The code generated by the Fortran add and multiply 

statements took 4.5 and 9.6 microseconds.respectively, to 

run. In the program, the shifts in the short DFT algorithms 

for the prime factor FFT were done as multiplications. 

Next, the 8080 microprocessor assembly language ver¬ 

sion of the prime factor FFT subroutine was compared in speed 

with a radix 2 FFT subroutine. The radix 2 FFT was written 

in assembly language, used three real multiplications for 

each complex multiplication, and did not multiply by W^. In 

addition, the FFT used precalculated values of which were 

stored in a table. The FFT program was much shorter than the 

prime factor FFT program. The ratio of multiply to add times 

on the 8080 was approximately 30* A length 252 prime factor 

FFT requires 3.20 seconds to run. A length 256 radix 2 FFT 

requires 5.42 seconds to run. So, the radix 2 FFT subroutine 

is 70# slower than the prime factor FFT subroutine. The 

savings occur in both the multiplications and additions. The 

multiplication savings is 80# and the rest is in additions. 
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VIII. CONCLUSIONS 

The conversion of a DFT into a circular convolution 

leads to new methods for computation of the DFT. For short 

transforms, these algorithms require few multiplications and 

additions as shown in Table 1 and as shown in the explicit 

formulas given in Appendix A. 

Long transforms are built up from these short trans¬ 

forms in several ways, which are compared in Table 2. The 

prime factor FFT algorithm was chosen as the most attractive 

approach for several reasons. The prime factor FFT algorithm 

has about the same combined total of multiply-adds as the 

nested algorithm. However, it is easier to write a general 

prime factor FFT program. The prime factor FFT can be cal¬ 

culated using less memory than is required for the nested 

algorithm. It requires less data storage and probably less 

program memory. Since the prime factor FFT algorithm is done 

in small pieces, it might run faster on machines with small 

high speed memory blocks. Special hardware for parallel com¬ 

putation will probably be simpler for the prime factor FFT 

algorithm. 

A general prime factor FFT program was written for an 

IBM 370 in Fortran and for an 8080 microprocessor in assembly 

language. The running time for this new algorithm was com¬ 

pared with a conventional FFT. In the 370 comparison the new 
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algorithm was compared with the mixed radix algorithm of 

Singleton M. since the prime factor FFT algorithm is a 

mixed radix algorithm. A reduction of approximately 50# was 

observed (see Table 4). Much larger savings may be expected 

if special hardware is constructed for the short convolution 

based algorithms. 

Many open questions remain. How should one combine 

nesting and prime factor FFT techniques to obtain long trans 

forms from short ones? Should the multidimensional expansion 

always be done at the transform level, or should the convolu 

tions contained within transforms also be implemented in 

multidimensional expansions? How can one improve on the 

indexing schemes required for these new transforms? It is 

likely that continuing development of longer and more effi¬ 

cient convolution algorithms will make implementations of 

the DFT using convolution even more attractive. 
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APPENDIX A 

3 POINT DFT ALGORITHM 

a^^ = x(l) + x(2) 

a2 = x(l) - x(2) 

= x(O) + a^ 

ai - x(l) + x(4) 

a2 « x(l) - x(4) 

SLJ = x(2) + x(3) 

= x(2) - x(3) 

a5 = a2 + a4 

a6 = al ” a3 

a7 ~ ai + a3 

“l ■ 2 al 

m2 = O.86603 &£ 

= 0.95106 a^ 

m2 — 1*53884 a2 

= 0*38327 

m4 = 0*55902 a6 
„ _ 1 a in r' ~ 7" a I-J 
5 4 7 

= x(O) - 

X(O) = a3 

X(l) = c^ ~ jm2 

X(2) = + jm2 

= x(O) - 

C2 = C1 + in/,. 

c3 = C1 - 
m4 

c4 = mi ' m3 

c5 = 
m2 - ml 

x(o) = a8 
X(l) = c2 3 <>4 

X(2) = c3 - j°5 

X(3) = C3 + ^c5 

X(4) = c2 + 

ag = x(O) + a^ 

4 multiplications 

2 shifts 

17 additions 

1 multiplication 

1 shift 

6 additions 

5 POINT DFT ALGORITHM 



7 POINT DFT ALGORITHM 

= x(l ) + x(6) 

a2 = x(l) - x(6) 

a^ = x(2) + x(5) 

a^ * x(2) - x(5) 

a^ = x(3) + x(4) 

ag = x(3) - x(4) 

ây = 2t^ ^ 

a8 = ai ~ a5 
a
9 -“a3 + a5 

a10 = “ai + a3 

all = a2 + a4 " a6 

a12 “ 
a2 + a6 

a13 = “a4 " a6 

al4 = “a2 + a4 

a^ = x(O) + ay 

m^ = 0.16667 ay 

m2 * 0.79016 ag 

m3 = 0.05585 a9 

m4 = 0.73430 a10 

mg = 0.44096 alt 

1115 = 0.34087 a12 

m? * 0.53397 a13 

mg » 0.87484 a^ 

Cj = x(0) - m1 

C2 s xn^ ^ 

c ^ — c ^ — 1^2 ~ IB/j, 

c4 = C1 ” m3 + m4 

Cg = mg + mg - my 

c6 = m5 ” 

m6 " 

m8 

Cy ——m^ — ITly * mg 

x(0) = a15 
X(l) = c2 - jcg 

X(2) * c3 - jc5 

X(3) = - jCy 

X(4) = + jCy 

x(5) * c3 + jc5 

X(6) = c2 + jc5 

8 multiplications 

36 additions 



9 POINT DPT ALGORITHM 

al “ 
a2 = 

x(l) + x(8) 

x(l) - x(8) 

ml = 0.19740 ci - x(0) - 

m t£ = 0.56858 a^0 0 2 *" in^ 

a^ « x(2) + x(7) m3 = 0.37111 all + ra^ 

* x(2) - x(7) m4 * 0.54253 a12 
c4 - ml + m2 

a^ » x(4) + x(5) = 0.10026 a13 
c5 = C1 + c

2 - c3 

a^ = x(4) - x(5) as 0.44228 al4 c6 = C1 + c3 + c4 

ar, * x(3) + x(6) « 1 a 
m7 = 2 7 

c
7 = cl - c2 - c4 

ag = x(3) - x(6) mg = 0.86603 a8 
cg = m4 - m

6 

a9 = ”al + a5 ra9 = 2 al5 C9 = m5 - m6 

a10 = al " a3 m10 = 0*86603 a^g c10 * m4 ” m5 

all 1 -a3 + a5 
CH = c8 + c9 + m8 

a12 * a2 * a6 
c12 “ c8 + c10 " m8 

a13 “ a2 + H 
c13 “ ~c9 + c10 + m

i 

a14 " -a4 - a6 c1/f * x(0) + a7 - m, 

a^ as a^ + a^ + a^ 

al6 * a2 - a4 + a6 
X(0) * a1? 

= x(0) + ajj + a7 
X(l) = CJJ — ^11 

X(2) = c^ - jc^2 

8 multiplications X(3) = cl4 - jm1Q 

2 shifts X(4) = c? - jc13 

49 additions X(5) « c7 + jc13 

X(6) * + jm1Q 

X(7) » c6 + jc12 

X(8) = c5 + jc11 



APPENDIX B 

Prime Factor FFT Program Listing 

SUBROUTINE GOODFT(XR,XI,N,Ml,M2,M3,M4,NFT,KOUT,A,B) 
C THE SUBROUTINE GOODFT COMPUTES A LENGTH N DFT OF THE 
C INPUT DATA WHICH IS IN TWO VECTORS, XR THE REAL PART AND 
C XI THE IMAGINARY PART. BOTH XR AND XI ARE LENGTH N VEC- 
C TORS. THE LENGTH OF THE DFT, N, MUST BE A PRODUCT OF AT 
C MOST FOUR MUTUALLY PRIME FACTORS. THE POSSIBLE FACTORS 
C ARE 2,3,4,5,7,8, AND 9. THESE FACTORS ARE Ml, M2, M3, AND 
C M4. IF THE FOUR FACTORS ARE NOT ALL USED, THE UNUSED 
C FACTORS ARE SET EQUAL TO 1. FOR EXAMPLE WITH N=30, WE 
C HAVE Ml*5, M2=3, M3=2, AND M4=l. THE FACTORS OF ONE MUST 
C BE THE LAST OF THE M»S. THE NUMBER OF NONUNITY FACTORS IS 
C NFT. KOUT IS AN OUTPUT INDEXING CONSTANT WHICH IS PRE- 
C COMPUTED. KOUT = (K1+K2+K3+K4)M0D N WHERE K1=M2*M3*M4, 
C K2=M1*M3*M4, K3=M1*M2*M4, K4=M1*M2*M3, AND K2=0 IF M2=l, 
C K3=0 IF M3=l, AND K4=0 IF M4=l. FOR EXAMPLE, N=30, Kl=6, 
C K2*=10, K3=15, K4=0 AND KOUT=31 MOD 30 = 1. THE TRANSFORMED 
C RESULT IS STORED IN TWO LENGTH N VECTORS, A AND B. A CON- 
C TAINS THE REAL PART AND B CONTAINS THE IMAGINARY PART OF 
C THE RESULT. THE DFT COMPUTED BY THIS SUBROUTINE USES A 
C POSITIVE EXPONENT FOR W. IE W=EXP( J*2*Pl/N). 
C DEAN KOLBA, JULY 1976. 

DIMENSION XR(2520),XI(2520),A(2520),B(2520) 
DIMENSION UR(9).UI(9).I(9) 
REAL MR1« MK2«MR3tMR4t MR5*MR6#MR7* MR8»MR9♦MR10 
REAL MI I*M12*MI3*MI4*MI5»MI6* MI7*MI 8.MI 9,MI 10 
NF=NFT 

C ORDER FACTORS FOR TRANSFORMS OF LENGTH Ml 
MM!~M1 
MM2—M2 
MM3—M3 
MM4=M4 
GOTO 20 

10 GOTO!12»I3«14)»NF 
C ORDER FACTORS FOR TRANSFORMS OF LENGTH M2 

12 MM1=M2 
MM2=M1 
MM3=M3 
MM4-M4 
GOTO 20 

C ORDER FACTORS FOR TRANSFORMS OF LENGTH M3 
13 MM1=M3 

MM2=M1 
MM3=M2 
MM4=M4 
GOTO 20 



C ORDER FACTORS FOR TRANSFORMS OF LEN3TH MA 

14 MM1=M4 

MM2=M1 

MM3=M2 

MM4=M3 

C INDEXING INITIALIZATION FOR THE TRANSFORMS 

20 N2=0 

N3 = 0 

N4=0 

K 1=MM2*MM3*MM 4 

K2=MM1*MM3*MM4 

K3=MMI*MM2*MM4 

K4=MM1*MM2*MM3 

I(1>=0 
C INPUT INDEXING ALONG ONE DIMENSION 

21 DO 22 J=2 *MM1 

I(J)=I(J-l)+K1 

IF(I(J } .LT• N| GOTO 22 
I C J)=I(Jl-N 

22 CONTINUE 

C TRANSFERRING DATA TO TEMPORARY VECTORS UR AND Ul 

30 DO 31 Jsl.MMI 

IJ=I(Jl+I 

UR(JI=XR(IJ) 

31 UI(JI=XI<IJI 

C TRANSFORM UR. UI 

GOTO! 50.2 00 .3 00.4 00,500• 50 .700• 80 0• 900 I .MM1 

C PLACE RESULT OF TRANSFORM BACK IN XR AND XI 

40 DO 41 J =1.MM 1 

IJ=I( J) +1 

XR(IJl=UR(JI 

41 XI(IJ)=Ul(J) 

C TESTING FOR COMPLETION OF THIS FACTOR»S TRANSFORMS 

IFCN2 • NE. MM2-11 GOTO 51 

N2 =0 

IF(N3 • NE. MM3-1IGOTO 52 

N3=0 

IFCN4 • NE. MM4-1IGOTO 53 

50 NF=NF-i 

IF(NF.EQ.O)GOTO 10 00 

GOTO 10 

C INPUT INDEXING ALONG OTHER DIMENSIONS 

51 N2=N2+1 

DO 54 J=1 * MM1 

I<JJ=I<JI+K2 

IFCKJ) .LT. N1 GOTO 54 

If J)=I(Jl-N 

54 CONTINUE 

GOTO 30 

52 N3=N3*1 

I(1}=K3*N3+K4*N4 

IFf K 11.LT.NIGOTO 21 

IIll=I(l)-N 

GOTO 21 



53 N4=N4+1 
I C 1 ) = K4*N4 
GOTO 21 

C UNSCRAMBLING TRANSFORM RESULT 
1000 11=1 

J= 1 
GOTO 1001 

1002 I F C J .GT• N)GOT O 1003 
II=1I+K0UT 

1004 IFCII .LE. NIGOTO 1001 
I l =11 *'N 
GOTO 1004 

1001 AC J) = XR(III 
B(J)=XI(II) 
J= J+ 1 
GOTO 1002 

C 2 POINT TRANSFORM 
200 URX=UR<1)4UR(21 

UIX=UI<1)+01< 2 > 
UR C 2)=UR(1)-UR(2) 
UI(2)=UI(1I-UIC2) 
UR Cl)=URX 
ui cn*uix 
GOTO 40 

C 3 POINT TRANSFORM 
300 AR=UR C 2)*UR C 3) 

AI=UIC21+UI C3> 
MR1=-1•5* AR 
MI1=-1.5*AI 
MR2=0.8660254*CURC2 )^»URC3) 1 
MI 2=0.8660254*C UIC21-UI C3l 1 

URC11 = AR*UR C11 
UICl)=AI+UICl I 
MR1=URC11+MR1 
MI1=UIC1Ï+MI1 
UR C2»=MR1«MI2 

UIC2)=MI1+MR2 
UR f31=MR14M 12 
UI<31=MI1-MR2 
GOTO 40 

C 4 POINT TRANSFORM 
400 AR1=URC11+URC3) 

AI 1=UIC11+JIC 3) 
AR2=URC11-URC31 
A12=UIC11-UIC31 
AR3=URC 21+URC4) 
AI3=UIC21+UIC4) 
AR4=URC 21-URC4» 

AI 4=U I C 21 **U I C 4 1 
UR C11=ARl*AR3 
UIC1)=AI1+AI3 
UR C2)=AR2-AI4 
UIC2)=AI2+AR4 
UR C3)=AR1«AR3 



UIC3> =AI1-AI3 
UR(4)=AR2+AI4 
UI<4)=AI2»AR4 
GOTO 40 

C 5 POINT TRANSFORM 
500 ARI=UR(2I+UR(5» 

AI 1=UIC2H-UI C 5) 
AR2=UR<21«UR(5> 
AI2=UIf 21-UK5» 
AR3=UR(3)+UR(41 
AI3=U1(3)+U1(4) 
AR4=UR(3)-JR< 41 
A I4=U1(3)«UI(4) 
AR5=AR1+AR3 

A I 5= A 11 + A13 
MR 1=0«95105652*(AR2+AR4) 
MI 1=0*95105652*(AI2+AI4) 
MR2=1•5388418*AR2 
MI 2=1•5388418*A 12 
MR3=0*36327126*AR4 
MI3=0.36327126*AI4 
MR 4=0•559 01699*(AR1-AR3) 
MI 4=0*55901699*1AI1-AI3) 
MR5='«1 *25*AR5 
MI5=-1.25*AI5 
UR(1) = URl1)♦ AR5 
UI m=UI(ll*AI5 
MR5=UR(1)+MR5 
MI5=UI(1I+MI5 
AR 1=MR5+MR4 
AI 1 = MI5+MI4 
AR2=MR5»MR4 
AI2=MI5"MI4 
AR3=MR1-MR3 
AI3=MI1-MI3 
AR4=MR1"MR2 
AI4=MI1-MI2 

UR(2»=AR1-AI3 
UIC2I=AI1+AR3 
UR(3)=AR2+AI4 

UI(3)=AI2-AR4 
UR(4)=AR2«AI4 
UI(4)=AI2+AR4 
UR(5)=AR1+A13 
UIC5)=AI1-AR3 
GOTO 40 

C 7 POINT TRANSFORM 
700 AR1=UR(2)+UR(7I 

AI1=UI(2» +UIf 7) 
AR 2=UR(21"URC 7) 
AI2=UI<21-UIC7» 
AR3=URC 3)+UR< 61 
AI3=UI(3)+J1(6) 
AR4=UR(3)-URC 61 



AI4=UI<3)-UI(6) 
AR5=UR(4H-UR<5I 
AI5=UI(4)*UI(5) 
AR6=UR(4)-UR(51 
AI6=Ul(4)-UI<5> 
AR7=AR1♦AR3+AR5 
AI7=AIl+AI3+AI5 
MR1=-1.1666667*AR7 
MI1=-1.1666667*AI7 
MR2=0*79015647*< AR1«AR5) 
MI 2=0.7901564 7*C All-A 15) 
MR3=0*055854267*(AR5-AR3) 
MI 3=0.055854267*(AIS^AI3) 
MR4s0«73430 22*1AR3-AR1 ) 
MI 4=0.7343022*(AI3-AI 1) 
MR5=0«44095855*(AR2+AR4-AR6) 
MI 5=0.44095855*(AI2 + AI4-AI 6) 
MR6=0«34087293*1AR2+AR6) 
MI 6=0.34087293*(AI2+A16» 
MR7=-0.53396936*1 -AR6-*AR4) 
MI 7=«0.5339 6936*C'«AI6"AI4) 
MR 8=0•874 84 229* C AR4-AR2) 
MI 8=0 • 874 8422 9* C AI4»«A 12 ) 
UR(1)=UR(1)+AR7 
UI<1>=UI<1)+AI7 
ARl=UR<1l+MRl 
AI t=UI( D+MIl 
AR2=ARI4MR2+MR3 
AI2=AI14MI2+MI3 
AR3=AR1"MR2«MR4 
AI3=AI1-M12-MI4 
AR 4=A R l *»MR3-t-M R4 
A!4=AI1-MI3+MI4 
AR5=MR5+MR6+MR7 
AI5=MI5*MI6*MI7 
AP6=MR5-MR6«MR8 
AI6=MI5»MI6-MI8 
AR7=MR5«MR7+MR8 
AI7=M15-MI7+MI8 
UR C2I=AR2-A15 
UIC2»*AI24AR5 
UR(3)=AR3“A16 
UI(3I=A!3+AR6 
UR (4)=AR4+A17 
UIC4»=AI4-AR7 
UR(5)=AR4-A17 
UI(51=Al4+AR7 
UR <6»=AR34AI6 
UI<6>=AI3-AR6 
UR(7)=AR2*AI5 
UI(7)=AI2-AR5 
GOTO 40 



C 8 POINT TRANSFORM 
800 AR1=UR(2)—UR<81 

AI1=UI(2)-0I(8) 
AR2=UR(2)+UR(8) 
AI2=Ulf2>*UI(8) 
AR3=UR(4)"UR(6) 
AI3=UI<4J-UI<6) 
AR4=URC4)+UR<6> 

AI4=UI(4>+UI<6> 
AR5=UR<l)«UR<5> 
AI5=UICII-JI(5) 

AR6=UR(I)*UR(5) 
AI6-UK 1>+UI(5) 
AR7=UR(3)*»URC7I 

AI7=U113)"U1(7) 
AR8=UR(3)4-UR( 71 
AI 8=U I C3Ï+UIC7) 
MR 1=0-70710678*1 ARH-AR3) 
MI 1 =0-70710678* < AIH-AI3) 
MR2=0*707I0676*(AR2-AR4) 

MI 2=0*70710678*1AI2-AI4) 
MR3=AR2+AR4 
MI3=AI2*AI4 
MR 4=AR6+AR8 
MI4=AI6+AI8 
MR5=AR6~AR3 
MI5=AI6-AI8 
MR6=AR1-AR3 

M I 6= A11 "A 13 
MR7=AR5+MR2 

MI7=AI5+MI2 
MR8=AR5-*1R2 
MI8=AI5«MI2 
MR9=AR7*MR1 
M19=AI7+MI1 
MR10=AR7«MRl 
MI10=AI7-MI1 
UR(1)—MR4+MR3 
UI(1Ï = MI4 +M13 
UR(2)=MR7-M19 

UI (2)=MI7*-MR9 
UR(3)=MR5-MI6 

UIC3)=MI5+MR6 
UR(4)=MR8+MI10 
UI (4)=MI8-MR10 

UR (S)=MR4-MR3 
UI<5>=MI4«MI3 
UR <6)=MR8-MI 10 

UI (6Î —MI8+MRi0 
UR(7)=MR5+M16 
UIC7J=MI5-MR6 
UR I 8)=MR7 +M19 
UIC 8)=MI7-MR9 
GOTO 40 



C 9 POINT TRANSFORM 
900 AR l=OR( 2 )+OR(91 

AI1=01(2)+01(9) 
AR2=OR(2)-0R(9) 
A 12=U K21-JK9) 
AR3=0R(3)+0R(8) 
AI3=01(3)+01(8) 
AR4=0R(3)“UR(8) 
AI 4=01(3)"O1(8) 
AR5=OR(5)+OR(6) 
AI 5=0 I ( 5 ) +0 l ( 6 ) 
AR6=OR(5)-OR(6) 
A I 6=0 1(5) «■J 1(6) 
AR7=0R(4)+0R(7) 
AI 7=01 ( 4 ) +01 ( 7 ) 
AR8=0R(4)n0R(7) 
AI 8=01(4)«01(7) 
AR=AR1♦AR3+AR5 
AI=AI1+AI3+AI5 
MR 1=«*0.5*AR7 
MIl=-O.S*AI7 
MR2=0•8660254*AR3 
Ml 2=0.8660254*A18 
MR3=0•19746542*("AR1+AR5) 
MI 3=0•19746542*("AI1+AI5) 
MR4=0.56857902*(AR1-AR3) 
MI 4=0 «568579024 ( All *»A 13 ) 
MR 5=0 • 371 11 36* ( ■■AR3+AR5 ) 
MI 5=0*371 11 36*("»AI3+A 15) 
MR 6=0.542S31 79* ( AR2-AR6 ) 
MI 6=0.54253179* ( AI2**A 16) 
MR7=0•10025582*(AR2+AR4) 
MI 7=0.10025582*(AI2+A14) 
MR8=0.44227 597*(™AR4»AR6) 
MI 8=0 .44227597* (««AI 4»AI 6 ) 
MR 9=™1.5* AR 
MI 9=-l .5*AI 
MR 10=0.8660254*(AR2-AR4+AR6) 
MI 10=0.8660254* ( AI2™AI4+AI6) 
AR 1=0R(1 )+MRl 
AI1=01(1)+MI1 
OR(l)=AR+AR7+OR(l ) 
01(l)=AI+AI7+OI(l) 
AR=OR(1)+MR9 
A I=01(1)+MI 9 
AR2=MR4~MR5 
AI2=MI4-MI5 
AR3=MR3+MR4 
A I3=M13+M14 
AR4=MR7~MR8 
A I4=MI7=M18 
AR5=MR6~MR7 
AI5=MI6-MI7 
AR6=AR2^MR5»MR3*AR1 
AI6=AI2«MI5»MI3+AI1 
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AR7=AR3+MR3*MR5+AR1 
AI 7=A 13 + M13 4M15 +AI 1 
AR 8=-AR3«AR2+ AR 1 
A I 8=**A I3**AI 2 + Al I 
MR 1 = MR6~MRR 
MI1=MI6-MI8 
MR3=AR4+MW1+ MR2 
MI 3=A 144M 11+M 12 
MR4=A R54MR1 r»MR2 
MI4=AI5+MI1~MI2 
MR5=AR5-AR44MR2 
MI 5=A15^A144M 12 
UR <2)=AR6-M13 
UI(2)=AI64MR3 
UR <3>=AR7-MI4 
UI(3)=AI7+MR4 
UR(4)=AR»MI10 
UI(4)=AI4MR10 
UR(5)=AR8-MI5 
UI<5)=AI8+MR5 
URC6)=AR84MI5 
UI <6>=AI8-MR5 
URC7)=AR+MI10 
UI<7J=AI-MR10 
UR <81=AR74M14 
UI<8)=AI7-MR4 
UR <9) = AR64M13 
UI <9>=AI6*'MR3 
GOTO 40 

1003 RETURN 
END 
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prime factor FFT 

Figure 6. a) General flowchart of a prime factor FFT 
b) Input indexing 
c) Short transforms 
d) More input indexing 
e) Output indexing 

indicates off page connector in b) through e). 





<MM1 = ? > 

<5 
6c Short Transforms 
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6d.- More Input Indexing 



6e.. Output Indexing 


