
RICE UNIVERSITY

A PRIME FACTOR FFT ALGORITHM

USING HIGH SPEED CONVOLUTION

by

Dean P. Kolba

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Science

Thesis Director's Signature

Houston, Texas

May, 1977

ABSTRACT

A PRIME FACTOR FFT ALGORITHM

USING HIGH SPEED CONVOLUTION

"by Dean P. Kolba

Two recently developed ideasj the conversion of a DFT

to convolution and the implementation of short convolutions

with a minimum of multiplications, are combined to give

efficient algorithms for long transforms. Three transform

algorithms are compared in terms of number of multiplications

and additions. Timing for a prime factor FFT algorithm

using high speed convolution, which was programmed for an

IBM 370 and an 8080 microprocessor,^ presented.

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Dr, T.W.

Parks, who provided invaluable guidance and assistance in

the completion of this research, and my fiancee, Jan DeMoss,

who has supported me during the preparation of this thesis.

I. INTRODUCTION

The calculation of the Discrete Fourier Transform (DFT)

N-l

n=0

-fTTnk
e

is one of the central operations in digital signal process¬

ing. The development and widespread use of the Fast Fourier

Transform, stimulated by the paper of Cooley and Tukey [l] ,

has had a major impact on signal processing.

Recently, several new ideas have emerged which lead

to new algorithms for the DFT. One key idea described by

Rader [2] in 1968 was the observation that computation of

the DFT can be changed into a circular convolution by re¬

arranging the data when N is prime. Thus, if one has a fast

way to do convolution, he now has a fast way to do the DFT.

Winograd has shown the minimum number of multi¬

plications required for circular convolution. New convolu¬

tion algorithms which often achieve this minimum are being

developed by Agarwal and Cooley [43 .

In a concise paper, Winograd [5j combines the conver

sion of a DFT to convolution, for prime and prime power

lengths, with these new convolution algorithms for short

transforms. He proposes that long transforms be computed by

2

nesting these short, high speed transforms and presents a

table comparing the number of operations required with the

conventional Fast Fourier Transform (FFT).

This thesis first reviews the two central ideas;

conversion of a DFT to circular convolution and convolution

with the minimum number of multiplications, then presents a

study of various implementations of long transforms.

An alternative to the nested algorithm proposed by

Winograd, a prime factor FFT algorithm using high speed

convolution for individual factors, is singled out as a

promising approach and programmed for two machines; an IBM

370 and an 8080 microprocessor. Tables compare this approach

with Winograd's nesting and with the conventional power of

2 FFT. While the idea of breaking up a one dimensional trans

form into a multidimensional transform with prime factors is

not new- see Good [é] and Thomas £7] » the combination of

short, high speed convolution algorithms with this multi¬

dimensional expansion appears to be a promising new way to

implement the DFT.

3

II. DOING DFT'S WITH CONVOLUTION

A. Prime Length DFT

The Discrete Fourier Transform

N-l

X(k)= ^ x(n) Wnk k=0,l, • • •,N-1 (1)

n=0 -.12 TT
N

where W = e

is a linear transformation of the N-dimensional data vector

x(0)
X = x(l)

x(N-l)

X(0)
into the vector X = X(i) of frequency samples,

X(N-l)

The matrix representation of the DFT

X(0)

X(l)
2 4 2(N-1)

X(2) = 1 W W ••• W x(2) (2)
• • • • • •
• • • • i •

*N_1 Ï *fM_1 ^

X(N-l)

shows the complexity of the computation arises from the (N-l)

by (N-l) lower right portion of the matrix. If

N-l
_ nk
X(k) = y x(n) W k=l,2,•••,N-1 (3)

n=l

can be computed efficiently, then we will have a fast algo¬

rithm for computing (l), the DFT, since from (3), (l) can

~1 1 1 • • • 1 x(0) "
1 2 N-l • •

• x(l)
2 4 2(N-l)

=
1 W W ••• W
• • • •

x(2)
•

• • • i

*N-1 *2(N-1) *(N-l)(N-l)

•
•

1 w w ••• W x(N-l)

4

easily be calculated:

X(0)

N-l

x(n)

n=0

X(k) « x(0) + X(k) k=l,2,•••,N-1

(4)

To see how (3) may be converted to circular convolu¬

tion, consider the matrix representation of (3)» for N=5

with exponents taken modulo 5*

X(l)

X(2)

X(3)

X(4)

1 2 3 4 —

w W w W x(l)
2 4 l 3

x(2) W W w w
3 1 4 2

x(3) w W W W
4

■,3
2 1

x(41 w W w

(5)

If we interchange the last two columns of (5) and

then interchange the last two rows, we get

xdJ “1243" w w w x(l)

X(2)
2431 w w w x(2)

X(4)
4 3 12 w w** w w x(4)

3C(3)
3 12 4
W W W x(3)

We now have something like backwards circular convolu¬

tion, or circular correlation. By fixing x(l) and reversing

the remaining input vector we obtain the conventional cir¬

cular convolution:

5

w vr w w x (l)
2 114 w w vr w x(3)
L 2 1 1
w w vr vr x(4)
14 2 1 vr w w w x(2)

(7)

The computation of (3) (and thus the DFT) has been

changed to a circular convolution (7) by permuting the input

and the output indices. If we have a fast way of doing con¬

volutions we now have a fast way of doing DFT's.

how the permutation can always be done when N is a prime

tegers modulo N in the exponent of W in (3). To change the

DFT into a circular convolution a mapping of the indices is

used to change multiplication of indices modulo N to addition

of indices modulo N-l. The set of integers {l,2,•••,N-1\
forms a cyclic group with the operation of multiplication

modulo N [8] , We can always find at least one integer Cl

in the group with the property that any integer in the group

may be expressed as some power of GU. By ordering the data

according to the exponent of Cl we can always change (3) to

circular convolution for prime N. The relationship between

the new index m and the original n is

This idea was first presented by Rader [2]. He showed

N
number. Since W = 1 we are dealing with the product of in¬

n =ara modulo H £îJ;?;:::;ÎS:£
ak / 1 for 0 <k <N-1

aN-i = 1

(8)

where
(9)

6

The permutation map (8) is an isomorphism between

the multiplicative group of N-l integers {l,2,•*•,N-l} and

the additive group of N-l integers [o,1,•••,N-2^. An integer

d with the property (9) is called a primitive (N-l)st root

of unity and is said to generate the group since any element

can be written as some power of Ci. Just as logarithms

change multiplication to addition, (8) changes multiplica¬

tion into addition of indices. When (8) is used on both in¬

put and output indices, (3) becomes

xta1)
N-2

■Z x(ara) wa
(l+m)

1=0,!,*••,N-2 (10)

m=0

In (10) the exponents of Cl are taken modulo N-l. This

gives, for N=5, the backward circular convolution of (6)

when CL= 2. To obtain conventional circular convolution'we

change the sign of m in (10) which corresponds to fixing

X(CLP) and reversing the remaining input sequence.

-, x(a)

N-2

■Z
m=0

, -m.
x(a)

,(l-m)

W 1=0,!,•••,N-2 (11)

Again, the indices in (11), (the exponents of Cl) are taken

modulo N-l, By combining (11) with (4) we can always convert

the computation of a DFT of prime length into a circular

convolution.

B. Prime Power Length DFT

Winograd [5] and Rader and McClellan [9] have shown

7

that the DFT may also be converted to convolution when the

transform length N is a prime power, i.e, N = pr for a prime

p / 2. The conversion is a bit more complicated since we

must first remove all integers which contain a factor p from

the set (l,2,•••,N-l3to get a cyclic group with pr“*(p-l)

elements. This cyclic group leads to a circular convolution

of length pr“*(p-l) as before. The remaining computation

consists of two DFT's of length pr“*. For example with
p

N s= 9 = 3 » we delete the integers 3 and 6 to obtain the set

{l,2,4,5»7.8^ which forms a cyclic group under multiplica¬

tion modulo 9 and is isomorphic to the additive group of

integers [o,l,2,3,4,5} under addition modulo 6. The integer

2 will generate the multiplicative group since the powers of

2 modulo 9» 2m mod 9» m = 0,1,•••,5 » are 1,2,4,8,7,5 •

In terms of the matrix representation

x(0) 111111111 x(oi

X(1) 1 w1 w2 w3 w4 w3 w6 w7 w8 x(l)

X(2) 1 w2 w4 w6 w8 w1 w3 w5 w7 x(2)

X(3) 1 W3 W6 1 w3 w6 1 w3 w6 x(3)

X<4) s 1 w4 w8 w3 w7 w2 w6 w1 w5 x(4)

X(5) 1 w1 w6 w2 w7 w3 w8 w4 X(5)

X(6) 1 w6 W3 1 w6 W3 1 w6 w3 x(6)

X(7) 1 w7 w3 w1 w8 w6 w4 w2 x(7)

X(8) 1 w8 w7 w6 w5 w4 w3 w2 w1 x(8)

we remove rows and columns corresponding to indices 0,3t and

6 and compute the remaining length 6 transformation

8

X(1) w1 w2 w4 w7 w8 x(lT

X(2)

T
-l

0
0

0
4

 Sc x(2)

X(4) w4 w8 w7 w2 w1 w5 x(4)

x(5) w5 W1 w2 w7 w8 w4 x(5)

X(7) W7 W5 W1 W8 W4 W2 x(7)

X(8)_ w8 W7 W5 W4 W2 W1 x(8)_

using the permutation

(13)

n 2m mod 9 m=0,1,2,3»4,5 t n=l,2,4,8,7*5

to obtain the circular convolution (with input reversed as

before)

X(lj" w1 w7 w8 w4 w2
x(lf

X(2)
2 1 < 7 8 4

W W YT W' W W x(5)

ï(4)
4 2 1 *5 7 8
W w vr vr vr W x(7)

X(8) W8 W4 W2 W1 W7 x(8)

X(7) w7 w8 w4 w2 w1
x(4)

X(5) w5 w7 w8 w4 w2 W1 x(2)_

(14)

In addition to (14) we must complete the computation

for the rows and columns removed from (12). For the deleted

rows we have

X(of 111111111

X(3) — 1 W3 1 W3 W6 1 vP

X(6) 1 / W3 1 W6 top 1 VP vP
(15)

9

-iHLr, -Î2TT
5 9 J
 *

length 3 DFT of added data

Since = e ^ = e 3 = (15) is simply a

X(of ”i l l x(0)+ x(3)+ x(6)

X(3) S 1 W3 W3 x(l)+ x(4)+ x(7)

X(6) 1 w|w3 x(2)+ x(5)+ x(8)

deleted columns we have

Y(0f "ill” x(of

Y(1) 1 w3 w6 x(3)

Y(2) 1 w6 w3 x(6)

Y(3) 1 1 1

Y(4) s 1 w3 w6

Y(5) 1 w6 w3

Y(6) 1 1 1

Y(7) 1 w3 w6

Y(8) 1 w6 w3

For (16) a second length 3 DFT can be computed.

Y(0)~ Y(3)“ Y(6)“ "Î 1 1 x(0)~

Y(l) = Y(4) = Y(7) = i w3 w3 x(3)

Y(2) Y(5) Y(8) l w3 w3 x(6)

(16)

(17)

Only the last two entries Y(l) and Y(2) are needed from (17)

to complete (12) using (14)

10

x(if X(l) Y(l)

X(2) X(2) Y(2)

X(4) X(4) Y(l)
+

X(5) x(5) Y (2)

X(7) X(7) Y(1)

X(8) X(8) Y(2)

This length 9 example thus requires a length 6 cir¬

cular convolution and 2 length 3 DFT's which can he computed
3

using length 2 circular convolutions. If N = 3 » we have a

2 2
length 3 *2 » 18 circular convolution and two length 3=9

DFT's. These can he reduced to two length 6 convolutions

and 4 length 3 DFT's which are calculated with length 2

circular convolutions. If N = p^ the length N transform is

computed with 1 length p “A(p-l) convolution, 2 length

pr“^(p-l) convolutions, 4 length pr"^(p-l) convolutions,

8 length p (p-l) convolutions, •••, terminating with
r-i

2 length p-l convolutions.

11

III. CONVOLUTION WITH THE MINIMUM

NUMBER OF MULTIPLICATIONS

The prime and prime power DFT algorithms are means

of converting the calculations required in the DFT into

circular convolution. Then, special fast circular convolu¬

tion techniques may be used to preform the calculations. An

algorithm for computing a short length circular convolution

in the minimum number of multiplications for small values of

N is based on recent work by Winograd £3] •

Winograd's theorem on the minimum number of multipli¬

cations is explained in terms of polynomial multiplication.

To cyclicly convolve the sequences ho»*1! * * * * »hN-l and

XQ,XJ, • • • we need only find the N coefficients of

the polynomial

Y(z) »H(z)*X(z) modulo (z
N

1) (18)

where N-l N-l

k=0

(19)

k=0

N
If z -1 is written in terms of the K factors which

are irreducible over the rationals

(20)

12

with no common factors in the Q^(z) polynomials, Winograd's

Theorem states that the minimum number of multiplications

required to compute the circular convolution of two length

N sequences is 2N-K, This theorem does not count multiplica¬

tion by rational numbers.

In order to reduce the computation required for (18),

Y(z) is decomposed into K simpler parts using the polynomial

version of the Chinese Remainder Theorem M-
K

Y^z) Si(z)J mod (z
N-l) (21)

1=1

YA(Z) = ^(z) XA(z) mod Q^(z) i = 1,2,•••,K (22)

XA(z) = X(z) mod Q^z)

(z) = H(z) mod (^(z)

i = 1,2,•••,K

i = 1,2,•••,K
(23)

The polynomials (z) i = 1,2,»#,,K play the role of a

Kroneker delta

Si(z) = 1 mod Qi(z) i = 1,2,»«*,K
1 1 (24)
S^(z) = 0 mod Qj(z) for all j £ i

The S^(z) may be found by applying Euclid’s algorithm to

polynomials M-

As an example, we will do a length 6 circular convolu¬

tion of the sequences hg, h^,***, h^ and x0, X^,***, Xy

We have the polynomials

H(z) = h0 + h^z + ••• + h^z^

X(z) = XQ + x^z + ••• + x^z^

13

First, the irreducible factors Q^(z) are found:

z^-1 = (z+l)(z-l)(z2+z+l)(z2-z+l)

= Q1(Z)Q2(Z) Q^(Z) Q/^z)

&
Next, the intermediary polynomials X^, H^, and Y^ are formed:

X^z) = X(z) mod (z+l) = XQ

= xQ - xt + x2 - Xj + x^ - x^

X2(z) = X(z) mod (z-l) = XQ

012345 (25)
2 3 3

X^(z) = X(z) mod (z +z+l) = XQ + x^ z

* (x0 - x2 + Xj - x^) + (xt - X2 + x^ -x^)z

X^(z) = X(z) mod (z2-z+l) = XQ + x^ z

= (XQ- X2- X^+ X^) + (Xj+ X2- x^- x^) z

(The H^(z) polynomials are the same in form.)

Yj(z) = H^z) Xj(z) mod (z+l) ® yj = hj XQ

2 2 2
Y2(Z) = H2(Z) X2(Z) mod (z-l) = y0 = hQ x0

Yo(z) = H*(z) Xo(z) mod (z2+z+l) = yn + y? z
(26)

33 33 33 33 33
=(hQ XQ- h^ xp+(hj XQ+ hQ xj- hj xp z

2 4 4
Y^(z) = H^(z) X^(z) mod (z -z+l) * yQ + yt z

tf, If. if. if. if, if. if, if. Jf, if,

—(hQ XQ— hj Xj)+(hj XQ+ hQ Xj+ hj x^) z

* th
Superscripts are used to identify the i polynomial.

14

Now, the Y^(z) and ^(z) polynomials are formed direct¬

ly with one multiplication each. So, we have the intermediate

variables
1 1

ml= h0 x0

giving !
y0 = «4

and

and

2 2
m2 = h0 x0

2
y0 “ m2

(2?)

The polynomials Y^(z) and Y^(z) require only three

multiplications each - similar to complex multiplication

done in three real multiplications. Thus, for Y^(z) we need

m^

%

= (hQ - h^) (xj - XQ)

v,3 3
h0 x0

3 3
and m*j = h^ x^

(28)

For Y^(z) we need

m
4 4 4 4

6 = <h0 + hl> (xO + X1>

.4 4
m7 = h0 x0

„ u4 *
and mg » h^ x^

(29)

From these intermediate variables we obtain

3
and

3'
y1 - m3 + m^ y

0
= m4 “

4
and

4
(30)

yl = m6 “ m7
y
0 = m? - m8

At this point we have the four component polynomialsi

Yl<z) = yo Y2(z) ** Yo

3 3 4 4
Y3(Z) = y0 +

yi 2 Y4<2) = yo + yi 2

15

The final step is to express the polynomial Y(z) in

terms of the components Y^(z). We have

Y(z) = [YX(Z) S1(Z) + Y2(Z) S2(Z) + Y3(Z) S3(Z)

+ Y^(z) S^(z)J mod (z6-l) (31)

The S^(z) polynomials satisfying (24) are

S^(z) = -l/6 (z^-z^+z^-z2+z-l)

S2(z) = l/6 (z^+z\z
3+z2+z+l)

S3(z) = l/6 (z^-z^-z^+2z-^-z
2-z+l)

Sj^(z) = l/6 (z^+z^-z^-2z^-z2+z+l)

In order to show the exact operations on the original

{xjj and {hjj the vector of coefficients of Y(z), y = yQ

may be expressed in terms of x=Xj

XN-1

and h=h^

hN-l

yi

yR-i

with two equations using ® to indicate point by point

multiplication of column vectors:•

m = [B] h (x) [A] x

y = [C] m

(33)

(34)

A length N circular convolution requiring M multiplies can

always be expressed this way with A and B MxN matrices and

C an NxM matrix M.

16

In order to put our example for N=6 in this matrix

form, we first identify the intermediate m parameters

from (26), as shown in (2?)» (28), and (29). The terms in

(26) involving h and x are expanded according to (25) to

obtain the matrices A and B,

m

’1 -1 1 -1 1 -1" h0 ~ 1 -1 1 -1 1 -1 xo~

1 1 1 1 1 1 hl 1 1 1 1 1 1 X1
1 -1 0 1 -1 0 h 2 -1 1 0 -1 1 0 x2
1 0 -1 1 0 -1 h3 ©

1 0 -1 1 0 -1 X3

0 1 -1 0 1 -1 h/f 0 1 -1 0 1 -1 x4
1 1 0 -1 -1 0 h5_ 1 1 0 -1 -1 0 x5_
1 0 -1 -1 0 1 1 0 -1 -1 0 1

0 1 1 0 -1 -1_ 0 1 1 0 -1 -1

(35)

To obtain the C matrix rewrite (26) in terms of the m's

given by (27), (28), and (29).

Y^z) =

Y2(z) - m2

Y^(z) * (ity- m^) + (myt- ity) z

Y^(z) = (m7- mg) + (m6- m?) z

(36)

Substitute (36) and (32) into (31)» collect powers of z to

obtain

y = C m

17

y
0

1 1 -1 1 -2 1 1 -2

-1 1 2 1 1 2 -1 -1 m2

y2 1
= z

1 1 -1 -2 1 1 -2 1 m^

y3 -1 1 -1 1 -2 -1 -1 2

n 1 1 2 1 1 -2 1 1 m5

y5_ -1 1 -1 -2 1 -1 2 1 m6

my

m8

We now have a length six circular convolution computed

with 8 multiplications, which is the minimum number as

given by Winograd's theorem*

2N - K = 2(6) -4 =8 .

The multiplications by the rational numbers in A, B, and C

are not counted.

The calculation of Y^(z).and Y^(z) may be done with a

number of different algorithms. These will give values for

m^ through mg different from (28) and (29) and different

evaluations of Y-^(z) and Y^(z) in-terms of the m's. This

freedom in the choice of calculating Y-j(z) and Y^(z) may be

used to try to minimize the number of additions for the

convolution algorithm. No attempt has been made here to min¬

imize the number of additions.

Convolution algorithms which achieve 2N-K multiplica¬

tions and have simple A,B, and C matrices are known only for

short lengths. For longer convolutions it is difficult to see

how to keep the number of additions under control.

18

IV. APPLICATION TO THE DFT

The polynomial method of generating a circular

convolution algorithm which requires the minimum number of

multiplications has been used effectively for short lengths.

Winograd states that all known algorithms for computing

circular convolution in the minimum number of multiplications

N
require a large number of additions when z -1 has large

irreducible factors. Therefore to be of practical interest,

the DFT length will be kept small to take advantage of the

change to a circular convolution. DFT algorithms for small

values of N have been written with these methods for use in

a prime factor FFT algorithm to be described in Chapter V.

These algorithms are different from those used for the nested

DFT proposed by Winograd and implemented by Silverman [lo] ,
which is also described in Chapter V. Table 1 shows the

number of operations required for short transforms intended

for use in the prime factor FFT algorithm and for short

transforms intended for use in the nested algorithm. Explicit

formulas for short transforms to be used with a prime factor

FFT are given for lengths 3*5»7» and 9 in Appendix A. These

formulas come from combining the correction terms with special

convolution algorithms described in Chapter III, Short trans¬

forms for use with the nesting algorithm are derived by

modifying the transforms in Appendix A to reduce the number

of W® multiplications as in (45) - (47).

19

Table 1

Short Length DFT Operations Count

N

Prime Factor FFT

Ldds

Nested Algorithm

Adds Multiplies Shifts t. Multiplies W° multiplies

2 0 0 2 0 2 2

3 1 1 6 2 1 6

4 0 0 8 0 4 8

5 4 2 17 5 1 17

7 8 0 36 8 1 36

8 2 0 26 2 6 26

9 8 2 49 10 2 49

To see how a DFT is implemented with a convolution

algorithm, concider the following length 3 example*

xcof O

o

w°" x(0)‘

X(l) = w° w1 w2 x(l)

X(2)_ w° w2 w1 x(2)

The convolution

X(l)l

X(2)

w1 w2
2 1 vr vr

x(i)

x(2) 9 (38)

provides X(l) and X(2) and

20

X(0) = W°(x(0) + x(1) + x(2))

X(l) = W° x(0) + X(l) (39)

X(2) = W° x(0) + X(2)

To get an explicit formula for the DFT, the convolution (38)

is written in matrix form as in (33) and (34).

(40)

(41)

In applying (40) and (41) to the length 3 DFT we

absorb the factor of £ into the B matrix. Then, combining

this convolution with (39) gives the following length 3 DFT

algorithm for use in the prime factor FFT.

a1 = x(l) + x(2)

a2 B x(1) - x(2)

Sij * x(0) + aj

”i - - I ai
.

m
2 = 'J 2 a2

Cj = x(0) +

X (0) *= a3

X(1) = c^ + m£

X(2) = Cj - m2

(42)

(43)

(44)

21

Now, for the algorithm to "be used in the nested DFT

method, the multiplications by must be accounted for as

explained in Chapter V. Therefore, we wish t|0 minimize the

multiplications by as well. This may be done by modifying

the above length 3 DFT as shown below:

= x(l) + x(2)

a2 = x(l) - x(2) (45)

aj = x(0) + aj

m1 e (-i - l)at * - | at

m2 = a2 (46)

idj = W® a^ = l*a^

C1 = m3 +

X(0) = m,
3 (47)

X(l) = Cj + m2

X(2) « Cj - «2

The algorithm used for the prime factor FFT has one

multiplication , one shift (multiplication by £), and six

additions , as shown in Table 1. The algorithm used for the

nested transform has two multiplications, one multiplication

by W°, and six additions. For complex data, the values in

Table 1 are only doubled because the coefficients formed

from the BW portion of the convolution are pure real or pure

imaginary numbers. This occurs since the B matrix is such

that the W*s occur as sums or differences of conjugate pairs.

22

These short length DFT algorithms may be written in

a matrix form as

X = 0 D I x (48)

where I is the jJLxN matrix representation of the input adds

in (42) or (45), D is a fJLxjJL diagonal matrix of the multi¬

plication coefficients in (43) or (46), and 0 is the NxjU.

matrix representation of the output adds in (44) or (47).

For our length 3 example in (45)-(47)

X(of "Ï 0 o' ”l 0 o'

1 1

 x(0)“

x(l) s 111 0 -I 0 Oil x(l)

X(2)_ 1 1 -1_ 0 0 0 1 -1_ x(2)_

The summation form of these matrices gives another

way to represent these algorithms.

X(k) Ê °ki
1=0

x(n) (49)

In general, /J,>N as shown by the expansion of the

block labeled "X” in Figure 1. The input and output additions

are indicated by blocks labeled with a "+" .

23

V. LONG TRANSFORMS FROM SHORT «

A. Change to Multidimensions

The short transforms described above can be combined

in several ways to provide a long transform of length N. The

idea is to convert a one dimensional length N = MIM2***m1

transform into an 1-dimensional transform requiring computa¬

tion of 1 shorter, length Mk transforms for k = 1,2,*»*,1 .

In this paper we use a mapping from one to 1 dimensions

which requires that the Mjj. factors be relatively prime [H].

Conventional FFT algorithms map one dimension to many dimen¬

sions. The Cooley-Tukey algorithm [l] allows common factors

in N, while algorithms proposed by I. J. Good [é] and Thomas

use a mapping based on the Chinese Remainder Theorem [12]

which requires relatively prime factors. We will use the

Chinese Remainder mapping which will be described for two

factors and which are relatively prime.

the index n of the input sequence x(n) will be called the

"input index", and the index k of the output sequence X(k)

will be called the "output index". The mapping from one to

two dimensions maps the input index n into a pair of

In the DFT

N-l

n=0

24

indices (n^, n2).

nl = (r^n) mod nj = 0, 1, • • •, M1-l

n2 = (**2n) mod M2 n2 = 0, 1, • • •, M2-l

where r^ * M2 mod Mj and r2 = mod M2

The output index is similarly mapped into a pair (kj, k2).

k^ = k mod k^ = 0,1, • • •

k2 * k mod M2 k2 » 0,1,
#,*,M2-1

The inverse mapping from two dimensions to one dimension for

the output index is

k = (s^kj + s2k2) mod N (50)

where
s^ = 1 mod Kj s2 = 1 mod M2

and
s^ = 0 mod M2 s2 = 0 mod

The inverse mapping for the input index is

n = (M2nl + ^ln2^ m0<^ N (51)

When these mappings are used, the DFT becomes

n2k2 njkj
x(nltn2) W„2 WMi (52)

nl”° n2=0

21T 2 TT
"JNU ..

where WM = e and WM = e c .

The two dimensional transform in (52) may be imple-

Ma-1 M2-

xckj.kj) = ÿ ÿ

25

merited by first calculating length M2 DFT's,

Mp-l
A-. n2k2

y(nltk2) = \ x(n1#n2) W (53)

n2=0

then calculating Mg length M^ DFT's

Xfk^kg)
nlkl

y(n1#k2) W (54)

n^=0

The short transforms in (53) and (54) can be implemented

using convolution methods as in (49). This procedure will be

called the prime factor FFT algorithm and is illustrated in

Figure 2.

Figure 2 shows a length 15 transform implemented by

first calculating five length 3 transforms as in (49), then

calculating three length 5 transforms as in (49). Like

Figure 1, blocks labeled "+" indicate addition and blocks

labeled "X" indicate multiplication in the convolution DFT

of (48). Figure 2 is based on similar diagrams in Gold and

Rader Qj} •

Winograd [5] has proposed another implementation of

(52) which uses the special structure (49) of the short trans¬

forms to nest all multiplications inside of input and output

additions. When the length short transform is written in

terms of input additions Î * , output additions o^\ and

multiplications d^ and the length M2 transform is written

(2) (2) (2)
in terms of i ,0 , and d as in (49), (54) becomes

26

M2"1 M2-I

/ x Y"”1 (2) V”* (2)
y(nltk2) = 2^ °k2l

dl 2^ iln2 x(nl’n2) <55)

1=0 n2=0

Since X(kj,k2) in (52) is a length transform of y(n^,k2)

which can also he implemented as in (49), (54) becomes

LL.-1 M--1
(i) (l) <r-> (l)

X(kj,k2) = 2^ okim dm 2_^ imnj y(nlfk2) (56)

m=0 n^=0

Substituting (55) into (56) we get

Llrl Mi-1
Y(. . x Y"' (1) *(l) V <(l)

X(k1(k2) = ^ ok dm 2^ imn1

m=0

M-2-1

n^=0

r—* (2) (2) r—» ,
• 2^ °k2l

dl 2, lln2 x(nl,n2) (57)

M9-I

(2)

1=0 n2=0

The summations in (57) are an explicit representation

of the operations indicated in Figure 2. The order of the

summation may be changed as shown by Rader and McClellan [9]

to nest all multiplications in the center giving

M'l”1 ? (2) 1

x(kltk2) =2^ °k2i y;

1=0 m=0

(1) (1)
'kiin dm d

(2)
1

M1-l

•E =1

M2-I

2] Aln2 x(nl*n2)

n2~°

(53)

27

As shown in Figure 3* (58) corresponds to first

doing input adds on the rows of x(n1#n2). then input adds on

the columns. Rows and columns are then multiplied as indi-
(1) (2)

cated by dm and d-^ . Finally, output additions are per¬

formed on columns and rows. This algorithm, proposed by

Winograd L5]. will be called the nested algorithm in this

paper because all multiplications are nested inside of addi¬

tions as shown in Figure 4.

B. Operation Counts

The number of multiplications required by the nested

algorithm is essentially the product of the total number of

multiplications for each factor in the DFT, when implemented

as in (58). However, some savings may be made for the case

where the DFT being computed is at a point by point multipli¬

cation involving a product of W° coefficients. This corre¬

sponds to both d's in (58) being unity. The number of multi¬

plications saved is the product of the number of W° multipli¬

cations in each short transform. Thus, the equation for the

number of multiplications for two factors is

Multiplications = - T)^ 7^

where ^ = # of multiplications by W° for length DFT

= total # of multiplications for length DFT

= # of additions for length DFT

28

For three factors we have

Multiplications = ^ Tf2 7)^

and the pattern continues for more factors.

An equation for the number of additions is based on

structures of the nested algorithms in (58) and on Figure 3*

The horizontal addition planes in Figure 3 correspond to

length M£ transforms and there are of them (the indices

n^ and kj take on values). This contributes addi¬

tions. The vertical addition planes in Figure 3 correspond

to length transforms and there are JUL2 of them (the index

1 takes on jLLg values). This contributes jLl2Cti additions.

Thus for two factors, we have

#additions = a.2
+ /^2^1

For three factors we have

#additions = M^M2GL>3
+ ^3(MJC12 +

In the same manner, we have with four factors

#additions = (59)

+MJM2 a3+ jjt3 (a2+ >

For the number of multiplications, the ordering of the

factors is unimportant. However, the number of additions

required depends on the ordering of the factors. For the

nested transform additions given in table 2, the best order¬

ing was used and is indicated by the order of the factors.

For complex data, the number of real multiplications and real

29

additions is twice the number given by the above equations

(multiplications of the complex data are with pure real or

pure imaginary coefficients).

In order to compare the operation counts of the

nested algorithm with the operations required by the Cooley-

Tukey and the prime factor FFT algorithms, we need to look

at these latter two algorithms and determine the number of

operations they require. In order to make the comparison

more realistic, the radix 2 Cooley-Tukey algorithm will per¬

form complex multiplications in three real multiplications

and will not count multiplications by W® or - j . For complex

data with N=2M (log N * M), we have [l^] J

N 3N
^multiplications = 3(2 log N - 2 +2)

#additions * 2N log N + 5(#multiplications)

For the prime factor FFT algorithm we use the special

short length transforms intended for this algorithm. (See the

first section of Table 1.) With N * %M2M3* length

transforms are computed, length M2 DFT's, and M^M2

length DFT's. We have

^multiplications = 2(M£M^ fij+MjM2^L2+MjM2 f^) (60)

#additions = 2(M2M3<X1+ M^CLj) (61)

for complex data. Using these equations, the three algorithms

are compared in Table 2 for several values of N.

C
O
M
P
A
R
I
S
O
N

O
F

D
F
T

A
L
G
O
R
I
T
H
M
S

30

EH
CP
pH

CM

X
•H
13
cd
cc

to
13
13

CO
<D

rH
P

ê

o
CA
00

CM
O

CM
VO
VO

«
VA

4*
C^-
r^

VO O VO
00 tv VO
CM CM O

•k •k «
CM •3- tv
CA i>- VO

4* CO CM
tH VA 00
VO C^- VA

m •» »

4* o 4“
tH CM

CO O 4* CM 00 00 CM 00 VO

EH) *rt <§ CM 4 tH o 4* V 00 V
P^S 13 CA O CA 00 r^ ON tH CM 00

pH < »
CM

*
VO

«k
00

<tk
00

«k
CA

»
CA

•k
o VO

P tH CM 4 00

o
•p
o
cd to
fP Q)

o
•H
r—1 00 CM 4* 4- VO o 4 VO CM

c p VO tH CM oo Ov o 4- CA CA

•H •H VA O «A CA CM tH VA
< . * » «b 4» * *k «k
H

PH
t"'
rH
3

tH <«—i tH CM 4- VA
▼Hi

£

CO 4 CM OO VO CM VO 4 4 r-
g •o 00 tH CM 00 Os tH o 00 VO

•C CA CA tH CM 4 VA 00 tH VO

•p
•H
u
o
u

rH
<

c

CO
0)

m

CA
m

l^

•b
tH
tH

«k
ON vÂ

tH
4
CM

m
o
VA

Ok
VO
o
tH

13
<K)

*H
rH co 4 CO CM CVI 4 CM 00 4

4J> P VO CM 4 ON VA O O VO 4

CO
0)
&

•H
-P
«H

i

4 oo CM
»

tH

tH
«k

tH

C^-
■k

tH

VA
»

CM
•k

VA

CA
»

o
tH

CO
u
o CM CM 4* IV
-p • VA • •
G CA CM r- CM r*- VA

£
•

VA
•

Os
•

ON
•

Ov

00 00

CA
•

00 O

•a-
•
tv tH

00
•
cv

• • ON • tH • tH •
VA CM tv CM VA CM VA
•

ON

•
CN

•
VA

•
ON

•
ON

o
ss| CA

CM VO
CA CM

oo
CM

CM
VA
CM

o 4* CM O 4* o 00 O
vo o tH 4* CM VO 4 CM
CA VA VA 00 O CM o VA

tH tH CM CM

VA
tH
CA

31

VI. COMPARISON OF DFT ALGORITHMS -

DISCUSSION OF TABLE 2

Comparisons in Table 2 show that the prime factor FFT

algorithm requires from 0$ to 64$ more multiplications than

the nested transform. However, the nested transform requires

from 0$ to 28$ more additions than the prime factor FFT

algorithm. In fact, if additions ’’cost" at least one half as

much as multiplications, then the multiply-add cost for the

prime factor FFT algorithm is smaller for all lengths shown

in Table 2 except for lengths 30 and 840.

To develop an understanding for how these two trans¬

forms are related for various choices of factors, we will

derive expressions for the number of operations required

per output point. From (60), the number of multiplications

per output point for the prime factor FFT algorithm is simply

the sum of the number of multiplications per point for each

factor.

For the nested algorithm, the number of multiplica¬

tions per point is approximately the product of the number

of multiplications per point for each factor.

#multiplications/point (62)

Similarily for the prime factor FFT algorithm,

r-' CL,
(63)

32

#multiplications/point = TT(Mi) (64)

From (59). the number of additions per point for the

nested transform is

, a, JU« a2 u, jLto a
#additions/point = MpBp (65)

For the factors used in this study, the number of

operations per point is shown in Table 3»

Table 3

Prime Factor FFT Nested Algorithm

JL O/N ^/N

2 0 1.0 1.0 1.0

3 0.33 2.0 1.0 2.0

4 0 2.0 1.0 2.0

5 0.8 3.4 1.2 3.4

7 1.14 5.1^ 1.28 5.14

8 0.25 3.25 1.0 3.25

9 0.89 5.44 1.33 5.44

With k factors and an average number of multiplica¬

tions per point, /-tf the nested algorithm requires jLlk

multiplications per point. The prime factor FFT algorithm

requires kjU, multiplications per point. When pL^>kjJi or

when M->k-Vk the prime factor FFT algorithm requires fewer

multiplications than the nested algorithm.

33

Since k"Vk" becomes smaller with increasing k

(more factors) and increases for the extra factors,

which must be large, the prime factor FFT algorithm will have

fewer multiplications per point than the nested algorithm

when more factors are used.

With k factors and average number of additions per

point, CL, the prime factor FFT algorithm requires kOL addi¬

tions per point. The nested algorithm requires CL + |U,Ct+* • •

k-l JLlk-i
+ JLL CL = ii i Editions per point for In the

» r
special case N = 2 »3*P where p is a prime other than 2 or 3

and r = 1,2, or 3 • both algorithms require the same number

of additions since jJL= 1 for the factors 2r and 3» With

other factors the prime factor FFT algorithm will have fewer

additions. As shown above, the difference in the number of

additions will also increase rapidly when more factors are

used. This comparison of additions and multiplications per

point is further illustrated in Figure 5*

A good strategy would be to use nesting for a few

factors until |U began to grow, then combine, using the

prime factor FFT algorithm, with another composite length

intermediate transform which was done with nesting.

3^

VII. PROGRAMS FOR COMPARING TRANSFORM METHODS

A. Subroutine GOODFT

The prime factor FFT algorithm was used to program a

mixed radix DFT in which the short length DFT's are calculated

using the fast convolution method previously described. A

flow chart of the subroutine GOODFT is shown in Figure 6 and

a program listing of the subroutine is given in Appendix B.

The input data to be transformed is stored in two length N

vectors, XR for the real part and XI for the imaginary part,

where N is the length of the DFT to be calculated. N must be

a product of at most four mutually prime factors from among

the following possible factors» 2,3,4,5»7»8, and 9. If four

factors are not used, the unused factors are set equal to

one. For example, with N=M1*M2*M3*M4 = 30, we have Ml=5,

M2=3, M3=2, and M4=l. These factors of one must be the last

of the M’s. The number of nonunity factors is NFT, which is

the number of dimensions in the transform. The prime factor

FFT algorithm is described in equations (50) through (5*0

for the two factor case. This algorithm may be extended to

more factors. For example, when the number of mutually prime

factors is four, the length N DFT may be calculated as

M2*M3*M4 length Ml DFT’s, M1*M3*M4 length M2 DFT's, M1*M2*M4

length M3 DFT's and M1*M2*M3 length M4 DFT's.

The first transforms calculated are the length Ml

35

DFT's. For each of the possible combinations of N2, N3, and

N4 a length Ml index vector I is calculated using an input

mapping

n=(M2M^M/j,n^+M^M^M^n2+M^M2M^n^+M^M2M^n/lr)mod N (66)

The calculation of this index vector and the testing of the

values of N2, N3, and N4 are done in the input indexing

segments of the subroutine.

The index vectors are used to select the proper data

points to be transformed for each of the length Ml DFT's.

Thus, when an index vector has been calculated, the proper

Ml data points are selected from the length N data vectors

XR and XI and stored in temporary vectors UR and UI. A

length Ml DFT is then calculated for UR and UI using the

fast convolution technique. The results of this transform

are stored in UR and UI. Then, the index vector is used once

again to transfer the transform results from UR and UI to

their correct locations in XR and XI. This selection of Ml

data points from the N input data points, the calculation of

the Ml point DFT, and the placement of this result into the

length N data vector is done in the short transform section

of the subroutine.

When all the possible combinations of N2, N3, and N4

have been used, the length Ml DFT's have all been computed.

The input indexing portion of the subroutine then reorders

the factors so that M4 is now treated as the first factor

and the length M4 DFT's are computed. Then, when these are

36

done, M3 and M2 are successively treated as the first factor

and the required length M3 and length M2 DFT's are also cal¬

culated*
\

When all of the short transforms for all of the

dimensions have been calculated, the vectors XR and XI con¬

tain the result of the length N DFT, but in a scrambled order.

The unscrambling of the length N transform result is done in

the output indexing portion of the subroutine. For the case

of four factors, the output index mapping from one to four

dimensions is

k. = k mod M. ko = k mod M,
1 12 2 (67)

k3 = k mod k/^ = k mod M^

For a particular value of k, the values of k^, k2, k3, and

k^ are used in (66) for n^, n2, n3, and n^ to determine the

position in the input array of this desired output point.

Now, each successive value of k increments all the values of

kj, k2, k^, and by one, starting from zero. Therefore,

from (66) we see that the position of each successive out¬

put point is located in the input array in the position

given by

n= k(M2M^M4+M1 M^M^+M1 M2M3) mod N (68)

From (68), we define an output indexing constant,

KOUT = (M2M3M4+ M1M3M4+ M1M2M4+ MJM2M3) mod N (69)

37

So, we have

n = (k*K0UT) mod N (70)

The output indexing portion of the subroutine transfers the

scrambled results of the length N DFT from XR and XI into

A and B, which contain respectively, the real and imaginary

parts of the length N DFT in the correct order. After com¬

pleting this a return is made to the main program.

B. Timing Results

In order to obtain some timing results, the prime

factor FFT algorithm was programmed in Fortran and in 8080

microprocessor assembly language. The Fortran prime factor

FFT was compared in speed to a mixed radix FFT program writ¬

ten by Singleton jl5| » which uses a Cooley-Tukey mapping.

The FFT subroutine of Singleton is 50% longer than the prime

factor FFT subroutine. However, the prime factor FFT uses

storage of two complex vectors of length N, while the Single-

ton FFT subroutine requires one complex length N vector. The

results of the time tests for several transform lengths are

given in Table 4. These tests were run on an IBM 370 computer

for which the ratio of multiply to add time was 3« The power

of two algorithm was taken from Rabiner and Gold jl^j . It may

be 15% slower than an algorithm which stores all powers of W.

The timing for the subroutines was accoplished using an inter

val timer on the IBM 370. The percent saving in time given

38

is the percent by which the Singleton FFT subroutine is

slower than the prime factor FFT subroutine. The timing

results of Table 4 are for calculating the frequency response

of a length 32 finite impulse response digital bandpass

filter and are taken from a single run.

Table 4

Time Test on IBM 370/155

Times in Seconds

JL Prime Factor Singleton'
p*p^p FFT

32

60 0.017 0.025

64

128

210 0.080 0.119

2 56

315 0.111 0.179

504 0.168 0.288

512

840 0.344 0.509

1024

1260 0.5^0 0.809

2048

2520 1.115

Radix 2 % Time Savings
FFT

0.013

475$

0.027

0.059

491»

0.129

61%

nfo

0.280

0.609

50$

1.323

5W 1.714

39

The times for the prime factor FFT may be calculated

from the Table 2 values for the total number of operations

by the following formula :

Time (in milliseconds) = N(NFT(.052) + .028)

+ .0096(#multiplications) + .0045(#additions)

The input indexing for the program took 52 microseconds per

point for each dimension of the transform (NFT equals the

number of factors). The output indexing took 28 microseconds

per point. The code generated by the Fortran add and multiply

statements took 4.5 and 9.6 microseconds.respectively, to

run. In the program, the shifts in the short DFT algorithms

for the prime factor FFT were done as multiplications.

Next, the 8080 microprocessor assembly language ver¬

sion of the prime factor FFT subroutine was compared in speed

with a radix 2 FFT subroutine. The radix 2 FFT was written

in assembly language, used three real multiplications for

each complex multiplication, and did not multiply by W^. In

addition, the FFT used precalculated values of which were

stored in a table. The FFT program was much shorter than the

prime factor FFT program. The ratio of multiply to add times

on the 8080 was approximately 30* A length 252 prime factor

FFT requires 3.20 seconds to run. A length 256 radix 2 FFT

requires 5.42 seconds to run. So, the radix 2 FFT subroutine

is 70# slower than the prime factor FFT subroutine. The

savings occur in both the multiplications and additions. The

multiplication savings is 80# and the rest is in additions.

40

VIII. CONCLUSIONS

The conversion of a DFT into a circular convolution

leads to new methods for computation of the DFT. For short

transforms, these algorithms require few multiplications and

additions as shown in Table 1 and as shown in the explicit

formulas given in Appendix A.

Long transforms are built up from these short trans¬

forms in several ways, which are compared in Table 2. The

prime factor FFT algorithm was chosen as the most attractive

approach for several reasons. The prime factor FFT algorithm

has about the same combined total of multiply-adds as the

nested algorithm. However, it is easier to write a general

prime factor FFT program. The prime factor FFT can be cal¬

culated using less memory than is required for the nested

algorithm. It requires less data storage and probably less

program memory. Since the prime factor FFT algorithm is done

in small pieces, it might run faster on machines with small

high speed memory blocks. Special hardware for parallel com¬

putation will probably be simpler for the prime factor FFT

algorithm.

A general prime factor FFT program was written for an

IBM 370 in Fortran and for an 8080 microprocessor in assembly

language. The running time for this new algorithm was com¬

pared with a conventional FFT. In the 370 comparison the new

41

algorithm was compared with the mixed radix algorithm of

Singleton M. since the prime factor FFT algorithm is a

mixed radix algorithm. A reduction of approximately 50# was

observed (see Table 4). Much larger savings may be expected

if special hardware is constructed for the short convolution

based algorithms.

Many open questions remain. How should one combine

nesting and prime factor FFT techniques to obtain long trans

forms from short ones? Should the multidimensional expansion

always be done at the transform level, or should the convolu

tions contained within transforms also be implemented in

multidimensional expansions? How can one improve on the

indexing schemes required for these new transforms? It is

likely that continuing development of longer and more effi¬

cient convolution algorithms will make implementations of

the DFT using convolution even more attractive.

REFERENCES

1. J.W. Cooley and J.W. Tukey, "An Algorithm for the
machine calculation of complex Fourier series," Math, of
comput., vol. 19, pp 297-301, April 1965.

2. C, Rader, "Discrete Fourier Transforms When the Number
of Data Samples is Prime" Proceedings of the IEEE,
vol. 56, pp 1107-1108, June 1968.

3. S. Winograd, "Some Bilinear Forms Whose Multiplicative
Complexity Depends on the Field of Constants," IBM
Research Report, RC 5669, IBM Watson Research Center,
P.0. Box 218, Yorktown Hts. New York, 10598, Oct.10,1975

4. R. Agarwal and J.W. Cooley, "New Algorithms for Digital
Convolution," presented at Arden House Workshop, Feb.
1976 and to appear as IBM Report.

5. S. Winograd, "On Computing the Discrete Fourier Trans¬
form," Proc. Nat. Acad. Sci. USA, Vol. 73, No. 4,
pp 1005-1006. April 1976.

6. I.J. Good. "The Interaction Algorithm and Practical
Fourier Analysis," J. Royal Statist. Soc., Ser. B. Vol.
20, pp 361-372, 1958, Addendum, Vol. 22, i960 pp 372-375,
(MR 21 1674; MR 23 A4231).

7. L.H. Thomas, "Using a Computer to Solve Problems in
Physics," Applications of Digital Computers. Ginn and
Co., Boston, Mass., 1963.

8. Mostow, C.D., Sampson, J.H., and Meyer, J., Fundamental
Structures of Algebra.. McGraw Hill Book Co., N.Y. 1963»

9. J. McClellan and C.M. Rader, "There is Something Much
Faster than the Fast Fourier Transform," Notes from
Seminar, Oct. 21, 1976.

10. H.F, Silverman, "An Introduction to Programming the
Winograd Fourier Transform Algorithm (WFTA)", to appear
in IEEE Transactions on Acoustics, Speech, and Signal
Processing.

11. C.S. Burrus, "Index Mappings for Multidimensional Formu¬
lation of the DFT and Convolution," to appear in IEEE
Transactions on Acoustics, Speech, and Signal Processing.

12. D.E. Knuth, "Seminumerical Algorithms,” Vol. 2 of
The Art of Computer Programming. Addison-Wesley,
Reading, Mass., 1971.

13. B. Gold and C.M. Rader, Digital Processing of Signals.
McGraw Hill Book Company, New York, 1969, pp 194.

14. Rabiner, L.R., and Gold, B., Theory and Application of
Digital Signal Processing. Prentice Hall Inc.,
Englewood Cliffs, N.J. 1975»

15. R.C. Singleton, "An Algorithm for Computing the Mixed
Radix Fast Fourier Transform," IEEE Trans. Audio
Electroacoust., Vol. AU-17, PP93-103» June 1969.

APPENDIX A

3 POINT DFT ALGORITHM

a^^ = x(l) + x(2)

a2 = x(l) - x(2)

= x(O) + a^

ai - x(l) + x(4)

a2 « x(l) - x(4)

SLJ = x(2) + x(3)

= x(2) - x(3)

a5 = a2 + a4

a6 = al ” a3

a7 ~ ai + a3

“l ■ 2 al

m2 = O.86603 &£

= 0.95106 a^

m2 — 1*53884 a2

= 0*38327

m4 = 0*55902 a6
„ _ 1 a in r' ~ 7" a I-J
5 4 7

= x(O) -

X(O) = a3

X(l) = c^ ~ jm2

X(2) = + jm2

= x(O) -

C2 = C1 + in/,.

c3 = C1 -
m4

c4 = mi ' m3

c5 =
m2 - ml

x(o) = a8
X(l) = c2 3 <>4

X(2) = c3 - j°5

X(3) = C3 + ^c5

X(4) = c2 +

ag = x(O) + a^

4 multiplications

2 shifts

17 additions

1 multiplication

1 shift

6 additions

5 POINT DFT ALGORITHM

7 POINT DFT ALGORITHM

= x(l) + x(6)

a2 = x(l) - x(6)

a^ = x(2) + x(5)

a^ * x(2) - x(5)

a^ = x(3) + x(4)

ag = x(3) - x(4)

ây = 2t^ ^

a8 = ai ~ a5
a
9 -“a3 + a5

a10 = “ai + a3

all = a2 + a4 " a6

a12 “
a2 + a6

a13 = “a4 " a6

al4 = “a2 + a4

a^ = x(O) + ay

m^ = 0.16667 ay

m2 * 0.79016 ag

m3 = 0.05585 a9

m4 = 0.73430 a10

mg = 0.44096 alt

1115 = 0.34087 a12

m? * 0.53397 a13

mg » 0.87484 a^

Cj = x(0) - m1

C2 s xn^ ^

c ^ — c ^ — 1^2 ~ IB/j,

c4 = C1 ” m3 + m4

Cg = mg + mg - my

c6 = m5 ”

m6 "

m8

Cy ——m^ — ITly * mg

x(0) = a15
X(l) = c2 - jcg

X(2) * c3 - jc5

X(3) = - jCy

X(4) = + jCy

x(5) * c3 + jc5

X(6) = c2 + jc5

8 multiplications

36 additions

9 POINT DPT ALGORITHM

al “
a2 =

x(l) + x(8)

x(l) - x(8)

ml = 0.19740 ci - x(0) -

m t£ = 0.56858 a^0 0 2 *" in^

a^ « x(2) + x(7) m3 = 0.37111 all + ra^

* x(2) - x(7) m4 * 0.54253 a12
c4 - ml + m2

a^ » x(4) + x(5) = 0.10026 a13
c5 = C1 + c

2 - c3

a^ = x(4) - x(5) as 0.44228 al4 c6 = C1 + c3 + c4

ar, * x(3) + x(6) « 1 a
m7 = 2 7

c
7 = cl - c2 - c4

ag = x(3) - x(6) mg = 0.86603 a8
cg = m4 - m

6

a9 = ”al + a5 ra9 = 2 al5 C9 = m5 - m6

a10 = al " a3 m10 = 0*86603 a^g c10 * m4 ” m5

all 1 -a3 + a5
CH = c8 + c9 + m8

a12 * a2 * a6
c12 “ c8 + c10 " m8

a13 “ a2 + H
c13 “ ~c9 + c10 + m

i

a14 " -a4 - a6 c1/f * x(0) + a7 - m,

a^ as a^ + a^ + a^

al6 * a2 - a4 + a6
X(0) * a1?

= x(0) + ajj + a7
X(l) = CJJ — ^11

X(2) = c^ - jc^2

8 multiplications X(3) = cl4 - jm1Q

2 shifts X(4) = c? - jc13

49 additions X(5) « c7 + jc13

X(6) * + jm1Q

X(7) » c6 + jc12

X(8) = c5 + jc11

APPENDIX B

Prime Factor FFT Program Listing

SUBROUTINE GOODFT(XR,XI,N,Ml,M2,M3,M4,NFT,KOUT,A,B)
C THE SUBROUTINE GOODFT COMPUTES A LENGTH N DFT OF THE
C INPUT DATA WHICH IS IN TWO VECTORS, XR THE REAL PART AND
C XI THE IMAGINARY PART. BOTH XR AND XI ARE LENGTH N VEC-
C TORS. THE LENGTH OF THE DFT, N, MUST BE A PRODUCT OF AT
C MOST FOUR MUTUALLY PRIME FACTORS. THE POSSIBLE FACTORS
C ARE 2,3,4,5,7,8, AND 9. THESE FACTORS ARE Ml, M2, M3, AND
C M4. IF THE FOUR FACTORS ARE NOT ALL USED, THE UNUSED
C FACTORS ARE SET EQUAL TO 1. FOR EXAMPLE WITH N=30, WE
C HAVE Ml*5, M2=3, M3=2, AND M4=l. THE FACTORS OF ONE MUST
C BE THE LAST OF THE M»S. THE NUMBER OF NONUNITY FACTORS IS
C NFT. KOUT IS AN OUTPUT INDEXING CONSTANT WHICH IS PRE-
C COMPUTED. KOUT = (K1+K2+K3+K4)M0D N WHERE K1=M2*M3*M4,
C K2=M1*M3*M4, K3=M1*M2*M4, K4=M1*M2*M3, AND K2=0 IF M2=l,
C K3=0 IF M3=l, AND K4=0 IF M4=l. FOR EXAMPLE, N=30, Kl=6,
C K2*=10, K3=15, K4=0 AND KOUT=31 MOD 30 = 1. THE TRANSFORMED
C RESULT IS STORED IN TWO LENGTH N VECTORS, A AND B. A CON-
C TAINS THE REAL PART AND B CONTAINS THE IMAGINARY PART OF
C THE RESULT. THE DFT COMPUTED BY THIS SUBROUTINE USES A
C POSITIVE EXPONENT FOR W. IE W=EXP(J*2*Pl/N).
C DEAN KOLBA, JULY 1976.

DIMENSION XR(2520),XI(2520),A(2520),B(2520)
DIMENSION UR(9).UI(9).I(9)
REAL MR1« MK2«MR3tMR4t MR5*MR6#MR7* MR8»MR9♦MR10
REAL MI I*M12*MI3*MI4*MI5»MI6* MI7*MI 8.MI 9,MI 10
NF=NFT

C ORDER FACTORS FOR TRANSFORMS OF LENGTH Ml
MM!~M1
MM2—M2
MM3—M3
MM4=M4
GOTO 20

10 GOTO!12»I3«14)»NF
C ORDER FACTORS FOR TRANSFORMS OF LENGTH M2

12 MM1=M2
MM2=M1
MM3=M3
MM4-M4
GOTO 20

C ORDER FACTORS FOR TRANSFORMS OF LENGTH M3
13 MM1=M3

MM2=M1
MM3=M2
MM4=M4
GOTO 20

C ORDER FACTORS FOR TRANSFORMS OF LEN3TH MA

14 MM1=M4

MM2=M1

MM3=M2

MM4=M3

C INDEXING INITIALIZATION FOR THE TRANSFORMS

20 N2=0

N3 = 0

N4=0

K 1=MM2*MM3*MM 4

K2=MM1*MM3*MM4

K3=MMI*MM2*MM4

K4=MM1*MM2*MM3

I(1>=0
C INPUT INDEXING ALONG ONE DIMENSION

21 DO 22 J=2 *MM1

I(J)=I(J-l)+K1

IF(I(J } .LT• N| GOTO 22
I C J)=I(Jl-N

22 CONTINUE

C TRANSFERRING DATA TO TEMPORARY VECTORS UR AND Ul

30 DO 31 Jsl.MMI

IJ=I(Jl+I

UR(JI=XR(IJ)

31 UI(JI=XI<IJI

C TRANSFORM UR. UI

GOTO! 50.2 00 .3 00.4 00,500• 50 .700• 80 0• 900 I .MM1

C PLACE RESULT OF TRANSFORM BACK IN XR AND XI

40 DO 41 J =1.MM 1

IJ=I(J) +1

XR(IJl=UR(JI

41 XI(IJ)=Ul(J)

C TESTING FOR COMPLETION OF THIS FACTOR»S TRANSFORMS

IFCN2 • NE. MM2-11 GOTO 51

N2 =0

IF(N3 • NE. MM3-1IGOTO 52

N3=0

IFCN4 • NE. MM4-1IGOTO 53

50 NF=NF-i

IF(NF.EQ.O)GOTO 10 00

GOTO 10

C INPUT INDEXING ALONG OTHER DIMENSIONS

51 N2=N2+1

DO 54 J=1 * MM1

I<JJ=I<JI+K2

IFCKJ) .LT. N1 GOTO 54

If J)=I(Jl-N

54 CONTINUE

GOTO 30

52 N3=N3*1

I(1}=K3*N3+K4*N4

IFf K 11.LT.NIGOTO 21

IIll=I(l)-N

GOTO 21

53 N4=N4+1
I C 1) = K4*N4
GOTO 21

C UNSCRAMBLING TRANSFORM RESULT
1000 11=1

J= 1
GOTO 1001

1002 I F C J .GT• N)GOT O 1003
II=1I+K0UT

1004 IFCII .LE. NIGOTO 1001
I l =11 *'N
GOTO 1004

1001 AC J) = XR(III
B(J)=XI(II)
J= J+ 1
GOTO 1002

C 2 POINT TRANSFORM
200 URX=UR<1)4UR(21

UIX=UI<1)+01< 2 >
UR C 2)=UR(1)-UR(2)
UI(2)=UI(1I-UIC2)
UR Cl)=URX
ui cn*uix
GOTO 40

C 3 POINT TRANSFORM
300 AR=UR C 2)*UR C 3)

AI=UIC21+UI C3>
MR1=-1•5* AR
MI1=-1.5*AI
MR2=0.8660254*CURC2)^»URC3) 1
MI 2=0.8660254*C UIC21-UI C3l 1

URC11 = AR*UR C11
UICl)=AI+UICl I
MR1=URC11+MR1
MI1=UIC1Ï+MI1
UR C2»=MR1«MI2

UIC2)=MI1+MR2
UR f31=MR14M 12
UI<31=MI1-MR2
GOTO 40

C 4 POINT TRANSFORM
400 AR1=URC11+URC3)

AI 1=UIC11+JIC 3)
AR2=URC11-URC31
A12=UIC11-UIC31
AR3=URC 21+URC4)
AI3=UIC21+UIC4)
AR4=URC 21-URC4»

AI 4=U I C 21 **U I C 4 1
UR C11=ARl*AR3
UIC1)=AI1+AI3
UR C2)=AR2-AI4
UIC2)=AI2+AR4
UR C3)=AR1«AR3

UIC3> =AI1-AI3
UR(4)=AR2+AI4
UI<4)=AI2»AR4
GOTO 40

C 5 POINT TRANSFORM
500 ARI=UR(2I+UR(5»

AI 1=UIC2H-UI C 5)
AR2=UR<21«UR(5>
AI2=UIf 21-UK5»
AR3=UR(3)+UR(41
AI3=U1(3)+U1(4)
AR4=UR(3)-JR< 41
A I4=U1(3)«UI(4)
AR5=AR1+AR3

A I 5= A 11 + A13
MR 1=0«95105652*(AR2+AR4)
MI 1=0*95105652*(AI2+AI4)
MR2=1•5388418*AR2
MI 2=1•5388418*A 12
MR3=0*36327126*AR4
MI3=0.36327126*AI4
MR 4=0•559 01699*(AR1-AR3)
MI 4=0*55901699*1AI1-AI3)
MR5='«1 *25*AR5
MI5=-1.25*AI5
UR(1) = URl1)♦ AR5
UI m=UI(ll*AI5
MR5=UR(1)+MR5
MI5=UI(1I+MI5
AR 1=MR5+MR4
AI 1 = MI5+MI4
AR2=MR5»MR4
AI2=MI5"MI4
AR3=MR1-MR3
AI3=MI1-MI3
AR4=MR1"MR2
AI4=MI1-MI2

UR(2»=AR1-AI3
UIC2I=AI1+AR3
UR(3)=AR2+AI4

UI(3)=AI2-AR4
UR(4)=AR2«AI4
UI(4)=AI2+AR4
UR(5)=AR1+A13
UIC5)=AI1-AR3
GOTO 40

C 7 POINT TRANSFORM
700 AR1=UR(2)+UR(7I

AI1=UI(2» +UIf 7)
AR 2=UR(21"URC 7)
AI2=UI<21-UIC7»
AR3=URC 3)+UR< 61
AI3=UI(3)+J1(6)
AR4=UR(3)-URC 61

AI4=UI<3)-UI(6)
AR5=UR(4H-UR<5I
AI5=UI(4)*UI(5)
AR6=UR(4)-UR(51
AI6=Ul(4)-UI<5>
AR7=AR1♦AR3+AR5
AI7=AIl+AI3+AI5
MR1=-1.1666667*AR7
MI1=-1.1666667*AI7
MR2=0*79015647*< AR1«AR5)
MI 2=0.7901564 7*C All-A 15)
MR3=0*055854267*(AR5-AR3)
MI 3=0.055854267*(AIS^AI3)
MR4s0«73430 22*1AR3-AR1)
MI 4=0.7343022*(AI3-AI 1)
MR5=0«44095855*(AR2+AR4-AR6)
MI 5=0.44095855*(AI2 + AI4-AI 6)
MR6=0«34087293*1AR2+AR6)
MI 6=0.34087293*(AI2+A16»
MR7=-0.53396936*1 -AR6-*AR4)
MI 7=«0.5339 6936*C'«AI6"AI4)
MR 8=0•874 84 229* C AR4-AR2)
MI 8=0 • 874 8422 9* C AI4»«A 12)
UR(1)=UR(1)+AR7
UI<1>=UI<1)+AI7
ARl=UR<1l+MRl
AI t=UI(D+MIl
AR2=ARI4MR2+MR3
AI2=AI14MI2+MI3
AR3=AR1"MR2«MR4
AI3=AI1-M12-MI4
AR 4=A R l *»MR3-t-M R4
A!4=AI1-MI3+MI4
AR5=MR5+MR6+MR7
AI5=MI5*MI6*MI7
AP6=MR5-MR6«MR8
AI6=MI5»MI6-MI8
AR7=MR5«MR7+MR8
AI7=M15-MI7+MI8
UR C2I=AR2-A15
UIC2»*AI24AR5
UR(3)=AR3“A16
UI(3I=A!3+AR6
UR (4)=AR4+A17
UIC4»=AI4-AR7
UR(5)=AR4-A17
UI(51=Al4+AR7
UR <6»=AR34AI6
UI<6>=AI3-AR6
UR(7)=AR2*AI5
UI(7)=AI2-AR5
GOTO 40

C 8 POINT TRANSFORM
800 AR1=UR(2)—UR<81

AI1=UI(2)-0I(8)
AR2=UR(2)+UR(8)
AI2=Ulf2>*UI(8)
AR3=UR(4)"UR(6)
AI3=UI<4J-UI<6)
AR4=URC4)+UR<6>

AI4=UI(4>+UI<6>
AR5=UR<l)«UR<5>
AI5=UICII-JI(5)

AR6=UR(I)*UR(5)
AI6-UK 1>+UI(5)
AR7=UR(3)*»URC7I

AI7=U113)"U1(7)
AR8=UR(3)4-UR(71
AI 8=U I C3Ï+UIC7)
MR 1=0-70710678*1 ARH-AR3)
MI 1 =0-70710678* < AIH-AI3)
MR2=0*707I0676*(AR2-AR4)

MI 2=0*70710678*1AI2-AI4)
MR3=AR2+AR4
MI3=AI2*AI4
MR 4=AR6+AR8
MI4=AI6+AI8
MR5=AR6~AR3
MI5=AI6-AI8
MR6=AR1-AR3

M I 6= A11 "A 13
MR7=AR5+MR2

MI7=AI5+MI2
MR8=AR5-*1R2
MI8=AI5«MI2
MR9=AR7*MR1
M19=AI7+MI1
MR10=AR7«MRl
MI10=AI7-MI1
UR(1)—MR4+MR3
UI(1Ï = MI4 +M13
UR(2)=MR7-M19

UI (2)=MI7*-MR9
UR(3)=MR5-MI6

UIC3)=MI5+MR6
UR(4)=MR8+MI10
UI (4)=MI8-MR10

UR (S)=MR4-MR3
UI<5>=MI4«MI3
UR <6)=MR8-MI 10

UI (6Î —MI8+MRi0
UR(7)=MR5+M16
UIC7J=MI5-MR6
UR I 8)=MR7 +M19
UIC 8)=MI7-MR9
GOTO 40

C 9 POINT TRANSFORM
900 AR l=OR(2)+OR(91

AI1=01(2)+01(9)
AR2=OR(2)-0R(9)
A 12=U K21-JK9)
AR3=0R(3)+0R(8)
AI3=01(3)+01(8)
AR4=0R(3)“UR(8)
AI 4=01(3)"O1(8)
AR5=OR(5)+OR(6)
AI 5=0 I (5) +0 l (6)
AR6=OR(5)-OR(6)
A I 6=0 1(5) «■J 1(6)
AR7=0R(4)+0R(7)
AI 7=01 (4) +01 (7)
AR8=0R(4)n0R(7)
AI 8=01(4)«01(7)
AR=AR1♦AR3+AR5
AI=AI1+AI3+AI5
MR 1=«*0.5*AR7
MIl=-O.S*AI7
MR2=0•8660254*AR3
Ml 2=0.8660254*A18
MR3=0•19746542*("AR1+AR5)
MI 3=0•19746542*("AI1+AI5)
MR4=0.56857902*(AR1-AR3)
MI 4=0 «568579024 (All *»A 13)
MR 5=0 • 371 11 36* (■■AR3+AR5)
MI 5=0*371 11 36*("»AI3+A 15)
MR 6=0.542S31 79* (AR2-AR6)
MI 6=0.54253179* (AI2**A 16)
MR7=0•10025582*(AR2+AR4)
MI 7=0.10025582*(AI2+A14)
MR8=0.44227 597*(™AR4»AR6)
MI 8=0 .44227597* (««AI 4»AI 6)
MR 9=™1.5* AR
MI 9=-l .5*AI
MR 10=0.8660254*(AR2-AR4+AR6)
MI 10=0.8660254* (AI2™AI4+AI6)
AR 1=0R(1)+MRl
AI1=01(1)+MI1
OR(l)=AR+AR7+OR(l)
01(l)=AI+AI7+OI(l)
AR=OR(1)+MR9
A I=01(1)+MI 9
AR2=MR4~MR5
AI2=MI4-MI5
AR3=MR3+MR4
A I3=M13+M14
AR4=MR7~MR8
A I4=MI7=M18
AR5=MR6~MR7
AI5=MI6-MI7
AR6=AR2^MR5»MR3*AR1
AI6=AI2«MI5»MI3+AI1

F
i
g
u
r
e

1.

D
F
T

i
m
p
l
e
m
e
n
t
e
d

w
i
t
h

c
o
n
v
o
l
u
t
i
o
n

s
h
o
w
i
n
g

e
x
p
a
n
s
i
o
n

c
a
u
s
e
d

b
y

m
o
r
e

t
h
a
n

1
m
u
l
t
i
p
l
y

p
e
r

p
o
i
n
t
.

AR7=AR3+MR3*MR5+AR1
AI 7=A 13 + M13 4M15 +AI 1
AR 8=-AR3«AR2+ AR 1
A I 8=**A I3**AI 2 + Al I
MR 1 = MR6~MRR
MI1=MI6-MI8
MR3=AR4+MW1+ MR2
MI 3=A 144M 11+M 12
MR4=A R54MR1 r»MR2
MI4=AI5+MI1~MI2
MR5=AR5-AR44MR2
MI 5=A15^A144M 12
UR <2)=AR6-M13
UI(2)=AI64MR3
UR <3>=AR7-MI4
UI(3)=AI7+MR4
UR(4)=AR»MI10
UI(4)=AI4MR10
UR(5)=AR8-MI5
UI<5)=AI8+MR5
URC6)=AR84MI5
UI <6>=AI8-MR5
URC7)=AR+MI10
UI<7J=AI-MR10
UR <81=AR74M14
UI<8)=AI7-MR4
UR <9) = AR64M13
UI <9>=AI6*'MR3
GOTO 40

1003 RETURN
END

F
i
g
u
r
e

2.

M
u
l
t
i
d
i
m
e
n
s
i
o
n
a
l

p
r
i
m
e

f
a
c
t
o
r

F
F
T

a
l
g
o
r
i
t
h
m

f
o
r

l
e
n
g
t
h

15

W
C
O

+

•P cti O

P

3
B

«P 0)
0)
C
O
•P

W
C O

P. O

O
•P

B
Q)
to
c

2
U
cd <1)
«

<D

£

in
si

de

of

 a
dd

it
io

ns

F
i
g
u
r
e

4.

L
e
n
g
t
h

1
5

O
F
T

i
m
p
l
e
m
e
n
t
e
d

b
y

t
h
e

n
e
s
t
e
d

a
l
g
o
r
i
t
h
m

f-l
O

O t3

<

F
i
g
u
r
e

5»

M
u
l
t
i
p
l
i
c
a
t
i
o
n
s

a
n
d

A
d
d
i
t
i
o
n
s

p
e
r

p
o
i
n
t

prime factor FFT

Figure 6. a) General flowchart of a prime factor FFT
b) Input indexing
c) Short transforms
d) More input indexing
e) Output indexing

indicates off page connector in b) through e).

<MM1 = ? >

<5
6c Short Transforms

2

6d.- More Input Indexing

6e.. Output Indexing

