
A Prime Number Labeling Scheme for Dynamic Ordered XML Trees

Xiaodong Wu Mong Li Lee Wynne Hsu

School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117943

{wuxiaodo, leeml, whsu}@comp.nus.edu.sg

Abstract

Efficient evaluation of XML queries requires the

determination of whether a relationship exists between

two elements. A number of labeling schemes have been

designed to label the element nodes such that the

relationships between nodes can be easily determined

by comparing their labels. With the increased

popularity of XML on the web, finding a labeling

scheme that is able to support order-sensitive queries

in the presence of dynamic updates becomes urgent. In

this paper, we propose a new labeling scheme that

takes advantage of the unique property of prime

numbers to meet this need. The global order of the

nodes can be captured by generating simultaneous

congruence values from the prime number node labels.

Theoretical analysis of the label size requirements for

the various labeling schemes is given. Experiment

results indicate that the prime number labeling scheme

is compact compared to existing dynamic labeling

schemes, and provides efficient support to order-

sensitive queries and updates.

1. Introduction

The growing number of XML repositories on the

World Wide Web has provided the momentum for the

development of systems that can store and query XML

data efficiently. Query languages such as XPath [6]

and XQuery [4] have been designed to process XML

data. Given the tree structure of XML data, path and

tree pattern matching algorithms play crucial roles in

the processing of XML queries. Techniques to carry

out path and tree pattern matching include containment

joins and structural joins whereby the pattern tree is

composed by matching ancestor and descendant pairs,

or parent and child nodes within lists of nodes.

In order to facilitate the determination of

relationships among the nodes, nodes in XML tree are

typically labeled in such a way that the ancestor-

descendant relationships between any two nodes can

be established quickly. Hence, a good and compact

labeling scheme is crucial to efficiently process XML

queries. This labeling scheme should have the

following characteristics:

a) Deterministic: The relationships between two

nodes can be uniquely and quickly determined

simply by examining their labels.

b) Dynamic: Updating XML files will not require the

re-labeling of nodes in the XML trees.

c) Compact: The size of the labels should be minimal

in order to fit in the main memory.

d) Flexible: The scheme can be used to support all

kinds of XQuery/XPath functions.

Early works on labeling schemes are typically

range-based [11, 16]. A depth-first traversal of the

XML tree is carried out to assign to each node a pair of

values that cover the range of values in the labels of its

descendant nodes. A test for ancestor relationship is

equivalent to an interval containment test on the node

labels. However, XML documents on the Web are

subjected to frequent changes. As a result, such static

interval-based labeling schemes require a re-labeling

of the entire XML tree when frequent insertions and

deletions of nodes occur.

[1, 7, 10] design a prefix-based labeling scheme to

handle dynamic XML trees. The nodes in an XML tree

are labeled such that the ancestor relationship test is

determined by whether one label is a prefix of the

other. New nodes can be inserted without affecting the

labels of the existing nodes. [15] gives a labeling

scheme that can be used to support order-sensitive

queries. However, to the best of our knowledge, none

of the existing labeling schemes are able to support

dynamic updates when order is a concern.

In this paper, we propose a novel labeling scheme

for XML trees that is based on the property of prime

numbers. Each node is labeled by an integer, and the

labeling scheme ensures that each label can only be

divided exactly by its own ancestor in an XML file.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

With the prime number labeling scheme, we are able to

support dynamic updates and answer queries with

ordered XQuery/XPath function. The contributions of

this paper include:

a) Propose a new, dynamic, and scalable XML

labeling scheme.

b) Generate a simultaneous congruence table to

maintain the global order among nodes. This

allows the support of ordered XQuery/Xpath

functions. Together with the proposed labeling

scheme, the cost for updating ordered XML is

much smaller than existing schemes.

c) Construct the size model of the proposed prime

number labeling scheme. Compared to existing

dynamic labeling schemes, the size of the prime

number labeling scheme is less affected by the

fan-out of the tree. Hence, we can use fixed-length

labels resulting in better storage utilization.

The rest of the paper is organized as follows.

Section 2 reviews related work. Section 3 describes the

property of prime number and the proposed prime

number labeling scheme. An analysis of the size the

prime number labeling scheme and its optimizations

are also presented in this section. Section 4 discusses

the incorporation of order in this labeling scheme.

Section 5 gives the results of our experiments, and we

conclude in Section 6.

2. Related Work

XML query is initially processed by tree traversal.

In the Lore system [12], the DataGuide [9] is utilized

as a summarization for the path information in the

XML file. Piloted by DataGuide, the query processing

system can carry out a vertical tree traversal to

determine whether there exists any ancestor-

descendant relationship between two nodes. However,

such tree traversal-based XML query systems are

costly.

To overcome this problem, a number of researchers

[11, 16] propose the use of XML labeling scheme such

that by comparing the labels assigned to the nodes in

the XML tree, it is possible to determine the

relationship between any two nodes. For example,

XISS [11] employs a numbering scheme in which

every node is assigned two variables: “order” and

“size”. These two variables represent an interval

(order, order + size). For any two nodes x and y, x is

an ancestor of y if and only if order(x) < order(y) <

order(x) + size(x).

The value of order for a node is obtained by an

extended preordering scheme. However, it is not clear

how one assigns a large enough value for “size”. To

address the issue of assigning suitable value for “size”,

[16] proposes a different kind of interval-based

labeling scheme. It initializes a counter to 1 and carries

out a depth-first tree traversal of the XML tree. If a

node is seen for the first time, it is assigned the value

of the counter as its “start-point”. When a node is

encountered again, it is assigned the counter value as

its “endpoint”. The counter is always incremented by 1

each time its value is assigned to a node.

While interval-based schemes are effective in

supporting XML query processing, they cannot handle

dynamic updates. Insertion or deletion of nodes into a

labeled XML tree may result in a total re-labeling of

the XML tree. This problem may be alleviated

somewhat by reserving enough space for anticipated

insertions. However, it is hard to predict the actual

space requirements. Thus, re-labeling after updates is

inevitable for interval-based labeling schemes which

are not suitable for labeling XML documents in

update-intensive applications such as biding.

[2] proposes to use floating point numbers to

replace integers as the labels in interval-based labeling

scheme. In theory, it solves the problem of updates

because one can always insert a number between any

two floating point numbers. Unfortunately, in practice,

the representation of a floating point number is

constrained by the number of bits in the mantissa.

Once again, when the number of insertions exceeds

certain limits, re-labeling is necessary.

Recently, there is a trend towards dynamic labeling

schemes [7, 15] where the nodes inherit their parents’

labels as the prefix to their own labels. This allows one

to determine the existence of an ancestor-descendant

relationship by simply examining whether the prefix

relationship exists in the labels of the two nodes.

The integer-based prefix labeling scheme [15]

labels the nth child of a node with an integer n. Each

label inherits its parent’s label as its prefix. However

when the fan-out is larger than 10, the labeling scheme

breaks down. For example, if there are two nodes with

labels “2” and “21” respectively. The 11th child of the

first node and the first child of the second node will

have the same labels, that is, “211”. In this case, it will

not be possible to differentiate the parent-child

relationship correctly. One way to solve this problem is

to use some delimiter [15]. If we use comma as the

delimiter, the labels for the 11th child of the first node

and the first child of the second node will be “2,11”

and “21,1” respectively. However, the delimiter must

be stored with the label, which incurs significant

overhead.

Another major prefix labeling scheme encodes the

node labels as binary strings [7]. To reduce the size

required for the labeling scheme, [10] proposes a

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

compressed prefix scheme. First, the tree is partitioned

into paths to transform the tree into a balanced tree.

Although this scheme is good for trees with many

levels, it does not reduce the storage requirement for

trees with large fan-out.

Besides the ancestor-descendant type of queries,

XQuery and XPath have also provided order-based

functions. Users can issue queries on the order

information in XML. Hence, it becomes important to

have a labeling scheme that can support this type of

queries. [15] designs three kinds of labeling schemes

to support ordered queries. The global approach gives

the best performance but incurs high update cost.

Although the local approach is the least costly for

updates where order is a concern, it is unable to

support all types of ordered query. The Dewey

approach is similar to the dynamic prefix labeling

scheme, and achieves a good tradeoff between query

performance and dynamic updates.

To date, none of the existing labeling schemes can

support updates for ordered XML data at low cost.

When a new node is inserted into an ordered XML

tree, all the existing labeling schemes require a re-

labeling of the tree. A detailed survey on the various

labeling schemes can be found in [5].

3. Prime Number Labeling Scheme

In this section, we describe the proposed labeling

scheme that exploits the property of prime numbers.

We also analyze the size requirements of the prime

number labeling scheme compared to the existing

labeling schemes. Finally, we discuss various

optimizations that can be carried out on the proposed

labeling scheme to further reduce its storage space.

Property 1 [Divisibility]: If an integer A has a prime

factor which is not a prime factor of another integer B,

then B is not divisible by A.

For example, 6 is not a factor of 10 because “3” is a

prime factor of 6 but it is not a factor of 10.

We observe that in XML trees, if a node A has a

descendant which is not a descendant of another node

B, then A cannot be a descendant of node B.

Therefore, if we label the leaf nodes in XML by prime

numbers and the non-leaf nodes as a product of the

labels of its child nodes, then we can easily determine

the ancestor-descendent relationship by using the

“divisible” property of prime numbers.

Figure 1 illustrates the basic bottom-up prime

number labeling scheme. We start from the leaf nodes

and assign prime numbers to each leaf node. For each

subsequent level, we assign the parents’ labels as the

product of their children’s labels.

Property 2 [BottomUpMod]: In a bottom-up prime

number labeling scheme, for any nodes x and y in an

XML tree, x is an ancestor of y if and only if label(x)

mod label(y) = 0.

Making use of Property 2, we can quickly

determine the ancestor-descendant relationship

between any two nodes. It is obvious that the bottom-

up approach can quickly result in relatively large

numbers being assigned to nodes at the top of the tree.

In addition, special handling is required for those

nodes that have only one child.

Alternatively, we may consider the leaf node as the

integer in Property 1 and the ancestor of this leaf node

as the prime factor of the integer. This gives rise to the

top-down variant of the prime number labeling scheme

(see Figure 2). Clearly, the label of a node is divisible

only by its ancestor’s label. In this top-down scheme,

each non-leaf node is given a unique prime number

and the label of each node is the product of its parent

nodes’ label and its own label. Thus each label is a

product of two factors: first factor is the number that is

inherited from the label of its parent. We call it

“parent-label”. The second part is the value that is

assigned to the node by the labeling scheme. We call it

“self- label.

Figure 1. Bottom-up labeling scheme

Figure 2. Top-down labeling scheme

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

For example, in Figure 2, the “parent-label” is 2 for

the node whose label is “10”, while its “self-label” is 5.

Note that the top-down prime number labeling scheme

is good for dynamic updates. When a new node is

inserted, it is easy to simply assign a prime number

that has not been assigned before as the self-label for

the newly inserted node. No re-labeling is required.

In addition, the size of the label is mainly dependent

on the depth of the XML tree and hardly affected by

the fan-out (as in the case of bottom-up prime

labeling). This makes sense as previous studies have

shown that the depths of XML are usually not too high

[13]. Furthermore, if the XML tree is indeed high, the

tree decomposition method described in [10] can be

used to reduce the height of the XML.

For the rest of this paper, the term “prime number

labeling scheme” refers to the top-down labeling

method.

3.1. Size Estimation

In this section, we discuss the size requirements of

the various labeling schemes. This is important

because the storage requirement of a labeling scheme

has a direct impact on the performance of XML query

processing. We use “D”, “F” and “N” to denote the

maximal depth, maximal fan-out and number of nodes

of an XML tree respectively.

In the interval-based labeling scheme, each node is

assigned two numbers that denotes the start and end

points of an interval. The maximum value that these

numbers can take is N where N is the number of nodes

in the XML tree. In other words, the maximum size of

a label for the interval-based labeling scheme is 2(1+

log (N)) 1 bits.

The binary-based prefix labeling scheme first labels

the ith child of a node with a binary string “1i-10”. Next,

it adds the label of the parent node as a prefix to the

label of the child node. We refer to this basic prefix

labeling scheme as Prefix-1. Clearly, the size of this

scheme increases directly with the node fan-out in the

XML tree. In fact, the maximum size of a label in

Prefix-1 is

Prefix-1: Lmax = D*F (1)

A simple optimization to reduce the overall

maximal size of the prefix labeling scheme is to

increment the binary representation of the labels of

sibling nodes [7]. If a node label consists of all ones,

then its length can be doubled by adding the same

number of zeros to the label. Thus, the labels for

1 log is used as the logarithm to base 2.

sibling nodes will be as follows: 0, 10, 1100, 1101,

1110, 11110000. We refer to this optimized prefix

labeling scheme as Prefix-2. [7] shows that the

maximum size for a label in Prefix-2 is

Prefix-2: Lmax = D*4log F (2)

In the prime number labeling scheme, we carry out

a depth-first traversal of the XML tree and assign to

each node a prime number. The maximum number of

bits required for a label is determined by the total

number of the nodes in the XML file. Given an XML

file with N nodes, we use N to denote the maximal

prime number that has been used to label the nodes. If

the maximum level in the corresponding XML tree is

D then the maximum number of bits required by the

node labels at each level is given by log()ND . We

assume that the bit length of the product of two

numbers is the sum of the bit lengths of the two

numbers.

From the characteristics of prime numbers, we

know that for an integer N, the number of prime

numbers that is smaller than or equal to N is

N(1/log(N)). Hence, the Nth prime number

approximately is Nlog(N) and the number of bits

needed to represent the Nth prime number is

log(Nlog(N)). Note that the error ratio for using

log(Nlog(N)) to predict the length of the binary

representation of the Nth prime number is the logarithm

of the difference between Nlog(N) and the Nth actual

prime number. Therefore, although there is fluctuation

in the difference between the actual prime number and

the estimated prime number, the error ratio is small.

Figure 3 shows the difference between the length for

the binary representation of the first 10000 actual

prime numbers and the estimated prime numbers.

0

5

10

15

20

0 2000 4000 6000 8000 10000

the N' th pri me number

l
e

n
g

t
h

f

o
r

b

i
n

a
r

y

r
e

p
r

e
s

e
n

t
a

t
i

o
n

(

b
i

t
)

actual pri me number

esti mated pri me number

Figure 3. Actual vs. estimated prime number

Assuming the worst case for prime number labeling

scheme where the XML tree is a perfect tree with fan-

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

out F and depth D, the number of nodes N in T is

0

D
i

i

F . This implies that the maximum size of a node

label in T is given by

Prime: Lmax =

0 0

log(() log())
D D

i i

i i

D F F (3)

Comparing the maximum label size for the three

dynamic labeling schemes Prefix-1, Prefix-2, and

Prime, we observe that the maximum size of a node

label is determined by the product of the depth of the

XML tree and the maximum size of node’s self label.

The latter is influenced by the fan-out of the node’s

parent.

From the above label size formulas, we plot two

graphs to visualize the effects of fan-out and depth on

the maximum size of a self label (see Figures 4 and 5).

We observe that Prefix-1 increases linearly with the

fan-out while the prime number labeling scheme is

hardly affected by the increase in fan-out. In contrast,

both Prefix-1 and Prefix-2 are not affected by the

change in depth, while the prime number labeling

scheme increases linearly with the depth on perfect

tree. In the un-optimized prime number labeling

scheme, each node is labeled with a distinct prime

number as its self label. Thus, the maximum size of a

self label will grow with the total number of nodes in

the XML tree. This increase in label size is faster when

the depth increases.

Hence, when an XML tree has a large fan-out, even

for one node, but limited depth, the prime number

labeling scheme can outperform the prefix labeling

scheme in terms of the storage space requirement. On

the other hand, if the XML document has a large depth

and limited fan-out in the nodes, the prefix labeling

wins. In practice, the depth of real world XML data is

typically low with relatively high fan-out. [13]

performs a statistical analysis on 200,000 XML

documents, and discovers that 99% of these documents

have less than 8 levels of nestings. Further, these

documents have fan-out that can be as large as 10,000.

Overall, we see that the interval-based labeling

schemes have smaller size requirements compared to

the dynamic labeling schemes. However, among the

dynamic labeling schemes, our prime labeling scheme

gives the most compact size requirement that is the

least affected by the structure of the XML tree. In

other words, it is possible to use a fixed length

representation for storing the labels. In so doing, we

can take advantage of the standard DBMS functions

for XML query processing.

0

10

20

30

40

50

0 10 20 30 40 50

fan- out

Prefi x- 1

Prefi x- 2

Pri me

m
a
x
i

m
u

m

s
i
z

e

o
f

s
e

l
f

l
a

b
e

l

(

b
i

t
)

Figure 4. Effect of fan-out on size label
(depth=2)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10

depth

Prefi x- 1

Prefi x- 2

Pri me

m
a
x
i

m
u

m

s

i
z
e

o

f

s

e
l

f

l

a
b
e

l

(
b
i

t
)

Figure 5. Effect of depth on size label
(fanout=15)

3.2. Optimizations

One disadvantage of the prime number labeling

scheme is that each prime number can only be used

once. Hence, the self-label of a node that is

subsequently inserted is always larger than self-labels

of existing nodes. This implies the size of the labels

will increase when the smaller prime numbers are used

up. To overcome this problem, three optimization

techniques are proposed to further reduce the size

requirement of the prime labeling scheme.

First, we observe that the node labels that are nearer

to the root of the tree have more influence on the size

requirement because they are inherited by their

descendants. Thus, we reserve a set of small prime

numbers for labeling the root node and the nodes one

level below the root.

Second, we note that the number 2 is the only even

prime number. Thus, we can use even numbers such as

21, 22, …, 2n to label the self-labels of leaf nodes, and

the labels for the non-leaf nodes are odd numbers.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Since there is no ancestor–descendent relationship

between the leaf nodes, we need to modify the

criterion to test for ancestor–descendent relationship

between two nodes as shown in Property 3.

Property 3 [OptimizedMod]: In the optimized top-

down prime number labeling scheme, for any two

nodes x and y in an XML tree T, x is an ancestor of y if

and only if odd(label(x)) and label(y) mod label(x) = 0.

This optimization makes full use of the smaller

prime numbers to label the nodes, thus ensuring that

the space requirement is kept low. Note that this

optimization causes the size of the leaf nodes to

increase as fast as the prefix labeling scheme.

However, it is more flexible and controllable than the

prefix labeling scheme. When the size of a label in a

leaf node reaches some pre-determined threshold, we

can use other prime numbers instead of powers of 2 to

label the remaining siblings.

Third, we discover that in many real-world XML

files, some paths may occur multiple times. Consider

Figure 6 where the book element has 3 authors. The

path book/author in Figure 6(a) can be combined to

form the XML tree in Figure 6(b). By collapsing the

paths that occur many times in the XML tree, we can

reduce redundancy and further decrease the size of the

labels. In the case where order is important, we can

maintain the position information at the leaf nodes to

indicate their orders among the siblings. Note that this

optimization is only applicable for answering

“ancestor-descendant” queries. If order among sibling

nodes is important, then this optimization cannot be

applied. Since this optimization is relevant for all kinds

of XML labeling schemes, we will not use it in our

comparative study.

Figure 6. Combining repeated patterns

Finally, we observe that the prime number labeling

scheme can also benefit from the tree decomposition

approach described in [10] when the depth of the tree

is high. In the prime number labeling scheme, each

node inherits its parent’s label. Thus, we can

decompose an XML tree into several sub-trees. The

nodes in each sub-tree are first labeled separately. A

global tree that comprises of the root nodes of these

sub-trees is constructed and labeled. [10] finds that this

tree decomposition approach can effectively reduce the

label size of dynamic labeling schemes for trees with

great depths.

Figure 7 gives the details of the algorithm to label

nodes with the prime number labeling scheme. The

algorithm incorporates the two optimization techniques

described in the previous section, namely, reserving a

small set of prime numbers to label the top-level nodes

in the tree, and using powers of 2 to label the leaf

nodes.

Three functions are called in the algorithm:

getReservedPrime() returns a prime number from the

set of reserved small prime numbers for the top level

nodes in the XML tree; getPrime() returns the next

smallest prime number to be used for the node label;

and getPower2(n) returns the number 2n to label the nth

leaf node.

Figure 7. Algorithm PrimeLabel

4. Labeling Ordered Trees
The elements in XML are intrinsically ordered.

Suppose we have the XML document on a book with 3

chapters. We will have 3 chapter tags in the XML

document. Looking at the order of occurrences of these

3 chapter tags, we may infer that the first chapter tag

that occurs right after the start element of the XML

node gives the details of the first chapter of the book.

The next chapter tag that occurs after the first chapter

tag describes the details of the second chapter of the

book, etc. An example of an ordered XML tree is

shown in Figure 8.

Order in XML is important as users may be

interested in issuing order-sensitive query. For

example, the query book[author[2]=’John’] retrieves a

list of books whose second author is “John”.

Algorithm: PrimeLabel

Input: XML document

Output: Label for each node

begin

for each node n in the XML document do

 n.childNum = 0;

if (n is the root node) then n.label = 1;

else parent = n.parent;

 if (n is a non-leaf node)

 then if (this node is a top level nodes)

 then n.selfLabel= getReservedPrime();

 else n.selfLabel = getPrime();

 else parent.childNum++;

 n.selfLabel=GetPower2(parent.childNum);

 output (parent.label*n.selfLabel);

end

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

In general, order-sensitive queries in XML can be

divided into three types:

a) Preceding, Following:

This class of queries selects all the nodes before (after)

the context node excluding any descendants

(ancestors). For example, the query

 paper/title[1]/Following::author

will retrieve all the elements following “paper/title[1]”.

b) Preceding-sibling or Following-sibling:

This class of queries selects all the preceding (or

following) sibling nodes of the context node. For

example, the query

paper/author[2] /Following-sibling::*

will retrieve the sibling nodes of “paper/author[2]”.

The order of the requested node should be larger than

the context node.

c) Position=n:

This class of queries selects the nth node within a

context node set. For example, the query

book/author[2]

will retrieve the second author of this book.

Figure 8. Example of an ordered XML tree

This need to maintain order within XML creates a

problem for many XML labeling schemes. For

example, if we need to insert a new author as the

second author to the XML tree in Figure 8, then we

would have to push Tom and John to the 3rd and 4th

sibling positions respectively. For interval-based

labeling schemes and prefix labeling schemes, a re-

labeling is required.

To the best of our knowledge, none of the existing

labeling schemes is able to handle the three types of

order-sensitive queries in the presence of dynamic

updates effectively. In this paper, we make use of the

Chinese remainder theorem to maintain order in our

prime number labeling scheme. This allows our prime

number labeling scheme to answer order-sensitive

XML queries, and cope with updates at low cost.

Definition 1 [GCD]: Let N be the set of integers.

Given a set of integers m1, m2, …mk, the GCD (m1,

m2, …mk) = max ({f | m1 mod f = 0, f � N} � { f | m2

mod f = 0, f � N}…� { f | mk mod f = 0, f � N}).

Theorem 1 [Chinese Remainder Theorem] [3]: Let

M = [m1, m2, …mk] and N = [n1, n2, …, nk] be two lists

of integers. If the GCD (m1, m2, …mk) = 1, then the

simultaneous congruence SC (M, N) = x

satisfies

1 1

2 2

kk

x m =n

x m =n

......

x m =n

mod

mod

mod

, and there is exactly one

solution x between 0 and C, where C =
i

1

m
i

k

.

There are many algorithms to compute the

simultaneous congruence of two sets of integers. One

of these methods is to use the following Euler’s

quotient function:

1
i i iX ((C /m) * n * (m))

k

i

m o d C

where C =
i

1

m
i

k

 and (x) is Euler’s totient function

[3] which is defined as the total number of integers

which are smaller than x and relatively prime to x. The

complexity of Euler’s totient function is O(n).

Therefore, the cost to compute simultaneous

congruence of two sets of integers is acceptable.

4.1. Ordering with Simultaneous Congruence

Values

Given a list of prime numbers P = [3, 4, 5], and a

list of integers I = [1, 2, 3], the Chinese remainder

theorem states that there exists a number x = 58 where

x 3 = 1

x 4 = 2

x 5 = 3

mod

mod

mod

This allows us to generate a one-to-one mapping

between the elements in P and I. Thus, when the prime

numbers in P are self-labels of the nodes in an XML

tree, the integers in I actually depict the ordering of

these nodes. We can use the number SC(P, I) = x to

capture the global ordering for an XML document.

Figure 9 shows an XML tree that has been labeled

using the prime number labeling scheme. The order

number of a node in the XML is given by the integer

within the node. The order number of the root node is

defined to be 0.

The SC value that is generated from self-labels and

the order number of the nodes for this XML tree is

29243. Thus, the global ordering for each node can be

subsequently derived from the formula: SC mod (self-

label).

For example, the order number for the node whose

self-label is 5 is 3, that is, 29243 mod 5.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Figure 9. Capturing order by an SC value

Figure 10. SC table for XML tree in Figure 9

In practice, the XML tree may be large, thus

requiring a large SC value to capture the ordering of

the nodes. An alternative way is to use a list of SC

value instead of a single SC value. Each SC value

maintains the global ordering of a subset of the nodes

in the XML tree.

Consider Figure 10 where we use two SC values to

capture the ordering of the nodes in the XML tree in

Figure 10. The SC value for the self-labels of the first

5 nodes is 1523, while the SC value for the single 6th

node is 6. At the same time, we record the maximum

prime number for each SC value in the SC table. These

maximum prime numbers will indicate the set of nodes

whose ordering is captured by the corresponding SC

value.

4.2. Ordering after Updates

In this section, we discuss how the ordering of the

nodes can be easily maintained by using the SC values

when new nodes are inserted. Note that the deletion of

nodes from an XML tree does not affect any node

ordering.

Suppose we insert one node into the XML tree in

Figure 9. Figure 11 shows the updated XML tree with

new nodes in the dashed line rectangle. The order

number for the new node whose self-label is 17 is 3.

We search for the largest maximum prime number that

is stored in the SC table, and update it to 17. The

corresponding SC value for this record is also updated

to the new simultaneous congruence value that satisfies

the following two equations: x 13 = 7

x 17 = 3

mod

mod

The order numbers for the nodes that comes after

the newly inserted node will be increased by 1. Thus,

the SC values associated with these nodes need to be

updated accordingly. In this example, the first record

of the SC table contains the order number that need to

be changed. The new simultaneous congruence value

for this record is computed according to the following

equations:

x 2 = 1

x 3 = 2

x 5 = 4

x 7 = 5

x 11 = 6

mod

mod

mod

mod

mod

Figure 12 shows the updated SC table for the XML

tree in Figure 11. Since an SC value can capture the

order numbers for several nodes in an XML tree,

updating the ordering information of these nodes can

be performed by updating the SC value. Therefore, the

cost of updating the SC table is relatively low

compared to the cost of updating the order number

directly.

Figure 11. Updated XML tree

Figure 12. SC table for the XML in Figure 11

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

4.3. Answering Ordered Queries

Finally, we illustrate how the three types of ordered

queries can be answered using the proposed prime

number labeling scheme and the SC table.

The Preceding, Following query can be answered

by simply comparing the ordering of the nodes. The

Position=n, Preceding-sibling and Following-sibling

queries can be evaluated using the following strategy.

Consider the query “paper/author[2]”. We first

retrieve all the author nodes who are the descendants

of “paper”. Next, we generate the order numbers for

these author nodes using their self-labels and the SC

table. The author nodes are sorted first according to

their order numbers. Finally, we return the author node

that is in the second position.

Similarly, for the query “paper/author/Following-

sibling::author[2]”, we first obtain a list of author

nodes as before, and output the nodes whose positions

are larger than 2 in this list.

5. Performance Study

We implemented in JAVA the three labeling

schemes: interval-based labeling scheme (Interval)

[11], prefix-based labeling scheme (Prefix-2) [7], and

the optimized prime number labeling scheme (Prime).

Note that Interval is representative of existing static

labeling schemes, such as floating point or integer-

based interval labeling scheme, while Prefix-2 is

representative of dynamic labeling schemes, such as

Dewey or prefix labeling scheme. We incorporate two

optimizations in Prime, namely, reserving a set of

small prime numbers for the top level nodes, and

labeling the leaf nodes with different powers of 2.

Since the optimizations of combining repeated paths

and tree decomposition are not restricted to just the

prime number labeling scheme, we do not include

them in our comparative study.

The three labeling schemes are used to label the

6224 real-world XML files available in [14]. Table 1

shows the characteristics of the various datasets used.

Four sets of experiments are carried out. The first

set examines the space requirements. The second set

compares the processing time for ordered and

unordered queries of the dynamic labeling schemes.

The third set evaluates effect of un-ordered updates.

The last set of experiments studies the effect of order-

sensitive updates.

In the experiments, the labels of the XML are stored

in a relational database with a table structure that is

similar to that in [15]. All the queries are first

transformed into SQL using the approach in [15].

Operations that are used by interval-based labeling

scheme such as “>”,”<”, and the prime number

labeling scheme such as “mod”, “>”, “<”, “=” are

directly supported by the database system. The

operation “check prefix” used in the prefix labeling

scheme is defined as a user-defined function.

Experiments were carried out on an Intel i586 PC 1.6

GHz with 256 MB RAM. The buffer pool used is 128

MB.

Table 1. Characteristics of datasets

Dataset Topic Max. # of nodes

D1 Sigmod record 41

D2 Movie 125

D3 Club 340

D4 Actor 1110

D5 Car 2495

D6 Department 2686

D7 NASA 4834

D8 Shakespears’ Plays 6636

D9 Company 10052

5.1. Space Requirements

In this section, we give the results of two sets of

experiments. The first set examines the effect of the

optimizations on the label size. The second set

compares the label size for the three labeling schemes.

5.1.1. Sensitivity Experiment

We evaluate the space requirements for the original

top-down prime number labeling scheme and the three

optimizations which are described in Section 3.2, that

is, reserve a set of small prime numbers for the top-

level nodes (Opt1), use powers of 2 to label the leaf

nodes (Opt2), and combine the same paths in the XML

tree (Opt3). Figure 13 shows the result.

Compared to the original prime number labeling

scheme, the improvement for Opt1 is limited. The

latter works best when the XML document contains a

large number of nodes. In this situation, the original

prime number labeling scheme will label a top level

node of large XML with a big prime number. Since

each node inherits its ancestor’s label, the strategy in

Opt1 will decrease the maximum size of the node label

by using small prime numbers for the top-level nodes.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6 D7 D8 D9

data sets

l
a

b
e

l

s
i

z
e

(

b
i

t
)

ori gi nal

opt1

opt2

opt3

Figure 13. Effect of optimizations on space
requirement

On the other hand, Opt2 will greatly decrease the

size of the node labels. It is able to achieve up to a

63% reduction in the maximum label size. The main

reason for this vast reduction is that the majority of the

nodes in the various XML datasets are leaf nodes. The

ratio of an internal node to a leaf node is about 2.6 : 1.

The optimization Opt3 can further decrease the size

of the node labels. Combining the same paths can

reduce up to 83% of the maximum label size. This is

because many real world datasets conform to some

DTD, and have many repeating patterns.

5.1.2. Comparative Experiment. Next, we study the

space requirements for the three labeling schemes. We

compare the size of fixed length labels, that is, the

length of label is determined by the maximal length of

labels in the data set. The results for the 9 datasets are

shown in Figure14.

As expected, the maximum label size for the

interval-based labeling scheme is smaller compared

that in the prefix and prime number labeling schemes.

Although the optimization in Prefix-2 is able to reduce

its storage requirement, the prime number labeling

scheme shows the best savings in storage space for the

majority of the datasets.

Careful examination reveals that the movie dataset

D4 contains a list of movies for an actor. This dataset

has a huge fan-out. As a result, the prefix labeling

scheme suffers badly. In contrast, dataset D7 is the

NASA document that has a high depth with low fan-

out. This structure is ideal for the prefix labeling

scheme.

0

10

20

30

40

50

D1 D2 D3 D4 D5 D6 D7 D8 D9

data sets

l
a

b
e

l

s
i

z
e

(
b

i
t

)

I nterval

Pri me

Prefi x- 2

Figure 14. Space requirements for the various
labeling schemes

From the experiments, we see that prime number

labeling scheme is the most compact among all the

dynamic labeling schemes, and is the least affected by

the structure of XML tree.

5.2. Response Times

In this set of experiments, we investigate the

performances of the various labeling schemes when

processing ordered and unordered queries. We use the

Shakespears’ Play dataset (D8) in this experiment. To

ensure that the number of nodes retrieved is

substantially large, we replicate the Shakespears’ Play

dataset (D8) 5 times as carried out in [15].

Table 2 shows the 9 queries issued on this dataset.

Table 2. Test queries

Query

Number

of Nodes

Retrieved

Q1 /play//act[4] 185

Q2 /play// act[3]//Following::act 370

Q3 /play//act//persona 969

Q4 /act[5]//Following::speech 60105

Q5 /speech[4]//Preceding::line 66946

Q6 /play//act[3]//line 108500

Q7 /act// Following-Sibling::speech[3] 143725

Q8 /play//speech 154755

Q9 /play//line 538955

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

0

0. 5

1

1. 5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

queri es

r
e

s
p

o
n

s
e

t

i
m

e
s

(

s
e

c
)

I nterval

Pri me

Prefi x- 2

Figure 15. Response time for queries

The results of the experiments are shown in Figure

15. In general, the prime number labeling and the

interval-based labeling scheme can process ordered

queries faster compared to the prefix-based labeling

schemes. This is because the prefix labeling schemes

use a user-defined function to retrieve data. Further,

the node labels in the prefix labeling schemes are

relatively large, and may incur additional disk I/Os.

5.3. Effect of Un-ordered Updates

In this set of experiments, we compare the number

of existing nodes that need to be re-labeled when a

new node is inserted to the XML tree using different

labeling schemes. The deletion of nodes does not

affect the labels of other nodes. Hence, we do not need

to be concerned about deletion here.

We select 10 XML files whose size ranges from

1000 to 10,000 nodes. We first examine the

performance of updating the leaf nodes. We add a new

node as the sibling of the node on the deepest level in

the XML tree and count the number of nodes whose

labels need to be re-labeled after the insertion.

Figure 16 shows the comparison of the cost of

updates on the leaf nodes. The dynamic labeling

schemes, both prime and prefix, are not affected by the

size of the XML file. The number of nodes that need to

be re-labeled for the prefix labeling scheme is 1, which

is essentially the inserted node. The optimized prime

number labeling scheme needs to re-label 2 nodes, that

is, the newly inserted node and its parent. This is

because the parent node is previously a leaf node, and

has been labeled using 2n for some n. After insertion,

we need to change this label to a prime number. Note

that the original prime number labeling scheme will

only need to re-label the new node. In contrast, the

number of nodes that need to be re-labeled in the

interval-based labeling scheme grows dramatically

with the increase in the number of nodes in the XML

file.

0

1

2

3

4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Num of nodes

prefi x pri me i nterval

l
o

g
1

0
(

#

o
f

n

o
d

e

t
o

r

e
l

a
b

e
l

)

Figure 16. Update on leaf nodes

0

1

2

3

4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Num of nodes

i nterval pri me prefi x- 2

l
o

g
1

0
(

N
u

m

o
f

n

o
d

e
s

t

o

r
e

l
a

b
e

l
)

Figure 17. Update on non-leaf nodes

Next, we examine the performance of the three

labeling schemes when updating the non-leaf nodes.

We insert a node as a parent of the first level 4 nodes

in the SAX parse order and count the number of nodes

that needs re-labeling. Figure 17 shows the experiment

results.

For the interval-based labeling scheme, all the

nodes that come after the newly inserted node in SAX

parse order require re-labeling. For both the prefix and

prime number labeling schemes, only the descendents

of the newly inserted node need to be re-labeled. This

is clearly a subset of the nodes that require re-labeling

in the interval-based labeling scheme.

From this experiment, it is clear that dynamic

labeling schemes perform better than static labeling

schemes in the presences of updates. The number of

nodes that require re-labeling is almost the same for

the prefix and prime number labeling schemes.

5.4. Effect of Order-Sensitive Updates

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

In the final set of experiments, we compare the

performances of order-sensitive updates using the

various labeling schemes. We update the Hamlet XML

file in the Shakespears’ Play dataset. Since the file

contains a list of ordered ACT element nodes, we

insert a new ACT node between each of these nodes in

the list. We count the number of nodes that needs to be

re-labeled after each insertion. For this experiment, we

use one SC value to maintain the order of 5 nodes. We

consider a record update in the SC table as a node that

requires re-labeling.

The result is shown in Figure 18. Note that the

number of nodes that require re-labeling for an order-

sensitive query is very high for the prefix and interval-

based labeling schemes. It is clear show that none of

the existing labeling schemes is able to handle order-

sensitive updates efficiently. For the prime number

labeling scheme, only the SC table needs to be

updated. Since one SC number can capture the

ordering of several nodes, the cost to update SC table

is much less than the cost to update the node labels.

Therefore, the SC table in the prime number labeling

scheme reduces the cost for order-sensitive updates.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5

i nterval/prefi x pri me

N
u

m

o
f

n

o
d

e
s

t

o

r
e

l
a

b
e

l

updated "ACT"

Figure 18. Order-sensitive updates

6 Conclusion

The objective for designing labeling schemes for

XML trees is to allow quick determination of the

relationships among the element nodes without

actually accessing the XML file. Motivated by the

need to efficiently support queries and updates in

ordered XML trees, we have developed a prime

number labeling scheme that utilizes the unique

characteristics of prime numbers to capture the

ancestor-descendant relationship between two nodes.

An analytical study of the size requirements of the

prime number labeling scheme, and the existing

dynamic prefix-based labeling schemes indicate that

the proposed scheme is compact and hardly affected by

the fan-out of the XML trees. Several optimizations

have also been designed to further reduce the size of

the scheme.

We also apply the Chinese Remainder Theorem to

generate a simultaneous congruence table to maintain

the global order among nodes. This allows ordered

queries to be answered efficiently. Experiment results

indicate that the proposed prime number labeling

scheme, together with the simultaneous congruence

table, is able to efficiently process both ordered and

unordered queries while maintaining low update costs.

References

[1] S. Abiteboul, H. Kaplan and T. Milo, Compact Labeling

Schemes for Ancestor Queries, In SODA, 2001.

[2] T. Amagasa, M. Yoshikawa and S. Uemura, QRS: A

Robust Numbering Scheme for XML Documents (Poster), In

ICDE, 2003.

[3] J. Anderson and J.M. Bell, Number Theory with

Application, Prentice-Hall, New Jersey, 1996.

[4] D. Chamberlin et.al, XQuery 1.0: An XML Query

Language, W3C Working Draft, 2001.

[5] V. Christophides, D. Plexousakis, M. Scholl and S.

Tourtounis, On Labeling Schemes for the Semantic Web, In

WWW, 2003.

[6] J. Clark and S. DeRose, XML Path Language (XPath)

Version 1.0, W3C Recommendation, 1999.

[7] E. Cohen, H. Kaplan and T.Milo, Labeling Dynamic

XML Tree, In PODS, 2002.

[8] B. Cooper, N. Sample, MJ. Franklin and GR. Hjaltason,

A Fast Index for Semistructured Data, In VLDB, 2001.

[9] R. Goldman and J. Widom, Dataguides: Enabling Query

Formulation and Optimization in Semistrucutred Databases,

In VLDB, 1997.

[10] H. Kaplan, T.Milo and R. Shabo, A Comparison of

Labeling Schemes for Ancestor Queries, In SODA, 2002.

[11] Q. Li and B. Moon, Indexing and Queryring XML data

for Regular Path Expressions, In VLDB, 2001.

[12] J. McHugh et al, Lore: A Database Management System

for Semistructured Data, In SIGMOD, 1997.

[13] L. Mignet, D. Barbosa and P. Veltri, Web XML: A First

Study, In WWW, 2003.

[14] Niagara Project, http://www.cs.wisc.edu/niagara/

[15] Tatarinov, S.D. Viglas, K. Beyer, J.

Shanmugasundaram, E. Shekita and C. Zhang, Storing and

Querying Ordered XML Using a Relational Database System,

In SIGMOD, 2002.

[16] M. Yoshikawa and T.Amagasa, XRel: A Path-based

Approach to Storage and Retrieval of XML Documents

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Using Relational Databases, In ACM Transactions on

Internet Technology (TOIT), 2001

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

