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Abstract: Single-cell sequencing technologies have led to a revolution in our knowledge of the diver-
sity of cell types, connections between biological levels of organization, and relationships between
genotype and phenotype. These advances have mainly come from using model organisms; however,
using single-cell sequencing in non-model organisms could enable investigations of questions in-
accessible with typical model organisms. This primer describes a general workflow for single-cell
sequencing studies and considerations for using non-model organisms (limited to multicellular
animals). Importantly, single-cell sequencing, when further applied in non-model organisms, will
allow for a deeper understanding of the mechanisms between genotype and phenotype and the basis
for biological variation.

Keywords: single-cell sequencing; non-model organism; ecology; evolution; animal science

1. Introduction

Cells are the fundamental units of life, varying in form and function within and
between individuals, populations, and species. The sequencing of nucleic acids within
single-cells, known as single-cell sequencing (scSeq), has led to a revolution in our knowl-
edge of the diversity of cell types at varying levels of the biological hierarchy (e.g., tissue,
organ, individual), while also advancing our understanding of genotype x phenotype
relationships. As in most of biology, our knowledge of humans and model organisms
(e.g., Drosophila) far exceeds that of non-model or wild species, which remains a barrier to
resolving how organisms function in nature. At present, this remains the case for scSeq;
although scSeq is a promising and proven method, its use has been limited and its potential
applications in non-model systems have yet to be realized. Nevertheless, there have been a
few examples where scSeq has already been used in non-model organisms to investigate
questions that are inaccessible with typical model organisms (e.g., spinal cord regeneration
in some amphibians and fish [1]).

The fast pace of technological advancement in the field, requirement of organism-
specific technical knowledge, and cost are all barriers to applying scSeq to non-model
organisms. The first challenge for applications of scSeq in non-model organisms is its
recency; since the first study published in 2009 [2], the technology has evolved rapidly,
and a slower adoption in non-model organisms is to be expected. Another barrier to
scSeq in non-model organisms is the need for organism-specific technical knowledge for
sample collection and cell isolation protocols. For example, organism-specific protocols
for mechanical and enzymatic digestion of intra- and extra-cellular structures are often
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required [3]. Another barrier to scSeq is cost; although scSeq is significantly cheaper since
it became commercially available, it can be prohibitively expensive compared to bulk
sequencing (approximately a 10-fold difference in early 2022).

This primer describes a general workflow for scSeq studies and includes consider-
ations for using non-model organisms. Although many genomic characteristics can be
investigated with scSeq (such as chromatin accessibility, methylation, and histone modifi-
cations among others), we focus on single-cell DNA sequencing (scDNA-seq) for variant
calling and single-cell RNA sequencing (scRNA-seq) for expression quantification as these
two approaches are foundational technologies. Importantly, researchers should also con-
sider single-cell multiomic approaches, where multiple genomic features are investigated
in the same cell [4]. Finally, we limit the scope of this review to multicellular animals.
When applied in non-model organisms, scSeq will allow for a deeper understanding of the
relationship between genotype and phenotype and the basis for biological variation.

2. Considerations When Planning a scSeq Study in Non-Model Organisms

The specific aims of a proposed study will determine the amount and type of back-
ground knowledge necessary (reference genome, cell type information, other publicly
available scSeq data, etc.), the specific protocols (sample preparation, sequencing strategy,
etc.), and data analysis techniques used. Indeed, scSeq projects have been performed on
diverse organisms such as lizards [5], ants [6], fish [7], sponges [8], and flatworms [9,10].
Svensson et al. maintains a curated database of scSeq studies which can be filtered by
organism and tissue type [11]. Broadly, the scSeq approaches we focus on are scRNA-seq
and scDNA-seq. These approaches differ in that scRNA-seq approaches are concerned
with quantifying and characterizing the expression of mRNA transcripts, whereas scDNA-
seq approaches are concerned with quantifying and characterizing sequence variation.
Protocols used in scDNA-seq and scRNA-seq approaches differ because of the molecular
differences between RNA and DNA; RNA is less stable but abundant in the number of
transcripts, whereas DNA is more stable but limited to the number of chromosomes present
in a single cell. Researchers will need to know which broad approach will best address
their aims to choose suitable methods.

2.1. Reference Genome or No Reference Genome?

Researchers should assess the availability and quality of the focal organism’s reference
genome before embarking on a scSeq project, as many protocols rely on reference-based
methods [12]. For species with a reference genome, depending on the aim and scope of the
project, fragmented or poorly annotated genomes may allow for sufficient mapping to quan-
tify the expression of major genes. However, reference genomes with limited annotation
information will limit the study of gene duplicates, isoforms, novel non-coding transcripts,
or genes within poorly assembled regions of the genome, as the sequencing depth of
scRNA-seq usually does not allow researchers to identify novel non-coding features. For
species without a reference genome, there are approaches for de novo construction of the
transcriptome. For example, Sun et al. proposed a compressed k-mers group (CKG)-based
approach [13]. Although this method was originally developed to address data sparsity in
scRNA-seq analysis, it can be utilized for purposes such as identification of cell types as it
depends on k-mers instead of gene expression profiles. Additionally, Nip et al. proposed
RNA-Bloom which is a reference-free method for the construction of transcriptome to study
the expression of isoforms for scRNA-seq [14]. In the foreseeable future, there will be more
bioinformatics tools to analyze scSeq data that do not require reference genomes [14,15]. De-
spite these bioinformatic solutions, the aims and scope of a scSeq project may be constrained
by the quality of the reference genome.

2.2. Sample Preparation for scSeq

As scSeq has become more popular, sample collection protocols and library construc-
tion have become robust and highly optimized. Today, preparing single-cell suspensions
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remains a key challenge faced by researchers who wish to apply this approach in non-model
species [12]. With any type of scSeq, a challenge is to keep track of the thousands of cell
types. Whether we are interested in DNA- or RNA-based workflows, methods to index
thousands of cells are required. Currently common approaches to index are SCI-Seq [16]
and SPLiT-Seq [17]. SCI-seq uses a transposase-based indexing followed by a PCR-based
indexing to generate unique indexes for thousands of cells. Split-seq uses PCR-based
indexing and does not require specialized equipment. Although preparing single-cell
suspensions and indexing cells are challenges, strategies and protocols do exist. Below, we
describe these strategies and protocols for various scSeq approaches.

2.2.1. Whole-Cell Sequencing

The first strategy, whole-cell sequencing, is very similar to protocols used in human
studies, where fresh samples are collected and processed to prepare single-cell suspen-
sions [18]. To prepare single-cell suspensions, the ideal workflow is to collect and process
the samples immediately to avoid unnecessary cell damage. Unlike human samples that
are usually collected and processed immediately, animal specimens, particularly from
field-captured individuals, may require hours of transport between the sample collection
site and the lab, and in the absence of a sterile sampling environment. To overcome such
challenges, several solutions have been developed to preserve tissues for up to 48 h, such
as Miltenyi Biotec’s MACS Tissue Storage Solution [19]. However, it is not clear whether
storing tissues in these solutions impacts features such as gene expression [20–22].

Once tissues arrive in the lab, generating single-cell suspensions and library construc-
tion are both time-sensitive steps. A challenge for specimens from non-model organisms is
deciding the optimal tissue dissociation methods, as organism-specific protocols do not
exist in most cases. Generally, all dissociation protocols consist of mechanical digestion
and enzymatic digestion [23]. In the mechanical digestion stage, tissues are washed with
pre-cooled PBS before they are minced into small pieces, the size of which depends on the
subsequent enzymatic digestion. A cocktail of enzymes suited to the tissue types can be
applied to generate the final single-cell suspensions for enzymatic digestion. Identifying
the ideal combination of enzymes in the cocktail for digestion can be challenging, as cell
physiology can vary across organisms. Typical enzymes used include dispase, collage-
nase, hyaluronidase, papain, DNase-I, accutase, and TrypLE, among others [3]. Lafzi et al.
presented a list of enzymes for each tissue type in human and mouse studies, and while
it is not optimal for non-model organisms, it is a starting point for similar tissues [24].
Therefore, it is recommended that preliminary data with the appropriate enzyme recipe
are obtained before formal sample collection. Preliminary knowledge can be developed by
collecting tissue from a similar animal and tissue in the lab and replicating the storage and
time lag that target tissues will experience.

2.2.2. Single-Nucleus Sequencing

Single-nucleus sequencing is an alternate strategy to achieve comparable results as
whole-cell sequencing [18]. Single-nucleus sequencing is simpler and has a more flexible
timeframe than whole-cell sequencing. However, one disadvantage is that genetic materials
in the cytoplasm are lost. The only special handling needed for this strategy is sample
collection in liquid nitrogen and storage at −80 ◦C.

For single-nucleus sequencing, the integrity of nuclei is critical because nucleic acids
may escape disassociated nuclei, causing failure or bias in downstream sequencing. Nuclei
can be extracted using either the rapid, efficient and practical [25] method or the Isolation
of Pure Nuclei Using Sucrose method [26]. Neither of these methods requires harsh
mechanical homogenization such as grinding with liquid nitrogen which can degrade
nuclei integrity. The sucrose method is inexpensive but is time-consuming taking at least
2 h to complete. The homogenization buffer used in the sucrose method contains isosmotic
sucrose which has ions such as Mg2+ that serve to stabilize the integrity of nuclei [27].
The viscosity of sucrose can also induce further protein degradation, again, a key factor
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to indicate the integrity of the nuclei membrane. On the other hand, the REAP method
can extract nuclei in a relatively short amount of time (as little as two minutes) and can
maintain nuclei integrity as well as protein complex composition. The REAP method
has become more popular as it uses mild detergent, such as NP-40 and triton X-100, in
the homogenization buffer and does not require time-consuming steps such as velocity
centrifugation through a denser layer of sucrose. However, care must be taken because
utilization of nonionic solutions may affect the integrity of protein complex composition.
Such degradation of the protein complex may result in damage to downstream library
construction and sequencing for scSeq.

2.3. Library Preparation and Sequencing
2.3.1. scDNA-seq Library Preparation and Sequencing

DNA isolated from a single cell is the target unit for scDNA-seq [28]. The major
technical challenge with scDNA-seq is that sequencing platforms require greater amounts
of DNA than an individual cell contains [29]. This problem is further compounded by
sequencing error rates. Confidence that a particular base being sequenced is accurate
depends on its coverage, which is dependent on sequencing depth and template quantity.
This is typically not a problem for bulk tissue DNA sequencing, as many copies of the
genome are obtained from pooled cells. However, in a single cell, the number of available
genomes is naturally constrained by the ploidy of the organism.

Whole-genome amplification attempts to overcome this limitation of insufficient
genomic starting materials by amplifying the genome. However, amplification methods
can be biased and mutagenic due to PCR errors, thus affecting downstream interpretation
of genomic variation [30].

Single cell multiple displacement amplification (SCMDA) is a technique that ampli-
fies the genome without using sequence-specific primers and improves the annealing of
hexamer primers [31]. These considerations preserve SNP integrity by addressing cytosine-
deamination artifacts and decreasing sequence-specific amplification bias. Single cell
multiple displacement amplification was developed alongside a bioinformatic approach,
SCcaller, which further corrects for amplification bias and can yield genome wide average
coverage of ~30X, making it suitable for SNP calling. However, SCMDA may not be reliable
for detecting copy number variants, because of uneven amplification across the genome,
leading to variable coverage [32].

Linear Amplification via Transposon Insertion (LIANTI) is a technique that randomly
fragments the genomes of single cells using transposases [33]. The DNA is transcribed,
and RNA copies of the fragmented regions are made, followed by reverse transcrip-
tion. This method leads to a genome-wide coverage of ~1X. Because the T7 promoter-
tagged DNA fragments are amplified linearly, rather than exponentially, the read lengths
are long (~10 kb). Due to the long read lengths obtained, this method is suitable for
CNV identification.

Single-stranded sequencing using microfluidic reactors (SISSOR) uses microfluidics
to amplify long segments of separated DNA strands, resulting in the sequencing of com-
plementary and homologous DNA strands [34]. SNPs are identified if variant pairs are
complementary within each chromosome, but different across the homologous chromo-
somes. This method allows for accurate SNP calling but requires separated DNA strands at
the same genomic locations to be sequenced. SISSOR results in a reduced coverage of the
genome, but with a low error rate.

The Linked-Reads Assay from 10X Genomics was a popular approach that used
droplet microfluidics for scDNA-seq. This product provided long read sequences that
could be used to phase haplotypes and identify structural variants (10X Genomics protocol
CG00044). This product was replaced by a newer technology, 10X Genomics Chromium
Single Cell CNV, which used a different cell capture workflow (10X Genomics protocol
CG000246). 10X Genomics discontinued their genomic products due to a legal injunction,
brought about by BioRad’s case of patent infringement (The University of Chicago and
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Bio-Rad Laboratories, INC. v. 10X Genomics, INC, 2019). However, this injunction was
vacated, clearing a path for 10X Genomics to resume sale of the Chromium Single Cell CNV
and Linked-Reads products (Bio-Rad Laboratories, INC. and University of Chicago v. 10X
Genomics, 2020). However, at present, 10X Genomics does not have a scDNA-seq solution,
so there are no high-throughput, commercially available scDNA-seq solutions.

2.3.2. scRNA-seq Library Preparation and Sequencing

Like scDNA-seq, scRNA-seq is limited by the small amount of starting material.
Messenger RNA isolated from a single cell is the target unit for single cell transcriptomics.
Different levels of mRNA abundance are used to identify differentially expressed genes, and
to assign cell types. There are many methods for scRNA-seq, and the methods vary in the
type of cell isolation required, sensitivity, and amplification biases. Broadly, different high-
throughput scRNA-seq workflows can be divided into how the single cells are separated,
often based on the question being answered: droplet-based and microwell strategies.

Droplet-based strategies, where droplets containing single cells are produced, is a
broadly available technology. Drop-seq and InDrop are two approaches that require cells to
be isolated through droplet microfluidics [35,36]. These two technologies are advantageous
because they are relatively inexpensive. However, Drop-seq requires custom, “lab-made”
microfluidics devices which requires technical engineering expertise [37]. InDrop has a
commercially available platform, but the cell and transcript capture efficiency is low [38].
These microfluidics scRNA-seq approaches are beneficial because the RNA extraction and
library preparation can occur within the microfluidic chip; however, these approaches can
be problematic because they require either technical expertise or they are not sensitive to
the distribution of transcripts and cells in a sample.

Chromium Single Cell Gene Expression from 10X Genomics is a widely used, com-
mercially available platform that also uses droplet-based microfluidics. Chromium uses a
technology, “Gel bead in Emulsion” (GEM), which encapsulates single cells and reagents
within the microfluidic chip. RNA extraction, reverse transcription, and barcoding occur
in the GEMs [39]. Currently, Chromium is extensively used for scRNA-seq applications
because it is sensitive to detecting both lowly expressed and highly expressed transcripts
and able to capture ~65% of cells in a heterogenous sample (10X Genomics Webinar “Push-
ing the Boundaries of Gene Sensitivity with the Chromium Single Cell Gene Expression
v3”). Chromium is widely used because it is an integrated system; different Chromium
microfluidics chips can be purchased which are optimized for different cell types and sizes,
or sample sizes, the chips are run through the Chromium controller with 10X reagent kits,
and the resulting product is a sequencing-ready library. This straightforward workflow
is advantageous because it minimizes in-house optimization and lowers the technical
experience required of users. Additionally, other biological information, such as cell surface
proteins and chromatin accessibility, can be obtained, making 10X Genomics Chromium
compatible with integrated multi-omics. However, this integrated workflow results in high
cost–single-cell suspension and library preparation typically costs $2000–$3000 per sample
just for gene expression and does not include upstream (tissue collection/dissociation) and
downstream (sequencing) costs. Samples can be pooled together to significantly lower the
cost per cell in some cases. Because computational algorithms allow for demultiplexing
samples with different genetic backgrounds, pooling samples has a great advantage in
terms of cost as it uses fewer sequencing lanes and only one library construction is required.
Satija et al. provide a tool to roughly calculate and compare the cost between multiplexing
design and without-multiplexing design (satijalab.org/costpercell).

Microwell strategies, where microfluidics is used to partition single cells into microw-
ells, is an alternative approach. Seq-well is one of the newer protocols using microwells,
whereas this method has been employed in previous forms through Smart-seq, CEL-seq,
MARS-seq, and mcSCRB-seq are four microwell-based approaches that require cells iso-
lated onto microfluidic plates [40–42]. Seq-well is a microwell-based strategy that requires
cells to be isolated through gravity microfluidics into sub nanoliter wells [42,43]. This
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technology uses few resources (PDMS array and a polycarbonate membrane in addition to
basic laboratory supplies), providing a low-cost portable platform. To summarize, scSeq
methods are rapidly developing and being optimized. The major limitation of scSeq is the
small amount of starting material, and the resulting biases due to nucleic acid amplification.
10X Genomics Chromium is currently the most accessible solution for transcriptomics
because of its high-throughput, sensitivity to the distribution of transcripts, straightforward
workflow, and cell-capture efficiency.

2.3.3. Spatial Transcriptomics

While scSeq enables transcriptomic profiling of thousands of cells, the position of
these cells within a tissue is lost after sample preparation. Since the debut of spatial
transcriptomics in 2017, the field has been pushed further by adding spatial transcriptomics
to study the cellular transcriptional atlas without losing tissue context. There are several
methods to perform spatial transcriptomics. Popular methods can be grouped into two
approaches: (1) using in situ capture, which relies on barcoded bead arrays to capture
mRNA molecules with oligo tails (e.g., 10X spatial transcriptomics visium); (2) using
fluorescence in situ hybridization such as Slide-seq. Each method has their own advantage
such as the 10X visium can provide faster and more robust results while Slide-seq can
provide a higher resolution. Because spatial transcriptomics cannot provide transcriptome
profiling at single-cell resolution as each capture spot represents an area with ~10 cells
depending on the tissue type, computational methods have been developed to combine
scRNA-seq and spatial transcriptomics to compensate for the loss of resolution in spatial
transcriptomics [44–46]. Additionally, there are software packages such as Spotlight [47],
which can combine unpaired spatial transcriptomics data with scRNA-seq (i.e., data from
the same tissue type but not necessarily from the same tissue block).

2.4. Data Analysis

Unique considerations are required when analyzing scSeq data due to the nature of
sparse data dropout events and the potential for stochastic gene expression. Genetically
identical cells may show different levels of gene expression caused by the nature of gene
expression being determined through a Poisson process. These challenges are exacerbated
for non-model organisms without high-quality reference genomes. These unique challenges
add to variation among both technical and biological replicates. In the case of scRNA-seq,
it is particularly challenging to distinguish technical variation (transcripts are not detected
in some samples) and biological variation (differences in transcript abundances among
samples). For single-cell DNA sequencing, the major limitation is data dropout events
due to low-coverage sequencing and amplification biases. For example, parsing technical
variation due to amplification bias apart from low-expressed transcripts or rare alleles may
result in inflation of cell-to-cell variability.

Depending on the data analysis method, preprocessing of data may be required be-
fore further computational analysis [48]. Two important considerations for preprocessing
are normalization and imputation to limit inherent technical bias. Normalization of data
attempts to limit the effects of technical variation while preserving actual biological het-
erogeneity present in the scSeq data (reviewed in [49]). Additionally, imputation methods
can help reduce bias from technical variation and dropout. Machine learning and deep
learning imputation methods show promise in their power to distinguish biological effects
from the many sources of noise and bias inherent in scSeq data [50]. However, different
imputation methods usually rely on different assumptions (e.g., Unique Molecular Iden-
tifier (UMI)-based or full-length transcript) and may not be appropriate for the specific
studies [50]. A thorough consideration for the choice of imputation method should be
carried out prior to downstream analysis. Once the necessary preprocessing is complete,
data analysis can begin.

Depending on the question being answered, after preprocessing scRNA-seq data,
several analytical and statistical methods can be applied. Two common goals with single-
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cell RNA data are cell-level analysis and gene-level analysis [51]. With cell-level analysis,
many researchers want to identify or hierarchically cluster cell subpopulations within
a given biological condition. Many clustering methods are available to researchers that
are developed specifically for scRNA-seq data and more broadly applicable algorithms
(reviewed in [52]). For gene-level analyses, researchers may want to identify differentially
expressed genes on a single-cell scale. Similar to methods for cell-level analysis, there
are many tools to help identify differential gene expression in scRNA-seq data that were
developed both specifically for single-cell analysis or bulk RNA-seq data (reviewed in [53]).
Altogether, these considerations and methods allow for the appropriate handling of scRNA-
seq and data analysis in scRNA-seq research.

A typical scSeq analysis includes the following steps: (1) raw data pre-processing,
where raw sequencing reads are demultiplexed and then filtered based on unique feature
counts, total unique molecules detected and percentage of reads mapped to mitochondria;
(2) data normalization, such as global log transformation of the gene expression; (3) linear
dimensional reduction based on highly variable features from cell-to-cell, where this step
determines the dimensionality of the dataset; (4) non-linear dimensional reduction that uses
previously determined clusters to visualize and explore the dataset; and (5) identification of
differentially expressed features and cell type assignment which is based on the expression
of biomarkers of each cell type. Additional analyses including trajectory prediction and
integration of different omics also can be applied.

Well-developed software suites for analyzing scSeq data such as Seurat [45,46] and
Scanpy (Wolf et al., 2018) were developed. These packages have functions such as read
mapping, QC, and downstream analyses that allow for the exploration of scSeq data in one
place. Seurat was originally developed to build the spatial map of gene expression in R, with
the most recent version adding support for analyzing multi-omics data obtained from most
scSeq approaches. Scanpy was developed as a python package, and provides numerous
functions for data visualization, as well as analyses such as the trajectory inference [44].
There are built-in functions in Scanpy to convert Seurat datasets into the format Scanpy can
read, adding convenience and flexibility to the scSeq analysis.

For cross-species single-cell studies, the workflow can be extended based on the identi-
fication of cells of interest using cell-type-specific biomarkers from different species [54,55].
By defining a set of homologous genes across species, cross-species comparison of gene
expression can be achieved to study problems such as the expression pattern of core genes
of the cells. For closely related species, commonly used methods such as STAR can be
applied to identify a set of homologous genes across species; there are also programs such
as SAMap [56] to build a homologous gene set between distant species that is usually
a challenge.

3. Examples of Research Questions Suited to scSeq Approaches in Non-Model Organisms
3.1. Dosage Compensation

Dosage compensation describes the biological phenomenon that produces equiva-
lent expression between a gene located on the X or Z sex chromosome and its ancestral
autosomal gene [57]. Equal gene expression is often obtained through inactivation of one
copy of the X or Z chromosome in the homogametic sex, followed by upregulation of
the X or Z chromosome in both sexes. However, many species exhibit some intermediate
degree of dosage compensation with some genes being compensated and others escaping
compensation [58]. Variation in gene expression among cells and tissues may suggest
variation in the necessity of dosage compensation; if a gene is more broadly expressed,
then dosage compensation will be more likely to be necessary [59]. Because scSeq provides
the platform necessary to determine differential expression within and across tissues, this
platform is uniquely suited to determine if intra-organism dosage requirements can explain
the evolution of dosage compensation.
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3.2. Meiotic Sex Chromosome Inactivation

Meiotic sex chromosome inactivation (MSCI) refers to the transcriptional silencing of
genes located on sex chromosomes within germ cells [60]. MSCI appears to be necessary
for spermatogenesis and is conserved across distant taxa [61]. However, the reason for
its ubiquity remains unclear. One hypothesis is that MSCI protects against segregation
distortion caused by meiotic drive. An alternative hypothesis is that MSCI is a result
of sexual antagonism. scSeq will be necessary to distinguish between these hypotheses
because MSCI occurs on a single-cell level and can distinguish if MSCI is occurring or
not [62]. This can be achieved by evaluating the expression of certain pathways including
the DNA damage-recognition and repair pathway, as well as components of the synaptone-
mal complex called SCP3 using scRNA-seq, or by measuring histone modifications like the
phosphorylation of histone H2AFX of the sex chromosome [60].

3.3. Applications in Livestock Research

Livestock research can benefit greatly from scSeq, largely through improving our
understanding of reproductive traits. A unique characteristic of reproductive traits is that
the performance is fundamentally reflected by only a few cells, such as different stages
of oocytes, and supporting cells such as granulosa cells. As there are many factors to
determine the performance of reproduction at different developmental stages, traditional
research methodology such as bulk RNA-sequencing may introduce noise from supporting
cells. Normal procedures to quantify gene expression usually require steps to remove or
isolate target cells such as oocytes. For example, the primary oocyte is more difficult to
isolate from the secondary oocyte [63]. Besides, cells like granulosa cells (GCs) are usually
impossible to completely isolate from the rest of the tissues and the role is crucial in oocyte
maturation [64]. Investigation of these cells at different developmental stages is important
to evaluate or predict reproductive success.

An important feature of scSeq is to identify cell types without isolating and purifying
target cells. scSeq also provides an opportunity to study interactions between cell types.
For example, it can be used to study the oocytes and supporting cells that play a crucial
role shaping reproduction. scSeq, especially scRNA-seq, has been widely applied to human
reproduction research. It has been extensively used to study the complex gene expression
network in multiple cell types such as primordial germ cells [65,66]. For example, one study
applied scRNA-seq to construct the cell atlas of testis in humans, enabling the identification
of the role of testosterone in reversing two transcriptional states of pre-pubertal Sertoli
cells [66]. In another study, scRNA-seq was used to perform a transcriptome analysis on
placenta cells during early pregnancy, which enabled identification of regulatory responses
that may minimize the immune responses to mothers [67]. Similar research methodologies
can be used in livestock research. Based on this, scSeq has great potential to improve
reproductive traits in livestock.

Overall, these examples illustrate how scSeq can be applied in non-model organisms
help us expand our understanding of the genetic or functional basis of traits, which
have relevance for foundational knowledge as well as for practical applications that
benefit humanity.

4. Perspective

Although there are difficulties associated with scSeq for non-model organisms, we
argue that this is the direction the field must go in to accurately infer biological processes
from genomic variation and to build a more mechanistic link between genotype and
phenotype. Importantly, work with non-model organisms requires substantial evaluation of
pre-existing resources, such as the availability and quality of a reference genome, protocols
to isolate and digest cell types of interest, and compatibility with bioinformatic workflows.
Non-model organisms may be the most suitable for answering specific basic and applied
questions. Overall, scSeq technologies, when applied to non-model organisms, may reveal
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unique biological processes and further our understanding of the link between genotype
and phenotype.

Looking into the future we can think about the eventual destination for scSeq tech-
nologies for non-model organisms. For example, in model organisms including humans,
major initiatives are underway to develop cell atlases for tissues, organs, and the whole
body through developmental stages, for example the Tabula Sapiens [68]. Similar Tabula
projects for other species are also emerging [69]. The overarching goals for these atlas
projects are to develop comprehensive, multiomics-based, developmental trajectories for
cell lineages in complex organisms. For non-model organisms, this would be an obvious
future objective, but before we can plan for these, multiple technological and technical
hurdles need to be overcome. However, we believe that this will be the ultimate frontier
for non-model organism research.
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