A PRIMER OF INFINITESIMAL ANALYSIS

JOHN L. BELL

Contents

Preface	xi
Acknowledgements	xiii
Introduction	1
1 Basic features of smooth worlds	17
2 Basic differential calculus	26
2.1 The derivative of a function	26
2.2 Stationary points of functions	29
2.3 Areas under curves and the Constancy Principle	30
2.4 The special functions	32
3 First applications of the differential calculus	37
3.1 Areas and volumes	37
3.2 Volumes of revolution	42
3.3 Arc length; surfaces of revolution; curvature	45
4 Applications to physics	50
4.1 Moments of inertia	50
4.2 Centres of mass	55
4.3 Pappus' theorems	56
4.4 Centres of pressure	59
4.5 Stretching a spring	61
4.6 Flexure of beams	61
4.7 The catenary, the loaded chain, and the bollard-rope	64
4.8 The Kepler-Newton areal law of motion under a central force	68

x Contents

5 Multivariable calculus and applications	70
5.1 Partial derivatives	70
5.2 Stationary values of functions	73
5.3 Theory of surfaces	76
5.4 The heat equation	80
5.5 The basic equations of hydrodynamics	81
5.6 The Cauchy–Riemann equations for complex functions	84
6 The definite integral. Higher-order infinitesimals	87
6.1 The definite integral	87
6.2 Higher-order infinitesimals and Taylor's theorem	90
6.3 The three natural microneighbourhoods of zero	93
7 Synthetic differential geometry	94
7.1 Tangent vectors and tangent spaces	94
7.2 Vector fields	96
7.3 Differentials and directional derivatives	96
8 Smooth infinitesimal analysis as an axiomatic system	100
8.1 Natural numbers in smooth worlds	106
8.2 Nonstandard analysis	108
Appendix. Models for smooth infinitesimal analysis	111
Note on sources and further reading	117
References	119
Index	121