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Logistic Regression 2

Abstract

With increasing emphasis being placed on one's choice of

statistical analyses, it is important to understand the decisions

you make in research design and choice of analysis, and then how to

use them and what they mean. The following paper introduces the

reader to logistic regression as a viable alternative when faced

with dependent variables that are not continuous.
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Logistic Regression 3

One of the most controversial topics in the area of statistics

and design today seems to be the argument over statistical

significance. An entire volume of the Journal of Experimental

Education (1993) was devoted to the topic. Within the issue,

Carver (1993) reminds us to consider the effects of our sample size

on the statistical significance of our results, and Snyder and

Lawson (1993) encourage us to use effect sizes to support our

decisions about result importance. In addition, it would seem

important, when designing a study, that the researcher select the

appropriate statistical analysis as well. That is, effect sizes

computed from an incorrect analysis may be just as inappropriate as

not computing effect sizes from a correct analysis.

The current paper elaborates the statistical method known as

logistic regression. The appropriate use of logistic regression

will be discussed and examples of its application will be explored.

In addition, the use of logistic regression in certain areas will

be compared and contrasted with other analyses, specifically with

linear regression and discriminant analysis. While an in-depth

analysis of logit modeling and logistic regression is beyond the

scope of the present effort, a useful introduction will be offered.

A look at logistic regression as an option in research should

begin with a look at conventional, non-logistic regression and its

assumptions. It is the breakdown of these assumptions where

logistic regression comes to bear on the choice of appropriate

statistical analyses.

According to Pedhazur and Schmelkin's (1991) coverage of
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regression, the first assumption is that the proper regression

equation, and therefore, coefficients, are used to correctly

summarize the independent variable's effect on the dependent

variable. A second assumption states the importance of correct

measurement of the variables in question. A final assumption deals

specifically with error terms and includes the assumption of

homoscedasticity, the assumption that error terms, or residuals,

are uncorrelated and that residuals are normally distributed (p.

389) .

In a more extensive coverage of simple regression, Schroeder,

Sjoquist, and Stephan (1986) also remind us that if one is to use

simple regression, the dependent variable must be measured on a

continuous scale. Haase and Thompson (1992) caution against

dichotomizing naturally continuous variables, which is why the

field has moved towards the use of regression techniques in the

first place (Edington, 1964, 1974; Elmore & Woehlke, 1988).

However, in the behavioral sciences, it may not always be

appropriate, or possible, to have a measured dependent variable on

a continuous scale. Responses on a dependent variable may

inherently be categorical or dichotomous in nature. Such a

categorical dependent variable leads certain assumptions of simple

regression to fall apart, and regression analysis, therefore,

becomes meaningless. As Schroeder et al. (1986) noted, "While

[the use of 0-1 dummy variables] are appropriate as explanatory

variables, ordinary least squares (OLS) regression analysis is not

appropriate when a 0-1 or other limited choice variable is the
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dependent variable" (p. 79).

The problem of using OLS regression with a dichotomous

dependent variable begins with a look at the regression equation

itself. Consider the example of being blonde or not being blonde.

The dependent variable (B) would be equal to one if you were a

blonde and zero if you were not a blonde. For simplicity, let us

assume the independent variable (F) is a score on a measure called

"Do you have fun"? Now consider the regression equation, B= a + /F.

Using simple regression techniques, it could be possible to obtain

values for B that are greater than one, less than zero, and in

between. These values, given that B is a dichotomous, not a

continuous variable, simply do not make sense as estimates. It

would be fair to say that assumption one of simple regression would

be violated, and results would be meaningless. This will be

discussed later in greater detail.

Further problems evident with the use of categorical dependent

variables involve the assumptions surrounding the residuals.

Schroeder et al. (1986) state that, "[T]he variability of residuals

obtained from [the simple regression equation] will depend on the

size of the independent variable, suggesting that

heteroscedasticity is a problem..." (pp. 79-80). In addition,

residual terms with a dichotomous variable are certainly not

normally distributed.

So now the question is, given a dichotomous or categorical

dependent variable, how can we effectively summarize the

relationship between an independent and a dependent variable?

6
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Techniques which can be used include discriminant analysis

(DeMaris, 1992), probit analysis, tobit analysis, and econometrics

(Schroeder et al., 1986). In the past 20 years or so, logistic

regression, a technique derived from logit modeling or logit

analysis, has been the analysis of choice in various areas of

research (French & Miller, 1996; Morgan & Teachman, 1988; Press &

Wilson, 1978; Swaminathan & Rogers, 1990). This technique has

especially useful in the area of epidemiology (Lemeshow & Hosmer,

1982) where the dependent variable is often categorical (e.g.,

heart attack or no heart attack).

To summarize thus far, we know that logistic regression is a

viable statistical alternative when addressing a dependent variable

which is dichotomous or categorical in nature. DeMaris (1992)

posits that the "advent of loglinear modeling has revolutionized

the multivariate analysis of categorical data" (p. 1)...and nicely

summarizes the effect of a given predictor on a dependent variable

in a "compact and elegant" manner (p. 2). Before an explanation of

logistic regression can begin, however, it is "important to

understand that the goal of analysis using this method is the same

as that of any model-building technique used in statistics: To find

the best fitting and most parsimonious, yet biologically reasonable

model to describe the relationship between an outcome... and a set

of independent... variables" (Hosmer & Lemeshow, 1989, p. 1).

To better understand the fundamentals of logistic regression,

similarities and contrasts with linear regression will again be

used along with an extension of the blonde example mentioned above.

7
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In addition, for heuristic purposes, logistic regression will be

contrasted with both linear regression and discriminant through an

example later in the paper.

In this simplified hair color example, the independent

variable will continue to be one's score on a survey called "Do You

Have Fun?". Scores on the survey are continuous in nature and

range from 0 (little to no fun) to 20(all the time). Scores and

outcomes are represented n Table 1.

Insert Table 1 about here

In the table, a score of 0 on the dependent variable "hair"

represents a person with non-blonde hair color, and a score of 1

represents a person with blonde hair. This zero, one coding is

called dummy coding (Rice, 1994). Design coding can also be used

which assigns a one and a negative one to the categories. Rice

(1994) outlines these various coding schemes.

The question still remains, remember, "is there a relationship

between hair color, and how much fun a person has?' A scatterplot

of this data may look something like what you see in Figure 1. The

dichotomous nature of the data is evident, but a relationship is

not very clear.

Insert Figure 1 about here

"The first difference [between linear and logistic regression]
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concerns the nature of the relationship between the outcome and the

independent variable" (Hosmer & Lemeshow, 1989, p. 5). We are

still concerned with the expected value of F (DV) given a value of

B (IV)(called the conditional mean). Now, however, with

dichotomous data, the conditional mean must fall between zero and

positive one. The distribution used is the logistic distribution.

In logistic regression, II(x) represents the conditional mean of the

dependent variable given the independent variable. For

mathematical simplicity, II(x) can be transformed to g(x) through

mathematical manipulation. g(x) has many desirable properties to

warrant this logit transformation. g(x) is linear, and may be

continuous (Hosmer & Lemeshow, p. 7). The transformation forces

the probabilities (dependent variable outcome) to fall between 0

and 1, a desired outcome with this type of variable (Rice, 1994).

This same logit transformation is used in Item Response Theory

(IRT) as a method of placing ability and item characteristics on

the same scale. In fact, the Rasch model of IRT is a form of

logistic regression (Hambleton & Swaminathan, 1985).

A second difference has to do with the error term. You will

recall, from the simple regression assumptions listed above, that

residuals in linear regression are normally distributed. This is

no longer the case with dichotomous data. Error (s) takes on one

of two possible variables, s=-7r(x) when the dependent variable is

zero, and probability 1 -n(x) and e=1-y(x) when the dependent

variable is 1 and probability ir(x).

As in regression, it would first be appropriate to estimate

9
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our unknown parameters. In linear regression, it is the method

called maximum likelihood that "yields values for the unknown

parameters which maximize the probability of obtaining the observed

set of data" (Hosmer & Lemeshow, 1989, p. 8). The probability of

the obtained data is termed the likelihood function. In logistic

regression, for mathematical simplicity, logarithmic manipulations

are invoked to produce the log likelihood. This new equation

becomes the basis for estimating our unknown parameters, our

regression coefficients (Hosmer & Lemeshow, 1989).

Once we have our coefficients, it is time to ask: "What do the

estimated coefficients in the model tell us about the research

questions that motivated the study?" (Hosmer & Lemeshow, 1989, p.

38). In linear regression, the slope (/3) tells us the change in

the dependent variable given a one unit change in the independent

variable. In logistic regression, the logit transformation g(x)

must be used and the slope coefficient "represents the change in

the logit for a change in one unit in the independent variable"

(Hosmer & Lemeshow, 1989, p. 39). Further interpretation of the

coefficients depends on the nature of the independent variable.

Logistic regression, like other regression analyses, still

looks at the relationship between variables of interest as the core

focus of analysis. However, logistic regression uses the concept

of the odds ratio as its measure of association. Odds are the

ratio of events to nonevents, and odds ratios can be considered a

ratio of two odds (Morgan & Teachman, 1988). DeMaris summarizes by

stating that, "In categorical data analysis, the 'effect' of one

10
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variable upon another is best expressed in terms of odds ratios"

(p. 6).

An example may further understanding. Let us use the blonde

example. To make both variables dichotomous, we will categorize

our continuous variable labeled "FUN" in table one. Many (Haase &

Thompson, 1992; Hosmer & Lemeshow, 1989) have warned against

categorizing variables because it discards variation which is the

basis of all analyses. However, for heuristic purposes, we shall

code any score below 10 on the "Do You Have Fun?" survey as 0 and

any score of 10 and above will receive a 1 coding. The independent

ratio will be represented by the letter F and the dependent

variable will be represented by the letter B. Using the odds ratio

as the basis for a measure of association, the interpretation of

coefficients is as follows.

The odds of the outcome (B) being present (B=1) among

individuals with F=1 is defined as ff(1)/[1-g(1)]. Using the same

logic, the odds of the outcome being present (B=1) among

individuals F=0 is ff(o)/[1-g(0)]. The next step is to find the

odds ratio (0 which is the ratio of the odds for F=1 and F=0. The

log of the odds ratio (the log-odds) is then computed, and with a

dichotomous independent variable, the value of the log odds is

found to be equal to 0, our regression coefficient. The odds ratio

then (0 approximates how much more likely (or unlikely) it is for

the outcome to be present among those with F=1 than among those

with F=0 (Hosmer & Lemeshow, 1989). In our example, if Ik=2, we

could say that blondes are twice as likely to have fun than non-

11
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blondes.

Once we have our coefficients, and we are able to interpret

them, we are ready to assess "the fit of an estimated logistic

regression model with the assumption that we are at least

preliminarily satisfied with our efforts at the model building

stage" (Hosmer & Lemeshow, 1989, p. 135). Traditionally, the

Pearson Chi-squared (x-squared) statistic has been used to test for

independence between variables. Rejecting the null hypothesis in

this case would lend support to having confidence in the fact that

the two variables were associated in some way (DeMaris, 1992).

Another chi-squared statistic called the likelihood-ratio chi-

squared statistic (G-squared) is important in logistic regression.

G-squared is used to compare observed and expected frequencies of

the variables of interest to assess the goodness of fit for the

model. The approach used is testing for independence between

observed and expected data. A small test statistic would lead us

to not reject the null hypothesis and we can then have confidence

that our model fits the data well (DeMaris, 1992). Lemeshow and

Hosmer (1982) outline a number of fit statistics including a

technique they came up with.

A technique that has often been used in statistics and design

is discriminant analysis (see Klecka, 1980). This would also be a

viable alternative to use with dichotomous dependent variables.

Predictive discriminant analysis (PDA) is used to predict group

membership (dichotomous dependent variable) with certain

independent continuous variables (Klecka, 1980). Press and Wilson
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(1978) posit, however, that logistic regression and the use of

maximum likelihood estimators (MLEs) are generally superior to

discriminant function estimators for several reasons. Press and

Wilson claim that logistic regression is more robust; "i.e., many

types of underlying assumptions lead to the same logistic

formulation" (p. 700). These authors also feel that MLEs are more

consistent, more efficient, and that "[t]he logistic regression

model is well-known to have sufficient statistics associated with

it" (Press & Wilson, 1978, p. 701). In addition, Rice (1994)

points out that the assumption of multivariate normality necessary

for PDA does not hold up with dichotomous, categorical dependent

variables. As mentioned earlier, the predicted values

(probabilities in the case of PDA) need to range within zero and

positive one, an outcome only possible with logistic regression.

Logistic regression has found great utility in many areas of

research in the behavioral sciences. Swaminathan and Rogers (1990)

have used logistic regression in detecting differential item

functioning (DIF). DIF is the study of test items and how they

function with various test-takers. Logistic regression has been

used in research ranging from marriage and family therapy (Morgan

& Teachman, 1988) to graduate student persistence with financial

aid as the predicting variable (Murdock & Nix-Mayer, 1995).

Logistic regression is a fast part of all statistical software

packages, and an example is included at the end of the paper. The

example shows that similar results are achieved when one runs a

discriminant analysis and logistic regression; comparable aspects

23
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of the results of each have been bolded to facilitate this

comparison. A conventional, non-logistic analysis is also

included. The logistic regression, conventional regression, and

discriminant analyses can be found in Tables 2, 3, and 4,

respectively.

Insert Tables 2, 3, and 4 about here

For reasons stated above, then, logistic regression seems the

better choice of the two. The example also shows that linear

regression is not appropriate for these types of data, given the

dichotomous nature of the dependent variable. The data for the

SPSS run ( a statistical software package which includes all of the

aforementioned analyses) were taken from Holzinger and Swineford

(1939) .

In sum, logistic regression, while not too extensively

utilized, seems to be a viable and very efficient statistical tool

in the area of statistical analysis when the researcher is left

with dichotomous variables. The technique is not mentioned in any

of the tabulation articles looking at the use of statistics in

major journals (Edington, 1964, 1974; Elmore & Woehlke, 1988).

While the mathematical components sometimes are overwhelming,

statistical software packages help in that area by simplifying the

math. What is left then is a powerful tool for use with

dichotomous dependent variables, which are often encountered in the

behavioral sciences.
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Table 1

Score on "Do You Have Fun?" Survey and Hair Color

ID FUN HAIR

1 5 0

2 16 1

3 15 1

4 7 0

5 6 0
6 14 1

7 19 1

8 4 0

9 8 0

10 17 1

1.s
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Table 2

Sample Output Using Logistic Regression

LOGISTIC REGRESSION VAR=grade
/METHOD=ENTER t10 t15 t22 t6
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5)

Dependent Variable.. GRADE
Beginning Block Number 0. Initial Log Likelihood Function
-2 Log Likelihood 416.71297
* Constant is included in the model.
Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number
1.. T10

T15
T22
T6

SPEEDED ADDITION TEST
MEMORY OF TARGET NUMBERS
MATH WORD PROBLEM REASONING
PARAGRAPH COMPREHENSION TEST

Estimation terminated at iteration number 3 because
Log Likelihood decreased by less than .01 percent.

-2 Log Likelihood 368.330
Goodness of Fit 297.455
Cox & Snell - RA2 .148
Nagelkerke - RA2 .198

Chi-Square df Significance

Model 48.383 4 .0000
Block 48.383 4 .0000
Step 48.383 4 .0000

Variables in the Equation

Variable B S.E. Wald df Sig R Exp(B)

T10 .0301 .0056 28.8601 1 .0000 .2539 1.0305
T15 .0012 .0165 .0051 1 .9430 .0000 1.0012
T22 .0193 .0152 1.6141 1 .2039 .0000 1.0195
T6 .0821 .0408 4.0433 1 .0443 .0700 1.0855
Constant -4.3545 1.5905 7.4960 1 .0062

19



Logistic Regression 19

Table 3

Sample Output for Conventional, Non-logistic Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT grade
/METHOD=ENTER t10 t15 t22 t6 .

Model Summary
Model R R Square Adjusted R Square Std. Error of the

Estimate

1 .386(a) .149 .137 .46

a Predictors: (Constant), T6, T15, T10, T22

ANOVA(b)
Model Sum of df Mean F Sig.

Squares Square

1 Regression 11.170 4 2.793 12.928 .000(a)
Residual 63.940 296 .216
Total 75.110 300

a Predictors: (Constant), T6, T15, T10, T22
b Dependent Variable: GRADE

Coefficients(a)

Unstandardized Standardized
Coefficients Coefficients

Model B SE
1 (Constant) 6.591 .325

T10 6.440E-03 .001
T15 3.743E-05 .004
T22 4.041E-03 .003
T6 1.718E-02 .009

a Dependent Variable: GRADE

Beta t sig.
20.252 .000

.323 5.893 .000

.001 .011 .991

.074 1.237 .217

.120 1.973 .049
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Table 4

Sample Output For Discriminant Analysis

DISCRIMINANT
/GROUPS=grade(7 8)
/VARIABLES=t10 t15 t22 t6
/ANALYSIS ALL
/PRIORS EQUAL
/CLASSIFY=NONMISSING POOLED .

Summary of Canonical Discriminant Functions

Eigenvalues

Function Eigenvalue % of Variance Cumulative % Canonical
Correlation

1 .175(a) 100.0 100.0 .386

a First 1 canonical discriminant functions were used in the
analysis.

Wilks' Lambda

Test of Function(s) Wilks' Lambda Chi-square df Sig.

1 .851 47.820 4 .000

Standardized Canonical Discriminant Function Coefficients

Structure Matrix

Function
1

T10 .850
T15 .002
T22 .206
T6 .329

Function
1

T10 .890
T6 .512
T22 .364
T15 .119

21
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Figure 1

Scatterplot of FUN score by HAIR Color
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