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Abstract: Metagenomics is a discipline that enables the
genomic study of uncultured microorganisms. Faster,
cheaper sequencing technologies and the ability to
sequence uncultured microbes sampled directly from
their habitats are expanding and transforming our view of
the microbial world. Distilling meaningful information
from the millions of new genomic sequences presents a
serious challenge to bioinformaticians. In cultured mi-
crobes, the genomic data come from a single clone,
making sequence assembly and annotation tractable. In
metagenomics, the data come from heterogeneous
microbial communities, sometimes containing more than
10,000 species, with the sequence data being noisy and
partial. From sampling, to assembly, to gene calling and
function prediction, bioinformatics faces new demands in
interpreting voluminous, noisy, and often partial se-
quence data. Although metagenomics is a relative
newcomer to science, the past few years have seen an
explosion in computational methods applied to metage-
nomic-based research. It is therefore not within the scope
of this article to provide an exhaustive review. Rather, we
provide here a concise yet comprehensive introduction to
the current computational requirements presented by
metagenomics, and review the recent progress made. We
also note whether there is software that implements any
of the methods presented here, and briefly review its
utility. Nevertheless, it would be useful if readers of this
article would avail themselves of the comment section
provided by this journal, and relate their own experiences.
Finally, the last section of this article provides a few
representative studies illustrating different facets of recent
scientific discoveries made using metagenomics.

Introduction

For most of its history, life on Earth consisted solely of

microscopic life forms, and microbial life still dominates Earth in

many aspects. The estimated 561030 prokaryotic cells inhabiting

our planet sequester some 350–550 Petagrams (1 Pg = 1015 g) of

carbon, 85–130 Pg of nitrogen, and 9–14 Pg of phosphorous

making them the largest reservoir of those nutrients on Earth [1].

Bacteria and archaea live in all environments capable of sustaining

other life and in many cases are the sole inhabitants of extreme

environments: from deep sea vents with temperatures of 340uC to

rocks found in boreholes 6 km beneath the Earth’s surface.

Bacteria, archea, and microeukaryotes dominate Earth’s habitats,

compound recycling, nutrient sequestration, and, according to

some estimates, biomass. Microbes are not only ubiquitous, they

are essential to all life, as they are the primary source for nutrients,

and the primary recyclers of dead matter back to available organic

form. Along with all other animals and plants, the human

condition is profoundly affected by microbes, from the scourges of

human, farm animal, and crop pandemics, to the benefits in

agriculture, food industry, and medicine to name a few. We

humans have more bacterial cells (1014) inhabiting our body than

our own cells (1013) [2,3]. It has been stated that the key to

understanding the human condition lies in understanding the

human genome [4,5]. But given our intimate relationship with

microbes [6], researching the human genome is now understood

to be a necessary though insufficient condition: sequencing the

genomes of our own microbes would be necessary too. Also, to

better understand the role of microbes in the biosphere, it would

be necessary to undertake a genomic study of them as well.

The study of microbial genomes started in the late 1970s, with

the sequencing of the genomes of bacteriophages MS2 [7] and Q-

X174 [8]. In 1995 microbiology took a major step with the

sequencing of the first bacterial genome Haemophilus influenza [9].

The genomes of 916 bacterial, 1,987 viral, and 67 archaeal species

are deposited in GenBank release 2.2.6. Having on hand such a

large number of microbial genomes has changed the nature of

microbiology and of microbial evolution studies. By providing the

ability to examine the relationship of genome structure and

function across many different species, these data have also opened

up the fields of comparative genomics and of systems biology.

Nevertheless, single organism genome studies have limits. First,

technology limitations mean that an organism must first be

clonally cultured to sequence its entire genome. However, only a

small percentage of the microbes in nature can be cultured, which

means that extant genomic data are highly biased and do not

represent a true picture of the genomes of microbial species

[10–12]. Second, very rarely do microbes live in single species

communities: species interact both with each other and with their

habitats, which may also include host organisms. Therefore, a

clonal culture also fails to represent the true state of affairs in

nature with respect to organism interaction, and the resulting

population genomic variance and biological functions.
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New sequencing technologies and the drastic reduction in the

cost of sequencing are helping us overcome these limits. We now

have the ability to obtain genomic information directly from

microbial communities in their natural habitats. Suddenly, instead

of looking at a few species individually, we are able to study tens of

thousands all together. Sequence data taken directly from the

environment were dubbed the metagenome [13], and the study of

sequence data directly from the environment—metagenomics

[14].

However, environmental sequencing comes with its own

information-restricting price tag. In single organism genomics

practically all of the microbe’s genome is sequenced, providing a

complete picture of the genome. We know from which species the

DNA or RNA originated. After assembly, the location of genes,

operons, and transcriptional units can be computationally

inferred. Control elements and other cues can be identified to

infer transcriptional and translational units. Consequently, we

achieve a nearly complete and well-ordered picture of all the

genomic elements in the sequenced organism. We may not

recognize all the elements for what they are, and some errors may

creep in, but we can gauge the breadth of our knowledge and

properly annotate those areas of the genome we manage to

decipher.

In contrast, the sequences obtained from environmental

genomic studies are fragmented. Each fragment was obviously

sequenced from a specific species, but there can be many different

species in a single sample, for most of which a full genome is not

available. In many cases it is impossible to determine the true

species of origin. The length of each fragment can be anywhere

between 20 base pairs (bp) and 700 bp, depending on the

sequencing method used. Short sequence reads that are dissociated

from their original species can be assembled to lengths usually not

exceeding 5,000 bp; consequently, the reconstruction of a whole

genome is generally not possible. Even the reconstruction of an

entire transcriptional unit can be problematic. In addition to being

fragmented and incomplete, the volume of sequence data acquired

by environmental sequencing is several orders of magnitude larger

than that acquired in single organism genomics.

For these reasons, computational biologists have been develop-

ing new algorithms to analyze metagenomic data. These

computational challenges are new and very exciting. We are

entering an era akin to that of the first genomic revolution almost

two decades ago. Whole organism genomics allows us to examine

the evolution not only of single genes, but of whole transcriptional

units, chromosomes, and cellular networks. But more recently,

metagenomics gave us the ability to study, on the most

fundamental genomic level, the relationship between microbes

and the communities and habitats in which they live. How does

the adaptation of microbes to different environments, including

host animals and other microbes, manifest itself in their genomes?

For us humans, this question can strike very close to home,

when those habitats are our own bodies and the microbes are

associated with our own well-being and illnesses: almost every

aspect of human life, as well as the life of every other living

being on the planet, is affected by microbes. We now have the

experimental technology to understand microbial communities

and how they affect us, but the sheer volume and fragmentary

nature of the data challenge computational biologists to distill all

these data into useful information.

In this article we shall briefly outline some experimental,

technological, and computational achievements and challenges

associated with metagenomic data, from sequence generation and

assembly through the various levels of metagenomic annotation.

We will also discuss computational issues that are unique to

environmental genomics, such as estimating the metagenome size

and the handling of associated metadata. Finally, we will review

some studies highlighting the advantages of metagenomic-based

research, and some of the insights it has enabled.

Sampling

Sample Size and Number of Samples
The first step in a metagenomic study is to obtain the

environmental sample. Samples should represent the population

from which they are taken. The problem in microbial ecology is

that we are unable to see the organisms we are trying to capture.

How many samples are enough?

To estimate the fraction of species sequenced, rarefaction

curves are typically used. A rarefaction curve plots the number of

species as a function of the number of individuals sampled. The

curve usually begins with a steep slope, which at some point

begins to flatten as fewer species are being discovered per sample:

the gentler the slope, the less contribution of the sampling to the

total number of operational taxonomic units or OTUs. For

microbial samples, different OTUs are typically characterized by

16S (prokaryotic) or 18S (eukaryotic) rDNA, and are also referred

to as ribotypes. Classification is rarely done in the field, so some

initial estimate of species diversity by a pilot study or previous

studies is desirable to gauge the number of samples needed to get

a comprehensive picture of the OTUs in the sampled habitat.

More of this will be discussed in the ‘‘Species Diversity’’ section

below.

Filtering
When filtering an environmental sample, as with any kind of

filtering, the goals are: (1) get as much as you can of what you want

and (2) leave out as much as you can from what you do not want.

So if we are interested in bacteria only, our goal would be to filter

out the smaller viroid particles, and the usually larger protists. Of

course, this process will leave in the lysogenic phages and

prophages, which are integrated in bacterial genetic material, as

well as mimivirus particles, which are as large as some bacteria.

On the other side of the size scale, small protists and large bacteria

may overlap in size, making a full size-based separation impossible.

Also, filamentous forms of bacteria that grow in multicellular

colonies may also be filtered out owing to colony size exceeding

that of the filter’s pores.

Computational filtering can be used after sequencing. Genomic

material that is obviously within the clades of interest can be

filtered in using similarity searches against annotated sequence

databases. Care must be taken, though, with false negatives:

relevant genomic material may be filtered out in this fashion

simply because homologs have never been deposited in existing

databases. Another option would be to search for obviously false-

positive sequence motifs, e.g., eukaryote material when only

prokaryote material is to be analyzed. This technique can also be

used to detect sample contamination.

Recording Metadata
Keeping strict and comprehensive records of metadata is as

important as the sequence data. Metadata are the ‘‘data about the

data’’: where the samples were taken from, when, and under

which conditions. In microbial ecology, this commonly refers to

physical, chemical, and other environmental characteristics of the

sample’s location. For example, an ocean sample metadata will

typically include sampling date and time, depth, salinity, light

intensity, geographical coordinates, pH, soluble gases, etc. In

clinical microbiology, metadata would refer to the pathology,
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medical history, and vital statistics of the patient as well as the

exact location and tissue from which the sample was taken, the

sampling conditions, and so on.

Many metagenomic studies are driven by discovery and data

mining, rather than by hypothesis. These studies seek statistically

significant correlations between the metagenomic data and the

habitat-associated metadata, which may lead to biologically

significant discoveries. There is therefore a need to provide

metadata in a form that is standard, comprehensive, and amenable

to computation. For example, semantic information should be

provided, wherever possible, in ontological form. A description of

the environmental context and the experimental methods used is

vital to enable comparative studies. As we shall see, genes or even

‘‘gene-less’’ sequence signatures are linked to habitats rather than

to species. Finally, sequencing technology is rapidly improving,

and the adoption of new sequencing methods will require the

adoption of descriptors of those methods such as sequence

coverage, quality, assembly programs that were used, and so on.

The Genomic Standards Consortium (http://gensc.org/) is an

international group working to standardize the description of

genomes and metagenomes and the exchange of genomic data and

metadata. In a recent publication, a standard for the Minimum

Information of Genomic and Metagenomic (MIGS/MIMS)

metadata was suggested for adoption [15], and an associated

markup language, the Genomics Contextual Data Markup

Language or GCDML is under active development [16]. It is

the consortium’s aim that the MIGS/MIMS shall be adopted by

journals as a publication requirement when genomic or metage-

nomic data are being deposited, akin to standards such as MIAME

for microarray data [17] or PDB/mmCIF for structural biology

data [18].

Sequencing

First, Second, and Third Generation Sequencing
Until recently, prokaryotic genomes have been typically

sequenced using Sanger shotgun [19,20] sequencing. The first

step is shearing the DNA content of a genomic clone into random

fragments, hence the ‘‘shotgun.’’ The fragments are then cloned

into plasmid vectors that are grown in monoclonal libraries to

produce enough genomic material for sequencing. The DNA is

then sequenced using dye-termination methods. Repetition of this

process ensures that all parts of the studied genome are sequenced,

several times over. Assembly software is then used to assemble the

sequence fragments into the whole genome. Theoretically any

genome shorter than 5 Mbp can be assembled this way, although

regions with large repeats tend to frustrate assembly algorithms.

Therefore, regions with large repeats are often not incorporated

into the whole genomic picture, leaving some gaps. Another

disadvantage of shotgun sequencing is the ‘‘cloning bias.’’ Some

genes cannot be incorporated into the library vector, usually

because of toxicity to the vector expressing them [21]. This

inability to be incorporated is typically mitigated by using more

than one organism for cloning, or by using sequencing techniques

that do not require cloning (see below) in second generation

sequencing.

In metagenomics, shotgun sequencing is done in the same

manner as in clonal culture genomics. However, the raw genomic

material does not come from a single organism: it comes from a

community of microbes, hence the name environmental shotgun

sequencing or ESS. Depending on our ability to sample, this DNA

may provide only a partial genomic picture of the organisms in the

environment, since the genomic material from the more abundant

species dominates the sample. To obtain a better picture of the

species composing the community, 16S rDNA or 18S rDNA for

prokaryotic and eukaryotic samples, respectively, are sequenced

separately using universal primers, see Figure 1. It should be noted

that when using primers for rDNA to classify OTUs in an

environmental sample, there are choices to be made regarding the

primer sequence, especially when the studied OTU composition is

expected to differ significantly from most known species, the so-

called rare biosphere [22,23]. In this case, there is the possibility

that the primers used will be too different from the rDNA in the

sample, which would result in many OTUs not being identified

[24,25].

Second generation sequencing methods have been rapidly

gaining ground and are replacing Sanger sequencing for small

sized genomes and environmental genomics. A common denom-

inator among second generation methods is the generation of

‘‘polymerase colonies’’ or polonies [26,27]. Polonies are PCR

amplicons derived from a single molecule of nucleic acid.

Thousands to millions of polonies, each with an effective reaction

size of 1029 l to 10212 l can be amplified simultaneously,

generating templates for sequencing. Following that, enzymatic

reactions can be performed in parallel to sequence the nucleic acid

material in the polonies. Polony-based methods produce consid-

erably more sequences than Sanger sequencing, but those

sequences are much shorter. Furthermore, each polony-based

method has its own anomalies that should be accounted for when

Figure 1. Environmental Shotgun Sequencing (ESS). (A) Sam-
pling from habitat; (B) filtering particles, typically by size; (C) DNA
extraction and lysis; (D) cloning and library; (E) sequence the clones; (F)
sequence assembly.
doi:10.1371/journal.pcbi.1000667.g001
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processing the data. See Table 1 for a comparison between the

yield, fragment length, and run times of the different sequencers.

In pyrosequencing (Figure 2) [28,29], methods such as Roche

454 [30] sequencing is performed by polymerase extension of a

primed template. Single nucleotide species are added at each

cycle. If the particular nucleotide species added to the polymerase

reaction pairs with the one on the template, the incorporation

causes luciferase-based light reaction. The reaction chamber is

then washed, and the cycle repeated. Several hundreds of

thousands of wells containing material for sequencing are typically

used in a single reaction. Second is the inability to read long

mononucleotide repeats correctly.

ABI SOLiD and Illumina GAII sequencers produce even

shorter reads: 25–100 bp, but very large volumes of DNA per

sequencing run. As we shall see in the ‘‘Assembly’’ section below,

despite the individual short read lengths, these technologies

provide a viable alternative for sequencing whole genomes, by

sheer volume of DNA sequenced. For further reading on second

generation sequencing see [31–34].

Third generation sequencing, loosely defined as technology that

is capable of sequencing long sequences without amplification, is in

advanced development. There are encouraging signs that this

technology might be available as early as 2011 [35–37].

Assembly

When sequencing a whole genome, the reads are assembled into

progressively longer contiguous sequences or contigs, and finally to

the whole genome. Dealing with genomic data, we are used to

analyzing long stretches of contiguous sequence data. This analysis

lets us find not only open reading frames, but also operons,

operational transcriptional units, their associated promoter

elements, and transcription factor binding sites. Longer elements

such as pathogenicity islands, and other mobile genetic elements

are evident only when large fractions of the genome are

assembled. The gain of information correlates with the length of

the genomic elements. Table 2 shows the length of a genomic

sequence, and the information that may be gleaned from it.

In contrast, in all but the most species-poor metagenome, a full

assembly is not possible—first, because the sampling is incomplete,

and many if not all species’ genomes are partially sampled, if at all;

second, because the species information itself is incomplete, and it

is difficult to map individual reads to their species of origin.

Therefore, the analysis of genomic elements using metagenomic

data is generally limited to the first three or four rows in Table 2.

In this section, we will discuss assembly of metagenomic data,

how information is extracted from partial assemblies, and how the

extent of information gained can be estimated.

Metagenomic Sample Coverage
Coverage. Coverage of a genome is defined as the mean

number of times a nucleotide is being sequenced. Thus, 56
coverage means that each nucleotide in the genome is sequenced a

mean number of five times. If we could sequence a genome in a

single read, then 16 coverage would suffice for sequencing.

Shorter read lengths (25–700, depending on sequencing

technologies, see Table 1), necessitate more coverage, to ensure

all reads overlap, and that those overlaps are unique enough to

Table 1. Comparison of different sequencing technologies, taken from [34].

Sequencer ABI 3730 Roche 454 Solexaa SOLiD (mp, frag)b HeliScopec

Read length 600–900 400–500 75–100 50 25–35

Run time 6–10 h 10 h 2–10 d (4–7 d,8–14 d) h

Yield (Mbp) 0.01 1 2,300–3,500/d (500, 1,000) 105–140/h

Cloning bias Yes No No No No

Mate pair information Yes No Yes Yes No

aBased on the GA IIx. See full specifications at: http://www.illumina.com/systems/genome_analyzer.ilmn.
bmp, mate pair; frag, fragment. See https://products.appliedbiosystems.com/ SOLiD 3 Plus System.
cSee: http://www.helicosbio.com/Products/HelicosregGeneticAnalysisSystem/HeliScopetradeSequencer/tabid/87/Default.aspx.
doi:10.1371/journal.pcbi.1000667.t001

Figure 2. Pyrosequencing. Single stranded DNA template is first
hybridized with the sequencing primer and mixed with the enzymes
along with the two substrates adenosine 59-phosphosulfate (APS) and
luciferin. In each cycle, (1) one of the four nucleotides (dTTPi, in this
case) is then added to the reaction. (2) If the nucleotide is
complementary to the base in the template strand then the DNA
polymerase incorporates it into the growing strand. (3) Pyrophosphate
(PPi)—in an amount equal in molarity to that of the incorporated
nucleotide—is released and converted to ATP by sulfurylase in the
presence of APS. (4) ATP then serves as a substrate to luciferase, causing
a light reaction. Photon emission is in equimolar quanta to the amount
of nucleotide incorporated in a given cycle. (5) The excess nucleotides
are degraded by apyrase.
doi:10.1371/journal.pcbi.1000667.g002
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reconstruct the genome by assembling the fragments. If we treat

DNA shearing and sequencing as random events, and our ability

to detect and overlap between two truly overlapping reads does

not vary between clones (when those are used), then we can use a

Poisson distribution model to estimate the number of reads

required to sequence an entire genome. This model is given by the

Lander-Waterman equation [38]:

C~
L|N

G

Where L is the read length, N is the number of reads, G is the

genome length, and C is coverage as described above. The fraction

of sequence covered would be given as:

P0~1{e{C~1{e{ LN=Gð Þ

To get the number of reads sequencing fraction P0 of the

genome

N~{
log 1{P0ð Þ

L
|G

In an environmental sample containing l species, the metagen-

ome size Gm is:

Gm~
Xl

i~1

niGi

Where Gi is the size of any given genome in a sample containing

l genomes, and ni the number of copies of genome gi.

However the species that constitute the sample appear in

different frequencies in the metagenome. Therefore a metagen-

ome of size Gm composed of genomes of sizes G1 through Gk can

be viewed as a sum of fractions. Each component genome of size

Gi constitutes a fraction of Gm:

ĜGm~p1Gmzp2Gmz . . . zplGm

and: Xl

i~1

pi~1

Where pi is the fraction of copies of the genome of species i in

the sample and Gi is the size of the genome of species i.

Using species-specific gene markers, usually small ribosomal

subunit rDNA, it is possible to estimate the species diversity in the

sample, and provide an estimate of the different pi values.

Nevertheless, full or sometimes even adequate coverage (as judged

by the rarefaction curve) of a species-rich environmental sample

may be unattainable, especially for the genomes of the less

represented species [39–42]. We expand upon this subject in the

‘‘Species Diversity’’ section.

Jeroen Raes and his colleagues have suggested an effective

genome size or EGS measure that includes multiple plasmid

copies, inserted sequences, and associated phages and viruses [43].

EGS uses the density (counts per megabase) of single copy marker

genes to extrapolate the EGS.

EGS~
azb|L{c

x

Where L is the read length, x is the marker gene density, a, b,

and c are empirical parameters empirically derived from 154

simulated metagenomes and found to be 21.2, 4,230, and 0.733,

respectively. Raes and colleagues derived this formula from several

different metagenomes, providing a useful measure of central

tendency for genome size using a metagenomic sample. Note that

a, b, and c were derived from simulated metagenomes, Therefore,

care must be taken in using the EGS formula above, since the

parameters given only provide a snapshot of a particular

simulation. It is probably better to use EGS as a framework, in

conjunction with a metagenomic simulator such as MetaSim [44]

to generate parameters more compatible with population estimates

in one’s own research. MetaSim enables the creation of a

simulated genome from regular genomic files; this makes it useful

for testing and assessing the performance of other programs that

manipulate and analyze metagenomic data, such as assembly or

annotation programs.

Metagenome Assembly
In a genome project of a single organism or clone we can be

certain that all extracted DNA fragments belong to the same

genome, barring contaminants and extrachromosomal DNA.

That is not the case when a metagenome is concerned. As we

have just seen, coverage is usually incomplete, since environmental

sequence sampling rarely produces all the sequences required for

assembly. Furthermore, there is also the danger of assembling

sequences from different OTUs, creating interspecies chimeras.

Phrap, Forge, Arachne [45], JAZZ [46], and the Celera Assembler

[47] are all assembly programs that were developed for single

genome assembly from Sanger sequencing. They seem to provide

good results even when assembling metagenomic sequence data

from Sanger sequencing [48]. Most of these algorithms use mate-

pair information for the assemblies. This information is used in

assembly to check the scaffolds or the assembled intermediaries

between raw reads and whole chromosomes. These assembly

algorithms represent each read as a vertex and each detected

overlap as an edge between the overlapping vertices. Finding the

correct assembly is cast as a Hamiltonian path finding problem, for

finding a path in a graph where each vertex is visited once (see

Figure 3A–3C).

For short reads, however, this technique is not suitable. To

establish adequate coverage, short reads need to be produced in

large quantities, and their short lengths means that there are many

identical, or nearly identical, reads. The plethora of reads makes

Table 2. The information contained in different lengths of
genomic DNA.

Sequence Length (bp) Genome Element

25–75 SNPs, short frameshift mutations

100–400 Short functional signatures

500–1,000 Whole domains, single domain genes

1,000–5,000 Short operons, multidomain genes

5,000–10,000 Longer operons, some cis-control elements

.100,000 Prophages, pathogenicity islands, various mobile
insertion elements

.1,000,000 Whole prokaryotic chromosome organization

doi:10.1371/journal.pcbi.1000667.t002
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representing the vertices as single reads impossible. Another

problem is that the sheer volume of reads makes the graph large

and unmanageable. The solution to a Hamiltonian path is an NP-

complete problem, meaning that the time necessary for a solution

grows exponentially with the number of nodes. So while it is

possible to solve for a relatively low number of reads as are

produced using Sanger sequencing, the problem becomes

intractable with the large amounts of sequence data from second

generation sequencers.

One solution is for the vertices to represent k-mer words with

the reads themselves being the edges connecting the vertices. Since

the vertices represent k-mers rather than reads, the high number of

reads and their redundancy does not affect the number of nodes.

Repeats exist in the graph only once, with links to the different

start and end points. Searches for overlaps are simplified, as

overlapping reads are mapped onto the same edge and can easily

be followed simultaneously. Finally, since the reads are represent-

ed as edges rather than vertices, the solution is a Eulerian path,

where each edge is visited once. Unlike a Hamiltonian path, a

linear-time algorithm to solve a Eulerian path does exist, making

the assembly problem tractable for large number of reads.

The EULER assembler [49,50] was the first to present this

technique using de Bruijn graphs. De Bruijn graphs are n-

dimensional graphs of m symbols. For metagenomic assembly,

m = 4 (A,T,G,C) and n^k-mer length. Theoretically, there are mn

vertices, but the dimensionality can be greatly reduced by hashing

the reads in the dataset to be assembled (see Figure 3). Other

variations have since been published, adapting to short (100–200)

[51,52] and very short read lengths [53–55]. EULER and

VELVET are available for download. Recently, Ye and Tang

developed an assembly method that finds putative open reading

frame (ORF) regions first, and then assembles those regions. This

method, dubbed ORFome assembly, increases assembly accuracy

for ORF regions at the expense of losing noncoding regions.

Nevertheless, for many practical purposes this method is very

useful, because it appears to have a better recovery rate, for coding

regions only, than regular, whole genome assemblers [56]. For

recent reviews on computational assembly methods see [57,58].

Gene Calling

Genes are the basic functional unit in the genome, which may

constitute larger functional units such as operons, transcriptional

units, and functional networks. Again, the incomplete and

fragmentary nature of metagenomic data presents challenges to

identifying genes. With Sanger random shotgun sequencing, whole

genomes are rarely assembled, and in species-rich environments,

many reads remain as singletons rather than being joined in

contigs. In the Global Ocean Sampling (GOS) data, which were

Sanger-sequenced, the mean number of whole reading frames per

assembly is 4.7 [59].

Gene finding algorithms are trained to find whole ORFs and

take into account information gleaned from large genomic

stretches. For metagenomic data, however, this information is

unavailable. Despite such drawbacks, Mavromatis and colleagues

have shown that for a high complexity metagenomic dataset, gene

prediction on assemblies can be as accurate as 85% of the

originally predicted genes in the constituting genomes. For a low

complexity set this goes up to 90% [48].

For genes with known homologs, BLASTing (using the Basic

Local Alignment Search Tool) [60,61] against known databases is

a common approach. This approach informs of the existence of

gene family members within a metagenome. BLAST cannot be

used to find new families and new genes that have no homologs in

known databases. For that, ab initio gene prediction tools are used.

Those tools are mostly based on supervised learning and statistical

pattern recognition methods. Most models use Markov models or

Hidden markov models. Genemark.hmm is a program that uses

inhomogeneous Markov models based on monocodon frequency

analysis for gene calling [62]. When applied to metagenomic data,

however, those methods lose sensitivity, because they often fail to

identify partial ORFs that may be part of true genes. This is

especially true when conventional gene calling methods are

applied to raw Sanger fragments rather than to assemblies.

Unsupervised methods are therefore required.

Yooseph and colleagues [59,63] have used a different approach

to gene finding when analyzing the global ocean survey data. They

began with simple ORF identification of consecutive translatable

regions that translate to at least 60 amino acids (aa). They then

clustered those sequences using an all-against-all BLAST search,

identifying clusters containing nonredundant sequences. In the

next step, shadow ORFs were eliminated. Shadow ORFs are false

ORFs in a different reading frame than the true ORF, but they

overlap the true ORF and hence may be mistaken for a coding

region. Yooseph and colleagues handled this by clustering all ORF

candidates in the same reading frame and selecting the larger

cluster as the one containing true ORFs, discarding the other ones

as shadow ORFs. Finally, they removed ORF families with a

KaKs Ka/Ks ratio that is close to 1. The rationale for this step is

Figure 3. Fragment assembly. (A–C) Hamiltonian. (A) A sequence
with overlapping reads; (B) Each read is represented as a vertex, with
edges connecting the overlapping vertices; (C) the assembly solution is
a Hamiltonian path (all vertices are visited, no vertex is visited more
than once) through the resulting graph; (D) For short reads assembly,
each vertex is a k-mer (or a hashed collection of k-mers), and the reads
are threaded between vertices as edges. The solution is a Eulerian path,
where each edge is visited once. Repeats are merged into a single edge.
For detailed algorithms see [49,50,53–55].
doi:10.1371/journal.pcbi.1000667.g003
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that putative proteins that are seemingly under no selective

pressure (positive or negative) are probably falsely identified. Gene

families coding for proteins under selective pressure are expected

to have a Ka=Ks&1 or Ka=Ks%1.

It has been argued that one drawback of the incremental

clustering method is that it increases specificity at the expense of

sensitivity; that is, it may have an excess of false negatives due to

the removal of putative ORFs that do not cluster well or do not

cluster at all in the database [64]. As of today, however, there has

not been a thorough comparative evaluation of gene calling

methods on first or second generation sequence data.

Species Diversity

Measuring Diversity
In the ‘‘Sample Size’’ we discussed using 16S/18S rDNA for

phylotyping and assessing species coverage using a rarefaction

curve. Microbial ecology has many tools for assessing species

diversity. Rarefaction curves are used to estimate the coverage

obtained from sampling, see Figure 4. a-diversity, b-diversity, and

c-diversity are all well-established diversity indices used in ecology,

including microbial ecology. a-diversity is the biodiversity in a

defined habitat or ecosystem; b-diversity compares species

diversity between habitats; c-diversity is the total biodiversity over

a large region containing several ecosystems. Here we will discuss

the application of these indices to metagenomic data.

One way to calculate a-diversity is by using Shannon’s index:

H ’a~{
XS

i~1

pi ln pi

where:

pi~
ni

N

Where S is the total number of OTUs, ni is the number of clones

in each OUT, and N is the total number of individuals. pi is the

relative abundance of each OTU. Hamax~ ln S.

Using different sequence markers for OTU

identification. It should be noted that using 16S/18S rDNA

as a proxy for OTU identification and counting is not without

problems. First, rDNA has been criticized as an OTU marker, and

evidence of horizontal gene transfer involving rDNA may

confound its reliability even more [65]. Second, 16S rDNA may

exist in multiple different sequence copies in a single bacterium:

this would cause a variance in both the estimated individual

bacterial count, and OTU numbers. It is commonly accepted that

the mean number of bacterial ribosomal operons per genome is

4.1 [66], but in a recent publication it has been shown that 16S

rDNA gene copy numbers may vary between 1 and 15 [67,68].

Alternative markers, such as single copy housekeeping genes have

been suggested as alternative or complementary species and

population tally markers for bacterial genomes. The rpoB gene is a

strong candidate [69], but amoA, pmoA, nirS, nirK, nosZ, and pufM

have also been suggested in different contexts [67,70]. The

housekeeping functionality of these genes makes them less

susceptible to horizontal gene transfer. However, these studies

have shown that on a finer level the use of housekeeping genes

does improve upon 16S rDNA alone, the use of 16S rDNA as a

marker for OTU identification and count is still sufficiently

accurate for many purposes. The use of housekeeping genes for

OTU classification is primarily for those cases when 16S rDNA

provides a lower resolution than when a high diversity of species is

expected. Another case where a housekeeping gene is preferable to

16S rDNA is when the variation in the housekeeping gene matches

the acceptable taxonomy better than the variation in the rDNA

sequences. The use of non-rDNA phylogenetic markers has been

applied to metagenomic data, showing that certain microbial

communities evolve faster than others [71].

Epidemiologists classify bacterial serovars for pathogen verifi-

cation using Multilocus Sequence Typing (MLST) [72,73]. MLST

is a technique by which several standardized housekeeping genes

are selected for OTU typification. There is an online resource for

MLST, including a database for OTU identification (http://www.

mlst.net/). MLST has been used successfully in some metage-

nomic studies [74]. However, MLST appears to be more useful for

a finer level substrain typification, rather than OTUs.

In the same vein, 18S rDNA can have different count numbers

in microeukaryotes, with an even larger copy number variation

between species than 16S rDNA counts in prokaryotes. Care must

be taken to account for this copy number variation when assessing

the cell count in eukaryotic samples [75,76].

There are several software packages we found very useful for

biodiversity analysis. The first is a general purpose population

analysis software, EstimateS (8.0) [77]. EstimateS contains a rich

set of biodiversity analysis modules, but for microbial analysis it

requires preprocessing of sequence data to transform it into

generic population data. MOTHUR [78] is tailored towards

microbial diversity analysis and provides tools for transforming

sequence data to population data. It is not as rich in functional

modules as EstimateS, but for most diversity analyses (rarefaction

curves, standard estimate indices) it is more than adequate.

QIIME, an extension of PyCogent [79], is in beta, but testing by

one of us (IF) has shown it to be a very powerful and versatile

package for analysis of genomic and metagenomic microbial

ecology data (http://qiime.sourceforge.net). A more specialized

software geared to the analysis of viral metagenomic data is

PHACCS [80].

Binning
We wish to know not only who populates the sample, but also

what the different OTUs are doing. We must therefore associate

Figure 4. Rarefaction curves. Green, most or all species have been
sampled; blue, this habitat has not been exhaustively sampled; red,
species rich habitat, only a small fraction has been sampled.
doi:10.1371/journal.pcbi.1000667.g004
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sequence data with the OTU of its origin. This analysis is called

binning (placing the sequence in its correct ‘‘bin’’ or OTU). In

many cases, suitable phylogenetic marker genes are missing either

because rDNA sequences may be unsuitable (as in virus analyses),

or may have been undersampled.

Here we will examine two binning strategies: composition-based

binning and phylogenetic binning.

Composition-based binning. The GC content of bacterial

genomes is being used routinely for higher-level systematics [81].

With the advent of ESS data, a finer resolution for classifying or

binning sequences is called for. Markov models based on k-mer

frequencies have shown to be quite powerful for statistical analyses

of DNA sequences [82]. For example, tetranucleotides are being

used by the TETRA [83] program in the following fashion. There

are 44 = 256 possible DNA tetranucleotides. For each

tetranucleotide ti~ n1,n2,n3,n4½ �, an expected frequency E(ti) can

be calculated by means of a maximal-order Markov model:

E tið Þ~
O n1,n2,n3½ �ð Þ|O n2,n3,n4½ �ð Þ

O n2,n3½ �ð Þ

Where O is the observed count of the sub-trimers and dimer of

the tetramer.

The level of over- and underrepresentation of each tetranucle-

otide is evaluated using z-scores:

s O tið Þð Þ

~E tið Þ
O n1,n2½ �ð Þ{O n1,n2,n3½ �ð Þð Þ| O n2,n3½ �ð Þ{O n2,n3,n4½ �ð Þð Þ

O n2,n3½ �ð Þ2

Z tið Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O tið Þ{E tið Þð Þ2

s O tið Þð Þ

s

Where s(O(ti)) is the variance in the tetranucleotide ti.

Composition-based binning is not error-free. The closer the

OTUs in the studied metagenome and the more numerous they

are, the higher is the frequency of misclassification errors. The

strength of k-mer–based binning is that there are no reference

sequences required for the actual binning: all the information is

intrinsic. This makes k-mer a powerful tool for binning ORFan

sequences: sequences that have few or no homologs and therefore

no known function. Therefore, TETRA is independent of existing

genomic data, since it does not require any training. PhyloPythia

[84] is a supervised method that trains a set of support vector

machines (SVMs) to bin sequences of a length greater than 1 kb,

and thus not suitable for binning second generation sequences. It

performs best when a training set is similar in phylotypic

composition to the training set. Growing Self Organizing Maps

or GSOM [85] and Seeded GSOM or S-GSOM [86] use a

variant of the machine learning algorithm self-organizing maps. S-

GSOM improves upon GSOM by extracting the flanking

sequences of highly conserved 16S rDNA from the metagenome

and using them as seeds to assign other reads on the basis of their

compositional similarity. Both use frequencies of di- to penta-

nucleotides for binning assignment.

Another composition-based method is codon-usage. An old

technique in genomics, codon usage, can also be used for binning

metagenomic data. Different species use different codon frequen-

cies to encode the same amino acids, and this observation can be

exploited to classify ORF sequences. Shani Tzahor and colleagues

have developed a composite supervised method that uses both

TETRA and codon usage statistics to classify fragments in the

100–300-bp range [87].

TETRA is available for download, and PhyloPyhtia is available

as a Web site, with a downloadable version available by request.

GSOM/S-GSOM does not seem to be available at this time.

Similarity-based binning. Another way to bin sequences is

to find similarities to reference sequences that can be used to build

a tree. This technique is useful when most sequences in the sample

have significant similarities to reference sequences from known

OTUs. Given an unannotated sequence A, and two annotated

reference sequences B and C, and using the similarity function sim,

let us consider the case where we have sim A,Bð Þwsim A,Cð Þ;
then, the sequence A will be placed on a node in the tree between

B and C, and, in the case considered, closer to B. MEGAN [88]

implements this method by reading a BLAST file output.

Typically, the output is from the metagenomic reads or

assemblies against nr, or any other sequence database that has a

phylogenetic tree associated with it. MEGAN then assigns each

read to the lowest common ancestor on the phylogenetic tree. This

allows all sequences that have a homolog in nr to be assigned.

Predicted gene sequences, having no homologs, are aggregated

into their own single node on the tree. CARMA [89] is somewhat

similar to MEGAN, but uses Pfam [90] as its source for taxonomic

classification. It should be noted that a precise assignment to an

OTU may not be possible in many cases. Nevertheless, unless it is

an ORFan, the sequence can be placed in the species tree. The

resulting picture of sequences on the species tree can provide an

overview of the dominant species in the sample. Phymm [91] uses

interpolated Markov models to characterize variable length DNA

sequences by their phylogenetic grouping, unlike other methods.

Phymm is trained on existing OTUs and learns which nucleotide

length is best for classification. Also, Phymm does not leave reads

unclassified, although that may impact its overall accuracy if there

are many reads that cannot be accurately binned to any

phylogenetic group.

As far as the usability of these software, CARMA will run on

Unix-like environments, and its installation requires some third

party software, and a rudimentary knowledge of Perl and MySQL.

MEGAN runs in a Java virtual machine, and thus runs on almost

out of the box Java-enabled platforms; it does require an

installation of National Center for Biotechnology Information

(NCBI)-formatted taxonomic reference database for lowest

common ancestor mapping. Also, CARMA can run its own

BLAST, whereas MEGAN requires a previously generated

BLAST output as its input.

Functional Annotation

Having assembled the metagenome and identified putative

ORFs we would now like to understand the functional potential of

the microbial community from where we derived the metagen-

ome: what are these microbes capable of doing as a community?

The first level of functional annotation is assigning biological

functions to the ORFs. This task is highly challenging when

applied to regular genomic data [92], and the challenge is

compounded in metagenomic data where many ORFs are partial,

and a large fraction have no annotated homologs. The second

level would be discovering genes that constitute biological

networks, such as metabolic pathways, in the data. The latter

task is hampered by our inability to accurately associate each

annotated ORF with a single species, which means it is sometimes

hard to determine which component of a network comes from
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which organism. Nevertheless, binning can help to some extent. As

we shall see in the ‘‘Case Studies’’ section below, several studies

have been carried out and led to the successful discovery of

complementary metabolic pathways from microbes that constitute

a community.

In metagenomic samples the probability of not calling all genes

is higher than in a fully assembled genome, since many ORFs may

be partial, and thus invisible to regular gene calling software that

require a full ORF. Therefore, one strategy for functional

annotation would be to skip the gene calling step altogether.

Instead, simply use six-frame translations on the reads provided. If

the translations are reasonably long they may be ORFs. Even if

they are short, but they are cut short because of being at the edge

of a contig, they may still be partial ORFs. Now these putative

partial ORFs can be searched for motifs, HMM profiles, and other

sequence signatures that may indicate functionality. The rationale

is that the probability of calling a false ORF that also includes a

known sequence signature is negligible. Some metagenomic

annotation programs use this rationale. For example, Motif

EXtraction (MEX) [93] is an unsupervised motif creation method

that is successful in identifying enzymes in genomic and

metagenomic data [94,95]. Short, enzyme-specific peptides are

identified in an unsupervised learning stage. They are subsequent-

ly associated with certain functions, in the supervised learning

stage. The reason an unsupervised stage takes place is because, in

many cases, new motifs can be identified within ORFans, even

though their functional association may be unknown.

Even unassembled single reads (singletons) may be used to infer

functional information, being long enough to find short motifs or

significant BLAST hits. BLASTing singletons and annotating the

results without assembly or postassembly has its use. Two versatile

and useful annotation pipelines for metagenomics that implement

the annotation principles outlined above are MG-RAST [96] and

RAMMCAP [97]. MG-RAST accepts a 454 dataset as input,

normalizes it (removes artefactual duplicate sequences, a known

problem with 454 sequencing), and then performs gene calling and

annotation by a variety of sequence similarity searches (mainly

BLAST) against various sequence databases, including 16S rDNA.

It then produces statistics on species associations and on metabolic

pathway associations using the SEED subsystems database as its

guideline. RAMMCAP uses the fast clustering algorithm CD-HIT

[98] to cluster translated ORFs by high sequence similarity. The

rationale is that many similar putative ORFs strengthen the

hypothesis that they are indeed real ORFs. Optionally, CD-HIT

also serves to reduce the volume of data to be annotated by picking

representatives from identical or nearly identical sequences and

annotating only the representative sequences. The annotation is

then transfered to the highly similar sequence in each similarity-

based cluster. The sequences are then compared to the profile

HMM databases Pfam [90] and TIGRfam [99] using HMMer

(http://hmmer.janelia.org/) for functional annotation.

Comparative Metagenomics

Comparing two or more metagenomes is necessary to

understand how genomic differences affect, and are affected by,

the abiotic environment. There are several sequence-based traits

that can be compared: GC content was compared between marine

and soil samples [59], microbial genome size [43], taxonomic [71],

and functional content (e.g., [100]). Many comparative analyses,

pairwise or multiple, make use of ordination statistics as when

several metagenomic datasets are involved, or when several types

of metadata are hypothesized to affect the observed compositions

of the metagenomic populations. Principal component analysis

(PCA) and nonmetric multidimensional scaling (NM-MDS) are

typically used to visualize the data and to reveal which factors

affect the observed data most (e.g., [101,102]).

We mentioned MEGAN before as a binning software. MEGAN

can also be used to compare the OTU composition of two or more

frequency-normalized samples [103,104]. MG-RAST provides a

comparative functional and sequence-based analysis for uploaded

samples, whereas IMG/M provides similar analysis for metagen-

omes that exist in the IMG/M site [105]. RAMMCAP also

provides the ability to compare metagenomes. Other software used

for the comparison of microbial populations based on phylogenetic

data are UniFrac [106] and MetaStats [107], the latter being

suitable for preprocessed clinical metagenomic data. Galaxy, an

online workbench for the analysis of genomic data, can also

perform some comparative metagenomic analysis, as well as

taxonomic mapping [108]. ShotgunFunctionalizeR [109] is a

stand-alone analysis tool for metagenomics samples written in R

[110]. The megx.net resource includes include MetaMine [111]

for annotating genes using neighboring ORF information, and

MetaLook [112] for organization of sequences using customized

habitat criteria. CAMERA (http://camera.calit2.net) offers to

BLAST the user’s sequences against 40 existing genomic and

metagenomic datasets. CAMERA also serves as an archive for

select metagenomic datasets generated by marine microbial

research funded by the Gordon and Betty Moore Foundation.

All of these sites appear to be in a state of flux, with promised new

functionalities to be added soon and with datasets constantly being

updated.

We mentioned the importance of standardized recording of

metadata in the ‘‘Recording Metadata’’ section above. Compar-

ative analysis is where the importance of metadata comes into

play: in order to properly compare between different environ-

ments, we need a common vocabulary describing the abiotic

components. To date we do not know of software that provides a

comparison between metadata or a comparative correlation

between metadata and sequence data, although several such

comparisons have been performed (see ‘‘Case Studies’’ section

below).

Applications

In this section we will discuss a few studies involving

metagenomics. We chose these studies because each one illustrates

a different insight that is derived from using metagenomics.

Correlations between Environmental Data and Metadata
The study of the effects of the environment on microbes is as old

as microbiology itself. Antoni van Leeuwenhoek noted that the

‘‘animalcules’’ scraped from his mouth and that he viewed under

his microscope were gone or were immobile after he drank hot

coffee. Leeuwenhoek was the first to describe a correlation

between temperature change and organism viability [113]. Ever

since then, microbe species distribution, genetics, pathogenicity,

virulence, colonization—indeed every aspect of microbial life—

has been correlated with habitat traits such as temperature,

salinity, pH, nutrient content, etc. Traits of host-borne microbes

have been correlated with the host species, age, habitat, behavior,

feeding habits, host organs chosen for settlement/pathogenicity,

and, of course, clinical symptoms and many other traits.

With the advent of metagenomics, we are now able to study the

genomic potential of a bacterial community and how it is affected

by and affects its habitat. Many metagenomic studies have looked

to some extent at correlations between sequence data, environ-

ment, and environmental attributes in an attempt to gain
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biological insight. One notable study by Turnbaugh and

colleagues looked at the connection between the gut microbiome

and obesity. The authors discovered that the metagenome in obese

mice was enriched in carbohydrate active enzymes over that of

lean mice. A separate biochemical experiment confirmed that the

microbiome in obese mice has a larger energy harvesting capacity

than in lean mice. They concluded that the gut microbiome

contributes to obesity through this feed-forward cycle [100].

Studies such as those presented above looked at bivariate

correlations: obesity and carbohydrate active enzyme enrichment.

One recent study by Gianoulis and colleagues suggests how to

locate multivariate correlations between metagenomic data and

environmental attributes [114]. At the same time, environmental

factors may combine in unexpected ways revealing new insights.

Gianoulis and colleagues have identified covariation in amino acid

transport and cofactor synthesis in nutrient-poor ocean areas,

suggesting that limiting amounts of cofactor can (partially) explain

increased import of amino acids in nutrient-limited conditions.

Understanding Symbiosis
In many cases, symbiotic bacteria living in an animal host

consist of a small number of species, which are often phylogenet-

ically distant. Because they are few species and the phylogenetic

distance makes their sequences relatively easy to bin, metage-

nomics is useful for studying symbionts. Eisen and his colleagues

sequenced ESS data from bacterial symbionts living in the glassy-

winged sharpshooter, which is an insect that lives solely on tree

sap, a nutrient poor diet. By binning the ESS data they inferred

that one symbiont synthesizes amino acids for the host insect,

while another synthesizes cofactors and vitamins [115]. Not only

that, but the symbiont providing the vitamins lacks some amino-

acid synthetic pathways, and the symbiont providing the amino-

acid synthetic lacks the ability to synthesize the vitamins. Thus,

both symbionts complement each other’s metabolic deficiencies, as

well as feeding their host. Another study of the marine gutless

worm Olavius algarvensis has revealed the different roles of its four

symbionts in generating nutrients and processing the worm’s waste

[116]. None of the symbionts in the insect or in the worm study

could be cultured under the reported conditions. Metagenomics

thus became the chosen avenue for these studies.

Enriching Gene Families
Another type of study enabled by metagenomics is the search

for new members of a gene family. Metagenomics has opened up

the floodgates of genomic material. Consequently the laborious

hen-pecking for exemplars to enrich a studied gene family from

known cultured species, has been replaced by the laborious

computational filtering of appropriate exemplars from millions of

environmental sequences. The previously small bacterial Eukary-

otic Protein Kinase Like (ELK) family has been enriched several

folds by the Global Ocean Sampling (GOS) project. Many new

members of known families were identified, as well as new families.

Within the protein sequences, four new residues of unknown

function were found to be conserved, setting the stage for future

functional studies of this family [117].

Metagenomics and Environmental Virology
Outnumbering living microbes, viruses are the most abundant

biological entity on Earth: there are an estimated 1030 tailed

bacteriophages in the biosphere [118]. In marine environments,

viruses constitute 94% of all nucleic-acid containing particles,

although owing to their small size they are estimated to constitute

only 5% of the biomass. Metagenomic studies have enriched our

knowledge of viral diversity and the role viruses play as facilitators

of microbial genetic diversity. Sequence similarity analyses of viral

metagenomic data have shown that approximately 90% of the

sequences have no similarity to GenBank sequences, telling of an

underrepresentation of viral sequence data in sequence databases

[119].

Transduction—the transfer of genetic material via a viral

vector—is known to be a strong contributer to genetic diversity in

prokaryotes. Metagenomic studies help us assess the magnitude of

virally contributed genetic diversity. For example, the existence of

photosynthetic genes in cyanophages—viruses infecting cyanobac-

teria—has been known for some time [120,121]. However,

metagenomic studies have revealed the extent of this phenome-

non: it is estimated that 60% of the psbA genes, a component of

Photosystem I, in surface water are of phage origin. Another

metagenomic study revealed the existence of whole photosynthetic

cassettes in cyanophages, which may increase host fitness by

supplementing and enhancing existing cyanobacterial photosys-

tems. The latter findings were enabled by the metagenomic data

from Global Ocean Sampling (GOS). Surveying these data using

simple sequence similarity analyses and chromosomal gene

location have revealed the existence of Photosystem I genes in

cyanophages, and the extent of their distribution [94,122].

Clinical virology also stands to benefit from metagenomic

analysis [123]. Indeed, recent molecular-based discoveries of

highly prevalent viral infections caused by anellovirus [124] and

GBV-C [125] highlight the need for a better understanding of the

human viral flora.

The computational analysis of viral metagenomic data is

particularly challenging. First, viruses may exist as a chromosomal

insert, such as prophages, which are incorporated in the host

genome. This incorporation confuses the ability to distinguish viral

genomic elements from the host. Furthermore, when filtering

exclusively for viral particles, prophage elements are lost. Second,

viruses have no distinct phylogenetic marker gene, equivalent to

the small ribosomal subunit rRNA in prokaryotes or eukaryotes.

The lack of a consensual marker gene hampers phylogenetic and

diversity analysis. Third, as stated above, most viral genes have no

annotated homolog in sequence databases, which impedes

functional analysis and indeed the identification of viral genes

for what they are. Indeed, by some estimates the majority of

ORFans in the biosphere is due to lateral gene transfer of viral

origin [126] and the fact that phage-induced lateral gene transfer

contributes in a major way to microbial diversity [127].

The Future

We are in the midst of the fastest growing revolution in

molecular biology, perhaps in all of life science, and it only seems

to be accelerating. Sanger sequencing has been with us for over

three decades. High-throughput 3730 sequencing has been around

for 8 years, Roche 454 instrumentation has been available for 6

years, and Illumina GA for 3 years. The latter two methods have

enabled us to generate more sequence data than Sanger

sequencing has. We are still coming to grips with the large

volume of data, and how to analyze it. Assembly, quality control,

binning, and annotation all require ingenious algorithms com-

bined with the latest computational power. It appears that

sequencing technology is changing almost faster than the

associated computational techniques can keep up. There are

many indications that within a few years, short-read second

generation sequencing may be outdated. Third generation

sequencing that will enable the sequencing of a single chromosome

in a single pass with few or no fragments should be established very

soon [35,36]. Does this plausible obsolescence of second
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generation sequencing change current metagenomic computa-

tional challenges? For some applications, assembly algorithms may

be less warranted, but for species-rich samples, we may not be able

to rely solely on third-generation sequencing for good sampling.

Coverage assessment, gene finding, binning, and annotation will

still be necessary.

The BASE technology from Oxford Nanopore is able to

differentiate between cytosine and methyl-cytosine during se-

quencing [37]. Methylation acts as a primitive immune system in

bacteria [128], and as an expression control mechanism in

eukarya [129]. This additional epigenetic information has been

mostly unavailable in sequencing projects due to an inability to

obtain it in a high-throughput fashion. Pyrosequencing already

offers a capability for quantitative methylation [130] and in all

likelihood methylation data will be soon made available routinely

along with the four base data, and the associated bioinformatics

would need to address that.

Another growing problem is that of data management.

Sequencing centers are working to equip themselves with

computational infrastructure to meet the flow of sequence data.

However, many research institutes who request the sequencing do

not have the computational infrastructure needed to deal with

analysis and long-term storage of these data. The sheer volume of

data raises new constraints on its transfer and analysis. These

challenges would have to be met by concerted efforts of life

scientists, computer scientists, engineers, and funding agencies

[131,132].

Genomic data tell us what an organism is capable of doing, i.e.,

its genomic potential. What it is actually doing at a given time-

frame is discovered by examining transcription (mRNA) and

translation (protein) data. In the world of microbial communities,

those studies have been dubbed metatranscriptomics and meta-

proteomics, respectively. These two fields are outside the scope of

this review, but note that they too are very much in a development

boom, technologically and computationally [133–135].

We hope this primer has been useful and informative. Because

computational metagenomics is changing rapidly, we call upon the

readers of this article who are knowledgeable in the subject to use

the comment section of PLoS Computational Biology to provide

updated information.
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12. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu

Rev Microbiol 57: 369–394.

13. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998)

Molecular biological access to the chemistry of unknown soil microbes: a new

frontier for natural products. Chem Biol 5: R245–R249.

14. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, et al.

(2000) Cloning the soil metagenome: a strategy for accessing the genetic and

functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:

2541–2547.

Box 1. Glossary of terms.

Binning Clustering sequences based on their nucleotide
composition or similarity to a reference database
Contig A set of overlapping DNA segments
Coverage (in sequencing) The mean number of times a
nucleotide is sequenced in a genome
ESS Environmental Shotgun Sequencing
Ka/Ks The ratio of the rate of nonsynonymous substitu-
tions (Ka) to the rate of synonymous substitutions (Ks),
which can be used as an indicator of selective pressure
acting on a protein-coding gene
Mate pairs Sequences known to be in the 39 and 59 of a
contig from a single clone
Metadata Definitional data that provide information
about or documentation of other data
Metagenome The DNA obtained from uncultured
microorganisms
Metagenomics The study of genomic DNA obtained
from uncultured microorganisms
Metaproteomics The study of protein molecular data
obtained from environmental samples using proteomics
techniques
Metatranscriptomics The study of transcription se-
quence data obtained from environmental samples
ORFan An ORF that has no (or few, depending on
definition) homologs in other organisms
OTU Operational taxonomic unit, species distinction in
microbiology. Typically using rDNA and a percent similarity
threshold for classifying microbes within the same, or
different, OTUs
Ontology A formal representation of a set of concepts
and the relationships between them. Ontologies are used
to create a consensual unambiguous controlled vocabu-
lary
Polony Discrete clonal amplifications of a single DNA
molecule, grown in a gel matrix. The clusters can then be
individually sequenced, producing short reads. Polony-
based sequencing is the basis of most second generation
sequencers
Rarefaction curve A curve describing the growth of a
number of species discovered as a function of individuals
sampled
Ribotype A phylotypic classification based on rDNA
sequences
Scaffold A series of contigs that are in the right order but
not necessarily connected in one contiguous stretch
Shadow ORF An incorrectly identified ORF that overlaps
the coding region of the true ORF

PLoS Computational Biology | www.ploscompbiol.org 11 February 2010 | Volume 6 | Issue 2 | e1000667



15. Field D, Garrity G, Gray T, Morrison N, Selengut J, et al. (2008) The
minimum information about a genome sequence (migs) specification. Nat

Biotech 26: 541–547.

16. Kottmann R, Gray T, Murphy S, Kagan L, Kravitz S, et al. (2008) A standard

MIGS/MIMS compliant xml schema: toward the development of the genomic
contextual data markup language (gcdml). OMICS 12: 115–121.

17. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, et al. (2001)

Minimum information about a microarray experiment (MIAME)–toward
standards for microarray data. Nat Genet 29: 365–371.

18. Westbrook JD, Fitzgerald PM (2003) The PDB format, mmCIF, and other data
formats. Methods Biochem Anal 44: 161–179.

19. Sanger F, Coulson AR (1975) A rapid method for determining sequences in

DNA by primed synthesis with DNA polymerase. J Mol Biol 94: 441–448.

20. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-

terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.

21. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, et al. (2007) Genome-wide

experimental determination of barriers to horizontal gene transfer. Science
318: 1449–1452.

22. Pedros-Alio C (2007) Ecology: Dipping into the rare biosphere. Science 315:

192–193.

23. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, et al. (2006)

Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’.
Proc Natl Acad Sci U S A 103: 12115–12120.

24. Hamp TJ, Jones WJ, Fodor AA (2009) Effects of experimental choices and
analysis noise on surveys of the ‘‘rare biosphere’’. Appl Environ Microbiol 75:

3263–3270.

25. Neufeld JD, Li J, Mohn WW (2008) Scratching the surface of the rare

biosphere with ribosomal sequence tag primers. FEMS Microbiol Lett 283:
146–153.

26. Mitra RD, Church GM (1999) In situ localized amplification and contact

replication of many individual DNA molecules. Nucl Acids Res 27: e34.

27. Porreca GJ, Shendure J, Church GM (2006) Polony DNA sequencing. Current

protocols in molecular biology. Frederick M. Ausubel, et al., editors. Chapter 7
Hoboken (New Jersey): John Wiley and Sons, Inc.

28. Nyrén P, Pettersson B, Uhlén M (1993) Solid phase DNA minisequencing by
an enzymatic luminometric inorganic pyrophosphate detection assay. Anal

Biochem 208: 171–175.

29. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-
time pyrophosphate. Science 281: 363–365.

30. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005)
Genome sequencing in microfabricated high-density picolitre reactors. Nature

7057: 376–380.

31. Holt RA, Jones SJM (2008) The new paradigm of flow cell sequencing.

Genome Res 18: 839–846.

32. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:
1135–1145.

33. Harismendy O, Ng P, Strausberg R, Wang X, Stockwell T, et al. (2009)
Evaluation of next generation sequencing platforms for population targeted

sequencing studies. Genome Biol 10: R32.

34. McPherson JD (2009) Next-generation gap. Nat Methods 6: S2–S5.

35. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, et al. (2009) Continuous base

identification for single-molecule nanopore DNA sequencing. Nat Nano 4:
265–270.

36. Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. (2008) Real-time DNA sequencing
from single polymerase molecules. Science 323: 133–138.

37. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, et al. (2008) The

potential and challenges of nanopore sequencing. Nat Biotech 26: 1146–1153.

38. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random

clones: a mathematical analysis. Genomics 2: 231–239.

39. Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria.

Appl Environ Microbiol 56: 782–787.

40. Youssef NH, Elshahed MS (2008) Species richness in soil bacterial
communities: a proposed approach to overcome sample size bias. J of Microb

Meth 75: 86–91.

41. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial

communities. Proc Natl Acad Sci U S A 103: 626–631.

42. Countway PD, Gast RJ, Pratik Sava I, Caron DA (2005) Protistan diversity
estimates based on 18s rDNA from seawater incubations in the western north

atlantic. J Euk Micriobiol 52: 95–106.

43. Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P (2007) Prediction of

effective genome size in metagenomic samples. Genome Biol 8: R10.

44. Richter DC, Ott F, Auch AF, Schmid R, Huson DH (2008) Metasima

sequencing simulator for genomics and metagenomics. PLoS ONE 3: e3373.
doi:10.1371/journal.pone.0003373.

45. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, et al. (2002) ARACHNE:

a whole-genome shotgun assembler. Genome Res 12: 177–189.

46. Aparicio S, Chapman J, Stupka E, Putnam N, ming Chia J, et al. (2002)

Whole-genome shotgun assembly and analysis of the genome of fugu rubripes.
Science 297: 1301–1310.

47. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A
whole-genome assembly of drosophila. Science 287: 2196–2204.

48. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, et al. (2007) Use

of simulated data sets to evaluate the fidelity of metagenomic processing

methods. Nat Methods 4: 495–500.

49. Pevzner PA, Tang H, Waterman MS (2001) An eulerian path approach to
DNA fragment assembly. Proc Natl Acad Sci U S A 98: 9748–9753.

50. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial

genomes. Genome Res 18: 324–330.

51. Myers EW (2005) The fragment assembly string graph. Bioinformatics 21

Suppl 2: ii79–ii85.

52. Chaisson M, Pevzner P, Tang H (2004) Fragment assembly with short reads.
Bioinformatics 20: 2067–2074.

53. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read

assembly using de bruijn graphs. Genome Res 18: 821–829.

54. Sundquist A, Ronaghi M, Tang H, Pevzner P, Batzoglou S (2007) Whole-

genome sequencing and assembly with high-throughput, short-read technol-

ogies. PLoS ONE 2: e484. doi:10.1371/journal.pone.0000484.

55. Warren RL, Sutton GG, Jones SJ, Holt RA (2007) Assembling millions of short

DNA sequences using SSAKE. Bioinformatics 23: 500–501.

56. Ye Y, Tang H (2009) An orfome assembly approach to metagenomics

sequences analysis. J Bioinform Comput Biol 7: 455–471.

57. Pop M (2009) Genome assembly reborn: recent computational challenges. Brief

Bioinform 4: 354–366.

58. Flicek P, Birney E (2009) Sense from sequence reads: methods for alignment

and assembly. Nat Methods 6: S6–S12.

59. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, et al. (2007) The

Sorcerer II global ocean sampling expedition: expanding the universe of
protein families. PLoS Biol 5: e16. doi:10.1371/journal.pbio.0050016.

60. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.
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