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Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 
2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate 
statistical methods in psychological research is multivariate analysis of variance (MANOVA). 
However, MANOVA and its associated procedures are often not properly understood, as 
demonstrated by the fact that few of the MANOVAs published in the scientific literature were 
accompanied by the correct post hoc procedure, descriptive discriminant analysis (DDA). The 
purpose of this article is to explain the theory behind and meaning of MANOVA and DDA. I also 
provide an example of a simple MANOVA with real mental health data from 4,384 adolescents to 
show how to interpret MANOVA results. 

 

One of the most common multivariate statistical 
procedures in the social science literature is multivariate 
analysis of variance (MANOVA). In one review of 
educational psychology journals, MANOVA was used 
in 23.0% quantitative articles, making it the most 
common multivariate procedure (Warne, Lazo, Ramos, 
& Ritter, 2012, p. 138)—results that agree with Bangert 
and Baumberger (2005), who found that MANOVA 
was the most commonly used multivariate statistical 
procedure in a clinical psychology journal. Other 
reviewers of statistical procedures in psychological 
research (e.g., Kieffer, Reese, & Thompson, 2001; 
Zientek, Capraro, & Capraro, 2008) have found 
MANOVA to be the most popular multivariate 
statistical method in the published literature. 

Despite the popularity of MANOVA, the method 
is persistently misunderstood, and researchers are 
particularly unfamiliar with the proper statistical 
procedures after rejecting a multivariate null 
hypothesis. Warne et al. (2012), for example, found that 

in only 5 out of 62 articles that used MANOVA  
(8.1%) in educational psychology journals included the 
correct post hoc procedure: discriminant descriptive 
analysis (DDA). Tonidandel and LeBreton (2013) 
found that almost every article in the Journal of Applied 
Psychology in which MANOVA was used did not include 
a follow-up DDA. In my scrutiny of three major 
psychology journals—the Journal of Clinical Psychology, 
Emotion, and the Journal of Counseling Psychology—I found 
a total of 58 articles in which researchers used 
MANOVA between 2009 and 2013. However, in none 
of these articles did researchers use a DDA. Huberty 
and Morris (1989) found similar results when 
investigating six leading psychology and education 
research journals. The purpose of this article is to 
explain the principles of MANOVA and how to 
correctly perform and interpret a MANOVA and its 
associate post hoc procedure, DDA. A simple example 
of a MANOVA and DDA using real data relevant to 
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behavioral scientists follows the explanation to make 
the article more applicable. 

What is MANOVA? 

MANOVA is a member of the General Linear 
Model—a family of statistical procedures that are often 
used to quantify the strength between variables 
(Zientek & Thompson, 2009). Many of the procedures 
in the General Linear Model are hierarchically 
organized—i.e., more specific procedures are often 
special cases of general procedures (Zientek & 
Thompson, 2009). MANOVA, specifically, is an 
analysis of variance (ANOVA) that has two or more 
dependent variables (Fish, 1988). Because most 
behavioral scientists already have a firm grasp of 
ANOVA (Aiken, West, & Millsap, 2008), I will use it as 
the starting point in this article for explaining 
MANOVA. 

In an ANOVA the independent variable is a 
nominal variable that has two or more values, and the 
dependent variable is intervally or ratio scaled.1 The 
null hypothesis is that the mean score on the dependent 
variable will be statistically equal for every group. As 
with any null hypothesis statistical significance testing 
procedure, an observed statistic is calculated and then 
compared to a sampling distribution. If the observed 
statistic is found to be a more extreme value in the 
sampling distribution than the critical value (as shown 
in Figure 1), then the null hypothesis will be rejected; 
otherwise, the null hypothesis is retained. Afterwards, 
an effect size—usually η2 in an ANOVA—quantifies 
the relationship between the independent and 
dependent variables (Thompson, 2006). 

MANOVA is merely an ANOVA that has been 
mathematically extended to apply to situations where 
there are two or more dependent variables (Stevens, 
2002). This necessitates several changes to the logic of 
ANOVA. The first is displayed in Figure 2. In contrast 
to Figure 1, which is a one dimensional number line, 
Figure 2 shows the rejection region of a MANOVA as 
a region outside of a circle on a two-dimensional 
Cartesian plane. Therefore, instead of the observed 
statistic being expressed as a point on a number line, it 
can be graphically expressed as a vector (Thomas, 
1992). If the vector extends into the rejection region, 

                                                 
1 Please note that a one-way ANOVA simplifies to a t-test if the 
independent nominal variable has only two groups (Thompson, 
2006). 

then the null hypothesis is rejected (as would be the 
case for vectors A, C, and D in Figure 2). However, if a 
vector does not extend into the rejection region (e.g., 
vector B in Figure 2), then the null hypothesis is 
retained. 

 
Figure 1. Example of the logic of univariate 
hypothesis testing.  

The shaded area is the rejection region. If the 
test statistic is in the rejection region (shown 
both on the histogram and on the number line 
below), then the null hypothesis is rejected. 

 

 
Figure 2. Example of the logic of multivariate 
analysis of variance hypothesis testing for 
perfectly uncorrelated variables.  

The shaded area is the rejection region. If the 
vector for the test ends in the rejection region, 
then the null hypothesis is rejected. If the dotted 
lines originating at the end of a vector meet an 
axis in the shaded region, then the ANOVA for 
that axis’s dependent variable would also be 
rejected. 
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Figure 2 also shows how the results of a 
MANOVA can vary from the results of two ANOVAs. 
Each vector in the figure can be decomposed into two 
pieces (which are represented in the figure by the 
dotted lines), one for each dependent variable (Saville 
& Wood, 1986). Notice how vector A extends beyond 
the point on both axes where the unshaded region 
ends. This means that if an ANOVA were conducted 
on either dependent variable (which visually would 
collapse the two-dimensional plane into a number line 
resembling the lower portion of Figure 1), the null 
hypothesis of the ANOVA would be rejected. 
Likewise, analyzing vector B would produce a non-
statistically significant MANOVA and two ANOVAs 
that were both also non-statistically significant. On the 
other hand, vector C would produce a statistically 
significant MANOVA and one statistically significant 
ANOVA (for the vertical axis). Finally, vector D would 
produce a statistically significant MANOVA, but in 
both ANOVAs the null hypotheses would be retained. 

Why Use MANOVA? 

Given MANOVA’s more complicated nature, 
some researchers may question whether it is worth the 
added complexity. The alternative to using MANOVA 
is to conduct an ANOVA for each dependent variable. 
However, this approach is not advantageous because 
(a) conducting multiple ANOVAs increases the 
likelihood of committing a Type I error, and (b) 
multiple ANOVAs cannot determine whether 
independent variable(s) are related to combinations of 
dependent variables, which is often more useful 
information for behavioral scientists who study 
correlated dependent variables. 

Avoiding Type I Error Inflation 

When multiple dependent variables are present, 
conducting a MANOVA is beneficial because it 
reduces the likelihood of Type I error (Fish, 1988; 
Haase & Ellis, 1987; Huberty & Morris, 1989). The 
probability of Type I error at least once in the series of 
ANOVAs (called experiment-wise error) can be as high 
as 1 - (1 - .05)k, where k is the number of ANOVAs 
conducted. Therefore, if a researcher chooses the 
traditional α value of .05 for two ANOVAs, then the 
experiment-wise Type I error can be as high as .0975—
not .05—even though the α for each ANOVA is .05. 
However, the Type I error for a MANOVA on the 

same two dependent variables would be only .05. The 
severity of Type I error inflation in multiple ANOVAs 
depends on how correlated the dependent variables are 
with one another, with Type I error inflation being 
most severe when dependent variables are uncorrelated 
(Hummel & Sligo, 1971). Readers will recognize the 
Type I error inflation that occurs with multiple 
ANOVAs because experiment-wise Type I error 
inflation also occurs when conducting multiple 
independent sample t-tests. In fact, one of the main 
rationales for conducting ANOVA is to avoid 
conducting multiple t-tests, which inflates the Type I 
error that occurs when researchers conduct many t-
tests (Thompson, 2006).2 

Figure 2 represents an ANOVA with two perfectly 
uncorrelated dependent variables. However, if 
dependent variables are correlated, then the MANOVA 
is better represented in Figure 3. Notice how the axes 
are no longer perpendicular with each other. Rather, 
the correlation between the dependent variables is 
represented by the angle of the axes, with a more 
oblique angle indicating a higher correlation between 
dependent variables (Saville & Wood, 1986). Although 
the axes in Figures 3 look strange, it is important for 
readers to remember that in statistics all axes and scales 
are arbitrary. Therefore, having nonperpendicular axes 
is acceptable. In exploratory factor analysis, for 
example, factor solutions are almost always rotated so 
that the pattern of factor loadings is more interpretable 
(Costello & Osborne, 2005). Indeed, in oblique 
rotation methods, such as promax rotation, the axes are 
not only rotated, but can be nonperpendicular—just 
like the axes in Figure 3 (Thompson, 2004). 

Although the examples in Figures 2 and 3 
represent MANOVAs with two dependent variables, 
an extension to three dependent variables can be 
imagined without difficulty. For three perfectly 
uncorrelated dependent variables, the graph would be 
three dimensional, with the unshaded region being a 

                                                 
2
 Some researchers who choose to conduct multiple t-tests instead 

of an ANOVA control Type I error inflation with a Bonferroni 
correction (Thompson, 2006). The analogous relationship between 
t-tests and ANOVA and between ANOVA and MANOVA 
extend even to this point, and applying a Bonferroni correction 
would also control Type I error inflation in a group of ANOVAs. 
However, Bonferroni methods are overly conservative, especially 
with a large number of tests (Stevens, 2002) or correlated variables 
(Hummel & Sligo, 1971). Moreover, a Bonferroni correction to a 
series of ANOVAs would not provide the benefits of MANOVA 
described elsewhere in the article. 
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perfect sphere. As the variables became more 
correlated, the axes would become more oblique, and 
the sphere would become more distorted and resemble 
something like a football. If two of the three dependent 
variables were perfectly correlated (i.e., r = + 1), then 
the graph would collapse into a two-dimensional graph 
like in Figure 3. A MANOVA with four or more 
dependent variables requires more than three 
dimensions and axes—something that most people 
have difficulty imagining visually, but which a 
computer can easily handle mathematically. 

 
Figure 3. Example of the logic of multivariate 
analysis of variance hypothesis testing for 
moderately correlated variables. 

The shaded area is the rejection region. 
 

Examining Combinations of Variables 

ANOVA and MANOVA also differ in that they 
investigate completely different empirical questions. 
Zientek and Thompson (2009, p. 345) explained that, “. 
. . two ANOVAs actually test the differences of the means on 
the observed or measured variables . . . whereas the MANOVA 
actually tests the differences of the mean of the DDA function 
scores” of the groups. In other words, MANOVA tests 
the differences between underlying unobserved latent 
variables (derived from the variables in the dataset), 
while ANOVA only tests differences among groups on 
an observed variable (Haase & Ellis, 1987; Huberty & 
Morris, 1989; Zientek & Thompson, 2009). MANOVA 
is therefore often more useful to social scientists than 
ANOVA because most topics they research are latent 
constructs that are not directly observable, such as 
beliefs and attitudes. With ANOVA it is assumed that 
these constructs are measured without error and with a 

single observed variable—an unrealistic assumption for 
many constructs in the behavioral sciences. Therefore, 
MANOVA is a statistical procedure that is more in 
accordance than ANOVA with behavioral scientists’ 
beliefs about the topics they study. 

Post Hoc Procedures 

Post hoc procedures are often necessary after the 
null hypothesis is rejected in an ANOVA (Thompson, 
2006) or a MANOVA (Stevens, 2002). This is because 
the null hypotheses for these procedures often do not 
provide researchers with all the information that they 
desire (Huberty & Morris, 1989; Thomas, 1992). For 
example, if the null hypothesis is rejected in an 
ANOVA with three or more groups, then the 
researcher knows that at least one group mean 
statistically differs from at least one other group mean. 
However, most researchers will be interested in 
learning which mean(s) differ from which other group 
mean(s). Many ANOVA post hoc tests have been 
invented to provide this information, although Tukey’s 
test is by far the most common test reported in the 
psychological literature (Warne et al., 2012). 

Just like ANOVA, MANOVA has post hoc 
procedures to determine why the null hypothesis was 
rejected. For MANOVA this is usually a DDA, which 
is a statistical procedure which creates a set of perfectly 
uncorrelated linear equations that together model the 
differences among groups in the MANOVA (Fish, 
1988; Stevens, 2002). The benefit of having 
uncorrelated equations from a DDA is that each 
function will provide unique information about the 
differences among groups, and the information can be 
combined in an additive way for easy interpretation.  

Unfortunately, most researchers who use 
MANOVA do not use DDA to interpret their 
MANOVA results (Huberty & Morris, 1989; Kieffer et 
al., 2001; Warne et al., 2012). This may be because 
when researchers use SPSS to conduct a MANOVA, 
the computer program automatically conducts an 
ANOVA for each dependent variable. However, SPSS 
does not automatically conduct a DDA when the null 
hypothesis for a MANOVA has been rejected, even 
though DDA is a more correct post hoc procedure. 

Zientek and Thompson (2009) explained that 
because MANOVA analyzes latent variables composed 
of observed variables and ANOVA is only concerned 
with observed variables, using ANOVA as a post hoc 
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procedure following an ANOVA is non-sensical (see 
also Kieffer et al., 2001). This is because ANOVA and 
MANOVA were developed to answer completely 
different empirical questions (Huberty & Morris, 1989). 
Indeed, Tonidandel and LeBreton (2013) explained 
that, . . . multivariate theories yield multivariate hypotheses 
which necessitate the use of multivariate statistics and 
multivariate interpretations of those statistics. By invoking 
univariate ANOVAs as follow-up tests to a significant 
MANOVA, researchers are essentially ignoring the multivariate 
nature of their theory and data. (p. 475)  

Moreover, Fish (1988) and Huberty and Morris 
(1989) showed that the same data can produce different 
results when analyzed using a MANOVA or a series of 
ANOVAs—a situation that could potentially be 
misleading to researchers who follow MANOVA with 
a series of post hoc ANOVAs. 

The purpose of the remainder of this article is to 
provide a real-life example of a MANOVA with a 
single nominal independent variable and two 
dependent variables and a post hoc DDA as a simple 
blueprint for future researchers who wish to use this 
procedure. By doing so, I hope to make conducting 
and interpreting MANOVA and DDA as easy as 
possible for readers. 

Conducting a MANOVA 

The example data in this study is taken from the 
National Longitudinal Study of Adolescent Health 
(Add Health), a longitudinal study of adolescent and 
adult development that started in the 1994-1995 school 
year when its participants were in grades 7-12. Data for 
this example were taken from a public use file of 
variables collected during the initial data collection 
period and downloaded from the Inter-University 
Consortium for Political and Social Research web site. 
For this example the only independent variable is 
grade, and the two dependent variables are participants’ 
responses to the questions (a) “In the last month, how 
often did you feel depressed or blue?” and (b) “In the 
last month, how often did you have trouble relaxing?” 
Both responses were recorded on a 5-point Likert scale 
(0 = Never, 1 = Rarely, 2 = Occasionally, 3 = Often, 
and 4 = Every day). For convenience these variables 
will be called “depression” and “anxiety,” respectively. 
As previous researchers have found that anxiety and 
depressive disorders are often comorbid (e.g., Mineka, 

Watson, & Clark, 1998), it is theoretically sound to 
conduct a MANOVA to investigate the relationship 
between grade and both outcomes at the same time. 
The preference of a MANOVA over a univariate test is 
further strengthened by the moderately strong 
correlation between depression and anxiety (r = .544, p 
< .001) in the dataset. The null hypothesis for this 
MANOVA is that the six independent variable groups 
are equal on both dependent variables. For a 
MANOVA with additional groups or more than two 
dependent variables, the null hypothesis would be that 
all groups are equal on all dependent variables (Stevens, 
2002). 

Table 1 shows descriptive statistics for the 
variables in the example data from the Add Health 
study. A MANOVA was conducted to determine the 
relationship between grade and the combined variables 
of depression and anxiety. The results from SPSS 19.0 
are shown in Table 2, which I modified slightly to make 
it easier to read.  

Readers will notice a few things about Table 2. 
First, there are two sections: intercept (containing four 
rows) and grade (containing another four rows). The 
intercept section of the table is necessary to scale the 
results and does not provide any substantive 
information for interpretation. The grade section, 
however, displays results from the hypothesis test. 
Second, there are four rows, each of which display four 
statistical test statistics: (a) Pillai’s Trace, (b) Wilks’ 
Lambda, (c) Hotelling’s Trace, and (d) Roy’s Largest 
Root. All four of these are test statistics for the same 
null hypothesis, although their formulas differ (Olson, 
1976). All four can be converted to an F-statistic, which 
can then be used to calculate a p-value, which are 
displayed in Table 2. 

Table 1. Descriptive Statistics of Variables Used in 
the Example MANOVA 

Grade n 
Depression Anxiety 

M SD M SD 

7 662 0.88 1.114 0.75 1.048 
8 664 1.08 1.188 0.80 1.058 
9 778 1.17 1.188 0.93 1.080 
10 817 1.27 1.232 0.96 1.109 
11 790 1.37 1.204 1.12 1.156 
12 673 1.34 1.140 1.10 1.105 

Note. Listwise deletion in all analyses, so all results are based 
on the 4,384 cases that had data on all three variables. 
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All four of the MANOVA test statistics for the 
Add Health data are statistically significant (p < .001). 
This indicates that the null hypothesis is rejected, and 
grade has a statistically significant relationship with the 
combined dependent variables of depression and 
anxiety. In many cases the results from the four 
statistical tests will be the same (O’Brien & Kaiser, 
1985). In fact, these statistics will always produce the 
same result when there are only two groups in the 
independent variable (Haase & Ellis, 1987; Huberty & 
Olejnik, 2006) or when there is a single dependent 
variable (because this simplifies the test to an ANOVA; 
see Olson, 1976). 

However, it is possible that the four statistical tests 
will produce contradictory results, with some statistics 
lacking statistical significance and others being 
statistically significant (Haase & Ellis, 1987). This is 
because the four tests differ in their statistical power, 
with Roy’s great root having the most power when 
dependent variables are highly correlated—possibly 
because they all represent a single construct—and the 
other three having the more power for more disparate 
outcomes (Huberty & Oljenik, 2006). Additionally, 
Pillai’s trace is highly robust to many violations of the 
assumptions of MANOVA (Olson, 1976). Regardless 
of the test statistic(s) that a researcher uses, he or she 
should explicitly report which test statistic(s) he or she 
has chosen and not merely state that the results are 
statistically significant (Haase & Ellis, 1987; Olson, 
1976). Readers can see that in this example all four test 
statistics provided evidence that the null hypothesis 
should be rejected, even though the values of the 
statistics and their degrees of freedom vary because of 
their varying formulas and theoretical distributions 
(Haase & Ellis, 1987). 

Table 2 contains additional information of note. 
First, the effect sizes (i.e., partial η2 values) are all either 
.011 and .021—indicating that grade does not have a 
particularly powerful statistical relationship with the 
dependent variables. Second, the noncentrality 
parameter for each test statistic is displayed in Table 2. 
This noncentrality parameter is a statistical parameter 
necessary to estimate a noncentral distribution that 
models the distribution of test statistics if the null 
hypothesis is not true (Steiger & Fouladi, 1997). When 
the noncentrality parameter is equal to zero, the null 
hypothesis perfectly fits the data and therefore should 
not be rejected. Therefore, it makes sense that all four 
test statistics have high noncentrality parameter values 
(between 91.939 and 99.112) in Table 2 because all test 
statistics suggest that the null hypothesis should be 
rejected, and each one has a very small p-value (p < 
.001). Finally, the column labeled “Observed Power” 
gives the a posteriori statistical power of the 
MANOVA design for each test statistic. The numbers 
in this column will always vary inversely with the 
corresponding p-value, so they provide no information 
beyond that provided by the p-values in the table 
(Hoenig & Heisey, 2001). 

Post Hoc DDA 

With the results of the MANOVA in Table 2 
showing that the null hypothesis should be rejected, it 
is necessary to conduct a post hoc DDA in order to 
determine the mathematical function(s) that distinguish 
the grade groups from one another on dependent 
variable scores. The number of functions that are 
created will vary, but the minimum will always be the 
number of dependent variables or the number of 
groups minus 1—whichever value is smaller (Haase & 

Table 2. Example MANOVA Results (Modified from SPSS Output) 

Effect Test Statistic Value F df Sig. (p) 
Partial 

η2 
Noncentrality 

Parameter 

Intercept Pillai’s Trace 0.533 2470.323 2, 4337 < .001 .533 4940.647 

 Wilks’ Lambda 0.467 2470.323 2, 4337 < .001 .533 4940.647 

 Hotelling’s Trace 1.139 2470.323 2, 4337 < .001 .533 4940.647 

 Roy’s Largest Root 1.139 2470.323 2, 4337 < .001 .533 4940.647 

Grade Pillai’s Trace 0.022 9.834 10, 8676 < .001 .011 98.340 

 Wilks’ Lambda 0.978 9.873 10, 8674 < .001 .011 98.726 

 Hotelling’s Trace 0.023 9.911 10, 8672 < .001 .011 99.112 

 Roy’s Largest Root 0.021 18.388 5, 4338 < .001 .021 91.939 
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Ellis, 1987; Stevens, 2002; Thomas, 1992). Therefore, 
in the Add Health example there will be two 
discriminant functions because there are two 
dependent variables. 

In SPSS, a descriptive discriminant analysis can be 
conducted through the “discriminant” tool. The 
computer program produces a table labeled “Wilks’ 
Lambda,” and displays the results of the significance 
test for the two discriminant functions. In this example 
the first discriminant function is statistically significant 
(p < .001), while the second is not (p = .125), despite 
the large sample size (n = 4,384). Therefore, it is not 
necessary to interpret the second discriminant function. 

SPSS displays a number of other tables that aid in 
the interpretation of discriminant functions, the two 
most important of which show the standardized 
discriminant coefficients (SDCs) and the structure 
coefficients for the discriminant functions. These tables 
are displayed in Table 3. The SDCs can be used to 
calculate a score for each subject for each discriminant 
function. Given the numbers in Table 3, the function 
score for the first function can be calculated as: 

DDA Score1 = .700Depression + .431Anxiety 

These SDC values are interpreted the same way as 
the standardized regression coefficients in a multiple 
regression (Stevens, 2002). Therefore, the .700 in the 
equation means that for every 1 standard deviation 
increase in examinees’ depression scores their DDA 
score is predicted to increase by .700 standard 
deviations if all other variables are held constant. More 
substantively, because discriminant functions maximize 
the differences among the grade groups, it can be seen 
that although both depression and anxiety contribute to 
group differences, depression shows more between-
group variation. This is supported by the data in Table 
1, which shows that from Grades 7 to 11 depression 
and anxiety scores increase steadily, although the 
changes in depression scores are more dramatic. These 
results also support studies showing that both anxiety 
disorders and depression often begin in adolescence 
(e.g., Cole, Peeke, Martin, Truglio, & Seroczynski, 
1998). 

However, it is important to recognize that the 
SDCs cannot indicate which variable is more 
“important” for distinguishing groups. The easiest way 
one can determine variable importance is by calculating 
a parallel discriminant ratio coefficient (DRC; Thomas,  

Table 3. Example Standardized Discriminant 
Coefficients and Structure Coefficients 
(Modified from SPSS Output) 

Standardized Discriminant Coefficientsa 
 Function 1 Function 2 
Depression .700 -.958 
Anxiety .431 1.105 

Structure Coefficientsb 
 Function 1 Function 2 
Depression .932 -.364 
Anxiety .808 .590 

Parallel Discriminant Ratio Coefficients 
 Function 1 Function 2 
Depression (.700)(.932) = 

.652 
(-.958)(-.364) = 

.349 
Anxiety (.431)(.808) = 

.348 
(1.105)(.590) = 

.652 
a
 SPSS displays this information in a table labeled 

“Standardized Canonical Discriminant Function 
Coefficients.” 
b
SPSS displays this information in a table labeled 

“Structure Matrix.” Note. Parallel DRCs should always add 
to 1.0 (Thomas & Zumbo, 1996), but do not in Function 
2 because of rounding. 

1992; Thomas & Zumbo, 1996), which requires the 
structure coefficients for the variables. The second 
section of Table 3 shows the SPSS output of the 
structure coefficients, which are the correlations 
between each observed variable and the DDA scores 
calculated from each discriminant function. This is 
analogous to structure coefficients in multiple 
regression, which are correlations between independent 
variables and predicted values for the dependent 
variable (Thompson, 2006). To calculate a parallel 
DRC, one must multiply each SDC with the 
corresponding structure coefficient (Thomas, 1992), as 
is demonstrated at the bottom of Table 3. For the first 
function the parallel DRCs are .652 for depression and 
.348 for anxiety—indicating that depression is clearly 
the more important variable of the two in 
distinguishing between independent variable groups in 
this example. 

Although parallel DRCs are highly useful, their 
interpretation may be complicated by the presence of a 
suppressor variable, which is a variable that has little 
correlation with a dependent variable but which can 
strengthen the relationship that other variables have 
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with a dependent variable and thereby improve model 
fit if included (Smith, Ager, & Williams, 1992; 
Thompson, 2006; Warne 2011). Because a suppressor 
variable and a useless variable will both have small 
parallel DRCs, it is often necessary to calculate a total 
DRC to determine if a suppressor variable is present 
using the following equation, adapted from Equation 
21 of Thomas and Zumbo (1996): 

In this equation, dfBetween and dfWithin  
degrees of freedom for the model’s between
within-group components, which are the same degrees 
of freedom as in an ANOVA for the same independent 
variable on a single dependent variable (Olson, 1976).
represents the same F-ratio for that variable, and
the discriminant function’s eigenvalue. All information 
needed to calculate a total DRC for each independent 
variable is available to a researcher in the SPSS output 
for a MANOVA and DDA. Calculating total DRCs is 
not necessary for this example because both the 
depression and anxiety variables have high enough 
parallel DRCs that both are clearly useful variables in 
the discriminant function, and neither is a plausible 
suppressor variable. 

Conclusion 

Although this MANOVA and its accompanying 
DDAs were simple, analyses with additional 
independent or dependent variables would not be 
much more complex. Regardless of the number of 
variables, interpreting the MANOVA is the same as 
interpreting Tables 2 and 3. More complex models 
could produce more than two DDA functions, but 
interpreting additional functions is the same as 
interpreting the two functions in the Add Health 
example. Moreover, with additional functions, SPSS 
often produces interesting figures that can show 
researchers the degree of overlap among groups and 
how different their average members are from one 
another. These figures can help researchers understand 
the discriminant functions and how the groups differ 
from one another. For example, Shea, Lubinski, and 
Benbow (2001, pp. 607-610) presented five graphs that 
efficiently showed in three dimensions the differences 
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for a MANOVA and DDA. Calculating total DRCs is 

ry for this example because both the 
depression and anxiety variables have high enough 
parallel DRCs that both are clearly useful variables in 
the discriminant function, and neither is a plausible 

s accompanying 
DDAs were simple, analyses with additional 
independent or dependent variables would not be 
much more complex. Regardless of the number of 
variables, interpreting the MANOVA is the same as 
interpreting Tables 2 and 3. More complex models 

d produce more than two DDA functions, but 
interpreting additional functions is the same as 
interpreting the two functions in the Add Health 
example. Moreover, with additional functions, SPSS 
often produces interesting figures that can show 

degree of overlap among groups and 
how different their average members are from one 
another. These figures can help researchers understand 
the discriminant functions and how the groups differ 
from one another. For example, Shea, Lubinski, and 

610) presented five graphs that 
efficiently showed in three dimensions the differences 

among average members of their DDA groups, which 
ranged in number from four to eight.

This article on MANOVA and DDA was designed 
to help social scientists better use and understand one 
of the most common multivariate statistical methods in 
the published literature. I hope that researchers will use 
the information in this article to (a) understand the 
nature of MANOVA and DDA, (b) serve as a guide to 
correctly performing their own MANOVA and post 
hoc DDA analyses, and (c) aid in the interpretation of 
their own data and of other studies that use these 
methods. Researchers in the behavioral sciences should 
use this powerful multivariate analysis method more 
often in order to take advantage of its benefits. I also 
encourage researchers to investigate other post hoc 
procedures, such as dominance analysis (Azen & 
Budescu, 2003, 2006), which has advantages over 
DDA. However, other methods are more complex and 
difficult to perform than a DDA, and many researchers 
may not find the advantages worth the extra time and 
expertise needed to use them. Therefore, I believe that 
DDA is often an expedient choice for researchers who 
wish to understand their multivariate analyses. 
Regardless of the choice of post hoc method, 
researchers should completely avoid using univariate 
methods after rejecting a multivariate null hypothesis 
(Huberty & Morris, 1989; Kieffer et al., 2001; 
Tonidandel & LeBreton, 2013; Zientek & Thompson, 
2009). 
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