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Abstract. Seshadri constants express the so called local positivity of a line bundle on
a projective variety. They were introduced in [Dem92] by Demailly. The original hope
of using them towards a proof of the Fujita conjecture was too optimistic, but it soon
became clear that they are interesting invariants quite in their own right. Lazarsfeld’s
book [PAG] contains a whole chapter devoted to local positivity and serves as a very
enjoyable introduction to Seshadri constants. Since this book has appeared, the subject

witnessed quite a bit of development. It is the aim of these notes to give an account of
recent progress as well as to discuss many open questions and provide some examples.

The idea of writing these notes occurred during the workshop on Seshadri constants held
in Essen 12-15 February 2008.
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1. Definitions

We begin by recalling the Seshadri criterion for ampleness [Har70, Theorem 1.7], as
this is where the whole story begins.

Theorem 1.1 (Seshadri criterion). Let X be a smooth projective variety and L be a line
bundle on X. Then L is ample if and only if there exists a positive number ε such that for
all points x on X and all (irreducible) curves C passing through x one has

L · C > ε · multxC.
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Remark 1.2 (Insufficiency of positive intersections with curves). It is not enough to
assume merely that the intersection of L with every curve is positive. In other words it
is not enough to assume that L restricts to an ample line bundle on every curve C ⊂ X.
Counterexamples were constructed by Mumford and Ramanujam [Har70, Examples 10.6
and 10.8].

It is natural to ask for optimal numbers ε in Theorem 1.1. This leads to the following
definition due to Demailly [Dem92].

Definition 1.3 (Seshadri constant at a point). Let X be a smooth projective variety
and L a nef line bundle on X. For a fixed point x ∈ X the real number

ε(X,L; x) := inf
L · C

multxC

is the Seshadri constant of L at x (the infimum being taken over all irreducible curves C
passing through x).

Definition 1.4 (Seshadri curve). We say that a curve C is a Seshadri curve of L at x
if C computes ε(X, L; x), i.e., if

ε(X, L; x) =
L · C

multxC
.

It is not known if Seshadri curves exist in general.
Definition 1.3 extends naturally so that we can define Seshadri constants for an arbitrary

subscheme Z ⊂ X. To this end let f : Y −→ X be the blowup of X along Z with the
exceptional divisor E.

Definition 1.5 (Seshadri constant at a subscheme). The Seshadri constant of L at Z
is the real number

ε(X, L; Z) := sup {λ : f∗L − λE is ample on Y } .(Eqn 1.1)

Remark 1.6. If Z is a point, then both definitions agree. The argument is given in
[PAG, Proposition 5.1.5].

Remark 1.7 (Relation to the s-invariant). Note that ε(X, L; Z) is the reciprocal of
the s-invariant sL(IZ) of the ideal sheaf IZ of Z with respect to L as defined in [PAG,
Definition 5.4.1]

Definition 1.8 (Multi-point Seshadri constant). If Z is a reduced subscheme supported
at r distinct points x1, . . . , xr of X, then the number ε(X, L; x1, . . . , xr) is called the multi-
point Seshadri constant of L at the r-tuple of points x1, . . . , xr.

There is yet another variant of Definition 1.3 which instead of curves takes into account
higher dimensional subvarieties of X passing through a given point x ∈ X.

Definition 1.9 (Seshadri constants via higher dimensional subvarieties). Let X be a
smooth projective variety, L a nef line bundle on X and x ∈ X a point. The real number

εd(X,L; x) := inf

(
Ld · V

multxV

) 1

d

is the d-dimensional Seshadri constant of L at x (the infimum being taken over all subvari-
eties V ⊂ X of dimension d such that x ∈ V ).

Remark 1.10. Note that the above definition agrees for d = 1 with Definition 1.3, so
that ε(X, L; x) = ε1(X, L; x).

In the above definitions we suppress the variety X if it is clear from the context where
the Seshadri constant is computed, i.e., we write ε(L; x) = ε(X, L; x) etc.

There are another three interesting numbers which can be defined taking infimums over
various spaces of parameters.

Definition 1.11 (Seshadri constants of a line bundle, a point and a variety).



A PRIMER ON SESHADRI CONSTANTS 3

(a) The number
ε(X, L) := inf

x∈X
ε(X, L; x)

is the Seshadri constant of the line bundle L.
(b) The number

ε(X; x) := inf
L ample

ε(X,L; x)

is the Seshadri constant of the point x ∈ X.
(c) The number

ε(X) := inf
L ample

ε(X, L) = inf
x∈X

ε(X; x)

is the Seshadri constant of the variety X.

Remark 1.12 (Reformulation of Seshadri criterion). Theorem 1.1 asserts now simply
that a line bundle L is ample if and only if its Seshadri constant is positive: ε(X, L) > 0.

So far we defined Seshadri constants for ample or at least nef line bundles. Recently Ein,
Lazarsfeld, Mustata, Nakamaye and Popa [RVBLLS] found a meaningful way to extend
the notion of Seshadri constants to big line bundles.

To begin with, we recall the notion of augmented base locus. For this purpose it is
convenient to pass to Q-divisors.

Definition 1.13 (Augmented base locus). Let D be a Q-divisor. The augmented base
locus of D is

B+(D) :=
⋂

A

SB(D − A),

where the intersection is taken over all sufficiently small ample Q-divisors A and SB(D−A)
is the stable base locus of D−A, i.e., the common base locus of all linear series |m(D−A)|
for all sufficiently divisible m. (In fact B+(D) = SB(D−A) for any sufficiently small ample
A.)

Remark 1.14 (Numerical nature of augmented base loci). Contrary to the stable base
loci, the augmented base loci depend only on the numerical class of D [AIBL06, Proposition
1.4].

Intuitively, the augmented base locus of a line bundle L is the locus where L has no
local positivity. This is reflected by the following definition.

Definition 1.15 (Moving Seshadri constant). Let X be a smooth projective variety
and L = OX(D) a line bundle on X. The real number

εmov(L; x) :=

{
supf∗D=A+E ε(A; x) if x is not in B+(L),

0 otherwise.

is the moving Seshadri constant of L at x. The supremum in the definition is taken over
all projective morphisms f : X ′ 7→ X, with X ′ smooth, which are isomorphism over a
neighborhood of x and all decompositions f∗(D) = A + E such that E is an effective Q-
divisors and A = f∗(D) − E is ample.

Note that if L is not big, then εmov(L; x) = 0 for every point x ∈ X, so the moving
Seshadri constants are meaningful for big divisors only.

Remark 1.16 (Consistency of definitions). If L is nef, then the above definition agrees
with Definition 1.3. One can also state the other definitions of this section in the moving
context. This is left to the reader.

We conclude with yet another remark relating moving Seshadri constants to Zariski
decompositions on surfaces. The definition of the Zariski decomposition is provided by the
following theorem, see [Zar62] and [Bau08].

Theorem 1.17 (Zariski decomposition). Let D be an effective Q-divisor on a smooth
projective surface X. Then there are uniquely determined effective (possibly zero) Q-divisors
P and N with D = P + N such that:
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(i) P is nef ;
(ii) N is zero or has negative definite intersection matrix ;

(iii) P · C = 0 for every irreducible component C of N .

Remark 1.18 (Moving Seshadri constants and Zariski decompositions). Let L = OX(D)
be a big line bundle on a smooth projective surface X and let D = P + N be the Zariski
decomposition of D, then

εmov(L; x) = ε(P ; x) .

Proof. First of all recall that one has

(Eqn 1.2) H0(mL) = H0(mP )

for all m sufficiently divisible. Then (Eqn 2.2) relates ε(P ; x) to the number of jets gener-
ated asymptotically by P at x. The same relation holds for moving Seshadri constants by
[RVBLLS, Proposition 6.6]. Taking (Eqn 1.2) into account we have

εmov(L; x) = sup
m

s(mL, x)

m
= sup

m

s(mP, x)

m
= ε(P ; x).

�

2. Basic properties

2.1. Upper bounds and submaximal curves. Since Seshadri constants are in par-
ticular defined by a nefness condition, it is easy to come up with an upper bound using
Kleiman’s criterion [PAG, Theorem 1.4.9]. For 0-dimensional reduced subschemes we have
the following result.

Proposition 2.1.1 (Upper bounds). Let X be a smooth projective variety of dimension
n and L a nef line bundle on X. Let x1, . . . , xr be r distinct points on X, then

ε(X, L; x1, . . . , xr) 6
n

√
Ln

r
.

In particular for a single point x we always have

ε(X,L; x) 6
n
√

Ln.

Proof. Let f : Y −→ X be the blowup x1, . . . , xr. Then the exceptional divisor
E = E1 + · · · + Er is the sum of disjoint exceptional divisors over each of the points. By
(Eqn 1.1) we must have (f∗L − ε(X, L; x1, . . . , xr)E)n > 0, and the claim follows. �

The above proposition leads in a natural manner to the following definition.

Definition 2.1.2 (Submaximal Seshadri constants). We say that the Seshadri constant
ε(X,L; x) is submaximal if the strict inequality holds

ε(X, L; x) <
n
√

Ln .

The above definition is paralleled by the following one.

Definition 2.1.3 (Submaximal curves). Let X be a smooth projective surface and L
an ample line bundle on X. We say that C ⊂ X is a submaximal curve (at x ∈ X with
respect to L) if

L · C
multxC

<
√

L2 .

If only the weak inequality holds for C, then we call C a weakly-submaximal curve.

Remark 2.1.4. For surfaces submaximal Seshadri constants are always computed by
Seshadri curves, see [BauSze08, Proposition 1.1]. In particular they are rational numbers.

In general we have the following restriction on possible values of Seshadri constants
[Ste98, Prop. 4], which is a direct consequence of the Nakai-Moishezon criterion for R-
divisors [CamPet90].
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Theorem 2.1.5 (Submaximal Seshadri constants are roots). Let X be an n-dimensional
smooth projective variety, L an ample line bundle on X and x a point of X.

If ε(L, x) is submaximal, that is, ε(L, x) < n
√

Ln, then it is a d-th root of a rational
number, for some d with 1 6 d 6 n − 1.

In particular, it might happen that a Seshadri constant is computed by a higher di-
mensional subscheme. It is interesting to note that d-dimensional Seshadri constants are
partially ordered [PAG, Proposition 5.1.9].

Proposition 2.1.6 (Relation between d-dimensional Seshadri constants). For a line
bundle L on a smooth projective variety X of dimension n, a point x ∈ X and an integer d
with 1 6 d 6 n we have

ε(L; x) 6 εd(L; x).

Note that for d we just recover the bound from Proposition 2.1.1.
Recently Ross and Roé [RosRoe08, Remark 1.3] have raised an interesting question if

εd1
(L; x) 6 εd2

(L; x)

for all d1 6 d2 (and the analogous version in the multi-point setting).

2.2. Lower bounds. Now we turn our attention to lower bounds. Extrapolating on
Definition 1.11, one could hope that yet another infimum can be taken: For a positive integer
n define

ε(n) := inf ε(X),

where the infimum is taken this time over all smooth projective varieties of dimension n.
However the numbers ε(n) always equal zero. Miranda (see [PAG, Example 5.2.1]) con-
structed a sequence of examples of smooth surfaces Xn, ample line bundles Ln on Xn and
points xn ∈ Xn such that

lim
n→∞

ε(Xn, Ln; xn) = 0.

Miranda’s construction was generalized to arbitrary dimension by Viehweg (see [PAG, Ex-
ample 5.2.2]). In these examples only rational varieties were used but it was quickly realized
in [Bau99, Proposition 3.3] that the same phenomenon happens on suitable blow ups of
arbitrary varieties. Note that in the above sequence it is necessary to change the underlying
variety all the time. It is natural to ask if one could realize the sequence (Ln, xn) as above
on a single variety X, i.e., to raise the following problems.

Question 2.2.1 (Existence of a lower bound on a fixed variety).

(a) Can it happen that ε(X) = 0?
(b) If not, is it possible to compute a lower bound in terms of geometric invariants of

X?

This question was asked already in the pioneering paper of Demailly [Dem92, Question
6.9]. Up to now, we don’t know. However there is one obvious instance in which there is an
affirmative answer to Question 2.2.1(a), namely if the Picard number ρ(X) is equal to 1. In
case of surfaces there is also a sharp answer to Question 2.2.1(b). We come back to this in
Theorem 6.1.4.

Another class of varieties, where answers to Question 2.2.1 are known, is constituted by
abelian varieties. First of all, since on an abelian variety one can translate divisors around
without changing their numerical class, it is clear that one has the lower bound

ε(X, L) > 1(Eqn 2.1)

for any ample line bundle L on an abelian variety X. A beautiful result of Nakamaye
[Nak96] gives precise characterization of when there is equality in (Eqn 2.1).

Theorem 2.2.2 (Seshadri constants on abelian varieties). Let (X, L) be a polarized
abelian variety. Then ε(L) = 1 if and only if X splits off an elliptic curve and the polarization
splits as well, i.e.,

X = X ′ × E and L = π∗
1(L′) ⊗ π∗

2(LE),
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where E is an elliptic curve, X ′ an abelian variety, LE , L′ are ample line bundles on E and
X ′ respectively and πi are projections in the product.

Furthermore, a lower bound for the Seshadri constant ε(X) of a variety X can always
be given, provided one has good control over base point freeness or very ampleness of ample
line bundles on X. Specifically we have the following fact [PAG, Example 5.1.18].

Proposition 2.2.3 (Lower bound for spanned line bundles). Let L be an ample and
spanned line bundle on a smooth projective variety X, then

ε(X, L; x) > 1

for all points x ∈ X.

This proposition generalizes easily to the case when L generates s-jets at a point, i.e.,
when the evaluation mapping

H0(X, L) −→ H0(X, L ⊗OX/Is+1
x )

is surjective. (Here Ix denotes the ideal sheaf of a point x ∈ X.)

Proposition 2.2.4 (Lower bound under generation of higher jets). Let L be an ample
line bundle generating s-jets (for s > 1) at a point x of a smooth projective variety X. Then

ε(X,L; x) > s.

In particular, if L is very ample, then ε(L; x) > 1 for all points x ∈ X.

The above proposition is a special case of the following characterization of Seshadri
constants via generation of jets. Denote for k > 1 by s(kL, x) the maximal integer s such
that the linear series |kL| generates s-jets at x. Then one has for L nef,

(Eqn 2.2) ε(L; x) = sup
s(kL, x)

k

(see [Dem92, 6.3]). If L is ample, then the supremum is in fact a limit:

ε(L; x) = lim
k→∞

s(kL, x)

k
.

Whereas Question 2.2.1 has remained unanswered for several years, one can raise a
seemingly easier problem concerning the Seshadri constant at a fixed point x ∈ X.

Question 2.2.5 (Existence of a lower bound at a fixed point). Can it happen that
ε(X, x) = 0?

As of this writing we don’t know the answer, not even for surfaces.

2.2.6 (Seshadri function). Definition 1.15 generalizes easily to R-divisors and it is clear
that it depends only on the numerical class of D. So, we can consider Seshadri constants for
elements of the Néron-Severi space N1(X)R. It is then reasonable to ask about regularity
properties of the mapping

εmov(X, ·; ·) : N1(X)R × X ∋ (L, x) −→ εmov(X,L; x) ∈ R.

It turns out that this mapping is continuous with respect to the first variable [RVBLLS,
Theorem 6.2] and lower semi-continuous with respect to the second variable (in the topology
which closed sets are countable unions of Zariski closed sets) [PAG, Example 5.1.11].

3. Projective spaces

The case of P2 polarized by OP2(1) attracts most of the attention devoted to multiple
point Seshadri constants. Thanks to a good interpretation in terms of polynomials the
problem of estimating Seshadri constants is well tractable by computer calculations. This,
together with the motivation to handle the still open Nagata conjecture, has caused a lot
of effort to find lower estimates for general multiple point Seshadri constants on P2 which
are as precise as possible. In many cases analogous methods can also be applied in higher
dimensions.
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For now the best estimates are obtained by M. Dumnicki using a combination of two
methods contained in [HarRoe03b] and [Dum07]. Both methods appear in a different
context and complement each other. The first gives us a relatively small family of all
possible divisor classes that might contain curves which compute the Seshadri constants,
whereas the second enables us to check if a linear system is empty.

We need the following generalization of Definition 2.1.3.

Definition 3.1 (Multi-point weakly-submaximal curve). Let X be a smooth projective
variety of dimension n and L an ample line bundle on X. Let x1, . . . , xr ∈ X be r arbitrary
distinct points. We say that a curve C is weakly-submaximal for L with respect to these
points if

L · C∑
multxi

(C)
6

n

√
Ln

r
.

In the view of Proposition 2.1.1 weakly-submaximal curves are important because they
contribute substantially to the infimum in Definition 1.3. It is not known in general if
weakly-submaximal curves exist. In any case if there are no weakly-submaximal curves for
L with respect to the given points, then the Seshadri constant computed in these points
equals n

√
Ln/r.

The following theorem [HarRoe03b] restricts the set of candidates for divisor classes
of weakly-submaximal curves in P2 under the assumption that the points x1, . . . , xr are in
general position.

Theorem 3.2 (Restrictions on weakly-submaximal curves). Let X be obtained by blow-
ing up r > 10 general points p1, . . . , pr ∈ P2 and let L be the pull-back of the hyperplane
bundle on P2. If H is the class of a proper transform to X of a weakly-submaximal curve,
then there exist integers t,m > 0 and k such that:

(a) H = tL − m(E1 + · · · + Er) − kEi ;
(b) −m < k and k2 < r

r−1 min{m, m + k} ;

(c)





m2r + 2mk + max{k2 − m, 0)} 6 t2 6 m2r + 2mk + k2

r , when k > 0;
m2r − m 6 t2 < m2r, when k = 0;

m2r + 2mk + max{k2 − (m + k), 0)} 6 t2 6 m2r + 2mk + k2

r
, when k < 0;

(d) t2 − (m + k)2 − (r − 1)m2 − 3t + mr + k > −2.

A potential curve C from the linear system on P2 corresponding to numbers t, m, k would
give the ratio L·C∑

r
i=1

multxi
(C) 6 t

mr+k
. Thus there is an infinite list of linear systems on P2,

which might contain among their elements weakly-submaximal curves. In order to give a
lower estimate α for the multi-point Seshadri constant in r general points, we need to prove
that these linear systems connected with the numbers (t, m, k) are empty for t

mr+k
< α.

Observe that for each α <
√

1
r

there is only a finite set of systems to check.

The emptiness of the above systems is proved applying methods of [Dum07]. More
precisely one uses the algorithm called NSsplit, which has proved up to date to be the
most efficient for checking non-speciality (in particular emptiness) of linear systems defined
on P2 by vanishing with given multiplicities at a number of points in very general position.
As this is not directly connected with the study of Seshadri constants we omit details and
refer to the original paper for a precise description of the algorithm.

Recall that for all r which are squares, the Nagata conjecture holds and thus gives the
exact value of the Seshadri constant. For integers r with 10 6 r 6 32 which are not squares,
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using the above method M. Dumnicki obtained the following table of estimates:

r lower approximate non-checked conjectured

estimate value system approximate value

10 313
990 ≃ 0.3161616162 L(313; 9910) ≃ 0.3162277660

11 242
803 ≃ 0.3013698630 L(242; 7311) ≃ 0.3015113446

12 277
960 ≃ 0.2885416667 L(277; 8012) ≃ 0.2886751346

13 602
2171 ≃ 0.2772915707 L(602; 16713) ≃ 0.2773500981

14 389
1456 ≃ 0.2671703297 L(389; 10414) ≃ 0.2672612419

15 484
1875 ≃ 0.2581333333 L(484; 12515) ≃ 0.2581988897

17 305
1258 ≃ 0.2424483307 L(305; 7417) ≃ 0.2425356250

18 369
1566 ≃ 0.2356321839 L(369; 8718) ≃ 0.2357022604

19 741
3230 ≃ 0.2294117647 L(741; 17019) ≃ 0.2294157339

20 796
3560 ≃ 0.2235955056 L(796; 17820) ≃ 0.2236067977

21 1865
8547 ≃ 0.2182052182 L(1865; 40721) ≃ 0.2182178902

22 924
4334 ≃ 0.2131979695 L(924; 19722) ≃ 0.2132007164

23 585
2806 ≃ 0.2084818247 L(585; 12223) ≃ 0.2085144141

24 965
4728 ≃ 0.2041032149 L(965; 19724) ≃ 0.2041241452

26 622
3172 ≃ 0.1960907945 L(622; 12226) ≃ 0.1961161351

27 956
4968 ≃ 0.1924315620 L(956; 18427) ≃ 0.1924500897

28 2434
12880 ≃ 0.1889751553 L(2434; 46028) ≃ 0.1889822365

29 2364
12731 ≃ 0.1856884769 L(2364; 43929) ≃ 0.1856953382

30 2388
13080 ≃ 0.1825688073 L(2388; 43630) ≃ 0.1825741858

31 10729
59737 ≃ 0.1796039306 L(10729; 192731) ≃ 0.1796053020

32 1137
6432 ≃ 0.1767723881 L(1137; 20132) ≃ 0.1767766953

In the fourth column there is included the list of systems not yet proven to be empty.
The notation L(d, mr) stands for the system of curves of degree d passing with multiplicity
m through each of r general points.

4. Toric varieties

Toric varieties carry strong local constraints, due to the torus action. The behavior of
Seshadri constants at a given number of points is bounded by the maximal generation of
jets at that number of points. Equivalently, the Seshadri criterion of ampleness, Theorem
1.1, generalizes to a criterion on the generation of multiple higher order jets. Moreover,
estimates on local positivity can be explained by properties of an associated convex integral
polytope.

Some of the results reported in this section are contained in [DiR99] to which we refer
for more details regarding proofs. Some background on toric geometry will be explained,
but we refer to [Ful93] for more.

4.1. Toric Varieties and polytopes. Let X be a non-singular toric variety of dimen-
sion n and L be an ample line bundle on X. We identify the torus T , acting on X, with
N ⊗ C, for an n-dimensional lattice N ∼= Zn. The geometry of X is completely described
by a fan ∆ ⊂ N . In particular the n-dimensional cones in the fan, σ1, ..., σl, define affine
patches:

X =

l⋃

i=1

Uσi
.
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Since X is non-singular, every cone σ ∈ ∆ is given by σj =
∑n

i=1 R+ni, where the {ni} form
a lattice basis for N . Let ∆(s) denote the set of cones of ∆ of dimension s. Every ni ∈ ∆(1)
is associated to a divisor Di.

The Picard group of X has finite rank and it is generated by the divisors Di:

Pic(X) =

d⊕

i=1

Z < Di > .

Hence we can write L =
∑d

i=1 aiDi.
The pair (X, L) defines a convex, n-dimensional, integral polytope in the lattice M dual

to N :

P = P(X,L) = {v ∈ M | < v, ni >> ai}.
We will denote by P (s) the set of faces of P of dimension s. In particular P (0) is the set of
vertices and P (n− 1) is the set of facets. We denote by |F | the number of lattice points on
the face F . There is the following one-to-one correspondence:

σ ∈ ∆(n) ⇔ v(σ) ∈ P (0) ⇔ x(σ) fixed point
ni ∈ ∆(1) ⇔ Fi ∈ P (n − 1) ⇔ Di invariant divisors

ρ ∈ ∆(n − 1) ⇔ eρ ∈ P (1) ⇔ Cρ invariant curve

Moreover Cρ
∼= P1 for every ρ ∈ ∆(n − 1).

Recall also that the toric variety X being non-singular is equivalent to the polytope P
being Delzant, i.e., satisfying the following two properties:

• there are exactly n edges originating from each vertex;
• for each vertex, the first integer points on the edges form a lattice basis.

By the length of an edge eρ we mean |eρ| − 1.

Recall that H0(X, L) ∼= ⊕|P∩M |
1 C. A basis for H0(X, L) is denoted by {s(m)}m∈P∩M .

4.2. Torus action and Seshadri constants. Seshadri constants on non-singular toric
varieties are particularly easy to estimate because of an explicit criterion for the generation
of k-jets.

Proposition 2.2.4 tells us that as soon as we are able to estimate the highest degree of
jets generated by all multiples of L we can compute the Seshadri constant of L at any point
x ∈ X.

We begin by showing that the generation of jets at the fixed points is detected by the
size of the associated polytope.

Lemma 4.2.1 (Generation of jets on toric varieties). Let x(σ) be a point fixed by the
torus action. A line bundle L generates k-jets and not (k + 1)-jets at x(σ), if and only if all
the edges of P originating from x(σ) have length at least k, and there is at least one edge of
length k.

Proof. Let x(σ) be a fixed point. We can choose local coordinates (x1, ..., xn), in the
affine patch Uσ

∼= Cn such that x(σ) = 0. After choosing the lattice basis (m1, ...,mn), given
by he first lattice points on the edges from x(σ) the map

ϕx(σ) : H0(X,L) → H0(L ⊗OX/mk+1
x(σ))

is defined by

s(m =
∑

bimi) 7→ (Πxbi

i |x=0, . . . ,
∂Πxbi

i

∂xi

|x=0, . . . ,
∂kΠxbi

i

∂k1xi1 . . . ∂kj xij

|x=0, . . .).

This map is indeed surjective if and only if, in the given basis, (b1, ..., bn) ∈ P ∩ M for∑
bi = k. By convexity this is equivalent to the length of the edges of P originating from

x(σ) being at least k. �

Observing that PtL = tP , the above criterion gives the exact value of Seshadri constants
at the fixed points. Let

s(P, σ) = minv(σ)∈eρ
{|eρ| − 1}.
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Corollary 4.2.2 (Seshadri constants at torus fixed points).

ε(L, x(σ)) = s(P, σ).

Proof. Theorem 4.2.1 gives that kL generates exactly ks(P, σ)-jets at x(σ). Proposi-
tion 2.2.4 gives then that ε(L, x(σ)) = s(P, σ). �

Using this criterion we cannot give an exact estimate at every point in X, but we can
conclude that toric varieties admit a converse of Proposition 2.2.4, which can be interpreted
combinatorially via the associated polytope.

Theorem 4.2.3 (A jet generation criterion). A line bundle L generates k-jets at every
point x ∈ X if and only if all the edges of P originating from v(σ) have length at least k,
for all vertices v(σ) ∈ P (0).

Proof. Since the map ϕx : H0(X, L) → H0(L/mk+1
x ) is equivariant, the subset

C = {x ∈ X |Coker(ϕx) 6= ∅}
is an invariant closed subset of X, hence it is proper.

A line bundle L fails to generate k-jets on X if and only if there is an x ∈ X such that
Coker(ϕx) 6= ∅. In this case C 6= ∅ and thus, by the Borel fixed point theorem CT 6= ∅,
where CT denotes the set of fixed points in C. We conclude that L fails to generate k-jets
on X if and only L fails to generate k-jets at some fixed point x(σ) ∈ X. Lemma 4.2.1
implies the assertion. �

Corollary 4.2.4 (Higher order Seshadri criterion). The Seshadri constant satisfies
ε(L) > s if and only if all the edges of P originating from v(σ) have length at least s, for all
vertices v(σ) ∈ P (0).

Proof. If the edges of P originating from v(σ) have length at least k, for all vertices
v(σ) ∈ P (0), then the line bundle kL is ks-jet ample for all s > 1, at all points x ∈ X.
Proposition 2.2.4 gives then ε(L) > s.

If ε(L) > s, then ε(L, x(σ)) > s, for each fixed point x(σ). It follows that, for all (n−1)
dimensional cones ρ in σ,

L · Cρ > s · m(Cρ) > s,

because mx(σ)(Cρ) = 1.
The property L · Cρ > s for every ρ ⊂ σ and for all σ ∈ ∆(n) is equivalent to the edges

of P originating from v(σ) having length at least s, for all vertices v(σ) ∈ P (0), see [DiR99,
3.5]. �

We easily conclude that:

Corollary 4.2.5 (Global Seshadri constants are integers). ε(L) = minσ∈∆s(P, σ). In
particular ε(L) is always an integer.

Example 4.2.6. The polarized variety associated to the polytope

1 1

1

1 1

1

[Fig. 1]

is (X, L) = (BlP1,P2,P3
(P2), π∗(OP2(3)−E1 −E2 −E3)), where π is the blow up of P2 at the

three points fixed by the torus action and Ei are the corresponding exceptional divisors. We
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see that s(P, σ) = 1 at all vertices, which shows that ε(L, x(σ)) = 1 at the six fixed points.
A local calculation shows that

ε(L, x) = 2 for all x ∈ X \ ∪ρ∈∆(1)Cρ ;
ε(L, x) = 1 for all x ∈ ∪ρ∈∆(1)Cρ ;
ε(L) = 1 .

5. Slope stability and Seshadri constants

In [RosTho07], Ross and Thomas studied various notions of stability for polarized
varieties, each of which leads to a concept of slope for varieties and subschemes. Our
purpose in this section is to briefly touch upon this circle of ideas, and to see how Seshadri
constants enter the picture. In order to be as specific as possible, we restrict attention to
the concept of slope stability ; by way of example we present a result on exceptional divisors
of high genus from [PanRos07].

Slope of a polarized variety. Let X be a smooth projective variety and let L be an ample
line bundle on X. We consider the Hilbert polynomial

P (k) = χ(kL) = a0k
n + a1k

n−1 + O(kn−2)

and define the slope of (X, L) to be the rational number

µ(X, L) =
a1

a0
.

In terms of intersection numbers, we have by Riemann-Roch a0 = 1
n!L

n and a1 = − 1
2(n−1)!KX ·

Ln−1, and therefore

(Eqn 5.1) µ(X, L) = −nKX · Ln−1

2Ln
.

Slope of a subscheme. Consider next a proper closed subscheme Z ⊂ X. On the blowup
f : Y → X along Z with the exceptional divisor E, the Q-divisor f∗L − xE is ample for
0 < x < ε(L, Z). Here ε(L, Z) is the Seshadri constant of L along Z (see Definition 1.5).
There are polynomials bi(x) such that

χ(k(f∗L − xE)) = b0(x)kn + b1(x)kn−1 + O(kn−2) for k ≫ 0 with kx ∈ N.

One now sets ãi(x) = ai − bi(x) and defines the slope of Z with respect to a given real
number c (and with respect to the polarization L) to be

µc(OZ , L) =

∫ c

0
[ã1(x) + 1

2
d
dx

ã0(x)] dx∫ c

0
ã0(x) dx

.

When Z is a divisor on a surface, then by Riemann-Roch one has

(Eqn 5.2) µc(OZ , L) =
3(2L · Z − c(KX · Z + Z2))

2c(3L · Z − cZ2)
.

Slope stability. One says that (X, L) is slope semistable with respect to Z, if

µ(X, L) 6 µc(OZ , L) for 0 < c 6 ε(L, Z).

In the alternative case, one says that Z destabilizes (X,L). (We will see below that in order
to show that a certain subscheme is destabilizing, the crucial point is to find an appropriate
c in the range that is determined by the Seshadri constant of Z.) One checks that if the
condition of semistability is satisfied, then it is also satisfied for mL instead of L. So the
notion extends to Q-divisors.

Remark 5.1. The condition that a certain subscheme Z destabilizes (X,L) may be
seen as a bound on the Seshadri constant ε(L, Z): For instance, when X is a surface, then
by (Eqn 5.1) and (Eqn 5.2) a divisor Z destabilizes (X, L) iff the inequality

−KX · L
L2

>
3(2L · Z − c(KX · Z + Z2))

2c(3L · Z − cZ2)
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holds for some number c with 0 < c < ε(L, Z). And the latter condition means that ε(L, Z)
is bigger than the smallest root of a quadratic polynomial in c.

Interest in slope stability stems in part from the fact that it gives a concrete obstruction
to other geometric conditions – for instance it is implied by the existence of constant scalar
curvature Kähler metrics (see [RosTho06]). It is therefore natural to ask which varieties
are slope stable, and to study the geometry of destabilizing subschemes. For the surface
case, Panov and Ross have addressed this problem in [PanRos07]. They show that if a
polarized surface (X, L) is slope unstable, then

• there is a divisor D on X such that D destabilizes (X, L), and
• if a divisor D destabilizes (X,L), then D is not nef. If in addition X has non-

negative Kodaira dimension, then D2 < 0.

In the other direction, they show

Theorem 5.2. Let X be a smooth projective surface containing an effective divisor D
with pa(D) > 2 whose intersection matrix is negative definite. Then there is a polarization
L on X such that (X, L) is slope unstable.

Note that the theorem does not claim that the given divisor destabilizes. As the proof
below shows, it is rather the numerical cycle of D that is claimed to destabilize. (Recall that
the numerical cycle of a divisor D =

∑
i diDi – also called fundamental cycle in the literature

– is the smallest non-zero effective (integral) divisor D′ =
∑

i d′iDi such that D′ ·Di 6 0 for
all i. For its existence and uniqueness see [Rei97, Sect. 4.5].)

Proof. Write D =
∑m

i=1 diDi with irreducible divisors Di and integers di > 0. One
reduces first to the case where

(Eqn 5.3) D · Di 6 0 for i = 1, . . . ,m.

To get (Eqn 5.3), replace D by its numerical cycle D′. Then work by Artin [Art66], Laufer
[Lau77], and Némethi [Nem99] implies that the inequality pa(D′) > 2 follows from the
hypothesis pa(D) > 2.

Assuming now (Eqn 5.3), we fix an ample divisor H and we construct a divisor

L0 := H +
∑

i

qiDi

with rational coefficients qi such that L0 · Di = 0 for all j. Such a divisor exists uniquely
thanks to the negative definiteness of the intersection matrix of D. As the inverse of this
intersection matrix has all entries 6 0 (cf. [BaKuSz04, Lemma 4.1]), it follows that qi > 0
for all i. Since H is ample, we actually have qi > 0 for all i. Letting now ε = mini{qi/di},
we claim that

(Eqn 5.4) L0 − cD is nef for 0 6 c 6 ε.

In fact, we have (L0 − cD) ·Di > 0 thanks to (Eqn 5.3), and for curves C different from the
Di we have (L0 − cD) · C = (H +

∑
i(qi − cdi)Di) · C > 0. The proof is now completed by

showing that

(Eqn 5.5) D destabilizes Ls := L0 + sH for small s > 0.

To see (Eqn 5.5), note first that Ls − cD is clearly ample for 0 6 c 6 ε and for every s > 0,
hence ε(Ls, D) > ε. We have1

µ(X,L0) =
−KX · L0

L2
0

,

which is finite because L2
0 = H · L0 > H2 > 0, and we have

µc(OD, L0) =
3(2L0 · D − c(KX · D + D2))

2c(3L0 · D − cD2)
=

3(2pa(D) − 2)

2cD2
.

1In the two subsequent displayed equations the expressions for µ(X, L0) and µc(OD, L0) from (Eqn
5.1) and (Eqn 5.2) are used formally even though L0 is not ample. The formulas (Eqn 5.1) and (Eqn 5.2)
may be viewed as the definitions of µ and µc in this case. From this perspective, the point is only that
µ(X, Ls) tends to µ(X, L0) when s → 0, and similarly for µc.
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As D2 < 0, and thanks to the hypotheses on pa(D), the latter tends to −∞ for c → 0. We
can therefore choose a c with 0 < c < ε such that µc(OD, L0) < µ(X,L0). Choosing now
s > 0 small enough, we still have µc(OD, Ls) < µ(X, Ls) while c < ε(Ls, D), and this proves
(Eqn 5.5). �

6. Seshadri constants on surfaces

6.1. Bounds on arbitrary surfaces. Not surprisingly, the case of surfaces is the case
that has been studied the most. We will in this section present some of the known results.
So let S be a smooth projective surface, L an ample line bundle on S and x any point on S.

First of all note that ε(L, x) 6
√

L2 by Proposition 2.1.1 and that ε(L, x) is rational if
strict inequality holds, by Theorem 2.1.5. In fact one has the following improvement due to
Oguiso [Ogu02, Cor. 2] (see also [Sze01, Lemma 3.1]):

Theorem 6.1.1 (Submaximal global Seshadri constants). Let (S, L) be a smooth polar-

ized surface. If ε(L) <
√

L2, then there is a point x ∈ S and a curve x ∈ C ⊂ S such that
ε(L) = ε(L, x) = L·C

multxC
.

In particular, ε(L) is rational unless ε(L) =
√

L2 and
√

L2 is irrational.

In fact, in [Ogu02], Oguiso studies Seshadri constants of a family of surfaces {f : S →
B,L}, where f is a surjective morphism onto a non-empty Noetherian scheme B, L is an f -
ample line bundle and the fibers (St, Lt) are polarized surfaces of degree L2

t over an arbitrary
closed field k. He proves [Ogu02, Cor.5]

Theorem 6.1.2 (Lower semi-continuity of Seshadri constants). (1) For each fixed t ∈ B,
the function y = ε(x) := ε(Lt, x) of x ∈ St is lower semi-continuous with respect to the
Zariski topology of St.

(2) The function y = ε(t) := ε(St, Lt) of t ∈ B is lower semi-continuous with respect to
the Zariski topology of B.

A nice visualization of this result is provided by the global Seshadri constants of quartic
surfaces in Theorem 6.6.1 below: They are mostly constant but jump down along special
loci in the moduli.

Much attention has been devoted to the study of (the existence of) submaximal curves

(cf. Definition 3.1), that is, curves C for which L·C
multxC

<
√

L2 and to possible values of

εC,x := L·C
multxC

. In [Bau99, Thm. 4.1], the degree of submaximal curves at a very general
point x is bounded by showing that

L · C <
L2

√
L2 − εC,x

.

Moreover, [Bau99, Prop. 5.1] provides also bounds on the number of curves satisfying
L·C

multxC
< a for any a ∈ R+. These results have been generalized to multi-point Seshadri

constants by Roé and the third named author in [HarRoe08, Lemma 2.1.4 and Thm. 2.1.5].
The main result of [HarRoe08] implies that when the Seshadri constant is submaximal,
then the set of potential Seshadri curves is finite.

As for lower bounds, we recall the following result obtained in [Bau99, Thm. 3.1] in
terms of the quantity σ(L), which is defined as

σ(L) :=
1

ε(L, KS)
= min {s ∈ R | OS(sL − KS) is nef} .

Theorem 6.1.3 (Lower bound in terms of canonical slope). Let (S, L) be a smooth
polarized surface. Then

ε(L) >
2

1 +
√

4σ(L) + 13
.

Note that for (S, L) = (P2,OP2(1)) equality holds, as σ(L) = −3 and ε(L) = 1. Also
note that for surfaces of Kodaira dimension zero, σ(L) = 0 and the theorem yields ε(L) >

0, 434 . . ., whereas the optimal bound is ε(L) > 1
2 on an Enriques or K3 surface (see Theorem

6.5.2 and the beginning of §6.6) and ε(L) > 4
3 on a simple abelian surface (see Theorem
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6.4.3(a)). Moreover, in the case of a smooth quartic in P3, the value of ε(L) strongly depends
on the geometry of S (see Theorem 6.6.1 below), so that one cannot expect that σ(L) alone
fully accounts for the behaviour of the Seshadri constant.

When the Picard number ρ(S) of the surface is one, we have the following optimal result
[Sze08, Theorem 7], yielding an answer to Question 2.2.1.

Theorem 6.1.4 (Effective lower bound on surfaces with ρ(S) = 1). Let S be a smooth
projective surface with ρ(S) = 1 and let L be an ample line bundle on S. Then for any point
x ∈ S

(S) ε(L, x) > 1 if S is not of general type and
(G) ε(L, x) > 1

1+ 4
√

K2

S

if S is of general type.

Moreover both bounds are sharp.

Equality in (S) is for example attained for S = P2 and L = OP2(1). Equality in (b) is
attained in the following example (see [Sze08] or [BauSze08, Example 1.2]):

Example 6.1.5. Let S be a smooth surface of general type with K2
S = 1, pg(S) = 2 and

ρ(S) = 1. An example of such a surface is a general surface of degree 10 in the weighted
projective space P(1, 1, 2, 5). Then, ρ(S) = 1 by a result of Steenbrink [Ste82]. Moreover,
by adjunction K2

S = 1 and sections of KS correspond to polynomials of degree one in the
weighted polynomial ring on 4 variables. Thus pg(S) = 2, cf. also [Ste82].

We now claim that there exists an x ∈ S such that ε(KS , x) = 1
2 . Indeed, the curves

in the pencil |KS | cannot carry points of multiplicity > 2 since they have arithmetic genus
two and cannot all be smooth, which can be seen directly computing the topological Euler
characteristic of S.

Looking back at the examples of Miranda mentioned in §2.2, we see that the lower bound
ε(L, x) > 1

1+ 4
√

K2

S

holds. One could therefore hope that this (or some “nearby” number)

would serve as a lower bound on arbitrary surfaces. In fact, there is a conjectural effective
lower bound for all minimal surfaces [Sze08, Question]:

Question 6.1.6 (Conjectural effective lower bound on surfaces). For any minimal sur-
face S, an ample line bundle L and x ∈ S is it true that

ε(L, x) >
1

2 + 4

√
|K2

S |
?

The appearance of 2 in the denominator is in fact necessary due to Enriques and K3
surfaces carrying ample line bundles with ε(L, x) = 1

2 , see §6.5 and §6.6.
Better lower bounds are known if x is a (very) general point. We observed already in

2.2.6 that for x away of a countable union of Zariski closed subsets ε(L; x) is constant. We
denote its value by ε(L; 1). A fundamental result of Ein and Lazarsfeld, which we recall in
Theorem 7.1 states that on surfaces

ε(L; 1) > 1 .

In fact, if L2 > 1, they proved, cf. [EinLaz93, Theorem] that ε(L, x) > 1 for all but finitely
many points on S. This result was improved by Xu [Xu95, Thm. 1]:

Theorem 6.1.7 (Xu’s lower bound on surfaces). Let (S, L) be a smooth polarized surface.
Assume that, for a given integer a > 1, we have L2 > 1

3 (4a2 − 4a + 5) and L · C > a for
every irreducible curve C ⊂ S.

Then ε(L, x) > a for all x ∈ S outside of finitely many curves on S.

(Note that in fact ε(L, x) > a outside finitely many points on S if there is no curve C
such that L · C = a.)

In the case of Picard number one, Steffens [Ste98, Prop. 1] proved:

Theorem 6.1.8 (Steffens’ lower bound for ρ(S) = 1). Let S be a smooth surface with
NS (S) ≃ Z[L]. Then

ε(L; 1) > ⌊
√

L2⌋ .

In particular, if
√

L2 is an integer, then ε(L; 1) =
√

L2.
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In the case of very ample line bundles, these results have been generalized to the case
of multi-point Seshadri constants at general points in [Har03, Thm. I.1]. Recall that

ε(L; x1, . . . , xr) 6

√
L2

r
by Proposition 2.1.1. Given any c ∈ R, we write ε(L; r) > c if

ε(L, x1, . . . , xr) > c holds on a Zariski-open set of r-tuples of points xi of X. Moreover, let
εr,l be the maximum element in the finite set

{⌊d
√

rl⌋
dr

∣∣∣ 1 6 d 6

√
r

l

}
∪

{ 1

⌈
√

r
l
⌉
}
∪

{ dl

⌈d
√

rl⌉

∣∣∣ 1 6 d 6

√
r

l

}
.

(Note that εr,l =
√

lr if l < r and rl is a square, cf. [Har03, Prop. III.1(b)(i)].)
Then, we have the following result:

Theorem 6.1.9 (Lower bound for multi-point Seshadri constants). Let S be a smooth
surface and L a very ample line bundle on S. Set l := L2.

Then
√

l/r > ε(L, r), and in addition, ε(L, r) > εr,l unless l 6 r and rl is a square, in

which case
√

l/r = εr,l and ε(L, r) >
√

l/r − δ for every positive rational δ.

The somewhat awkward statement in the case rl is a square is due to the possibility
of there being no open set of points such that ε(L, r) = εr,l in that case. Also note that
the result holds over an algebraically closed field of any characteristic. Over the complex
numbers, one obtains a generalization of the last statement in Theorem 6.1.8:

Theorem 6.1.10 (Maximality of multi-point Seshadri constants). Let S be a smooth

surface and L a very ample line bundle on S. Let r ∈ Z be such that r > L2 and
√

rL2 is
an integer.

Then, for a Zariski-open set of points (x1, . . . , xr) ∈ Sr, we have

ε(L; x1, . . . , xr) =

√
L2

r
.

More specific results are known when one restricts the attention to surfaces or line
bundles of particular types. In the remainder of this section, we will present some of these
results.

6.2. Very ample line bundles. Consider a smooth projective surface S and a very
ample line bundle L on S. By Proposition 2.2.4 we have ε(L, x) > 1 for any x ∈ S. Moreover,
equality is obviously attained if S contains a line (when embedded by the linear series |L|).
It is then natural to ask whether this is the only case where ε(L) = 1 occurs, and what the
next possible values of ε(L) for a very ample line bundle are. Both of these questions were
answered in [Bau99, Theorem 2.1].

Theorem 6.2.1 (Seshadri constants on embedded surfaces). (a) Let S ⊂ PN be a smooth
surface. Then ε(OS(1)) = 1 if and only if S contains a line.

(b) For d > 4 let Sd,N denote the space of smooth irreducible surfaces of degree d in PN

that do not contain any lines. Then

min
{

ε(OS(1)) | S ∈ Sd,N

}
=

d

d − 1
.

(c) If S is a surface in Sd,N and x ∈ S is a point such that the Seshadri constant
ε(OS(1), x) satisfies the inequalities 1 < ε(OS(1), x) < 2, then it is of the form

ε(OS(1), x) =
a

b
,

where a, b are integers with 3 6 a 6 d and a/2 < b < a.
(d) All rational numbers a/b with 3 6 a 6 d and a/2 < b < a occur as local Seshadri

constants of smooth irreducible surfaces in P3 of degree d.

The examples in (d) are constructed in the following way: given a and b, one can choose
an irreducible curve C0 ⊂ P2 of degree a with a point x of multiplicity b. Further, take
a smooth curve C1 ⊂ P2 of degree d − a not passing through x. Then there is a smooth
surface S ⊂ P3 such that the divisor C0 + C1 is a hyperplane section of X and the curve C
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computing ε(OS(1), x) is a component of the intersection S ∩ TxX, and therefore C = C0.
So one can conclude

ε(OS(1), x) =
L · C0

multxC0
=

a

b
.

Note that in the case of quartic surfaces, exact values have been computed in [Bau97],
see Theorem 6.6.1 below.

6.3. Surfaces of negative Kodaira dimension. The projective plane is discussed in
§3. The case of ruled surfaces has been studied by Fuentes Garćıa in [Fue06]. He explicitly
computes the Seshadri constants in the case of the invariant e > 0, cf. [Fue06, Theorem
4.1]. In the following we let σ and f denote the numerical class of a section and a fiber,
respectively.

Theorem 6.3.1 (Seshadri constants on ruled surfaces with e > 0). Let S be a ruled
surface with the invariant e > 0 and A ≡ aσ + bf be a nef linear system on S. Let x be a
point of S. Then

ε(A; x) =

{
min{a, b − ae} if x ∈ σ,
a if x 6∈ σ.

In particular, note that ε(A; x) reaches the maximal value
√

A2 only for e = 1 and b = a,
at points x 6∈ σ, or when A ≡ bf , at any point x ∈ S.

Furthermore, Fuentes Garćıa gives the following bounds when e 6 0, cf. [Fue06, Thm.
4.2]:

Theorem 6.3.2 (Seshadri constants on ruled surfaces with e 6 0). Let S be a ruled
surface with the invariant e 6 0 and A ≡ aσ + bf be a nef linear system on S. Let x be a
point of S.

(1) If e = 0 and x lies on a curve numerically equivalent to σ, then ε(A, x) = min{a, b}.
(2) In all other cases ε(A, x) = a if b − 1

2ae > 1
2a and

2(b − 1

2
ae) 6 ε(A, x) 6

√
A2 =

√
2a(b − 1

2
ae).

if 0 6 b − 1
2ae 6 1

2a.

Of course, Theorem 6.3.1 and case 1. of Theorem 6.3.2 completely determine the Se-
shadri constants on rational ruled surfaces (as e > 0, and in the case e = 0 there is always
a section passing through a given point x ∈ S). From these two theorems and some more
work in the cases e = −1 and e = 0, Fuentes Garćıa is also able to explicitly compute all
Seshadri constants on elliptic ruled surfaces, cf. [Fue06, Thms. 1.2 and 6.6]. Furthermore,
he also constructs ruled surfaces and linear systems where the Seshadri constant does not
reach the upper bound, but is as close as we wish:

Theorem 6.3.3. Given any δ ∈ R+ and a smooth curve C of genus > 0, there is a
stable ruled surface S, an ample divisor A on S and a point x ∈ S such that

√
A2 − δ < ε(A, x) <

√
A2.

As for del Pezzo surfaces, Broustet proves the following result, cf. [Bro06, Thm. 1.3].
Here, Sr for r 6 8, denotes the blow up of the plane in r general points {p1, . . . , pr}. We
say that x ∈ Sr is in general position if its image point p ∈ P2 is such that the points in the
set {p1, . . . , pr, p} are in general position.

Theorem 6.3.4 (Seshadri constants of −KS on del Pezzo surfaces). If r 6 5, then
ε(−KSr

, x) = 2 if x is in general position and ε(−KSr
, x) = 1 otherwise.

If r = 6, then ε(−KS6
, x) = 3/2 if x is in general position and ε(−KS6

, x) = 1 otherwise.
If r = 7, then ε(−KS7

, x) = 4/3 if x is in general position and ε(−KS7
, x) = 1 otherwise.

If r = 8, then ε(−KS8
, x) = 1

2 in at most 12 points lying outside the exceptional divisor,
and ε(−KS8

, x) = 1 everywhere else.
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6.4. Abelian surfaces. Let S be an abelian surface and L an ample line bundle on S.
By homogeneity, ε(L, x) does not depend on the x chosen. In particular ε(L) = ε(L, x) for
any x ∈ S and one can compute this number for x being one of the half-periods of S, which
is the idea in both [BauSze98] and [Bau99]. Furthermore, since ε(kL) = kε(L) for any
integer k > 0, one may assume that L is primitive, that is, of type (1, d) for some integer
d > 1. The elementary bounds for single point Seshadri constants one has from Proposition
2.1.1 and (Eqn 2.1) are

(Eqn 6.1) 1 6 ε(L) 6
√

2d

In the case of Picard number one, exact values for one-point Seshadri constants were
computed in [Bau99, Thm. 6.1]. To state the result, we will need:

Notation 6.4.1 (Solution to Pell’s equation). In the rest of this subsection we let
(ℓ0, k0) denote the primitive solution of the diophantine equation

ℓ2 − 2dk2 = 1,

known as Pell’s equation.

Theorem 6.4.2 (Exact values on abelian surfaces with ρ(S) = 1). Let (S, L) be a
polarized abelian surface of type (1, d) with ρ(S) = 1.

If
√

2d is rational, then ε(L) =
√

2d.

If
√

2d is irrational, then

ε(L) = 2d · k0

ℓ0
=

2d√
2d + 1

k2

0

(
<

√
2d

)
.

In the general case, the lower bound in (Eqn 6.1) has been improved as follows:

Theorem 6.4.3 (Lower bounds on abelian surfaces). Let (S, L) be a polarized abelian
surface of type (1, d).

(a) ε(L) > 4
3 unless S is non-simple a product of elliptic curves).

(b) ε(L) > {ε1(L),
√

7d
2 }, where ε1(L) is the minimal degree with respect to L of an

elliptic curve on S.

Here, statement (a) is due to Nakamaye [Nak96, Thm. 1.2] and (b) was proved in
[BauSze98, Thm. A.1(b)].

Note that (b) yields a better bound than (a) if d > 2. However, for d = 2, (a) is sharp,
as equality is attained for S the Jacobian of a hyperelliptic curve and L the theta divisor on
S, by [Ste98, Prop. 2].

Furthermore, note that it is inevitable that small values of ε(L) occur for non-simple
abelian surfaces regardless of d, since for any integer e > 1, there are non-simple polarized
abelian surfaces (S, L) of arbitrarily high degree L2 containing an elliptic curve of degree e.

The upper bound in (Eqn 6.1) can be improved in the case of
√

2d being irrational, by
the following result, see [BauSze98, Theorem A.1(a)]:

Theorem 6.4.4 (Upper bounds on abelian surfaces). Let (S, L) be a polarized abelian

surface of type (1, d). If
√

2d is irrational, then

ε(L) 6 2d · k0

ℓ0
=

2d√
2d + 1

k2

0

(
<

√
2d

)
.

In particular, together with Theorem 6.1.1, this implies

Theorem 6.4.5 (Rationality on abelian surfaces). Seshadri constants of ample line
bundles on abelian surfaces are rational.

For the estimates obtained by combining the upper and lower bounds above for low
values of d, we refer to [BauSze98, Rmk. A.3]. For more precise results on submaximal
curves, we refer to [Bau99, Sec. 6]. Also note that results for non-simple abelian surfaces
have been obtained in [BauSch08].
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The case of multi-point Seshadri constants is much harder. In fact, if one wants to
compute the Seshadri constant in r points for r > 1, one can non longer assume that the
points are general.

By homogeneity, the number ε(L; x1, . . . , xr) depends only on the differerences xi − x1

and we have

(Eqn 6.2) ε(L; x1, . . . , xr) >
1

r
min ε(L; xi) =

1

r
ε(L)

(Note that the inequality (Eqn 6.2) holds on any variety). In [Bau99, Proposition 8.2] it
is shown that if the equality is attained, then S contains an elliptic curve E containing
x1, . . . , xr and such that L · E = rε(L; x1, . . . , xr).

Tutaj-Gasińska gave bounds for Seshadri constants in half-period points in [Tut04]. In
[Tut05] she gave exact values for the case of two half-period points (with a small gap in the
proof pointed out in [Fue07, Remark 2.10]). More precisely, in [Tut04, Thm. 3] she proves
that if e1, . . . , er are among the 16 half-period points of S, then

ε(L; e1, . . . , er)





=
√

2d
r

if
√

2d
r

∈ Q ,

6 2dk0

ℓ0
if

√
2d
r

6∈ Q .

In the case of Picard number one, the results were generalized by a different method
by Fuentes Garćıa in [Fue07], who computes the multi-point Seshadri constants in points
of a finite subgroup of an abelian surface, cf. [Fue07, Theorem 1.2]. One of the corollaries
obtained by Fuentes Garćıa [Fue07, Corollary 2.6] is:

Theorem 6.4.6 (Multi-point Seshadri constants on abelian surfaces with ρ(S) = 1). Let
(S, L) be a polarized abelian surface of type (1, d) with ρ(S) = 1 and x1, . . . , xr be general
points on S.

If
√

2d
r

∈ Q, then ε(L; x1, . . . , xr) =
√

2d
r

.

If
√

2d
r

6∈ Q, then ε(L; x1, . . . , xr) > 2dk0

ℓ0
.

Moreover, as a direct consequence of [Fue07, Theorem 1.2], one obtains:

Theorem 6.4.7 (Rationality of multi-point Seshadri constants at finite subgroups). The
multiple-point Seshadri constants of ample line bundles at the points of a finite subgroup of
an abelian surface are rational.

6.5. Enriques surfaces. Let S be an Enriques surface (by definition, h1(OS) = 0,
KS 6= 0 and 2KS = 0) and L an ample line bundle on S. One-point Seshadri constants on
Enriques surfaces have been studied in [Sze01]. It is well-known that there is an effective

nonzero divisor E on S satisfying E2 = 0 (whence E has arithmetic genus 0) and E·L 6
√

L2,
see [CosDol89, Prop. 2.7.1 and Cor. 2.7.1]. As a consequence, taking any point x ∈ E,
combining with Theorem 2.1.5, one obtains [Sze01, Thm. 3.3]:

Theorem 6.5.1 (Rationality on Enriques surfaces). Let (S, L) be a polarized Enriques
surface. Then ε(L) is rational.

To state the lower bounds obtained in [Sze01, Thm. 3.4 and Prop. 3.5], define the
genus g Seshadri constant of L at x by

εg(L, x) := inf
L · C

multxC
,

where the infimum is taken over all irreducible curves of arithmetic genus g passing through
x. (Note that since an abelian surface does not contain rational curves, this definition is
consistent with the definition of the number ε1(L) in Theorem 6.4.3(b)).

Theorem 6.5.2 (Lower bounds on Enriques surfaces). Let (S, L) be a polarized Enriques
surface and x ∈ S an arbitrary point.

Then

ε(L, x) > min
{

ε0(L, x), ε1(L, x),
1

4

√
L2

}
.
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Furthermore, ε(L, x) < 1 if and only if there is an irreducible curve E on S satisfying
pa(E) = 0, L · E = 1 and multxE = 2 (so that ε(L, x) = 1

2 .)

Note that in the special case of the theorem, L cannot be globally generated, by Propo-
sition 2.2.3 or directly from a fundamental property of line bundles on Enriques surfaces
[CosDol89, Thm. 4.4.1]. In fact, the proof exploits the characterization of non-globally
generated line bundles on Enriques surfaces. Also note that the special case attains the
lower bound in Question 6.1.6.

6.6. K3 surfaces. Let S be an K3 surface (by definition, h1(OS) = 0 and KS = 0)
and L an ample line bundle on S. Despite the fact that these surfaces have been studied
extensively and very much is known about them, remarkably little is known about Seshadri
constants on K3 surfaces.

Of course if L is globally generated then ε(L, x) > 1 for all x ∈ S by Proposition
2.2.3. Non-globally generated ample line bundles on K3 surfaces have been characterized
in [S-D74]: In this case L = kE + R, where k > 3, E is a smooth elliptic curve and R a
smooth rational curve such that E.R = 1. In particular |E| is an elliptic pencil on S such
that E ·L = 1. It follows that ε(L, x) = 1, unless x is a singular point of one of the (finitely
many) singular fibers of |E|, in which case ε(L, x) = 1

2 [BaDRSz00, Prop. 3.1]. Again this
is a case where the lower bound in Question 6.1.6 is reached, and the K3 surface is forced
to have Picard number > 2.

Exact values for Seshadri constants in the special case of smooth quartic surfaces in P3

have been computed in [Bau97].

Theorem 6.6.1 (Quartic surfaces). Let S ⊂ P3 be a smooth quartic surface. Then:
(a) ε(OS(1)) = 1 if and only if S contains a line.
(b) ε(OS(1)) = 4

3 if and only if there is a point x ∈ S such that the Hesse form vanishes
at x and S does not contain any lines.

(c) ε(OS(1)) = 2 otherwise.
Moreover, the cases (a) and (b) occur on sets of codimension one in the moduli space

of quartic surfaces.

(The Hesse form of a smooth surface in P3 is a quadratic form on the tangent bundle
of S, cf. [Bau97, Sect. 1].) In particular ε(OS(1)) = 2 on a general quartic surface. Since
the proof very strongly uses the fact that the surface lies in P3, it seems very difficult to
generalize it to K3 surfaces of higher degrees. Nevertheless, a generalization holds in the
case of Picard number one, by the following result [Knu08, Thm.]:

Theorem 6.6.2 (K3 surfaces with ρ(S) = 1). Let S be a K3 surface with Pic S ≃ Z[L]

such that L2 is a square. Then ε(L) =
√

L2.

This result is a corollary of the following more general lower bound proved in [Knu08,
Corollary], which can be seen as an extension of Theorem 6.1.8 to all points on the surface:

Theorem 6.6.3 (Lower bounds on K3 surfaces with ρ(S) = 1). Let S be a K3 surface
with Pic S ≃ Z[L].

Then either
ε(L) > ⌊

√
L2⌋,

or

(Eqn 6.3) (L2, ε(L)) ∈
{

(α2 + α − 2, α − 2

α + 1
), (α2 +

1

2
α − 1

2
, α − 1

2α + 1
)
}

for some α ∈ N. (Note that in fact α = ⌊
√

L2⌋.)
In the two exceptional cases (Eqn 6.3) of the theorem, the proof shows that there has

to exist a point x ∈ S and an irreducible rational curve C ∈ |L| (resp. C ∈ |2L|) such that
C has an ordinary singular point of multiplicity α + 1 (resp. 2α + 1) at x and is smooth
outside x, and ε(L) = L · C/multxC.

By a well-known result of Chen [Che02], rational curves in the primitive class of a
general K3 surface in the moduli space are nodal. Hence the first exceptional case in (Eqn
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6.3) cannot occur on a general K3 surface in the moduli space (as α > 2). If α = 2, so
that L2 = 4, this special case is case (b) in Theorem 6.6.1 above. As one also expects that
rational curves in any multiple of the primitive class on a general K3 surface are always
nodal (cf. [Che99, Conj. 1.2]), one may expect that also the second exceptional case in
(Eqn 6.3) cannot occur on a general K3 surface.

6.7. Surfaces of general type. Concrete bounds at single points for the canonical
divisor have been found recently, see [BauSze08, Theorem 1]:

Theorem 6.7.1 (Bounds for the canonical divisor a arbitrary point). Let S be a smooth
projective surface such that the canonical divisor KS is big and nef and let x be any point
on S.

(a) One has ε(KS , x) = 0 if and only if x lies on one of finitely many (−2)-curves on
X.

(b) If 0 < ε(KS , x) < 1, then there is an integer m > 2 such that

ε(KS , x) =
m − 1

m
,

and there is a Seshadri curve C ⊂ S such that multx(C) = m and KS ·C = m− 1.
(c) If 0 < ε(KS , x) < 1 and K2

S > 2, then either
(i) ε(KS , x) = 1

2 and x is the double point of an irreducible curve C with arith-
metic genus pa(C) = 1 and KS · C = 1, or

(ii) ε(KS , x) = 2
3 and x is a triple point of an irreducible curve C with arithmetic

genus pa(C) = 3 and KS · C = 2.
(d) If 0 < ε(KS , x) < 1 and K2

S > 3, then only case (c)(i) is possible.

It is well known that the bicanonical system |2KS | is base point free on almost all
surfaces of general type. For such surfaces one easily gets the lower bound ε(KS , x) > 1/2
for all x outside the contracted locus. However, in general one only knows that |4KS | is
base point free, which gives a lower bound of 1/4. The theorem shows in particular that
one has ε(KS , x) > 1/2 in all cases. Moreover, by Example 6.1.5, the bound is sharp. It is
not known whether all values (m − 1)/m for arbitrary m > 2 actually occur. As part (c)
of Theorem 6.7.1 shows, however, values (m − 1)/m with m > 4 can occur only in the case
K2

S = 1. It is shown in [BauSze08, Example 1.3] that curves as in (c)(i) actually exist on
surfaces with arbitrarily large degree of the canonical bundle. In other words, one cannot
strengthen the result by imposing higher bounds on K2

S . It is not known whether curves as
in (c)(ii) exist.

As for values at very general points we have the following bound (cf. [BauSze08, Thms.
2 and 3]).

Theorem 6.7.2 (Positivity of the canonical divisor at very general points). Let S be a
smooth projective surface such that KS is big and nef.

If K2
S > 2, then ε(KS , 1) > 1.

If K2
S > 6, then ε(KS , 1) > 2 with equality occurring if and only if X admits a genus 2

fibration X → B over a smooth curve B.

A somewhat more general statement is given in [BauSze08, Props. 2.4 and 2.5].

7. S-slope and fibrations by Seshadri curves

As already observed in 2.2.6, the Seshadri constant is a lower semi-continuous function of
the point. In particular there is a number, which we denote by ε(X, L; 1), such that it is the
maximal value of the Seshadri function. This maximum is attained for a very general point
x. Whereas there is no general lower bound on values of Seshadri constants at arbitrary
points of X, the numbers ε(X, L; 1) behave much better. It was first observed by Ein and
Lazarsfeld [EinLaz93] that there is the following universal lower bound on surfaces.

Theorem 7.1 (Ein-Lazarsfeld lower bound on surfaces). Let X be a smooth projective
surface and L a nef and big line bundle on X. Then

ε(X, L; 1) > 1.
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It is quite natural to expect that the same bound is valid in arbitrary dimension. How-
ever up to now the best result in this direction is the following result proved by Ein, Küchle
and Lazarsfeld [EiKuLa95].

Theorem 7.2 (Lower bound in arbitrary dimension). Let X be a smooth projective
variety of dimension n and L a nef and big line bundle on X. Then

ε(X, L; 1) >
1

n
.

There has been recently considerable interest in bounds of this type and there emerged
several interesting improvements in certain special cases. Most notably, if X is a threefold,
then Nakamaye [Nak05] shows ε(X, L; 1) > 1

2 for L an ample line bundle on X. Under the
additional assumption that the anticanonical divisor −KX is nef the inequality of Theorem
7.2 is further improved by Broustet [Bro07] who shows that ε(X, L; 1) > 1 holds in this
case.

The simple example of the projective plane X with L = OP2(1) shows that one cannot
improve the bound in Theorem 7.1. One could hope however that this bound could be
influenced by the degree of L. The following example shows that this is not the case.

Example 7.3 (Polarizations of large degree and low Seshadri constants). There exist
ample line bundles L on smooth projective surfaces such that ε(X, L; 1) = 1, with L2

arbitrarily large.
Consider for instance the product X = C × D of two smooth irreducible curves, and

denote by a slight abuse of notation the fibers of both projections again by D and C. The
line bundles Lm = mC + D are ample and we have Lm · C = 1, so that in any event
ε(Lm, x) 6 1 for every point x ∈ X. One has in fact ε(Lm, x) = 1, which can be seen as
follows: If F is any irreducible curve different from the fibers of the projections with x ∈ F ,
then we may take a fiber D′ of the first projection with x ∈ D′, and we have

Lm · F > D′ · F > multx(D′) · multx(F ) > multx(F )

which implies ε(Lm, x) > 1. So ε(Lm, x) = 1, but on the other hand L2
m = 2m is unbounded.

This kind of behavior is of course not specific for dimension 2, one can easily general-
ize it to arbitrary dimension. Interestingly enough Nakamaye [Nak03] observed that the
above example is in a sense a unique way to produce low Seshadri constants in every point.
His result was strengthened and clarified considerably in a series of papers [SzeTut04],
[SyzSze07], [SyzSze08], [KnSySz]. We summarize below what is known up to now. To
this end we introduce first the following quantity.

Definition 7.4 (S-slope). Let X be a smooth projective variety and L a big and nef
line bundle on X. We define the S-slope of L as

σ(X, L) :=
ε(X, L; 1)

n
√

Ln
.

Note that by Proposition 2.1.1 the number in the denominator is the upper bound on
ε(X, L; 1) (and hence on ε(X,L; x) for any x ∈ X).

Definition 7.5 (Seshadri fibration). We say that a surface X is fibred by Seshadri
curves of L if there exists a surjective morphism f : X −→ B onto a complete curve B such
that for b ∈ B general the fiber Fb = f−1(b) computes ε(X,L; x) for a general x ∈ Fb.
In case of multi-point Seshadri constants we say that X is fibred by Seshadri curves of L
if there exists a surjective morphism f : X −→ B onto a complete curve B such that for
b ∈ B general, the fiber Fb = f−1(b) computes ε(X,L; P1, . . . , Pr) for a general r-tuple
P1, . . . , Pr ∈ X such that {P1, . . . , Pr} ∩ Fb 6= ∅.

On surfaces we have the following classification.

Theorem 7.6 (S-slope on surfaces). Let X be a smooth surface and L an ample line
bundle on X. If

σ(X,L) <

√
7√
8

,
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then

(a) either X is fibred by Seshadri curves or

(b) X is a smooth cubic surface in P3 with L = OX(1) and σ(X, L) =
√

3
2 in this case,

or
(c) X is a smooth rational surface such that for a general point x ∈ X there is a

curve Cx of arithmetic genus 3 having multiplicity 3 at x and C2
x = 7. In this case

σ(X,L) =
√

7
3 .

Remark 7.7. We don’t know if surfaces as in Theorem 7.6(c) exist.

The strategy to prove Theorem 7.6 is to consider classes of Seshadri curves of L in the
Hilbert scheme. In one of its components there must be an algebraic family of such curves.
Then one invokes a bound on the self-intersection of these curves in the spirit of [Xu95].
This either leads to the case when C2

x = 0, hence a multiple of Cx gives a morphism onto
a curve and we can take the Stein factorization of this morphism, or gives restrictions on
curves Cx strong enough in order to characterize exceptional cases.

Definition 7.4 generalizes easily to the multi-point case.

Definition 7.8 (Multi-point S-slope). Let X be a smooth projective variety and L a
big and nef line bundle on X. We define the multi-point S-slope of L as

σ(X, L; r) :=
ε(X, L; r)

n
√

Ln/r
.

The results presented in [SyzSze07] and [SyzSze08] may be summarized in the fol-
lowing multi-point counterpart of Theorem 7.6.

Theorem 7.9. Let X be a smooth surface and L an ample line bundle on X. Let r > 2
be an integer. If

σ(X, L; r) <

√
2r − 1

2r
,

then

(a) either X is fibred by Seshadri curves or

(b) X is a surface of minimal degree in Pr with L = OX(1) and σ(X, L; r) =
√

r−1
r

in this case.

8. Algebraic manifestation of Seshadri constants

In this section we apply results on Seshadri constants to a problem of commutative
algebra concerning comparisons of powers of a homogeneous ideal in a polynomial ring with
symbolic powers of the same ideal.

To begin, let R = k[x0, . . . , xN ] be a polynomial ring in N + 1 indeterminates xi over
an algebraically closed field k of arbitrary characteristic. We will often regard R as the
homogeneous coordinate ring R = k[PN ] of projective N -space over k.

8.1. Symbolic powers, ordinary powers and the containment problem. Let
I ⊆ R be a homogeneous ideal, meaning I = ⊕iIi, where the homogeneous component Ii of
I of degree i is the k-vector space span of all forms F ∈ I of degree i.

Definition 8.1.1 (Symbolic power). Given an integer m > 1, the mth symbolic power
I(m) of I is the ideal

I(m) = ∩P∈Ass(I)(R ∩ ImRP ) .

Equivalently,

I(m) = R ∩ ImRU ,

where RU is the localization with respect to the set U = R − ∪P∈Ass(I)P .
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Remark 8.1.2 (Homogeneous primary decomposition). All associated primes of a homo-
geneous ideal are themselves homogeneous, and the primary components of a homogeneous
ideal, meaning the ideals in a primary decomposition, can always be taken to be homoge-
neous (see p. 212, [Abh06]). Such a primary decomposition is said to be a homogeneous
primary decomposition; when we refer to a primary decomposition of a homogeneous ideal,
we will always mean a homogeneous primary decomposition. With this convention, given a
primary decomposition Im = ∩P∈Ass(Im)QP , where for each associated prime P of Im, QP

denotes the primary component of Im corresponding to P , the symbolic power I(m) is just
∩P∈SQP , where S is the set of P ∈ Ass(Im) such that QP is contained in some associated
prime of I.

Examples 8.1.3 (Some symbolic power examples). Let I ⊆ R be a homogeneous ideal.
By the definition it follows that Im ⊆ I(m) for all m > 1, and by [AtiMac69, Proposition
4.9] we have I = I(1), but it can happen that Im ( I(m) when m > 1; see Example 8.1.8.
However, by a result of Macaulay, if I is a complete intersection, then I(m) = Im for all
m > 1 (see the proof of Theorem 32 (2), p. 110, [Mat70]). If I is a radical homogeneous

ideal with associated primes P1, . . . , Pj , then I = P1∩· · ·∩Pj and I(m) = P
(m)
1 ∩· · ·∩P

(m)
j ,

where P
(m)
i is the smallest primary ideal containing Pm

i . Thus for an ideal I = ∩iPi of a
finite set of points p1, . . . , pj ∈ PN , where Pi is the ideal generated by all forms vanishing at

pi, we have I(m) = Pm
1 ∩ · · · ∩ Pm

j .

The problem we wish to address here is that of comparing powers of an ideal I with
symbolic powers of I. The question of when I(m) contains Ir has an easy complete answer.

Lemma 8.1.4 (Containment condition). Let 0 6= I ( R be a homogeneous ideal. Then
Ir ⊆ I(m) if and only if r > m.

Proof. Clearly, r > m implies Ir ⊆ Im ⊆ I(m).
Conversely, say r < m but Ir ⊆ I(m). Since Ir ⊆ I(m), we have I(r) ⊆ I(m), and since

r < m we have Im ⊆ Ir, so I(m) ⊆ I(r) and hence I(r) = I(m). Thus there is an associated
prime P of I such that IrRP = ImRP 6= (1) and so IrRP = ImRP = (IrRP )(IsRP ), where
s + r = m. By Nakayama’s lemma, this implies IrRP = 0, contradicting 0 6= I. �

The question, on the other hand, of when Ir contains I(m) turns out to be very delicate.
This is the main problem we will consider here.

Problem 8.1.5 (Open Problem). Let I ⊆ R be a homogeneous ideal. Determine for
which r and m we have I(m) ⊆ Ir

In order to make a connection of this problem to computing Seshadri constants we will
need the following definition. Let M = (x0, . . . , xN ) be the maximal homogeneous ideal of
R.

Definition 8.1.6 (M -adic order of an ideal). Given a homogeneous ideal 0 6= I ⊆ R, let
α(I) be the M -adic order of I; i.e., the least t such that I contains a nonzero homogeneous
element of degree t; equivalently, α(I) is the least t such that It 6= 0.

For any homogeneous ideal 0 6= I ⊆ R, it is easy to see that α(Im) = mα(I), but for
symbolic powers we have just α(I(m)) 6 mα(I); as Example 8.1.8 shows, this inequality can
be strict. First a definition.

Definition 8.1.7 (Fat point subscheme). Given distinct points p1, . . . , pj ∈ PN , let I(pi)
be the maximal ideal of the point pi. Given a 0-cycle Z = m1p1 + · · · + mjpj with positive
integers mi, let I(Z) denote the ideal ∩iI(pi)

mi . We also write Z = m1p1 + · · · + mjpj to
denote the subscheme defined by I(Z). Such a subscheme is called a fat point subscheme.

Now we consider an easy example of a fat point subscheme of P2.

Example 8.1.8 (The power and symbolic power can differ). Given Z = p1 + · · · + pj

and m > 1, mZ is the subscheme mp1 + · · · + mpj , and we have I(mZ) = I(Z)(m). The
ideal I(mZ) is generated by all forms that vanish to order at least m at each point pi. If
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N = 2 and I = I(p1 + p2 + p3), where p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1),
then α(I) = 2 so α(I2) = 4 but, since x0x1x2 ∈ I(2), we have α(I(2)) 6 3 (and in fact this
is an equality), and thus α(I(2)) < 2α(I) = 4, hence I2 ( I(2).

8.2. Measurement of growth and Seshadri constants. An interesting problem,
pursued in [ArsVat03] and [CHST05], is to determine how much bigger I(m) is than Im.
Whereas [CHST05] uses local cohomology to obtain an asymptotic measure of I(m)/Im,
[ArsVat03] uses the regularity of I to estimate how big I(m)/Im is. An alternative approach
is to use an asymptotic version of α [BocHar07].

Definition 8.2.1 (Asymptotic M -adic order). Given a homogeneous ideal 0 6= I ⊆ R,
then α(I(m)) is defined for all m > 1 and we define

γ(I) = lim
m→∞

α(I(m))

m
.

Because α is subadditive (i.e., α(I(m1+m2)) 6 α(I(m1))+α(I(m2))), this limit exists (see
[BocHar07, Lemma 2.3.1], or [HarRoe03a, Remark III.7]).

Lemma 8.2.2 (Positivity of γ). Given a homogeneous ideal 0 6= I ( R, then γ(I) > 1.

Proof. To see this, consider M = (x0, . . . , xN ). Let P ∈ Ass(I). Then I(m) ⊆ P (m).
But P is homogeneous, so P ⊆ M , hence P (m) ⊆ Mm by Corollary 1 of [EisHoc79]. Thus
m = α(Mm) 6 α(I(m)), hence 1 6 γ(I). �

Remark 8.2.3 (γ, the containment problem and Seshadri constants). We note that
0 6= I ( R guarantees that α(I) is defined, and that γ(I) is defined and nonzero. The
quantity γ(I) is useful not only for studying when Im ( I(m) but, as we will see in Lemma
8.3.3, also for studying when I(m) ⊆ Ir. We also will relate γ(I) to Seshadri constants.

First we see how α(I)/γ(I) gives an asymptotic indication of when Im ( I(m) in case
0 6= I ( R. Note by subadditivity we have for all m that

γ(I) = lim
t→∞

α(I(tm))

tm
6

α(I(m)t)

mt
=

α(I(m))

m
6

α(Im)

m
= α(I) .

Thus, for example, α(I)/γ(I) > 1 if and only if α(Im) > α(I(m)) for some (equivalently,
infinitely many) m > 1, and hence α(I)/γ(I) > 1 implies Im ( I(m) for some (equivalently,
infinitely many) m > 1.

As pointed out in [BocHar07], γ(I) is in some cases related to a suitable Seshadri

constant. In particular, if Z = p1 + · · · + pj ⊂ PN , then one defines the Seshadri constant
(cf. Definition 1.9)

ε(N, Z) := εN−1(PN ,O(1); Z) = N−1

√√√√inf

{
deg(H)

Σj
i=1multpi

H

}
,

where the infimum is taken with respect to all hypersurfaces H through at least one of the
points pi. It is clear from the definitions that

γ(I(Z)) > j · (ε(N, Z))N−1 .

If the points pi are generic, then equality holds (see [BocHar07, Lemma 2.3.1], or [HarRoe03a,
Remark III.7]; the idea of the proof is to use the fact that the points are generic to show
that one can assume that H has the same multiplicity at each point pi).

8.3. Background for the containment problem. It is not so easy to determine for
which r we have I(m) ⊆ Ir. It is this problem that is the motivation for [BocHar07], which
develops an asymptotic approach to this problem. If I is nontrivial (i.e., 0 6= I ( R), then
the set {m/r : I(m) 6⊆ Ir} is nonempty, and we define ρ(I) = sup{m/r : I(m) 6⊆ Ir}; a priori
ρ(I) can be infinite. When an upper bound does exist, we see that I(m) ⊆ Ir whenever
m/r > ρ(I).

Swanson [Swa00] showed that an upper bound exists for many ideals I. This was
the inspiration for the papers [EiLaSm01] and [HocHun02], whose results imply that
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ρ(I) 6 N for any nontrivial homogeneous ideal I ⊂ PN . In fact, if we define codim(I) to
be the maximum height among associated primes of I other than M , then it follows from
[EiLaSm01] and [HocHun02] that ρ(I) 6 min{N, codim(I)}. (If M is an associated prime
of I, as happens if I is not saturated, then Im = I(m) for all m > 1, since every homogeneous
primary ideal in R is contained in M .)

This raises the question of whether the bound ρ(I) 6 N can be improved. Results of
[BocHar07] show that this bound and the bounds ρ(I) 6 codim(I) are optimal, in the
sense that sup{ρ(I) : 0 6= I ( R homogeneous} = N , and, when e 6 N ,

(Eqn 8.1) sup{ρ(I) : 0 6= I ( R homogeneous of codim(I) = e} = e .

To justify this we introduce the following arrangements of linear subspaces.

Notation 8.3.2 (Generic arrangements of linear subspaces). Let H1, . . . ,Hs be s > N
generic hyperplanes in PN . Let 1 6 e 6 N and let S ⊂ {1, 2, . . . , s} with |S| = e. We
define the scheme ZS(N, s, e) to be ∩i∈SHi, so ZS(N, s, e) is a linear subspace of PN of
codimension e. We also let Z(N, s, e) be the union of all ZS(N, s, e) with |S| = e.

The following result, [BocHar07, Lemma 2.3.2(b)], as applied in Example 8.3.4, justifies
(Eqn 8.1):

Lemma 8.3.3 (Asymptotic noncontainment). Given a homogeneous ideal 0 6= I ( R

and m/r < α(I)
γ(I) , then I(mt) 6⊆ Irt for all t ≫ 0; in particular, α(I)

γ(I) 6 ρ(I).

Example 8.3.4 (Sharp examples of [BocHar07]). We write I(mZ(N, s, e)) to denote
I(Z(N, s, e))(m). Then α(I(mZ(N, s, e))) = ms/e if e|m and α(I(Z(N, s, e))) = s−e+1 (see
Lemma 8.4.7). Thus γ(I(Z(N, s, e))) = s/e and ρ(I(Z(N, s, e))) > e(s − e + 1)/s. Keeping
in mind ρ(I(Z(N, s, e))) 6 e (which holds by [HocHun02] since codim(I(Z(N, s, e))) = e),
we now see lims→∞ ρ(I(Z(N, s, e))) = e, so the bounds of [EiLaSm01] and [HocHun02]
are sharp.

Remark 8.3.5 (A Seshadri constant computation). Let I = I(Z(N, s, N)). It is in-
teresting to note, by [BocHar07, Theorem 2.4.3(a)], that ρ(I) = α(I)/γ(I), and hence
ρ(I) = N(s − N + 1)/s. By an argument similar to that of [BocHar07, Lemma 2.3.1],
discussed above in Remark 8.2.3, we can express ρ(I) in terms of the Seshadri constant
ε(N, Z). In particular, γ(I) = |Z| · ε(N, Z)N−1 holds, and thus we obtain

ε(N, Z) = N−1

√
s

N
(

s
N

) .

8.4. Conjectural improvements. Even though the bound ρ(I) 6 N is optimal (in
the sense that for no value d smaller than N will ρ(I) 6 d hold for all nontrivial homogeneous
ideals I), we can try to do better. The bound ρ(I) 6 codim(I) can be rephrased as saying
I(m) ⊆ Ir if m > r codim(I). In fact the results of [EiLaSm01] and [HocHun02] imply
the slightly stronger result that I(m) ⊆ Ir if m > r codim(I). As a next step, we can ask for
the largest integer de such that I(m) ⊆ Ir whenever m > re − de, where e = codim(I).

Examples of Takagi and Yoshida [TakYos07] support the possibility that I(m) ⊆ Ir

holds for m > Nr − 1 (i.e., perhaps it is true that de > 1). On the other hand, the obvious
fact that α(I(m)) < α(Ir) implies I(m) 6⊆ Ir (see Theorem 8.4.6(a) for a reference), applied
with m = re− e for e > 1 and s ≫ 0 to I(mZ(N, s, e)) of Example 8.3.4, shows that de < e.

For example, the fact that I(2) is not always contained in I2, as we saw in Example
8.1.8, shows that d2 < 2 (at least for I ⊆ R = k[P2]), and hence either d2 = 0 or d2 = 1.
Proving d2 = 1 for R = k[P2] would provide an affirmative answer to an as-of-now still open
unpublished question raised by Craig Huneke:

Question 8.4.1 (Huneke). Let I = I(Z) where Z = p1 + · · · + pj for distinct points

pi ∈ P2. Then we know I(4) ⊆ I2, but is it also true that I(3) ⊆ I2?

The following conjectures are motivated by Huneke’s question, by the fact that de < e
as we saw above, and by a number of suggestive supporting examples which we will recall
below:
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Conjecture 8.4.2 (Harbourne). Let I be a homogeneous ideal with 0 6= I ( R =
k[PN ]. Then I(m) ⊆ Ir if m > Nr − (N − 1).

Since Nr−(N−1) > er−(e−1) for any positive integers e 6 N , the previous conjecture
is a consequence of the following more precise version of the conjecture:

Conjecture 8.4.3 (Harbourne). Let I be a homogeneous ideal with 0 6= I ( R = k[PN ]
and codim(I) = e. Then I(m) ⊆ Ir if m > er − (e − 1).

We conclude by recalling evidence in support of these conjectures.

Example 8.4.4 (Examples of Huneke). After receiving communication of these con-
jectures, Huneke re-examined the methods of [HocHun02] and noticed that they implied
that Question 8.4.1 has an affirmative answer in characteristic 2. More generally, Conjec-
ture 8.4.2 is true if r = pt for t > 0, where p = char(k) > 0 and I is the radical ideal
defining a set of points p1, . . . , pj ∈ PN . Huneke’s argument uses the fact that in charac-

teristic p taking a Frobenius power J [r] of an ideal J (defined as the ideal J [r] generated
by the rth powers of elements of J) commutes with intersection. (To see this, note that
J [r] = J ⊗R S, where ϕt : R → R = S is the tth power of the Frobenius homomor-
phism. Tensoring 0 → J1 ∩ J2 → J1 ⊕ J2 → J1 + J2 → 0 by S over R gives a short
exact sequence. This is because of flatness of Frobenius; see, for example, [HunSwa06,
Lemma 13.1.3, p. 247] and [Kun69]. Comparing the resulting short exact sequence with

0 → J
[r]
1 ∩ J

[r]
2 → J

[r]
1 ⊕ J

[r]
2 → J

[r]
1 + J

[r]
2 → 0 gives the result.) It also uses the observation

that a large enough power of any ideal J is contained in a given Frobenius power of J . More
precisely, if J is generated by h elements, then Jm ⊆ J [r] as long as m > rh−h + 1. This is
because Jm is generated by monomials in the h generators, but in every monomial involving
a product of at least rh − h + 1 of the generators there occurs a factor consisting of one of
the generators raised to the power r.

In particular, since ideals of points in PN are generated by N elements, following the
notation of Example 8.1.3 (and keeping in mind that r must be a power of p here) we have

I(rN−N+1) = ∩iP
rN−N+1
i ⊆ ∩iP

[r]
i = (∩iPi)

[r] = I [r] ⊆ Ir.

Huneke’s argument also applies more generally to show that Conjecture 8.4.3 is true for any
radical ideal I when r is a power of the characteristic, using the fact that Frobenius powers
commute with colons (see [HunSwa06, Proof of part (6) of Theorem 13.1.2, p. 247]) and
using the fact that PRP is generated by h elements, where h is the height of the prime P .

Example 8.4.5 (Monomial ideals). As another example, we now show that Conjecture
8.4.3 holds for any monomial ideal I ⊂ R in any characteristic. We sketch the proof, leaving
basic facts about monomial ideals as exercises.

Consider a monomial ideal I; let P1, . . . , Ps be the associated primes. These primes are
necessarily monomial ideals and hence are generated by subsets of the variables. Moreover,
I has a primary decomposition I = ∩ijQij where the Pi-primary component of I is ∩jQij

and each Qij is generated by positive powers of the variables which generate Pi. Let e be
the maximum of the heights of Pi and let m > er − r + 1. By definition we then have
I(m) = ∩i(I

mRPi
∩ R), but ∩i(I

mRPi
∩ R) ⊆ ∩i((∩jQij)mRPi

∩ R) since

ImRPi
= (∩{t:Pt⊆Pi}(∩jQtj))mRPi

.

Clearly, (∩jQij)mRPi
⊆ ∩jQ

m
ij RPi

but Qm
ij is Pi-primary (hence Qm

ij RPi
∩ R = Qm

ij ), so we
have

∩i((∩jQij)mRPi
∩ R) ⊆ ∩ijQ

m
ij .

Now, each Qij is generated by at most e elements, so Qm
ij ⊆ Q

[r]
ij , where J [r] is defined for any

monomial ideal J to be the ideal generated by the rth powers of the monomials contained

in J ; thus ∩ijQ
m
ij ⊆ ∩ij Q

[r]
ij . Finally, we note that if J1 and J2 are monomial ideals, then

(J1∩J2)[r] = J
[r]
1 ∩J

[r]
2 (since (J1∩J2)[r] is generated by the rth powers of the least common

multiples of the generators of J1 and J2, while J
[r]
1 ∩ J

[r]
2 is generated by the least common

multiples of the rth powers of the generators of J1 and J2, and taking rth powers commutes
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with taking least common multiples). So we have ∩ij Q
[r]
ij = (∩ijQij)[r] = I [r] ⊆ Ir, and we

conclude that I(m) ⊆ Ir.

The schemes Z(N, s, N) ⊂ PN give additional examples for which Conjecture 8.4.2 is
true. These schemes are of particular interest, since, as we saw above, they are asymptoti-
cally extremal for ρ, and thus one might expect if the conjecture were false that one of these
schemes would provide a counterexample. In order to see why Conjecture 8.4.2 is true for
symbolic powers of I(Z(N, s, N)), we need the following theorem, for which we recall the
notion of the regularity of an ideal. We need it only in a special case:

If I defines a 0-dimensional subscheme of projective space, the regularity
reg(I) of I equals the least t such that (R/I)t and (R/I)t−1 have the
same k-vector space dimension.

As an example, if I = I(p1 + · · · + pj) for distinct generic points pi, then (since the points
impose independent conditions on forms of degree i as long as dim Ri > j) we have reg(I) =
t + 1, where t is the least degree such that dim(Rt) > j.

Theorem 8.4.6 (Noncontainment and Containment Criteria). Let 0 6= I ⊆ R = k[PN ]
be a homogeneous ideal.

(a) Non-containment Criterion: If α(I(m)) < α(Ir), then I(m) 6⊆ Ir.
(b) Containment Criterion: Assume codim(I) = N . If r reg(I) 6 α(I(m)), then

I(m) ⊆ Ir.

Proof. (a) This is [BocHar07, Lemma 2.3.2(a)].
(b) This is [BocHar07, Lemma 2.3.4]. �

In order to verify that Question 8.4.1 has an affirmative answer for I = I(Z(2, s, 2)),
and that I(m) ⊆ Ir holds whenever m > Nr − N + 1 for I = I(Z(N, s, N)), we will apply
Theorem 8.4.6. To do so, we need the following numerical results.

Lemma 8.4.7 (Some numerics). Let I = I(Z(N, s, e)) ⊂ R = k[PN ].

(a) Then α(I) = s − e + 1; if e = N , then α(I) = reg(I) = s − N + 1.
(b) If e|m, then α(I(m)) = ms/e.
(c) Let m = iN + j, where i > 0 and 0 < j 6 N , and let I = I(Z(N, s, N)) where

s > N > 1. Then α(I(m)) = (i + 1)s − N + j.

Proof. (a) This holds by [BocHar07, Lemma 2.4.2].
(b) This holds by [BocHar07, Lemma 2.4.1].
(c) See Lemma 8.4.5 and Proposition 8.5.3 of version 1 of ArKiv0810.0728 for detailed

proofs. (We note that the case N = 2 follows easily by using induction and Bézout’s
theorem.) �

Example 8.4.8 (Additional supporting evidence). Let I = I(Z(N, s, N)). By Lemma
8.4.7(a), reg(I) = s − N + 1 and by Lemma 8.4.7(c), α(I(m)) = (i + 1)s − N + j, where
m = iN + j, i > 0 and 0 < j 6 N . Thus, if m = rN − (N − 1) = (r − 1)N + 1,
then α(I(m)) = rs − N + 1 > r(s − N + 1) = r reg(I), and hence I(Nr−(N−1)) ⊆ Ir by
Theorem 8.4.6(b). Thus Conjecture 8.4.2 holds for I = I(Z(N, s, N)). Moreover, when
r = N = 2, we have I(3) ⊆ I2, which shows that Question 8.4.1 has an affirmative answer
for I = I(Z(2, s, 2)).

In our remaining two examples, concerning generic points in projective space, Seshadri
constants play a key role.

Example 8.4.9 (Generic points in P2). By [BocHar07, Theorem 4.1], Huneke’s ques-
tion again has an affirmative answer if I is the ideal of generic points p1, . . . , pj ∈ P2. More
generally, by [BocHar07, Remark 4.3] we have ρ(I) < 3/2 when I is the ideal of a finite
set of generic points in P2. It follows that I(m) ⊆ Ir whenever m/r > 3/2. Since m > 2r−1
implies that either m/r > 3/2 or r = 1, Conjecture 8.4.2 is true in the case N = 2 and I is
the ideal of generic points in the plane.
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The proof that ρ(I) < 3/2 depends on using estimates for multipoint Seshadri constants
to handle the case that j is large. The few remaining cases of small j are then handled
ad hoc. We now describe this argument for large j in more detail. Let I = I(Z), where
Z = p1 + · · · + pj for distinct generic points pi ∈ P2. By [BocHar07, Corollary 2.3.5] we

have ρ(I) 6 reg(I)/γ(I). If j ≫ 0, we wish to show that I(m) ⊆ Ir for all m > 2r − 1.
The proof depends on estimating ε(2, Z) and reg(I), and then using γ(I) = j · ε(2, Z) from
Remark 8.2.3 and ρ(I) 6 reg(I)/γ(I).

To estimate reg(I), given that reg(I) = t + 1 where t is the least degree such that
dim(Rt) > j, use the fact that dim(Rt) =

(
t+2
2

)
. It is now not hard to check that reg(I) 6√

2j + (1/4)+(1/2) for j ≫ 0. We also have j ·ε(2, Z) >
√

j − 1 for j > 10 (for characteristic
0, see [Xu94]; see the proof of [BocHar07, Theorem 4.2] in general).

Thus for j ≫ 0 we have

ρ(I) 6 reg(I)/γ(I) 6 (
√

2j + (1/4) + (1/2))/
√

j − 1 ;

for large j this is close to
√

2 and thus less than 3/2. But m > 2r − 1 implies m/r > 3/2 >
ρ(I) for all r > 1. Thus I(m) ⊆ Ir for r > 1. If r = 1, then we also have I(m) ⊆ I(1) = I = Ir.

Finally, we show that I(Nr−(N−1)) ⊆ Ir holds for j ≫ 0 if I = I(Z), where Z =
p1 + · · · + pj for distinct generic points pi ∈ PN . The argument is modeled on that used in
Example 8.4.9.

Example 8.4.10 (Generic points in PN ). Let I = I(Z), where Z = p1 + · · · + pj for

distinct generic points pi ∈ PN . To show I(Nr−(N−1)) ⊆ Ir, since the case r = 1 is clear,
it is enough to consider r > 2. As in Example 8.4.9 ρ(I) 6 reg(I)/γ(I), so it suffices to
show reg(I)/(j(ε(N, Z))N−1) < (rN − (N − 1))/r for j ≫ 0, and since (rN − (N − 1))/r
is least for r = 2, it is enough to verify this for r = 2. To estimate reg(I), use the facts

that dim(Rt) =
(
t+N
N

)
and reg(I) = t + 1, where t is the least nonnegative integer such that

j 6
(
t+N
N

)
. Since j = ( N

√
N !j)N/(N !) 6 (x + N) · · · (x + 1)/(N !) for x = N

√
N !j − 1, we see

t 6 ⌈ N
√

N !j − 1⌉ 6 N
√

N !j and hence reg(I) 6 N
√

N !j + 1. Next, for j ≫ 0, we have

j − 1

j

1
N
√

j − 1
=

N
√

(j − 1)N−1

j
6 ε1(PN ,O(1); Z)

by Theorem 1.1 [Kue96b] and

ε1(PN ,O(1); Z) 6 ε(N, Z)

by Proposition 2.1.6 (although Proposition 2.1.6 is stated only for the case j = 1 of a single
point, the proof (see Proposition 5.1.9 [PAG]) carries over for any j). Thus

j − 1

j

1
N
√

j − 1
6 ε(N, Z)

and hence
(j − 1

j

)N−2
N
√

j − 1 =
(j − 1

j

)N−1 j

N
√

j − 1
N−1

6 j(ε(N, Z))N−1

so
reg(I)

j(ε(N, Z))N−1
6

N
√

N !j + 1
(

j−1
j

)N−2
N
√

j − 1

for j ≫ 0. But

lim
j→∞

N
√

N !j + 1
(

j−1
j

)N−2
N
√

j − 1

=
N
√

N !

so
reg(I)

j(ε(N, Z))N−1
<

N + 1

2

follows for j ≫ 0 if we have
N
√

N ! <
N + 1

2
,
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and this is equivalent to 2NN ! < (N + 1)N . This last is true for N = 2, and if it is true for
some N > 2, then it holds for N + 1 (and hence for all N > 2 by induction) if

2(N + 1) 6 (N + 2)((N + 2)/(N + 1))N ,

since then

2N+1(N + 1)! = 2(N + 1)2NN ! < (N + 2)((N + 2)/(N + 1))N (N + 1)N = (N + 2)N+1.

But taking n = N + 1, we can rewrite 2(N + 1) 6 (N + 2)((N + 2)/(N + 1))N as 2 6

((N + 2)/(N + 1))N+1 = (1 + 1
n

)n = 1n +
(
n
1

)
1
n

+
(
n
2

)
1

n2 + · · · , which is obvious.
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Boston, Inc., Boston, MA, 1989.

[CHST05] Cutkosky, S. D., Ha, H. T., Srinivasan, H., Theodorescu, E.: Asymptotic behaviour of the
length of local cohomology. Canad. J. Math. 57 (2005), no. 6, 1178–1192.

[Dem92] Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. Complex algebraic
varieties (Bayreuth, 1990), Lect. Notes Math. 1507, Springer-Verlag, 1992, pp. 87–104.

[DiR99] Di Rocco, S.: Generation of k-jets on toric varieties. Math. Z. 231 (1999), 169–188.
[Dum07] Dumnicki, M.: Regularity and non-emptyness of linear systems in P

n. arXiv:0802.0925
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[Tut05] Tutaj-Gasińska, H.: Seshadri constants in two half-periods. Arch. Math. (Basel) 85 (2005),
514–526.

[Xu94] Xu, G.: Curves in P2 and symplectic packings. Math. Ann. 299 (1994), 609–613.

[Xu95] Xu, G.: Ample line bundles on smooth surfaces. J. reine angew. Math. 469 (1995), 199–209.
[Zar62] Zariski, O.: The theorem of Riemann-Roch for high multiples of an effective divisor on an

algebraic surface.

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans-Meerwein-Straße,

D-35032 Marburg, Germany

E-mail address: tbauer@Mathematik.Uni-Marburg.de

Department of Mathematics, KTH, 100 44 Stockholm, Sweden

E-mail address: dirocco@math.kth.se

Department of Mathematics, University of Nebraska–Lincoln, Lincoln, NE 68588-0130 USA

E-mail address: bharbourne1@math.unl.edu

Institute of Mathematics UJ, Reymonta 4, 30-059 Kraków, Poland

E-mail address: michal.kapustka@im.uj.edu.pl

Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen,

Norway

E-mail address: Andreas.Knutsen@math.uib.no

Instytut Matematyki AP, ul. Podchora̧żych 2, PL-30-084 Kraków, Poland
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