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Psychology has become less WEIRD in recent years, marking progress toward

becoming a truly global psychology. However, this increase in cultural diversity is not

matched by greater attention to cultural biases in research. A significant challenge

in culture-comparative research in psychology is that any comparisons are open to

possible item bias and non-invariance. Unfortunately, many psychologists are not

aware of problems and their implications, and do not know how to best test for

invariance in their data. We provide a general introduction to invariance testing and

a tutorial of three major classes of techniques that can be easily implemented in

the free software and statistical language R. Specifically, we describe (1) confirmatory

and multi-group confirmatory factor analysis, with extension to exploratory structural

equation modeling, and multi-group alignment; (2) iterative hybrid logistic regression

as well as (3) exploratory factor analysis and principal component analysis with

Procrustes rotation. We pay specific attention to effect size measures of item biases

and differential item function. Code in R is provided in the main text and online (see

https://osf.io/agr5e/), and more extended code and a general introduction to R are

available in the Supplementary Materials.

Keywords: invariance, culture, procrustean analyses, confirmatory factor analysis – CFA, DIF (differential item

functioning), R, ESEM, alignment

INTRODUCTION

We live in an ever increasingly connected world and today it is easier than ever before to administer
surveys and interviews to diverse populations around the world. This ease of data gathering with
instruments often developed and validated in a single region of the world is matched by the problem
that it is often difficult to interpret any emerging differences (for a discussion see: Chen, 2008;
Fischer and Poortinga, 2018). For example, if a researcher is interested in measuring depression
or well-being, it is important to determine whether the instrument scores can be compared across
cultural groups. Is one group experiencing greater depression or psychological distress compared to
another group?Hence, before we can interpret results in theoretical or substantive terms, we need to
rule out methodological and measurement explanations. Fortunately, the methods have advanced
significantly over the last couple of years, with both relatively simple and increasingly complex
procedures being available to researchers (Vandenberg and Lance, 2000; Boer et al., 2018). Some of
the more advanced methods are implemented in proprietary software, which may not be available
to students and researchers, especially in lower income societies. There are excellent free and
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online resources available, most notable using the programming
language R (R Core Team, 2018). Unfortunately, many
researchers are not aware of the interpretational problems in
cross-cultural comparative research and fail to adequately test
for measurement invariance (see Boer et al., 2018). Our tutorial
aims to demonstrate how three different and powerful classes of
analytical techniques can be implemented in a free and easy to use
statistical environment available to student and staff alike which
requires little computer literacy skills. We provide the code and
example data in the Supplementary Materials as well as online1.
We strongly encourage readers to download the data and follow
the code to gain some experience with these analyses.

We aim to provide a basic introduction that allows novices to
understand and run these techniques. The three most common
approaches are exploratory and confirmatory methods within
the classic test theory paradigm as well as item response
theory approaches. We also include recent extension such as
exploratory structural equation modeling (ESEM) and multi-
group alignment. Although these approaches often differ at the
philosophical and theoretical level, at the computational level and
in their practical implementation, they are typically converging
(Fontaine, 2005). We provide a basic introduction and discuss
them together here. We encourage readers interested in more
technical discussions and their conceptual and computational
distinctions to consult more technical overviews and extensions
(e.g., Long, 1983a,b; Hambleton and Jones, 1993; Meredith, 1993;
Fontaine, 2005; Borsboom, 2006; Tabachnick and Fidell, 2007;
Boer et al., 2018).

Throughout the tutorial, we use a two-group comparison.
Unfortunately, results from two sample comparisons are open
to a host of alternative interpretations, even if method issues
can be ruled out. Therefore, we strongly encourage researchers
to include more than two samples in their research design.
Multiple-sample can pose some additional analytical choices
for researchers (especially for the EFA component) and we
discuss easily available options for expanding the analyses
to more than two samples. In the final section, we directly
compare the different methods and their relative advantages
and disadvantages.

THE BASIC PRINCIPLE OF
MEASUREMENT INVARIANCE TESTING

With invariance testing, researchers are trying to assess whether
an instrument has the same measurement properties in two or
more populations. We need to distinguish a number of different
properties of measurement instruments. In order to provide a
common terminology, we use the item response theory approach
(we will be ignoring the person parameters) and note equivalent
parameters in classic test theory terms, where necessary. Because
in psychology we often do not have access to objective indicators,
our best estimate about the psychological expression of interest
when evaluating a test is the overall score on a test. This overall
score is taken as an estimate of the underlying ability parameter

1https://osf.io/agr5e/

of the person or the level of latent variable (the psychological
trait we would like to measure). Invariance testing of instruments
focuses on the relationship between each individual item and
the overall score of the instrument. It is important to highlight
that cross-cultural researchers use different types of data for
invariance testing and that the interpretation of the overall
score differs depending on the type of test being examined. For
example, an intelligence test will capture the extent to which
individuals answer questions correctly, which then leads to clear
interpretations of the parameters in terms of item difficulty and
item discrimination. For researchers using rating scales, these
same parameters are often interpreted in terms of factor loadings
(how well an item relates to a presumed underlying factor) and
intercepts (is there some guessing or response bias involved, that
is not related to the latent variable). The interpretation therefore
differs somewhat, but the statistical properties are similar. For
example, if an individual has a higher score on the underlying
ability as either a true ability or a preference or trait, then she
should report a higher mean (the person is more likely to answer
an item ‘correctly’). When dissecting the relationship between an
item and the overall score, there are three main parameters: (1)
the item difficulty or item location, (2) the discrimination or slope
parameter, and (3) a parameter for pseudo-guessing, chance or
the intercept (see Figure 1). The item difficulty describes how
easy or difficult an item is, in other words, the amount of a
latent trait that is needed for an individual to endorse an item
with a 50% probability (for rating scales) or answer it correctly
(for ability tests). Item discrimination or the slope describes how
well an item discriminates between individuals (both for ability
tests and rating scales). In factor analytic terms it can also be
thought of as the item loading – how strongly the item is related
to the latent variable. The guessing parameter refers to the point
where individuals with a low level of ability (for ability tests)
or expression of a psychological trait (for rating scales) may
still able to guess the correct answer (on a test) or responds
with a higher score than would be indicated by their latent trait
score. In factor analytic terms, this is conceptually equivalent to

FIGURE 1 | Schematic display of item difficulty, item discrimination, and

guessing parameters in a single group.
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the intercept. More parameters can be estimated and tested (in
particular within a multivariate latent variable framework), but
these three parameters have been identified as most important
for establishing cross-cultural measurement invariance (e.g.,
Meredith, 1993; Vandenberg and Lance, 2000; Fontaine, 2005).
Of these three parameters, item discrimination and intercepts are
the most central and have been widely discussed in terms of how
they produce differential item functioning (DIF) across groups.

LEVELS OF MEASUREMENT
INVARIANCE AND DIFFERENTIAL ITEM
BIAS

In cross-cultural comparisons, it is important to identify whether
these parameters are equivalent across populations, to rule out
the possibility that individuals with the same underlying ability
have a different probability to give a certain response to a specific
item depending on the group that they belong to (see Figure 2).

There are at least three different levels of invariance or
equivalence that are often differentiated in the literature (see
Meredith, 1993; van de Vijver and Leung, 1997; Vandenberg and
Lance, 2000; Fontaine, 2005; Milfont and Fischer, 2010). The
first issue is whether the same items can be used to measure
the theoretical variable in each group. For example, is the item
“I feel blue” a good indicator of depression?2 If the answer is
yes, we are dealing with configural invariance. The loadings (the
extent to which each item taps into the underlying construct of
depression) are all in the same direction in the different groups
(this is why this sometimes called form invariance), nevertheless,
the specific factor loadings or item discrimination parameters
may still differ across samples.

If the item discrimination or factor loadings are identical
across the samples, then we are dealing with metric invariance.
The item discriminates similarly well between individuals with
the same underlying trait. Equally, the item is related to the
same extent to the underlying latent variable in all samples. This
implies that an increase in a survey response to an item (e.g.,
answering with a 3 on 1–7 Likert scale instead of a 2) is associated
with the same increase in depression (the latent variable that is
thought to cause the responses to the survey item) in all groups
sampled. If this condition is met for all items and all groups, we
can compare correlations and patterns of means (e.g., profiles)
across cultural samples, but we cannot make claims about any
latent underlying construct differences (see Fontaine, 2005).

See Figures 2B,C for an example where an increase in
the underlying ability of trait is associated with equal changes
in responses to an individual item, but there are still other
parameters that differ between samples.

If we want to compare instrument scores across groups and
make inferences about the underlying trait or ability levels, we
need to also at least constrain guessing or intercept parameters
(and also item difficulty in IRT). Metric invariance only means
that the slopes between items and latent variables are identical,

2Color connotations are often language specific. For example, feeling blue might
indicate intoxication in German, but not depression per se.

but the items may still be easier or difficult overall or individuals
might be able to guess answers. Therefore, we have to constrain
intercepts to be equal. If this condition is met, we have scalar or
full score invariance. The advantage of full score equivalence is
that we can directly compare means and interpret any differences
in terms of the assumed underlying psychological construct.

These levels of invariance are challenged by two major item
biases. Uniform item bias describes a situation where the item
equally well discriminates between individuals with the same
underlying true ability. In this case the curves are parallel and
the items do not differ in discrimination (slopes). People of one
group have an unfair advantage over the other group, but the
relative order of individuals within each group is preserved (see
Figures 2B,C). Non-uniform item bias occurs when the order
of individuals along the true underlying trait is not reflected
in the item responses (see Figures 2A,D). The item responses
differ across groups and true levels of the underlying ability. The
most important parameter here is item discrimination, but other
parameters may also change. Together, these item biases are often
examined in the context of DIF.

Themethods discussed below differ in the extent to which they
allow researchers to identify item bias and invariance in these
parameters. Exploratory factor analysis (EFA) with Procrustes
rotation is the least rigorous method, because it only allows
an overall investigation of the similarity of factor loadings, but
it does not typically allow analysis at the item level. Multi-
group confirmatory factor analysis (CFA) and DIF analysis with
logistic regression allow an estimation of both the similarity in
factor loadings and intercepts/guessing parameters. We briefly
describe the theoretical frameworks, crucial analysis steps and
how to interpret the outputs in a two-group comparison. We
then compare the relative advantages and disadvantages of each
method and their sensitivity to pick up biases and violations of
cross-cultural invariance.

What to Do if Invariance Is Rejected?
All the techniques that we describe below rely on some form
of fit statistic – how much does the observed data deviate from
the assumption that the statistical parameters are equal across
groups? The different techniques use different parameters and
ways to test this misfit, but essentially it always comes down
to an estimation of the deviation from an assumed equality of
parameters. Individual items or parameters are flagged for misfit.
The most common immediate strategy is to conduct exploratory
analyses to identify (a) the origin of the misfit or DIF and
to then (b) examine whether excluding specific items, specific
factors or specific samples may result in improved invariance
indicators. For example, it might be that one item shows some
translation problems in one sample and it is possible to exclude
this item or to run so-called partial invariance models (see
below). Or there might be problems with a specific factor (e.g.,
translation problems, conceptual issues with the psychological
meaning of factor content – often called cultural construct bias).
It might be possible to remove the factor from the analyses
and proceed with the remaining items and factors. Or it may
also happen that one sample is found to be quite different (e.g.,
different demographics or other features that distinguish the
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FIGURE 2 | Examples of differential item functioning in two groups. The panels show differential item functioning curves for two groups (group 1 indicated by solid

line, group 2 indicated by a broken line). Panel (A) shows two groups differing in item discrimination (slope differences). The item differentiates individuals less well in

group 1. This is an example of non-uniform item bias. Panel (B) shows two groups with different item difficulty. The item is easier (individuals with lower ability are

able to correctly answer the item with 50% probability) for the group 1 and more difficult for group 2. Individuals in group 2 need higher ability to answer the items

correctly with a 50% probability. This is an example of uniform item bias. Panel (C) shows differential guessing or intercept parameters. Group 1 has a higher chance

of guessing the item correctly compared to group 2. Scores for group 1 on this item are consistently higher than for group 2, independent of the individual’s

underlying ability or trait level. This is an example of uniform item bias. Panel (D) shows two groups differing in all three parameters. Group 1 has a higher guessing

parameter, the item is easier overall, but also discriminates individuals better at moderate levels of ability compared to group 2. This is an example of both uniform

and non-uniform item bias.

sample from the other samples including differences in reading
ability, education, economic opportunities). In this case, it is
possible to exclude the individual sample and proceed with the
remaining cultural samples. The important point here is that
the researcher needs to carefully analyze the problem and decide
whether it is a problem with an individual item, scale or sample,
or whether it points to some significant cultural biases at the
conceptual level.

We would like to emphasize that it is perfectly justified
to conduct an invariance analysis and to conclude that
it is not meaningful to compare results across groups.

In fact, we wish more researchers would take this stance
and call out test results that should not be compared
across ethnic or cultural groups. For example, if the
factor structures of an instrument are not comparable
across two or more groups, a comparison of means and
correlations are invalid. There is no clear interpretation
of any mean differences if there is no common structure.
Hence, invariance analysis can be a powerful tool for applied
psychologists to counter discrimination and bias as well as
cultural psychologists interested in demonstrating cultural
relativism. Unfortunately, too often the insights from invariance
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analyses are ignored and researchers proceed with cross-
cultural comparisons, which are then inherently meaningless
(see Boer et al., 2018).

CONFIRMATORY FACTOR ANALYSIS

Confirmatory factor analysis is probably the most widespread
measurement model approach in psychology. Most constructs
in psychological research cannot be directly observed but need
to be inferred from several observed indicators (Horn, 1965;
Gorsuch, 1993). These indicators can be recorded behaviors or
responses to Likert type scales: returning to our example of
depression, we may infer levels of an underlying depression
variable through observations of sleeping problems, changes
in mood, or weight gain. The general advantage and appeal
of CFA is that it explicitly tests the theoretical structure that
a researcher has about the instrument. CFA using a theory-
driven approach for modeling the covariance between items,
meaning it is a measurement model that treats items as indicators
of a theoretically assumed underlying latent constructs (e.g.,
Long, 1983a; Bollen, 1989). The researcher needs to decide
a priori which items are expected to load (are indicators of the
latent variable) on which latent variable. Typically, researchers
are interested in the simple structure, in which each item is
expected to load on only one latent factor. Figure 3 shows the
main parts of a CFA model. Observed indicators (e.g., item
responses to a survey) are represented by squares, whereas
estimated parameters are symbolized by ovals or circles. Each
item in our example is allowed to load on one latent variable.
The resulting factor loadings represent the relationship of the
observed indicator to each of the extracted latent factors. The
strength of the loadings can range from 0 (no relationship) to
either −1 or 1 (identical); if the latent variables are standardized,
in unstandardized situations the loadings are dependent on the
measurement scale. In our example, the first four items only load
on factor 1, whereas the last three items only load on factor
2. In multi-group analyses, we also estimate the item intercept
(which is conceptually similar to the pseudo guessing parameter
discussed above).

FIGURE 3 | Example of confirmatory factor analysis model.

For technical (identification) purposes, one of the factor
loadings is typically set to 1 to provide identification and a
meaningful scale. It also important to have at least three items
per latent factor (although this rule can be relaxed, see Bollen,
1989). CFA is demanding in terms of data quality, assuming at
least interval data that is multivariate normally distributed, an
assumption that is unfortunately often violated. Some procedures
have been developed to correct for a violation of multivariate
normality (see for example, Satorra and Bentler, 1988), which
are implemented and can be requested in the R package that
we describe below.

Confirmatory factor analysis is confirmatory: the theoretically
proposed structure of implied covariances among items is
statistically tested and compared to the observed covariances
based on the sample specific item responses. One of the
most important questions is how to evaluate whether the
model fits the data. Various different fit indices are available.
The deviation of the theoretically predicted to the empirically
observed covariances is captured by the chi-square statistic. This
is the oldest and probably most important diagnostic tool for
deciding whether the theoretical prediction was plausible or
not. The smaller the chi-square value, the less the theoretical
model deviates from the observed sample covariance matrix.
The exact fit of the theory to the data can be evaluated with
a significance test, therefore this is often called an exact fit test
(see Barrett, 2007). Ideally, we want a non-significant chi-square
value. Unfortunately, there are both conceptual and statistical
drawbacks for the chi-square. First, any theoretical model is only
an approximation of reality, therefore any chi-square is a priori
known to be incorrect and bound to fail because reality is more
complex than implied in simple models (Browne and Cudeck,
1992). Statistically, the test is sample size dependent. Any model
will be rejected with a sufficiently large sample size (Bentler and
Bonett, 1980; Bollen, 1989; for an example of cross-cultural study
demonstrating this dependence, see Fischer et al., 2011).

To overcome these problems, a number of alternative fit
measures have been proposed (even though most of them still
are derived from the qui-square statistic). Here, we focus on the
most commonly reported fit statistics (Hu and Bentler, 1999),
which can be differentiated into (a) incremental or comparative
and (b) lack-of-fit indices. Incremental or comparative fit models
compare the fit of the theoretical model against an alternative
model. This is (typically) an independence model in which
no relationships between variables are expected. Higher values
are indicating better fit with values above 0.95 indicating good
fit (Hu and Bentler, 1998). The Tucker–Lewis Index (TLI) or
non-normed fit index (NNFI) and the comparative fit index
(CFI; Bentler, 1990) are the most commonly reported and more
robust indicators (Hu and Bentler, 1999). Lack of fit indices in
contrast indicate better fit, if the value is lower. The standardized
root mean square residual (SRMR; Bollen, 1989) compares the
discrepancy between the observed correlation matrix and the
implied theoretical matrix. Smaller values indicate that there
is less deviation. Hu and Bentler (1998) suggested that values
less than 0.08 are acceptable. The root mean square error of
approximation (RMSEA; Browne and Cudeck, 1992) uses a
similar logic, but also takes into account model complexity and
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rewards more parsimonious models. Historically, values ranging
between 0.06 and 0.08 were deemed acceptable, but simulations
by Hu and Bentler (1998, 1999) suggested that a cut-off of 0.06
might be more appropriate.

However, it is important to note that the selection of fit indices
and their cutoff criteria are contentious. Marsh et al.’s (2004)
study warned researchers against blindly adopting cutoff values
suggested by specific simulations such as the famous Hu and
Bentler (1998, 1999) study. One specific issue is that models
with higher factor loadings (indicating more reliable models)
might be penalized by these fit indicators (Kang et al., 2016;
McNeish et al., 2018), which creates a paradoxical situation in
that theoretically better and more reliable models are showing
worse fit. They suggested to also examine other fit indices such
as McDonald’s Non-Centrality Index (NCI, McDonald, 1989).
We urge researchers to take a cautious approach and to evaluate
model fit as well as examining the overall factor loadings and
residuals when determining model fit. If your model is fitting
well, but has poor factor loadings and shows large residuals, it
is probably not the best model. A good strategy is to compare
a number of theoretically plausible models and then select the
model that makes most theoretical sense and has the best fit
(MacCallum and Austin, 2000; Marsh et al., 2004).

Often, researcher would first test the model separately in
each cultural group. This can provide valuable insights into the
structure in each group. However, the individual analyses in each
sample do not provide information about whether the structure
is identical or not across groups. For this, we need to conduct a
multi-group analysis. This is the real strength of CFA, because we
can constrain relevant parameters across groups and test whether
the fit becomes increasingly worse. If there is overall misfit, it
then becomes possible to test whether individual items or groups
cause misfit. Therefore, multi-group CFA provides information
at both the scale and item level, making it a powerful tool for
cross-cultural researchers.

To proceed with the examination of invariance, a number of
parameters can be constrained across groups or samples in a
hierarchical fashion which allow a test of the invariance levels
that we described at the beginning of this article. The first step is
form invariance (Meredith, 1993; Cheung and Rensvold, 2000) or
configural invariance (Byrne et al., 1989). All items are expected
to load on the same latent factor. The second level is factorial
invariance (Cheung and Rensvold, 2000) or metric invariance
(Byrne et al., 1989), in which the factor loadings are forced to
be equal across groups. This tests whether there is non-uniform
item bias (see above). The third level that is necessary to test
is scalar invariance (Vandenberg and Lance, 2000) or intercept
invariance (Cheung and Rensvold, 2000), which constrains the
item intercepts to be equal across groups. It tests whether there
is uniform item bias present in an item. It is desirable to obtain
scalar invariance because then means can be directly compared
across groups. Unfortunately, few cross-cultural studies do test
this level of invariance (Boer et al., 2018).

At each step, researchers have to decide whether their more
constrained model still fits the data or not. In addition to the fit
indices that we have discussed above, it is common to examine
change in fit statistics. The traditional change statistic is the

chi-square difference test, in which the chi-square of the more
restricted model is compared to the chi-square of the more
lenient model. A significant chi-square difference indicates that
model fit is significantly worse in the more restricted model
(Anderson and Gerbing, 1988). However, as before, the chi-
square is sample size dependent and therefore, other fit indices
have been introduced. Little (1997) was the first to suggest that
differences in the NNFI/TLI and CFI are informative. Similarly,
it is possible to examine changes in RMSEA (Little et al., 2007).
For these change in fit indices, current standards are to accept
models that show differences equal to or less than 0.01. Some
authors also suggested examining other fit indices, including
1McDonald’s NCI (see Kang et al., 2016). All these fit indices
are judged in relation to deterioration in fit between more and
less restricted models, with cut-offs based on either experience
or simulations. Unfortunately, there is no universal agreement
on acceptable standards (see Chen, 2007; Milfont and Fischer,
2010; Putnick and Bornstein, 2016). For example, Rutkowski
and Svetina (2014) ran simulation models focusing specifically
on conditions where researchers have more than 10 samples
in their measurement invariance analysis and suggested that in
these multi-group conditions criteria for metric invariance tests
could be relaxed to 0.02, but that the criteria for judging scalar
invariance should remain at traditional cut-offs of less than 0.01.

What do you need to do if factorial invariance is rejected at
any of these steps? First, it is advisable to investigate the models
in each group separately and to also check modification indices
and residuals from the constrained model. Modification indices
provide information of how much the χ2 would change if the
parameter was freed up. There are no statistical guidelines of how
big a change has to be in order to be considered meaningful.
Theoretical considerations of these modification indices are
again important: There might be both meaningful theoretical
(conceptual differences in item meaning) or methodological
reasons (item bias such as translation issues, culture specificity
of item content, etc.) why either factor loadings or intercepts are
different across groups. The appropriate course of action depends
on the assumed reasons for misfit. For example, a researcher
may decide to remove biased items (if there are only few items
and if this does not threaten the validity of the overall scale).
Alternatively, it is possible to use partial invariance, in which
the constrains on specific items are relaxed (Byrne et al., 1989,
see below).

How to Run a Multi-Group CFA in R
We describe the steps using the lavaan (Rosseel, 2012) and
semTools (semTools Contributors, 2016) packages, which need
to be loaded (see Supplementary Materials). For illustration
purposes, we use data from Fischer et al. (2018) in which they
asked employees in a number of countries, including Brazil and
New Zealand (total N = 2,090, we only included a subset of
the larger data set here), to report whether they typically help
other employees (helping behavior, seven items) and whether
they make suggestions to improve work conditions and products
(voice behavior, five items). Individuals responded to these items
on a 1–7 Likert-type scale.
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Running the CFA

The first CFA relevant step after reading in the data and specifying
missing data (see Supplementary Materials) is to specify the
theoretical model. We need to create an object that contains the
relevant information, e.g., what item loads on what factor and
whether factors and/or item errors are correlated. The way this
is done is through regression-like equations. Factor loadings in R
are indicated by =∼ and covariances (between factors or error
terms for items) are indicated by ∼∼. The model is specified
similar to writing regression equations.

In our case, the model is:

cfa_model<− ‘
help =∼help1 + help2 + help3 + help4 + help5 + help6 + help7

voice =∼voice1 + voice2 + voice3 + voice4 + voice5’

We have seven items that measure helping behavior and five
items that measure voice behaviors. Now, we need to run the
model and test whether the theoretical model fits to our data. The
basic command is:

fit_cfa <− cfa(cfa_model, data = example)

Running a Multi-Group CFA

This creates an object that has the statistical results. The current
command does not specify separate CFAs in the individual
groups, but tests the model in the total sample. To separate the
models by group, we need to specify the group (important note:
in lavaan, we will not get the separate fit indices per group, but
only an overall fit index for all groups combined; if you want to
run separate CFAs in each group, it is useful to subset the data
first, see the Supplementary Materials for data handling):

fit_cfa_country <− cfa(cfa_model, data = example,
group = “country”)

To get the statistical output and relevant fit indices, we can
now call the object that we just created in the summary()
function:

summary(fit_cfa_country, fit.measures = TRUE,
standardized = TRUE, rsquare = TRUE)

The fit.measures argument requests the commonly described
fit indices that we described above. The standardized command
provides a standardized solution for the loadings and variances
that is more easily interpreted. In our case, the fit is mixed
overall: χ2(106) = 928.06, p < 0.001, CFI = 0.94, TLI = 0.93,
RMSEA = 0.086, SRMR = 0.041. For illustration purposes, we
continue with this model, but caution that it is probably not
demonstrating sufficient fit to be interpretable.

Invariance Testing – Omnibus Test

To run the invariance analysis, we have twomajor options. One is
to use a single command from the semTools package which runs
the nested analyses in a single run:3

3The current command ‘measurementInvariance’ available in the semTools
package will become unavailable in the near future. A legacy function providing
the same output is available in the ccpsyc package via the invariance_semtools
function.

measurementInvariance (model = cfa_model, data =
example, group = “country”)

We specify the theoretical model to test, our data file and the
grouping variable (country). In the output, Model 1 is the most
lenient model, no constraints are imposed on the model and
separate CFA’s are estimated in each group. The fit indices mirror
those reported above. Constraining the loadings to be equal,
the difference in χ2 between Model 1 and 2 is not significant:
1χ2(df = 10) = 16.20, p = 0.09, and the change in both CFI
(0.00) and RMSEA (0.003) are negligible. Since χ2 is sensitive to
sample size, the CFI and RMSEA parameters might be preferable
in this case (see Milfont and Fischer, 2010; Cheung and Lau,
2012; Putnick and Bornstein, 2016). When further constraining
the intercepts to be equal, we have a significant χ2 difference
again: 1χ2(df = 10) = 137.03, p < 0.001. The difference in CFI
(0.009) and RMSEA (0.003) are also below commonly accepted
thresholds, therefore, we could accept our more restricted model.
However, as we discussed above, the overall fit of the baseline
model was not very good and some of the fit indices have
conceptual problems. In the ccpsyc package, we included a
number of additional fit indices that have been argued to be more
robust (see for example, Kang et al., 2016). Briefly, to load the
ccpsyc package (the devtools package is required for installation),
call this command:

devtools::install_github("Jo-Karl/ccpsyc")
library(ccpsyc)

The function via the ccpsyc package is called equival and we
need to specify the CFA model that we want to use, then the
relevant data file (dat = example) and the relevant grouping
variable (group = “country”). For this function, the group
variable needs to be a factor (e.g., the country variable is not
a numerical variable). It is important to note that the equival
function fits all models using a robustMLM estimator rather then
an ML estimator.

An example of the function is:

equival(cfa_model, dat = example, group = “country”)

In our previous example, the fit indices were not acceptable
even for less restricted models. Therefore, the more restricted
invariance tests should not be trusted. This is a common
problem with CFA. If there is misfit, we can either trim the
parameter (drop parameters, variables or groups from the model
that are creating problems) or we can add parameters. If we
decide to remove items from the model, the overall model
needs to be rewritten, with the specific items removed from
the revised model (see the steps above). One question that
you as a researcher needs to consider is whether removing
items may change the meaning of the overall scale (e.g.,
underrepresentation of the construct; see Fontaine, 2005). It
might also be informative for a cross-cultural researcher to
consider why a particular item may not work as well in
a given cultural context (e.g., through qualitative interviews
with respondents or cultural experts to identify possible
sources for misfit).
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To see which parameters would be useful to add, we can
request modification indices.

This can be done using this command in R:

mi <− modificationIndices(fit_cfa)

We could now simply call the output mi to show the
modification indices. It gives you the expected drop in χ2 as
well as what the parameter estimates would be like if they were
freed up. Often, there are many possible modifications that can
be done and it is cumbersome sifting through a large output file.
It can be useful to print only those modification indices above a
certain threshold. For example, if we want to only see changes in
χ2 above 10, we could add the following argument:

mi <− modificationIndices(fit_cfa, minimum.value = 10,
sort = TRUE)

We also added a command to have the results sorted by
size of change in χ2 for easier examination. If we now call the
object as usual (just write mi into your command window), this
will give us modification indices for the overall model, that is
modification indices for every parameter that was not estimated
in the overall model. For example, if there is an item that may
show some cross-loadings, we now see how high that possible
cross-loading might be and what improvement in fit we would
achieve if we were to add that parameter to our model. The
function also gives us a bit more information, including the
expected parameter change values (column epc) and information
about standardized values (sepc.lv: only standardizing the
latent variables; sepc.all: standardizing all variables; sepc.nox:
standardizing all but exogenous observed variables).

Invariance Testing – Individual Restrictions and

Partial Invariance

This leads us to the alternative option that we can use for testing
invariance. Here, we manually construct increasingly restricted
models. This option will also give us opportunities for partial
invariance. We first constrain loading parameters in the overall
cfa command that we described above:

metric_test <− cfa(cfa_model, data = example,
group = “country”, group.equal = c(“loadings”))

As can be seen here, we added an extra command group.equal
which now allows us to specify that the loadings are constrained
to be equal. If we wanted to constraint the intercepts at the same
time, we need to use: group.equal = c(“loadings”, “intercepts”).
We can get the usual output using the summary function as
described above.

We could now request modification indices for this
constrained model to identify which loadings may vary
across groups:

mi_metric <− modificationIndices(metric_test,
minimum.value = 10, sort = T)

As before, it is possible to restrict the modification indices that
are printed.We could also investigate howmuch better ourmodel
would be if we freed up some parameters to vary across groups. In
other words, this would tell us if there are some parameters that

vary substantively across groups and if it is theoretically plausible,
we could free them up to be group specific. This then would
become a partial invariance model (see Meredith, 1993). We
provide the lavTestScore.clean function in the ccpsyc package to
show sample specific modification indices which uses a metrically
constrained CFA model. The relevant command is:

lavTestScore.clean(metric.test)

If we wanted to relax some of the parameters (that is running a
partial invariancemodel), we can use the group.partial command.
Based on the results from the example above, we allowed the third
help item to load freely on the help latent factor in each sample:

fit_partial <− cfa(cfa_model, data = example,
group = “country”, group.equal = c(“loadings”),
group.partial = c(“help =∼ help3”))

Estimating Effect Sizes in Item Bias in
CFA: dMACS
The classic approach to multi-group CFA does not allow
an estimation of the effect size of item bias. As we did
above, when running a CFA to determine equivalence between
groups, researchers rely on differences in fit measures such
as 1CFI and 1χ2. These cut-off criteria inform researchers
whether a structure is equivalent across groups or not, but
they do not provide an estimate of the magnitude of misfit. To
address this shortcoming Nye and Drasgow (2011) proposed
an effect size measure for differences in mean and covariance
structures (dMACS). This measure is estimating the degree of
non-equivalence between two groups on an item level. It can
be interpreted similar to established effect sizes (Cohen, 1988)
with values of greater than 0.20 being considered small, 0.50
are medium, and 0.80 or greater are large. It is important that
these values are based on conventions and do not have any direct
practical meaning or implication. In some contexts (e.g., high
stakes employment testing), even much smaller values might
be important and meaningful in order to avoid discrimination
against individuals for specific groups. In other contexts, these
criteria might be sufficient.

How to Do the Analysis in R
To ease the implementation of dMACS, we created a function in R
as part of our ccpsyc package that allows easy computation (see
the Supplementary Materials for how to install this package and
function). The function dMACS in the ccpsyc package has three
arguments: fit.cfawhich takes a lavaan object with two groups and
a single factor as input, as well as a group1 and group2 argument
in which the name of each group has to be specified as string. The
function returns effect size estimates of item bias (dMACS) for
each item of the factor. In our case, we could specify first a CFA
model with only the helping factor, then run the lavaan multi-
group analysis.

help_model <− ‘help =∼ help1 + help2 + help3 + help4 +

help5 + help6 + help7’
help_cfa <− cfa(help_model, data = example,
group = “country”)
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We now can call:

dMACS(help_cfa, group1 = “NZ”, group2 = “BRA”)

to get the relevant bias effect size estimates. One of the items
(item 3) shows a reasonably large dMACS value (0.399). As you will
remember, this item also showed problematic loading patterns
in the CFA reported above, suggesting that this item might be
problematic. Hence, even when the groups may show overall
invariance, we may still find item biases in individual items.

Limitations of dMACS
A limitation of the current implementation of dMACS is that the
comparison is limited to a unifactorial construct between two
groups. After running the overall model, researchers need to
respecify their models and test each dimension individually.

Strengths and Weaknesses of CFA
Confirmatory factor analysis is a theory-driven measurement
approach. It is ideal for testing instruments that have a
well-established structure and we can identify which items are
expected to load on what latent variables. This technique provides
an elegant and simple test for all important measurement
questions about item properties with multi-dimensional
instruments. At the same time, CFA is not without drawbacks.
First, it requires interval and multivariate normally distributed
data. This can be an issue with the ordinal data produced by
Likert-type scales if the data is heavily skewed. Nevertheless
a number of studies have shown that potential issues can be
overcome by the choice of estimator (for example, Flora and
Curran, 2004; Holgado-Tello et al., 2010; Li, 2016). Second,
establishing adequate model fit and what counts as adequate
are tricky questions and this is continuously debated in the
measurement literature. Third, CFA ideally requires moderately
large sample sizes (N > 200; e.g., Barrett, 2007). Fourth, non-
normality and missing data within and across cultural groups
can create problems for model estimation and identifying the
problems can become quite technical. However, the technique is
becoming increasingly popular and has many appealing features
for cultural psychologists.

Exploratory Structural Equation
Modeling
Confirmatory factor analysis is a powerful tool, but it has
limitations. One of the biggest challenges is that a simple
structure in which items only load on one factor is often
empirically problematic. EFA (see below) presupposes no
structure, therefore any number of cross-loadings are being
permitted and estimated, making it a more exploratory
technique. To provide a theory-driven test while allowing
for the possibility of cross-loadings, ESEM (Asparouhov and
Muthén, 2009) has been proposed. ESEM combines an EFA
approach that allows an unrestricted estimation of all factor
loadings which can then be further compared with a standard
structural equation approach. Technically, an EFA is conducted
with specific factor rotations and loading constraints. The
resulting loading matrix is then transformed into structural

equations which can be further tested and invariance indices
across groups can be estimated. ESEM also allows a better
estimation of the correlated factor-structures than EFA as well
as provides more unbiased estimates of factor covariances than
CFA (because of the restrictive assumption of a simple structure
with no cross-loadings for CFA). The ESEM approach has
been proposed within Mplus (Muthén and Muthén, 2018),
but it is possible to run compatible models within R (see
Guàrdia-Olmos et al., 2013).

We use the approach described by Kaiser (2018). The first step
is to run an EFA using the psych package.

beh_efa <− fa(example[-1], nfact = 2, rotate = “geominQ”,
fm = “ml”)

As before, we are creating an output object (beh_efa) that
contains the results of the factor analysis (fa). We specify the data
set ‘example’ and the square brackets indicates that we want to
run the analysis only for the survey data excluding the country
column (example[−1]). We specify 2 factors (nfact = 2) and
ask for a specific type of factor rotation that is used by Mplus
(rotate = “geominQ”). Finally, we specify a Maximum Likelihood
estimator (fm = “ml”).

We nowwill prepare the output of this EFA to create structural
equations that can be further analyzed within a CFA context.

beh_loadmat <− zapsmall(matrix(round(beh_efa$loadings, 2),
nrow = 12, ncol = 2))
rownames(beh_loadmat) <− colnames(example[-1])

We use the function zapsmall to get the rounded factor
loadings from the two factors in the previous EFA (this is the
(round(beh_efa$loadings,2) component). The $ sign specifies
that we only use the factor loadings from the factor analysis
output. We have 12 variables in our analysis, therefore we specify
nrow = 12.We have two factors, therefore we specify two columns
(ncol = 2). To grab the right variable names, we include a
command that assigns the row names in our loading matrix from
the respective column (variable) names in our raw data set. Since
we have the country variable still in our data set, we need to
specify that this column should be omitted: example[−1]. All
the remaining column names are taken as the row names for the
factor analysis output.

To create the structural equations, we need to create the
following loop:

new_model <− vector()
for (i in 1:2) {
new_model[i] <− paste0(“F”, i,“ =∼”, paste0(c(beh_
loadmat[,i]), “ ∗ ”,

names(beh_loadmat[,1]), collapse = “ + ”))
}

The term i specifies the number of factors to be used. In our case,
we have two factors. We then need to specify the relevant loading
matrix that we created above (beh_loadmat). If we now call:

new_model
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we should see the relevant equations that have been computed
based on the EFA and which can be read as a model to be
estimated within a CFA approach. Different from our CFAmodel
above, all items are now listed and the loading of each item on the
two different factors is now specified in the model.

1 “F1 =∼ 0.55 ∗ help1 + 0.58 ∗ help2 + 0.69 ∗ help3 + 0.91 ∗

help4 + 0.78 ∗ help5 + 0.77 ∗ help6 + 0.51 ∗ help7 + 0.15 ∗

voice1 + −0.02 ∗ voice2 + −0.01 ∗ voice3 + 0.13 ∗ voice4 +

−0.01 ∗ voice5”

2 “F2 =∼0.12 ∗ help1+ 0.1 ∗ help2+ 0.01 ∗ help3+ −0.1 ∗ help4
+ 0.04 ∗ help5 + 0.02 ∗ help6 + 0.24 ∗ help7 + 0.65 ∗ voice1 +

0.85 ∗ voice2 + 0.77 ∗ voice3 + 0.65 ∗ voice4 + 0.8 ∗ voice5”

We now run a classic CFA, similar to what we did
before. We specify that the estimator is Maximum Likelihood
(estimator = “ML”). For simplicity, we only want to call some of
the fit measures using the fit measures function within lavaan.

beh_cfa_esem <− cfa(new_model, data = example, estimator
= “ML”)
fitmeasures(beh_cfa_esem, c(“cfi”, “tli”, “rmsea”, “srmr”))

This analysis was done on the full data set including the
Brazilian and NZ data simultaneously, but we are obviously
interested in whether the data is equivalent across groups or not
(when using this specific model). We can set up a configural
invariance test model by specifying the grouping variable and
calling the relevant fit indices:

fitmeasures(cfa(
model = new_model,
data = example,
group = “country”,
estimator = “ML”),
c(“cfi”,“tli”,“rmsea”,“srmr”))

If we want to now constrain the factor loadings or intercepts
to be equal across groups, we can add the same restrictions as
described above. For example, for testing scalar invariance in
which constrain both the loadings and intercepts to be equal, we
can call this function:

fitmeasures(cfa(
model = new_model,
data = example,
group = “country”,
estimator = “ML”,
group.equal = c(“loadings”, “intercepts”)),
c(“cfi”,“tli”,“rmsea”,“srmr”))

If we compare the results from the ESEM approach with the
invariance test reported above, we can see that the fit indices
are somewhat better. Above, our CFA model did not show the
best fit. Both the CFI and RMSEA showed somewhat less than
desirable fit. Using ESEM, we see that the fit of the configural
model is better (CFI = 0.947; RMSEA = 0.076) than the original
fit (CFI = 0.943, RMSEA = 0.086). Further restrictions to both

loadings and intercepts show that the data fits better using the
ESEM approach, even when using more restrictive models.

Limitations
Exploratory structural equation modeling is a relatively novel
approach which has been used by some cross-cultural researchers
already (e.g., Marsh et al., 2009; Vazsonyi et al., 2015). However,
given the relative novelty of the method and small number of
studies that have used it, some caution has to be taken. A recent
computational simulation (Mai et al., 2018) suggests that ESEM
has problems with convergence (e.g., the algorithm does not run),
especially if the sample sizes are smaller (less than 200 or the
ratio of variables to cases may be too small). Mai et al. (2018)
recommended ESEM when there are considerable cross-loadings
of items. In cases where cross-loadings are close to zero and the
factor structure is clear (high loadings of items on the relevant
factors), ESEM may not be necessary. Hence, ESEM might be an
appealing method if a researcher has large samples and there are
substantive cross-loadings in the model that cannot be ignored.

Invariance Testing Using Alignment
As yet another extension of CFA approaches, recently Multi-
Group Factor Analysis Alignment (from here on: alignment)
has been proposed as a new method to test metric and scalar
invariance (Asparouhov andMuthén, 2014). Thismethod aims to
address issues inMGCFA invariance testing, such as difficulties in
establishing exact scalar invariance with many groups. The main
difference between MGCFA and alignment is that alignment
does not require equality restrictions on factor loadings and
intercepts across groups.

Alignment’s base assumption is that the number of
non-invariant measurement parameters and the extent of
measurement non-invariance between groups can be held to a
minimum for each given scale through producing a solution
that features many approximately invariant parameters and
few parameters with large non-invariances. The ultimate goal
is to compare latent factor means, therefore the alignment
method estimates factor loadings, item intercepts, factor means,
and factor variances. The alignment method proceeds in two
steps (Asparouhov and Muthén, 2014). In the first step an
unconstrained configural model is fitted across all groups. To
allow the estimation of all item loadings in the configural model,
the factor means are fixed to 0 and the factor variances fixed
to 1. In the second step, the configural model is optimized
using a component loss function with the goal to minimize the
non-invariance in factor means and factor variances for each
group (for a detailed mathematical description see: Asparouhov
and Muthén, 2014). This optimization process terminates at a
point at which “there are few large non-invariant measurement
parameters and many approximately non-invariant parameters
rather than many medium-sized non-invariant measurement
parameters” (Asparouhov and Muthén, 2014, p. 497). Overall,
the alignment process allows for the estimation of reliable means
despite the presence of some measurement non-invariance.
Asparouhov and Muthén (2014) suggest a threshold of 20% non-
invariance as acceptable. The resulting model exhibits the same
model fit as the original configural model but is substantially
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less non-invariant across all parameters considered. Alignment
was developed in Mplus (Muthén and Muthén, 2018). Here, we
show an example of an alignment analysis using the sirt package
(Robitzsch, 2019) which was inspired by Mplus. The exact results
may differ between the programs.

How to Run a Multi-Group Factor
Analysis Alignment in R
The sirt package provides three useful functions
invariance_alignment_cfa_config, invariance.alignment, and
invariance_alignment_constraints. These functions build upon
each other to provide an easy implementation of the alignment
procedure. We use again the example of the helping scale.

We initially fit a configural model across all countries. The
invariance_alignment_cfa_config makes this straightforward.
The function has two main arguments dat and group; dat
takes a data frame as input that only contains the relevant
variables in the model. It is important to stress that alignment
can currently only fit uni-dimensional models. In our case we
select all help variables (help1,. . ., help7) from the example data
set (dat = example[paste0(“help”, 1:7) – the use of the paste0
command selects only the help items from 1 to 7 from the
example data set). The group argument takes a grouping variable
with the same number of rows as the data provided to the dat
argument. In the current case we provide the country column
from our data set.

par <− invariance_alignment_cfa_config(dat = example
[paste0(“help”, 1:7)], group = example$country)

The invariance_alignment_cfa_config function returns a list
(in the current case named par) with λ (loadings) and ν

(intercepts) for each country and item in addition to sample
size in each country and the model fitted. The output of this
function can be directly processed in the invariance.alignment
function. Prior to that the invariance tolerance needs to be
defined. Asparouhov and Muthén (2014) suggested 1 for λ and
1 for ν. Robitzsch (2019) utilizes a stricter criterion of λ = 0.40
and ν = 0.20. These tolerances can be varied using the align.scale
argument of the invariance.alignment function. The first value
in a vector provided in this argument represents the tolerance
for ν, the second the tolerance for lambda λ. Further, alignment
power needs to be set in the align.pow argument. This is routinely
defined as 0.25 for λ and ν, respectively. Last, we need to extract
λ and ν from the output of the invariance_alignment_cfa_config
function and provide them to the lambda and nu argument of the
invariance.alignment function.

mod1 <− invariance.alignment(lambda = par$lambda, nu =
par$nu, align.scale = c(0.2, 0.4), align.pow = c(0.25, 0.25))

The resulting object can be printed to obtain a number
of results such as aligned factor loadings in each group and
aligned means in each group. We are focusing on the relevant
indicators of invariance. R2 values of 1 indicate a greater degree
of invariance, whereas values close to 0 indicate non-invariance
(Asparouhov and Muthén, 2014).

mod1$es.invariance[“R2”,]

In our current analysis we obtain an R2 of 0.998 for
loadings and 1 for intercepts. This indicates that essentially
all non-invariance is absorbed by group-varying factor
means and variances.

Alignment can also be used to assess the percentage
of non-invariant λ and ν parameters using the
invariance_alignment_constraints function. This function
takes the output object of the invariance.alignment function as
input. Additionally, ν and λ tolerances can be specified.

cmod1 <− invariance_alignment_constraints(mod1, lambda_
parm_tol = 0.4, nu_parm_tol = 0.2)
summary(cmod1)

We found that for both factor loadings and factor intercepts
none of items exhibited substantial non-invariance (indicated
by 0% for the percentage of non-invariant item parameters).
Asparouhov and Muthén (2014) suggested a cut-off of 25%
non-invariance to consider a scale non-invariant.

Limitations of Alignment
While alignment is a useful tool for researchers interested
in comparisons with many groups, it also has limitations.
First, convergence again can be an issue, especially for two
group comparisons (Asparouhov and Muthén, 2014). Second,
the alignment technique is currently limited to uni-factorial
constructs precluding the equivalence test of higher order
constructs or more complex theoretical structures. Finally, it is
a new method and more work may be necessary to understand
practically and theoretically meaningful thresholds and cut-offs
in a cross-cultural context.

Differential Item Functioning Using
Ordinal Regression (Item Response
Theory)
One of themost common techniques for detecting DIF within the
IRT family are logistic regression methods, originally developed
for binary response items. It is now possible to use Likert-
type scale response options (so-called polytomous items) as
ordinal response options. The central principle of DIF testing
via logistic regression is to test the probability of answering
a specific item based on the overall score of the instrument
(as a stand-in for the true trait level, as discussed above). DIF
testing via logistic regression assumes that the instrument tested
is uni-dimensional. The crucial tests evaluated are whether (a)
there are also significant group effects (e.g., does belonging to a
specific group make answering an item easier or more difficult,
over and above the true trait level) and (b) there are group
by ability interactions (e.g., trait effects depend on the group a
person belongs to). The first test estimates uniform item bias
and the second test estimates non-uniform item bias. Hence,
the procedure uses a nested model comparison (similar to CFA
invariance testing). A baseline model only includes the intercept.
Model 1 includes the estimated true trait level, model 2 adds a
dummy for the group (culture) effects and model 3 includes the
group (culture) by trait interaction.
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We have a number of options to test whether DIF is
present. First, it is possible to compare overall model fit using
the likelihood ratio chi-square test. Uniform DIF is tested by
comparing the difference in log likelihood values betweenmodels
1 and 2 (df = 1). Non-uniformDIF is tested by comparing models
2 and 3 (df = 1). It is also possible to test whether there is a total
DIF effect by directly comparing model 1 vs. model 3 (df = 2),
testing for the presence of both uniform and non-uniform item
bias together. This particular approach uses significance tests
based on the difference in chi squares.

As we discussed above, chi square tests are sample size
dependent, hence a number of alternative tests have been
proposed. These alternatives focus on the size of DIF (hence
they are effect size estimates of item bias) rather than whether
it is significant. There are two broad types: pseudo R2 (the
amount of variance explained by the group effect and group
by trait interaction), and raw regression parameters as well as
the differences in the regression parameters across models. The
interpretation of the pseudo R2 measures have been debated
due to scaling issues (see discussions in Choi et al., 2011),
but since we are interested in the differences between nested
models, their interpretation is relatively straightforward and
similar to normal R2 difference estimates. Estimates lower than
0.13 can be seen as indicating negligible DIF, between 0.13 and
0.26 showing moderate DIF and above 0.26 large DIF (Zumbo,
1999). As outlined by Choi et al. (2011), some authors have
argued that these estimates are too large and lead to under-
identification of DIF.

For the regression parameters, it is possible to examine the
regression coefficients for the group and the group by trait
effects as indicators of the magnitude (Jodoin and Gierl, 2001).
It is also possible to examine the difference in the regression
coefficient for traits across models 1 and 2 as an indicator of
uniform DIF (Crane et al., 2004). If there is a 10% difference
in the regression coefficients between model 1 and 2, then
this can be seen as a practically meaningful effect (Crane
et al., 2004). A convenient feature of the R package that we
are describing is that it allows Monte Carlo estimations for
detecting DIF thresholds, allowing a computational approach
with simulated data for establishing whether items show DIF
or not. In other words, the model creates simulated data to
estimate how much bias is potentially present in our observed
data. The downside is that it is computational demanding and
this analysis may take a long time to complete (in our sample
using seven items and 2,000 participants, the analysis took over
60 min to complete).

One of the key differences of IRT based approaches compared
to CFA is that it refers to differences in item performances
between groups of individuals which are matched on the
measured trait. This matching criterion is important because it
helps to differentiate between differences in item functioning
from meaningful differences in trait levels between groups. One
of the crucial problems is how to determine the matching
criterion if individual items have DIF. The specific package that
we describe below uses an iterative purification process in which
the matching criterion is recalculated and rescaled using both
the items that are not showing DIF as well as group-specific

item parameters for items that are found to show DIF. The
program is going through repeated cycles in which items are
tested and the overall matching score is recalibrated till an
optimal solution is found (as specified by the user). This iterative
approach is superior to using just the raw scores, but again these
iterative processes are computationally more demanding. For
more information on the specific steps and computation process,
see Choi et al. (2011).

Logistic Regression to Test for DIF in R
One relevant package that we describe here is lordif (Choi et al.,
2011). We chose it because it provides a number of advanced
features while being user-friendly. As usual, the package needs to
be called as described in the Supplementary Materials. We then
need to select only the variables used for the analysis (note the use
of the paste0 command again):

response_data <− example[paste0(“help”, 1:7)]

Importantly, the group variable needs to be specified as a
vector and is included in a separate file (which needs to be
matching to the main data file). In our case, we are using the
package car to recode the data:

country <− car::recode(example$country, “’NZ’ = 1; ’BRA’ = 0”)

The actual command for running the DIF analysis is
straightforward. In our case, we specify an analysis using the
chi-square test:

countryDIF <− lordif (response_data, country, criterion =
“Chisqr”, alpha = 0.001, minCell = 5)

As before, we create an output object which contains the
results. The function is lordif, which first specifies the data
set and then the vector which contains the sample or country
information. We then have to make a number of choices. The
important choice is to define what threshold we want to set for
declaring an item as showing DIF. We can select among χ2

differences between the different models (criterion = “Chisqr”,
in which case we also need to specify the significance level
using the alpha command), R2 (criterion = “R2”, we need to
select the beta.change threshold, e.g., R2.change = 0.01) and the
regression coefficients (criterion = “Beta”, we need to select the
beta coefficient change, e.g., beta.change = 0.10). These choices
can make potentially substantive differences, we urge users to
explore their data and decide what criteria is most relevant
for their purposes.

A final decision is how to treat minimum cell size (called
sparse cell). The analysis proceeds as an ordinal level analysis, if
there are few responses to some of the response categories (e.g.,
very few people ticked 1 or 7 on the Likert scale). We need to
specify the minimum value. The default is 5, but we could also
specify higher numbers, in which case response categories are
collapsed till the minimum cell size is being met by our data.
Thismightmean that instead of having seven response categories,
we may end up with five categories only because the extreme
response options were combined.
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If we use χ2 differences as a criterion, item 3 for the helping
scale is again flagged as showing item bias. McFadden’s pseudo-
R-square values suggest that moving from model 1 to model 2
increases the explained variance by 0.0100, compared to 0.0046
whenmoving frommodel 2 to model 3. Hence, uniform item bias
is more likely to be the main culprit. The other pseudo-R2 values
also show similar patterns. In contrast, if we use the R2 change
criterion (and for example, a change of 0.01 as a criterion), none
of the items are flagged as showing DIF.

The relevant code is:

countryDIF_r2_change <− lordif(response_data, country,
criterion = “R2”, R2.change = 0.01, minCell = 5)

This highlights the importance that selecting thresholds for
detecting DIF have for appropriately identifying items that
may show problems.

If we wanted to run the Monte Carlo simulation, we write this
function (which specifies the analysis to be checked as well as the
alpha level and number of samples to be drawn):

countryDIF_MC <− montecarlo(countryDIF, alpha = 0.001,
nr = 1000)

Evaluation of Logistic Regression
There are multiple advantages of using logistic regression
approaches within the larger IRT universe. These techniques
allow the most comprehensive, yet flexible and robust analysis
of item bias. They assume a non-linear relationship between
ability and item parameters, which are independent of the specific
sample that is being tested. The data needs to be at least ordinal.
Both purely statistical significance driven and effect-size based
tests of DIF are possible. One distinct advantage is that the
lordif package includes an iterative Monte Carlo approach to
provide empirically driven thresholds of item bias. Visualization
of item bias is also available through the package (see Choi et al.,
2011 for details).

At the same time, there are also a number of downsides.
First, as with a number of the other techniques mentioned
above (dMACS, alignment), only unidimensional scales can be
tested. Second, researchers need to specify thresholds for DIF
and the specific choices may lead to quite different outcomes,
especially if DIF sizes vary across items. Third, some of the
tests are sensitive to sample size and cutoff criteria for DIF
differ across the literature. The Monte Carlo simulations are
an alternative to construct data-driven cut-offs, but they are
computationally intensive. Finally, logistic regression typically
requires quite large samples.

Exploratory Factor Analysis (EFA) and
Principal Component Analysis (PCA)
Exploratory factor analysis as a group of statistical techniques
is in many ways similar to CFA, but it does not presuppose a
theoretical structure. EFA is often used as a first estimation of the
factor structure, which can be confirmed in subsequent studies
with CFA. Alternatively, researchers may use EFA to understand
why CFA did not show good fit. Therefore, EFA is an integral
method in the research process and scale development, either

as the starting point for exploring empirical structures at the
beginning of a research project or for identifying problems with
existing scales.

Similar to CFA, the correlations between all items in a test are
used to infer the presence of an underlying variable (in factor
analytic terms). The two main approaches are proper EFA and
Principal component analysis (PCA). The two methods differ
conceptually: PCA is a descriptive reduction technique and EFA
is a measurement model (e.g., Borsboom, 2006; Tabachnick and
Fidell, 2007), but practically they often produce similar results.
For both methods, Pearson correlations (or covariances) between
observed indicators are used as input, and a component or factor
loading matrices of items on components or factors (indicating
the strength of relationship of the indicators to the factor in
EFA) are the output. For simplicity, we will use the term factor
to refer to both components in a PCA and factors in an EFA.
More detailed treatment of these methods can be found in
other publications (Gorsuch, 1993; Tabachnick and Fidell, 2007;
Field et al., 2012).

Figure 4 shows the main parts of an EFA model, which
is conceptually similar to the CFA model. One of the major
differences is that all items are allowed to load on all factors. As
a result, decisions need to be made about the optimal assignment
of loadings to factors (a rotational problem, see below) and what
constitutes a meaningful loading (an interpretational problem).
Items often show cross-loading, in which an item loads highly
onmultiple factors simultaneously. Cross-loadings of factors may
indicate that an item taps more than one construct or factor
(item complexity), problems in the data structure, circumplex
structures (there is an underlying organization of the latent
variables), or it may indicate factor or component overlap (see
Tabachnick and Fidell, 2007; Field et al., 2012). As a crude rule of
thumb, factor loadings above 0.5 on the primary factor and lack
of cross-loadings (the next highest loading varies by at least 0.2)
might be good reference points for interpretation.

The principal aim of an EFA is to describe the complex
relationship of many indicators with fewer latent factors, but

FIGURE 4 | Visual representation of an EFA model.

Frontiers in Psychology | www.frontiersin.org 13 July 2019 | Volume 10 | Article 1507

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Fischer and Karl Invariance Testing in R

deciding on the number of factors to extract can be tricky.
Researchers often use either theoretical considerations and
expectations (e.g., the expectation that five factors describe
human personality, McCrae and Costa, 1987) or statistical
techniques to determine how many factors to extract. Statistical
factors take into account how much variance is explained by
factors, which is captured by eigenvalues. Eigenvalues represent
the variance accounted for by each underlying factor. They
are represented by scores that total to the number of items.
For example, an instrument with twelve items may capture
up to 12 possible underlying factors identified by a single
indicator (each item is its own factor). Each factor will have
an eigenvalue that indicates the amount of variation that this
factor accounts for in the items. The traditional approach to
determining the appropriate number of factors was based on
Cattell’s scree plot and Kaiser’s criterion that indicates that
factors with eigenvalues greater than 1 (e.g., a factor that
explains more variance than any item alone is worth extracting).
These methods have been criticized for being too lenient (e.g.,
Barrett, 1986). Statistically more sophisticated techniques such as
Horn’s (1965) parallel analysis are now more readily available.
Parallel analysis compares the resulting eigenvalues against the
eigenvalues obtained from random datasets with the same
number of variables and adjusts the obtained eigenvalues (we
briefly describe options in the Supplementary Materials).

Once a researcher has decided how many factors to extract,
a further important question is how to interpret these factors.
First, are the factors assumed to be uncorrelated (orthogonal
or independent) or correlated (oblique or related). Latent factor
intercorrelations can be estimated when oblique rotation is used
(Gorsuch, 1993, pp. 203–204). The choice of rotation is primarily
a theoretical decision.

Factor rotations are mathematically equivalent. If more than
one component or factor has been identified, an infinite number
of solutions exist that are all mathematically identical, accounting
for the same amount of common variance. These different
solutions can be represented graphically as a rotation of a
coordinate system with the dimensions representing the factors
and the points representing the loadings of the items on the
factors. An example of such rotation is given in Figure 5.
Mathematically, the two solutions are identical. Conceptually,
we would draw very different conclusions from both versions
of the same rotation. This is the core problem with interpreting
factor structures across different cultural groups because this
rotational freedom can lead to two groups with identical factor
structures showing very different factor loadings (see Table 1

for an example – even though the solutions are mathematically
identically, they show noticeably different factor loadings). As a
consequence, researchers need to rotate their factor structures
from the individual groups to similarity before any decisions
about factor similarity can be made. The method of choice is
orthogonal Procrustes rotation in which the solution from one
group is rotated toward the factor structure of the reference
group. A good option to decide on the reference group might be
to (a) use the group in which the instrument was first developed,
(b) use the larger group (since this reduces the risk of random
fluctuations that are more likely to occur in smaller groups)

FIGURE 5 | Visualization of factor rotations.

TABLE 1 | An example where identical factor structures show different

factor loadings.

Factor 1 Factor 2 Factor 1 Factor 2

Item 1 0.65 0.30 0.67 0.19

Item 2 0.66 0.30 0.69 0.15

Item 3 0.69 0.21 0.80 0.25

Item 4 0.82 0.24 0.80 0.25

Item 5 0.79 0.33 0.67 0.32

Item 6 0.79 0.28 0.71 0.31

Item 7 0.70 0.34 0.39 0.59

Item 8 0.44 0.67 0.22 0.79

Item 9 0.35 0.80 0.19 0.81

Item 10 0.26 0.81 0.23 0.76

Item 11 0.30 0.78 0.43 0.59

Item 12 0.30 0.83 0.23 0.73

or (c) select the group that shows a theoretically clearer or
meaningful structure.

After running the Procrustes rotation, the factor structures can
be directly compared between the cultural groups. To determine
how similar or different the solutions are, we can use a number of
different approaches. The most common statistic for comparing
factor similarity is Tucker’s coefficient of agreement or Tucker’s
phi (van de Vijver and Leung, 1997). This coefficient is not
affected by multiplications of the factor loadings (e.g., factor
loadings in one group are multiplied by a constant) but is
sensitive to additions (e.g., when a constant is added to loadings
in one group). The most stringent index is the correlation
coefficient (also called identity coefficient). Other coefficients
such as linearity, or additivity can be computed, if necessary (for
a general review of these options, see van de Vijver and Leung,
1997; Fischer and Fontaine, 2010). Factor congruence coefficients
vary between 0 and 1. Conventionally, values larger than 0.85
can be judged as showing fair factor similarity and values larger
than 0.95 as showing factor equality (Lorenzo-Seva and ten Berge,
2006), values lower than 0.85 (ten Berge, 1986) are indicative
of incongruence. However, these cut-off criteria might vary for
different instruments, and no formal statistical test is associated
with these indicators (Paunonen, 1997). It is also informative to
compare the different indicators, if they diverge from each other
this may suggest that there is a problem with the factor similarity.
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Procrustes Rotation With Two Groups
Using R
The relevant packages that we need are psych (Revelle, 2018)
and GPArotation (Bernaards and Jennrich, 2005). We first need
to load these packages and load the relevant data (see the
Supplementary Materials for further info).

The first step is to run the factor analysis separately for
both samples. We could run either a PCA (using the principal
function) or factor analysis (using the fa function).

nz_fa <− fa(nz_example[,−1], nfactors = 2,
rotate = “varimax”)

We call the factor analysis function (fa()) from the psych
package and specify the data we are working on (New Zealand
data frame without the first column that contains the column
with the country information: nz_example [,−1]), the number
of factors we want to extract from the data (nfactors = 2), and
the rotation we want to use (rotate = “varimax”). Because we
have a theoretical expectation we request two factors in each
country.We also specify an orthogonal varimax rotation, because
we expect the factors to be uncorrelated. Last, we assign the result
to an object (nz_fa <−) for later use.

Next, we perform the same action for the Brazilian data using
the same procedure:

br_fa <− fa(br_example[,−1], nfactors = 2, rotate = “varimax”)

In the next step, we can directly rotate the factor loading
matrices using New Zealand as target matrix and Brazil as
loading matrix. In the ccpsyc package, we included a function
called prost, which we adapted from the procrustes MCMCpack
package in order to provide the identity coefficient and Tucker’s
8 in a straightforward fashion. The prost function takes two
factor matrices as input and returns the identity coefficient and
Tucker’s 8.

prost(NZ.fa$loadings, BRA.fa$loadings)

We call the output from the factor analyses that we ran
above. The $ sign specifies that we only use the factor loadings
for the procrustean rotation. In our example, we rotated the
Brazilian sample to similarity with the New Zealand sample
(first position in our command). We chose NZ as a reference
category because NZ is culturally probably more similar to the
US where the instrument was developed and the NZ sample was
larger, therefore, the solution was expected to be more stable.
Tucker’s phi was 0.97 and 0.98, respectively, indicating the factor
structures to be equal. The correlation coefficients on the other
hand were lower, 0.81 for the first factor (helping) and 0.89 for
factor 2 (voice). In addition to the overall factor congruence
coefficients, it is also informative to examine the factor structure
after rotation to see which items may show higher or lower
loadings in each sample.

To do this the prost function has an argument (rotated) which
can be set to TRUE (rotated = TRUE). The output now contains
the rotated matrix.

prost(NZ.fa$loadings, BRA.fa$loadings, rotated = TRUE)

Researchers can visually compare the differences in factor
loadings between the samples to identify any items that may
perform differently. These tests are rather subjective and no
clear guidelines are available. The interpretation depends on
the overall strength of the factor loadings, the number of
items and difference in item performance. Unfortunately, no
specific statistical tests are available through R that provide more
objective tests at the item level. In our example data, one of
the voice items showed strong cross-loadings in one sample.
Removing this item, the correlation coefficients increased to
0.87 for helping and 0.94 for voice, still not meeting sufficient
standards for invariance for at least factor 1 using the more
stringent correlation coefficient as a criterion.

Limitations of the Technique
A major weakness is that the procedure focuses on the
congruence at a factorial level, answering whether similar
structures are found in each group compared with the reference
group. Therefore, we can only establish configural invariance or
structural equivalence. Procrustes rotation does not allow to test
for metric invariance as the analysis stays at the factor rather
than the item level. Individual items may still show substantial
loading differences, and the overall factorial similarity might
be misleading. For example, research on the structure of the
Eysenck Personality Questionnaire has shown that this issue is
not without debate (Bijnen et al., 1986; Bijnen and Poortinga,
1988). The number of items and factors may also influence
the congruence levels that a researcher can expect to find
(Paunonen, 1997). As mentioned above, it is useful to examine
the target and target-rotated loadings as well as the difference
between the target loadings and the loadings in a norm group
to identify potential anomalies in addition to examining any
overall congruence coefficient. This may reveal important and
useful information of cross-cultural similarities and differences.
Nevertheless, Procrustes rotation can be a useful technique at
initial research stages. It is also a useful technique if the data does
not allow for a full multi-group CFA to be fitted, for example
due to a limited number of indicators per construct. Further,
Procrustes rotation can be a useful technique to examine the fit of
observed structure to an idealized loading matrix of a construct.
This process allows a researcher to investigate whether culture
level variables significantly impact structural fit.

TESTING INVARIANCE WITH MORE
THAN TWO GROUPS

The most flexible and versatile technique for testing invariance
with more than two groups is multi-group CFA. The approach
can easily handle more than two groups and no adjustments to
the set-up and testing need to be done. One of the challenges
is that lavaan provides χ2 values for each individual group,
but only overall fit indices. Since χ2 values are sample size
dependent, unless sample sizes are equal, it might be difficult
to determine which samples and items are problematic when
examining an overall poorly fitting multi-group model. One
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option is to estimate the individual group models because it will
provide important clues about possible problems.

The logistic regression approach implemented in lordif can
accommodate more than two groups. However, the visualization
of item bias becomes hard to interpret when more than two
groups are used.

Dealing With More Than Two Groups for
EFA/PCA
To conduct an EFA/PCA with Procrustes rotation for multiple
groups at the same time different methods can be used.
Nevertheless, they all require identical steps to set up the data
for analysis (we show how to prepare the data for analysis in the
Supplementary Materials).

Target Rotation With Multiple Groups
Conducting an EFA/PCAwith a Procrustes rotation to determine
configural invariance with more than two samples requires some
theoretical considerations:

Create an Ideal Matrix as Reference Group

In this option a researcher constructs a loading matrix that
represents theoretically assumed loadings on a factor with 1, non-
loadings with 0, and negative loadings with −1. This approach is
most useful for established measures for which strong theoretical
assumptions about the structure exist, such as personality traits.
This approach yields insight into the fit of the data from each
sample compared to the proposed ideal. Below, we show an
example using the prost function of the ccpsyc package. We
provide an example of how to create an ideal matrix in the
Supplementary Materials.

lapply(EFA, function(x){prost(x$loadings, ideal)})

Use the Matrix From the Instruments’ Origin

Most questionnaires were and are developed in a Western
context. Therefore, a researcher might want to examine how
well a newly translated instrument reproduces the structure in
regards to the original structure. While this approach can be
useful to validate the structure of newly translated instruments
in relation to existing data structures, a substantive drawback of
this approach is that it posits the origin culture’s structure as de
facto correct solution. In our example, we used the results from
the first EFA analysis as the target matrix.

lapply(EFA, function(x){prost(x$loadings,
EFA[[1]]$loadings)})

Creating a Pan-Cultural Matrix

In this approach, an average weighted or unweighted correlation
matrix of the items in the structure is created across all cultures
of interest. It creates an average matrix, averaging correlations
across all items and samples. This does not give priority to
any specific cultural group. The resulting correlation matrix can
be used as an input to factor analysis and provides a culture-
general reference factor loading matrix. This average cultural
solution can then be used as the comparison standard for all the
individual samples. This approach yields insight into how much

each sample corresponds with a common factor solution across
all cultures. We show how to create a pan-cultural matrix in the
Supplementary Materials. Problems emerge if there is misfit in
one or more of the samples and the processes needs to become
iterative through pruning mis-fitting samples.

lapply(EFA, function(x){prost(x$loadings,
pooled_EFA$loadings)})

Choosing a Target Based on Sample Criteria

Sample criteria can also be informative when choosing a
rotational target. Considerations such as sample size in each
culture and factor simplicity can guide the selection (e.g., the
largest sample or the sample with the simplest structure may be
selected as comparison). This approach can yield good statistical
results but might limit the generalizability of the results and the
theoretical interpretation.

Running All Pairwise Comparisons

While this approach is free of theoretical considerations, it is only
typically feasible or interpretable for a small number of cultures.
It is possible to use computational approaches for running cluster
analyses of factor similarity, in which we case we attempt to
identify groups of samples that show similar factor structures.
In the absence of such computational solutions, it might be
difficult to make decisions about invariance as one sample might
show poor invariance to a second sample, but good invariance to
relation to a third sample.

OVERALL COMPARISON OF METHODS

Whichmethod should you use? There are a number of theoretical
questions that can guide you to decide which approach might be
best. A first important question is the data that is available. If only
ordinal data is available, then IRT remains the most appropriate
option. There are options to run CFA and EFA/PCA with ordinal
data in R (after computation of polychoric correlations, but
these require some intermediate steps). A second important
question is whether the researcher has a theoretical model to
test or whether the analysis is exploratory. In the former case,
both CFA and logistic regression are good options and can be
combined to get the most comprehensive insight into the data
(Meade and Lautenschlager, 2004a). In the latter case, EFA and
PCA are better. New methods such as ESEM are a hybrid that
combined EFA with CFA techniques. Third, only CFA-derived
methods and logistic regression allow invariance tests at the
individual level and statistical tests of DIF. In contrast, EFA and
PCA with Procrustes rotation allow only analyses at the scale or
instrument level, therefore, they do not provide metric and scalar
invariance tests that then would allow the researcher to compare
scores directly across groups. Fourth, all techniques described
here require decent (ideally N > 200) sample sizes, with logistic
regression, CFA and associated techniques such as ESEM and
alignment being the most sample-size hungry techniques (Meade
and Lautenschlager, 2004b). One major drawback for many
practical approaches is that logistic regression and alignment
(within the CFA-domain) require analyses of unidimensional

Frontiers in Psychology | www.frontiersin.org 16 July 2019 | Volume 10 | Article 1507

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Fischer and Karl Invariance Testing in R

scales, whereas CFA in particular is versatile in accommodating
more complex theoretical structures. Finally, both CFA and
logistic regression techniques provide effect size estimates of DIF,
which give researchers options to decide how much of bias is
too much. Only logistic regression at this moment provides an
easily available (but computationally demanding) way to derive
empirically derived item bias parameters.

SUMMARY

Free software for testing invariance at both basic and advanced
levels is now available and is easy to use. Comparisons
without establishing or testing invariance and equivalence are
open to alternative explanations, therefore, invariance testing
is paramount. We have highlighted a number of methods and
conceptual approaches to allow researchers to test for invariance
of their own data. Easy to implement approaches that are free are
available to researcher and hopefully will improve the standards
and quality of cross-cultural research.
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