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ABSTRACT Motion planning in on-road urban driving is usually stated as an optimization problem in
a multi-dimensional space that presents a high complexity in obtaining a global optimal solution. In that
sense, a great amount of different approaches to solve this problem coexist in the literature. However,
to the best of our knowledge, there is no prior work studying how to choose the best strategy in this
multi-dimensional space. This paper presents an in-depth analysis of interpolation curve planners based
on continuous curvature Bézier compositions. To that end, a comparison framework to benchmark different
path-planning primitives for on-road urban driving is proposed, and the evaluation of different primitive
configurations and optimization techniques for path-planning is carried out. In addition, the results are openly
published together with its consequent analysis, based on a set of key performance indicators related to the
aforementioned main features.

INDEX TERMS Path planning, path optimization, autonomous driving.

I. INTRODUCTION

Autonomous driving involves the integration of a number
of technologies related to perception, localization, decision-
making, motion-planning and control. Among them motion-
planning is particularly relevant as it plays a key role in
ensuring driving safety and comfort [1].
The robotics community has been intensively working over

the last 30 years in path planning problems. Althoughmany of
the proposed algorithms are able to cope with a wide range
of situations and contexts, they often demand computation-
intensive algorithms, feasible for low speed motion patterns.
However, for on-road autonomous driving, determinism is
necessary at high sampling rates. In this context, optimality
can be slightly sacrificed at the expense of safe human-
adapted paths. The road structure provides strong heuristics,
where sampling-based planning methods are very often suffi-
cient to produce a feasible solution [2]. An evolution of these
methods, where spatio-temporal constraints are considered,
propose to formulate the problem as a trajectory ranking and
search problem, where multiple incommensurable cost terms
are combined to produce a specific behavior.
Two main drawbacks emerge from this approach:

(i) these techniques often provide scenario-dependant solu-
tions, which may cause wrong behaviors in general real
driving on urban roads [3]; (ii) to guarantee reactivity, the

trajectories need to be exhaustively sampled and evalu-
ated in a high-dimensional space, which is computation-
ally expensive. To cope with these limitations, some works
(e.g. [4], [5]) propose a higher-level decision maker able
to select the right cost set and sampling scale for different
situations.

FIGURE 1. Diagram of the motion-planning architecture.

This hybrid architecture aims at achieving the best trade-
off between deliberative and reactive architectures in a com-
putationally efficient planning framework, structured around
the following three phases, whose inter-connections are
depicted in Fig. 1:

• A traffic-free reference planning, that generates a traffic-
free reference trajectory for each drivable lane assuming
that the geometry of the map is known and that the
vehicle will follow the reference without any traffic
interference.
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• A traffic-based reference planning, that provides a
traffic-based motion reference by performing reference
variation to respond to static and moving objects.

• A local trajectory planning, that generates a parametric
trajectory for tracking control to carry out the planned
reference.

There exist many path generation patterns useful for
the traffic-free reference stage, namely clothoids [6],
arc-lines [7], spiral [8] and different variations of splines
(e.g [9]–[11]). The criteria to choose the most adapted prim-
itive are of course computational cost, safety and comfort,
but also tunability and stability. Indeed, the resulting path
has to be not only confined to the drivable space and needs
to be compliant with fixed comfort-based acceleration and
jerk bounds. Tunability also matters as designers may need
to modify the planning strategy to avoid parameter over-
fitting following the considered scenarios and/or different
user preferences. In this connection, stability is also very
important to avoid jerkiness in steering/braking when such
context-based retuning is conducted.
However, to the best of our knowledge there is no prior

work studying how to choose the best strategy in this multi-
dimensional space. This article presents an in-depth anal-
ysis of interpolation curve planners, which use the current
pose of the vehicle and intermediate waypoints within a
short-medium time horizon. More specifically, continuous
curvature Bézier-based path planners will be exhaustively
compared in different driving scenarios, shedding some light
into the best design choice for each particular situation and
goal.
The main contributions of this paper are (i) a com-

parison framework to benchmark different path-planning
primitives for on-road urban driving, (ii) the evaluation of dif-
ferent primitive configurations and optimisation techniques
for path-planning, and (iii) the open publication of the results
and its consequent analysis, based on a set of key perfor-
mance indicators (KPI) related to the aforementioned main
features.
The remainder of the article is organized as follows.

Section II gives an overview of the curve primitives used for
human-like path-planning in autonomous driving as well as
the most similar works aiming at proposing benchmarking
frameworks for different path-planning strategies. Section III
is devoted to formally state the problem to be solved, intro-
ducing the primitives to compare and the considered path
planning approaches and algorithms. The adopted compar-
ison framework is detailed in Section IV. Section V shows
firstly some relevant results of the full set of conducted exper-
iments, and then a discussion to propose some guidelines
for practitioners. Finally, Section VI draws some concluding
remarks.

II. LITERATURE OVERVIEW

The problem of finding an optimal path subject to holonomic
constraints avoiding obstacles is known to be PSPACE-
hard [12]. Significant research attention has been directed

towards studying approximate methods or particular solu-
tions of the general motion planning problem.

Since for most problems of interest in autonomous driving,
exact algorithms with practical computational complexity are
unavailable [13], numerical methods are often used. These
techniques generally do not find an exact answer to the
problem, but attempt to find a satisfactory solution or a
sequence of feasible solutions that converge to the optimal
solution. The utility and performance of these approaches are
typically quantified by the class of problems for which they
are applicable as well as their guarantees for converging to
an optimal solution. These approximate methods for path and
trajectory planning can be divided in three main families [2]:

• Variationalmethods, that project the infinite-dimensional
function space of trajectories to a finite-dimensional
vector space. Direct methods approximate the solution
to the optimal path with a set of parameters obtained
with different types of non-linear continuous opti-
mization techniques, often collocation-based integra-
tors [14] or pseudoespectral approaches [15]. Indirect
methods [16], in turn, solve the problem by finding solu-
tions that satisfy the optimality conditions established by
the Pontryagin’s minimum principle [17].

• Graph-based search methods, that discretize the config-
uration space of the vehicle as a graph, where the vertices
represent a finite collection of vehicle configurations
and the edges represent transitions between vertices.
The desired path is found by performing a search for
a minimum-cost path in such a graph. There is a sig-
nificant number of strategies to construct that graph in
the most efficient way, but they can be grouped in two
main families: geometric methods, such as cell decom-
position [18], visibility graphs [19] or Voronoi dia-
grams [20], and sampling-based methods [21], [22]. The
latter deserves particular focus, as is particularly adapted
to structured environments, where different steering
functions (e.g [23], [24]) or motion primitives (e.g [25])
explore the reachability of the free configuration space.
Once the graph is built, different strategies exist also to
conduct the graph search in the most dependable way
(e.g. Dijkstra [26], A* [27], D* [28]...).

• Incremental search methods sample the configuration
space and incrementally build a reachability graph (often
a tree) that maintains a discrete set of reachable configu-
rations and feasible transitions between them. One of the
most well-known and used techniques are the RRT [29]
and their variants (e.g. [30]), always looking for the best
trade-off between completeness and computational cost.

Since the applicability of variational methods is limited
by their convergence to only local minima, graph-search
methods try to overcome the problem by performing global
search in a discretized version of the path space, generated
by motion primitives. In some specific situations, this fixed
graph discretization may lead to wrong or suboptimal solu-
tions, in which case incremental search techniques may be
useful, providing a feasible path to any motion planning
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problem instance, if one exists. In exchange, the required
computation time to verify this completeness property may
be unacceptable for a real-time system.
Given this context, a double stage planning approach,

where a computationally-efficient reasonable traffic-free path
is computed, seems the best trade-off for urban environments,
where roads are usually well-structured and reasonably dig-
italized. Some authors have deepened into the potential and
limitations of this approach, considering to that end a very
specific variety of graph-based searchmethods, with different
path primitives and optimization schemes (e.g. [3], [31]).
However, as mentioned in Section I, there exist a significant
number of possible variations within this scheme that can
significantly affect the resulting path.
In some cases, the curvature continuity cannot be guaran-

teed, and in many others the primitives are either difficult to
parameterize or non-analytical, and therefore computation-
ally expensive and/or unpredictable. Bézier curves have a
closed-form expression and an intuitive way to choose their
parameters. Although some previous work proposed combi-
nations of symmetric curves [32] or smooth concatenations
of cubic Bézier curves and segments [33], in this work uni-
form relaxed B-splines are used, concatenating continuous-
curvature Bézier curves, so that more flexible solutions can
be obtained.
Once a set of path primitive is selected, the reference

path planning becomes an optimization problem whose goal
is to select the minimum number of waypoints needed to
connect an origin and a destination, taking into consideration
road geometry and comfort constraints. Multiple optimiza-
tion criteria and methods can be applied to that end [34]–[36].
However, the lack of an absolute trajectory quality indicator
makes it hard to determinate the most appropriate optimality
criteria. This paper presents a comparison framework for
an on-road traffic-free path planning scheme. The need of
benchmarks in robotics is formulated in [37] and some well-
known exists for perception (e.g. KITTI [38]), but is rare to
find systematic studies for the decision-making stage of auto-
mated vehicles. An exception is CommonRoad [39], a recent
approach to benchmarkmotion-planning in autonomous driv-
ing. In this work, the focus is on the specific path planning
aforementioned presented, but adopting a similar syntax upon
which CommonRoad is based: composable aspects of the
comparison (scenario, optimization method, primitive, func-
tion to be minimized, etc.) that can be referenced to with a
unique ID.

III. PROBLEM STATEMENT

The goal of path planning algorithms is to find a feasible
path to drive from an initial point (typically the current pose
of the vehicle) to a target point, while often minimizing a
predefined criteria. This work focuses on path planning for
autonomous driving in typical structured environments such
as roads or highways, where the non-holonomic constraints
of the vehicle cannot be ignored. The dynamic restrictions
that are commonly taken into account are (i) the maximum

curvature that the vehicle is able to handle and (ii) the con-
tinuity of the curvature along the planned path. It is worth
to remark the importance of (ii), since discontinuities in the
curvature do not allow automated vehicles to track the path.
In addition to these constraints, the path is required to be
comfortably driven by the vehicle i.e. the turning angle and
turning speed of steering maneuvers should not lead to strong
lateral accelerations. As a result, the path planning strategy
should minimize the variability of the curvature along the
computed path.

Since elevation increment of the considered space for path
planning is insignificant in most of the structured environ-
ments, the path planning problem is typically performed in
a 2D plane. This allows to formally define the path planning
problem in a general way as follows:

argmin
xa

J (xa, Ds, V )

subject to lb ≤ xa ≤ ub (1)

where:
• xa is a vector containing all variables to be optimized. Its
size and variables can vary depending on the path plan-
ning approach, as presented in following subsections.

• lb and ub are the lower and upper bounds of the values
of xa in order to constrain the search space of the algo-
rithms. The bounds values depend on the scenario and
the approach.

• Ds ⊂ R
2 is the drivable space of scenario s.

• V = [p0, pf , ltw, κvmax] includes vehicle-related infor-
mation:
– p0 = [x0, y0, θ0, κ0] is the initial vehicle pose where
x0 and y0 are the initial coordinates, θ0 the heading
and κ0 curvature.

– pf = [xf , yf , θf , κf ] is the final vehicle pose where
xf and yf are the initial coordinates, θf the heading
and κf curvature.

– ltw is the track width of the vehicle.
– κvmax is the maximum curvature the vehicle is able

to handle.
In this work, we consider different types of primitives,

optimization methods and algorithms, cost functions as well
as different initial and final heading and curvature con-
figurations. These are described in detail in the following
subsections.

A. PRIMITIVES TO COMPARE

Interpolation curve planners use the current pose and curva-
ture of the vehicle and some waypoints in order to obtain the
final path to be followed. This path is required to have con-
tinuous curvature and has to be as much efficient as possible.
To that end, different interpolation methods based on Bézier
curves will be compared, always guaranteeing G2 continuity
along the path. These primitives present some advantages
that make them suitable for path planning in autonomous
driving: fast curve and curvature calculation using ana-
lytic expressions, fast collision-checking using Bézier curves
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properties such as convex hull property, curve-line inter-
section, etc. Nevertheless, diverse piecewise Bézier curves
feature different stability [40], which is an important property
that defines the impact of a small local change in the position
of one waypoint on the whole curve shape. In general, with
interpolating splines there is a trade-off between stability and
higher-order [41].
In this work, two possible variations will be explored:

(i) piecewise B-splines, defined as composites of cubic Bézier
curves, and (ii) quintic Bézier curves.

1) CUBIC B-SPLINES CURVES

They allow to generate a curve that goes through a set of
given waypoints. The curve generated is a concatenation of
n plane cubic Bézier sections which are defined generically
as follows:

Cj(t) =

db
∑

i=0

P
j
iBi,db (t), t ∈ [0, 1], j = 1...n (2)

being Bi,db (t) =
(

db
i

)

t i(1− t)db−1 the Bernstein polynomials,
P
j
i the control points of Bézier section j, and db the degree of

the Bézier curve (db = 3 in the case of cubic curves).
Continuity at joints can be guaranteed in B-splines by

forcing the first and second derivatives of two contiguous
Bézier sections to be equal in the joints, so that the following
expression is verified:

2Pi2 − Pi1 = 2Pi+1
1 − Pi+1

2 = Ai, i = 1...n− 1 (3)

where Ai are intermediate control points. The position of
these intermediate points is fixed by the n + 1 points to be
interpolated Si, solving the next linear equation system:





















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1 4 1
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. . . 1
1 4

1













































A0
A1
A2
A3
...

An−1
An























=























S0
6S1 − S0

6S2
6S3
...

6Sn−1 − Sn
Sn























(4)

Since the curvature of a cubic Bézier section is continuous,
the C2 continuity is guaranteed along the whole curve (and
consequently G2 continuity).
The curve (2) whose coefficients are computed solving

equations (3) and (4) implicitly verifies that the second
derivative is zero at its initial and end points (A0 = S0 and
An = Sn). However, the linear system 4 can be modified
so as to set additional boundary conditions. In that sense,
the possibilities we consider include: setting the initial and/or
end tangent vector as well as setting the initial tangent and
curvature vectors. These end conditions are further explained
bellow. It is worth to mention that cubic B-splines present
excellent stability as a change in one of its waypoints only
affects its adjacent Bézier sections.

a: INITIAL HEADING SETTING

To set the initial heading of the curve, the tangent vector at the
initial point must be forced. To that end, the first derivative
of (2) can replace the second equation of the linear system
(in eq. 4):
In this case, the stability is lower than the previous case,

where initial tangent is not imposed.

2A0 + A1 = 3S0 + Et0 (5)

where Et0 is the tangent vector at the initial point.
Then, the resulting linear system to solve is in Eq. 6.
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(6)

b: INITIAL AND FINAL HEADING SETTING

The final heading can be also forced in the same way yielding


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(7)

where Etn is the tangent vector at the last point.

c: INITIAL HEADING AND CURVATURE SETTING

In addition to the initial heading , the curvature can be also set
at the initial point. In this particular case, the first and second
derivatives of the B-spline equation (2) evaluated at S0 can be
written as follows:

A1 − A0 = Et0 −
1

2
Eκ0 (8)

6A0 = 6S0 + Eκ0 (9)

where Eκ0 is the second derivative vector (acceleration) at the
initial point of the curve. This vector can be obtained as

Eκ0 =
d |Et0|

dt
ET0 + κ0|Et0|

2 EN0 (10)

where d |Et0|
dt

is the rate of change of the tangent module with
respect to the independent variable t of the parametric curve,
and ET0 and EN0 are the unit tangent and normal vector at the
initial point, respectively.

If constant speed (in terms of differential geometry) is
considered, the tangential part of eq. (10) is null, and therefore

28804 VOLUME 6, 2018



A. Artuñedo et al.: Primitive Comparison for Traffic-Free Path Planning

the resulting linear system (4) can be written as follows





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
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


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. . .
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6
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
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


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


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
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






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6S1
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

















(11)

Note that in this case the stability is totally lost since a small
change in the position of one waypoint changes the shape of
the whole curve.

2) QUINTIC BÉZIER SPLINES

They have more degrees of freedom than cubic ones, which
has some advantages but also drawbacks. A higher degree
provides more control points, improving the controllability
of the curve and consequently the controllability of the set
of Bézier sections that make up the complete path. Thus,
the initial and final pose (including initial and final curvature)
could be imposed, making easier re-planning tasks when
the vehicle is on motion and the curvature cannot suddenly
change. However, coherent values for tangent and curvature
vectors at intermediate joints are also needed to place the
control points of each Bézier section. As they are not known
in advance, heuristic rules can be used, as proposed in [42],
to estimate convenient values of first and second derivatives at
intermediate waypoints (Si ∈ [S1, Sn−1]) of the quintic Bézier
spline, able to guarantee t the curve smoothness at joints.
These estimations can be used to calculate the final curve but
also can be taken as initial guesses to apply an optimization
algorithm. The considered heuristics to calculate the first
and second derivatives are described below.

a: FIRST DERIVATIVE

The first derivative at waypoint Si of the spline (tangent
vector Eti) is determined as follows: On the one hand, the ori-
entation of Eti is perpendicular to the bisector of the angle
formed by vector Eva and Evb where Eva = Si − Si−1 and
Evb = Si+1 − Si. On the other hand, the magnitude of Eti is set
to the minimum euclidean distance between the current point
(Si) and its two neighboring points (Si−1, Si+1) multiplied by
a scaling factor ft . Thus |Eti| = ft min(| Eva|, | Evb|).

Both magnitude and orientation of Eti have a high influence
on the final curve geometry. Therefore, they are variables to
be optimized in some of the methods compared in this work.

b: SECOND DERIVATIVE

To determine the second derivative the heuristic proposed
in [42] is applied. To estimate the curvature Eκi at Si, this
approach uses two cubic Bézier sections (one from Si−1 to Si
and another from Si to Si+1). The second derivative is applied
at Si in both curves, using the tangent vectors at the previously
mentioned points (Eti−1,Eti and Eti+1:

Eκai = 6Si−1 + 2EtSi−1 + 4EtSi − 6Si (12)

Eκbi = −6Si − 4EtSi − 2EtSi+1 + 6Si+1 (13)

Then a weighted average is calculated with the curvature
vectors of both curves at Si, in order to obtain the estimated
curvature vector Eκei :

Eκei = α Eκai + (1 − α) Eκbi (14)

where α = |Si−Si−1|
|Si−Si−1|+|Si+1−Si|

.
The six control points of each Bézier segment can be

calculated equalling first and second derivatives of the quintic
Bézier equations in two consecutive sections:

Pi0 = Si = Pi−1
5 (15)

Pi1 = Si +
1

5
Eti (16)

Pi2 =
1

20
Eκi + 2Pi1 − Si (17)

Pi3 =
1

20
Eκi+1 + 2Pi4 − Si+1 (18)

Pi4 = Si+1 −
1

5
Eti+1 (19)

Pi5 = Si+1 = Pi+1
0 (20)

where Pim (m ∈ N : m ∈ [0, 5] are control points of Bézier
section i.

3) HEADING AND CURVATURE AT THE
INITIAL AND END POINTS

A summary of the cases covered depending on the primitive
used are shown in the table below:

TABLE 1. Cases covered regarding the imposition of initial/final heading
and curvature.

B. CONSIDERED PATH PLANNING APPROACHES

The approaches considered and compared in this work cover
the most common state of the art path planning techniques
that are based on Bézier curve primitives, as well as some
proposed novel strategies.

They all intend to find the most suitable set of intermediate
waypoints. To that end, some steps are usually carried out:
firstly, the centreline of the drivable space is estimated from
the drivable space boundaries. Over the centreline (i) a set
of reference points is selected. After that, (ii) the position of
the reference points is optimized. Some existing approaches
stop at this point and compute the final path by interpolating
among the optimized reference points by means of different
curve primitives. Other approaches use the optimized ref-

erence points to calculate intermediate waypoints usually,
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called seeding points. These latter approaches then (iii) opti-
mize the seeding points based on different methods.
Different techniques used for each of the three steps stated

above are further described in following subsections.

1) REFERENCE POINTS SELECTION METHOD (RS)

The first step is to select a set of reference points over the cen-
treline. To that end, three different methods are considered:

• Equidistant points over the centreline (E).
• Douglas-Peucker simplification algorithm [43] (D).
This algorithm is based on tolerance of perpendicular
point-to-edge distance to extract the simplified line.

• Opheim simplification algorithm [44] (O). Unlike
Douglas-Peucker algorithm, the search area in Opheim
algorithm is constrained by both a perpendicular and a
radial maximum distances.

FIGURE 2. Reference points selection: Equidistant points,
Douglas-Peucker and Opheim algorithms.

Fig. 2 shows the results of the application of the three
methods over two different scenarios. The number of points
selected by each algorithms is shown in table 2.

TABLE 2. Resultant number of selected points in both scenarios.

2) WAYPOINTS OPTIMIZATION STRATEGIES

Both reference points and seeding points are subjected to
optimization processes. Taking into account the wide range of
refinement possibilities offered by the primitives considered,
the approaches explained below have been addressed. For
ease of reference, each method has been named with an
abbreviated term.

a: A* SEARCH (A*)

This approach is only considered for reference points opti-
mization. It uses the selected reference points to place a set of

FIGURE 3. Reference points optimization based on directed graph search.

possible waypoints over their perpendiculars to the centreline
inside the drivable space boundaries. The set of possible way-
points is connected through a directed graph from the initial
vehicle pose to the final intended pose, as shown in Fig. 3.

This graph is used to apply the A* algorithm in order to
find the waypoints that minimize a cost function f (n)

f (m) = g(m) + h(m)

g(m) = wkoff |ke| + (1 − wkoff ) doffset
h(m) = wd dend (21)

where ke is the estimation of the curvature at the current
point (m) being evaluated by using the two predecessor nodes
(m − 1 and m − 2) to determine a circumference radius
rk (ke = 1/rk ), doffset is the distance from the point being
evaluated (m) to the centreline, dend is the distance from the
point being evaluated (m) to the goal point, and weighting
values wkoff and wd are set to 0.5 and 0.001, respectively.
This approach is similar to [4] regarding reference trajec-

tory planning, but in the present work curvature estimation
and central offsets are considered in the cost function.

b: LATERAL DISPLACEMENTS (LA)

The method uses lateral displacements of waypoints in order
to optimize the given cost function with a specific opti-
mization algorithm. This approach considers one continuous
variable per waypoint (lateral displacements). To calculate
their optimal positions R′

i, the normal vector at each waypoint
Ri, i ∈ [1,N ], N + 1, being N the number of waypoints,
is used (see Fig. 4):

R′
i = Ri + dlatiEuni

where Euni and dlati are respectively the normal unit vectors
and the lateral distance to the optimum point, computed at
Ri, as shown in Fig. 4.
Using the notation introduced in (1), the optimization vari-

ables and bounds can be written for this specific case as:

xLAa = dlat

lLAb = −(
lw

2
−
ltw

2
)

uLAb = (
lw

2
−
ltw

2
)
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FIGURE 4. Reference points optimization based on longitudinal and
lateral movements.

where dlat , lb, ub ∈ R
N−1, being dlat the set of real values

containing lateral displacements of points Ri, i ∈ [1,N − 1],
lw the lane width and ltw the vehicle track width.

c: LONGITUDINAL DISPLACEMENTS (LO)

This method is similar to the previous one. The only differ-
ence is the use of longitudinal displacements instead of lateral
ones:

R′
i = Ri + dlongiEuti

where Euti are the tangential vectors at points Ri (Fig. 4).
In this case, the optimization variables and bounds are:

xLOa = dlong

lLOb = −(−1L/3)

uLOb = (1L/3)

where dlong, lb, ub ∈ R
N−1, being dlong the set of real

values containing longitudinal displacements of points
Rn, n ∈ [1,N − 1], and 1L the distance to the closest
waypoint of the two adjacent waypoints.

d: LATERAL AND LONGITUDINAL DISPLACEMENTS (LL)

This case is a combination of the two above, where lateral and
longitudinal variations are considered:

R′
i = Ri + dlongiEuti + dlatiEuni

In this case, two optimization variables are needed for each
waypoint. As s result, the vectors of bounds and variables to
be optimized are composed by the concatenation of the ones
from both combined methods.

xLLa = (xLAa , xLOa )
lLLb = (lLAb , lLOb )
uLLb = (uLAb , uLOb )

e: LATERAL DISPLACEMENTS WITH

SELECTION OPTION (LAS)

In this case, besides lateral displacements of each waypoint
as in LA method, the problem includes additional binary
variables to decide if a waypoint is used or not:

xLASa = (xLAa , bN−1)

lLASb = (lLAb , 0N−1)

uLASb = (uLAb , 1N−1)

where b ∈ 0, 1 is a binary vector of size N − 1 that indi-
cates whether a point Ri is used as waypoint to calculate the
path or not, 0N−1 and 1N−1 are all-zeros and all-ones vectors
of size N − 1, respectively.

f: LONGITUDINAL DISPLACEMENTS WITH

SELECTION OPTION (LOS)

This method is similar to the previous one but using longitu-
dinal displacements instead of lateral ones:

xLOSa = (xLOa , bN−1)

lLOSb = (lLOb , 0N−1)

uLOSb = (uLOb , 1N−1)

g: LATERAL AND LONGITUDINAL DISPLACEMENTS WITH

SELECTION OPTION (LLS)

This approach was presented in [45]. It is a combination
of the two above, where binary variables are introduced to
decide if a waypoint is used or not, in addition to lateral and
longitudinal displacements. Three variables per waypoint are
used by the optimization algorithm in this case.

xLLSa = (xLAa , xLOa , bN−1)

lLLSb = (lLAb , lLOb , 0N−1)

uLLSb = (uLAb , uLOb , 1N−1)

h: TANGENT VECTOR MAGNITUDE (TM)

As explained in subsection III-A, the magnitude of tangent
vector has a high impact on the curve geometry. Using this
method, the magnitude of tangent vector at each waypoint is
optimized within a constrained range.

Et ′i = ftiEuti

where Euti is the tangent vector at point Ri, and fti is the
magnitude of the new tangent vector.

In this case, the path planning problem variables and
bounds are:

xTMa = ft

lTMb = ftmin · 1N−1

uTMb = ftmax · 1N−1

where ft ∈ R
N−1, ft is the set of real values containing

the magnitudes of tangent vectors at intermediate waypoints,
ftmin and ftmax are the minimum and maximum values for the
scaling factor.

i: TANGENT VECTOR ORIENTATION (TD)

The orientation of the tangent vector highly affects the final
curve too. Its value at each waypoint is optimized within a
constrained range centered in the initial tangent orientation:

Et ′i = 16 θi Eti

where θti is the tangent vector orientation with respect to
initial tangent orientation at point Ri.
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In this case, the path planning problem variables and
bounds are:

xTDa = θt

lTDb = (−1θt · 1N−1)

uTDb = (1θt · 1N−1)

where θt ∈ R
N−1, θt is the set of real values contain-

ing the orientation of tangent vectors at intermediate way-
points and 1θt is the maximum allowed variation of tangent
orientation.

j: TANGENT VECTOR MAGNITUDE AND ORIENTATION (TT)

This method is a combination of the two above, where both
magnitude and orientation of the tangent vector are opti-
mized. Just like in LL case, the vectors of bounds and vari-
ables to be optimized are composed by the concatenation of
the ones from both combined methods.

xTTa = (xTMa , xTDa )

lTTb = (lTMb , lTDb )

uTTb = (uTMb , uTDb ) (22)

k: CURVATURE AT JOINTS (KJ)

In this method, the curvature at intermediate waypoints is
optimized. As explained in Section III-A, curvature can be
imposed at the joints of Bézier sections when quintic curves
a re used. The approach is similar to the adopted in the TM
method, i.e. a proportional factor (in this case fκi ) is used
to modify the curvature at each intermediate waypoint as
expressed in ( 22). The path planning problem variables and
bounds are:

xKJa = fκ

lKJb = fκmin · 1N−1

uKJb = fκmax · 1N−1

where fκ , lb, ub ∈ R
N−1 is the set of real values containing

the magnitude of tangent vectors at intermediate waypoints,
fκmin and fκmax are the minimum and maximum values for
the scaling factor. fκmax is determined so as to ensure the
maximum feasible curvature of the vehicle is not exceeded
(κi · fκmaxi ≤ κvmax).

l: TANGENT VECTOR MAGNITUDE AND CURVATURE

AT JOINTS (MK)

A combination of TM and KJ method is also considered.
In this case, the optimization problem variables and bounds
are:

xMKa = (xTMa , xKJa )

lMKb = (lTMb , lKJb )

uMKb = (uTMb , uKJb )

m: TANGENT VECTOR ORIENTATION AND

CURVATURE AT JOINTS (DK)

The last considered approach combines TD and KJ methods.
the optimization problem variables and bounds are:

xDKa = (xTDa , xKJa )

lDKb = (lTDb , lKJb )

uDKb = (uTDb , uKJb )

Note that methods TM, TD, TT, MK and DK can only be
applied when using quintic Bézier splines, as cubic B-splines
do not allows to impose tangent at intermediate waypoints.

FIGURE 5. Seeding points optimization.

As exposed at the beginning of this section, cases with
two optimization stages are also considered in this study.
In these cases the first stage is used to optimize the position of
reference points from which a set of new intermediate points
(seeding points) will be obtained. To that end, the correspond-
ing primitive is discretized with a fixed amount of points,
as depicted in Fig. 5.
In cases with two optimization stages onlymethodsA*, LA,

LO, LL, LAS, LOS, LLS are considered for reference points
optimization, while all of them are considered for the second
stage and for the cases with only one optimization process.

3) OPTIMIZATION ALGORITHMS

Four algorithms to solve constrained non-linear mul-
tivariable optimization problems are compared in this
work: Interior-point [46], Levenberg-Marquardt [47], Sim-
ple Multi-Objective Cross-Entropy (SMOCE) [48] and
Non-linear Optimization by Mesh Adaptive Direct Search
(NOMAD) [49].

SMOCE is an evolutionary multi-objective optimization
algorithm which presents remarkable performance in solving
complex problems with many decision variables. In this work
the algorithm is applied to solve single-objective problems.

NOMAD is able to solve mixed-integer non-linear pro-
gramming problems (MINLP), as the ones defined in LAS,
LOS and LLSmethods. This algorithm is highly configurable
and is designed for constrained optimization of non-linear
functions.

As in path planning methods, the algorithms are refer-
enced using shorted names: interior-point (IP), Levenberg-
Marquardt (LM), NOMAD (NM), SMOCE (CE).
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4) COST FUNCTIONS

Based on the related work and the tests carried out in this
work, five cost functions are proposed based on curvature that
are typically used to path planning optimization processes:

1) J1 =

∫ sf

s0

κ̇(s)2 ds+ h

2) J2 =

∫ sf

s0

κ̈(s)2 ds+ h

3) J3 =

∫ sf

s0

κ̇(s)2 + wJ3 · κ̈(s)2 ds+ h

4) J4 =

∫ sf

s0

doff ds+ h

5) J5 =

∫ sf

s0

doff + wJ5 · κ̇(s)2 ds+ h

where κ is the scalar curvature of the path, s ∈ [s0, sf ] ∈ R

is the curve length over the initial (s0) and final (sf ) values of
the path, doff is the perpendicular distance from the path to
the centreline of the driving corridor, wJ3 is the weight of the
component related to the second derivative of the curvature
in J3, wJ5 is the weight of the component related to the
first derivative of the curvature in J3, and h is a non-smooth
function describing the relation between the path and the
drivable space.

h =











0 if path is within boundaries

∞ if boundaries/obstacle collision

∞ if κ
p
max ≥ κvmax

The value of κ is computed using the generic curvature
equation of a given planar curve c(t) = [x(t), y(t)]:

κ =
ẋ(t)ÿ(t) − ẏ(t)ẍ(t)
(

ẋ(t)2 + ẏ(t)2
)
3
2

(23)

where x and y are the parametric equations of the Bézier
curves for both dimensions of curve c.

Note that the value of the objective function is infinity if:
(i) the any part of the final path is outside the boundaries,
(ii) the final path collides with obstacles, or (iii) themaximum
curvature along the path κ

p
max is greater than the maximum

curvature the vehicle can handle κvmax .

IV. COMPARISON FRAMEWORK DESCRIPTION

Due to the large number of possibilities when composing
a followable path, one of the main issues to compare dif-
ferent approaches to solve the same path-planning problem
is to extract objective measurements that characterize them.
Furthermore, the performance can be evaluated both in terms
of the tracking quality of the resulting path, which can be hard
to objectively define, or in run-time terms.
In order to compare all path planning methods, a common

framework is specified. On the one hand, some KPIs are
defined with the aim of reflecting the quality of the approach
employed, regardless of the type of primitive used, and not
only in terms of functional performance but also of the
execution time of the approaches.

A. DEFINITION OF KPIs

The definition of representative KPIs for benchmarking dif-
ferent approaches is not a trivial task. There is no a clear
objective way of assessing a path planner. In fact, it is com-
mon to find a useful KPI for a small set of cases in specific
scenarios that is useless or gives a wrong indication in other
cases.

Besides computational cost, safety and comfort will be
considered with different metrics related to the curvature and
its variation. In addition to that, tunability and stability of
the resulting path will be also taken into account through the
offset to the centreline. Based on the tests carried out when
developing this work, the most suitable KPIs contemplating
all these aspects are the following:

1) Execution time: Kt = texc
2) Maximum curvature: Kκmax = κmax
3) Normalized accumulated curvature along the path:

Kκ0 =
1

Lp

∫ sf

s0

κ(s)2 ds (24)

4) Normalized accumulated first derivative of the curva-
ture along the path:

Kκ1 =
1

Lp

∫ sf

s0

κ̇(s)2 ds (25)

5) Normalized accumulated second derivative of the cur-
vature along the path:

Kκ2 =
1

Lp

∫ sf

s0

κ̈(s)2 ds (26)

6) Centreline offset along the path:

Kcl =
1

Lp

∫ sf

s0

doff ds (27)

where Lp =
∑N

i=1 ‖pi − pi−1‖ is the length of the path, pi
(i ∈ N : i ∈ [1,N ]) is the point i of the path, κ is the curvature
of the path, κmax is the maximum value of κ along the path,
s (s ∈ R : s ∈ [s0, sf ]) is the curve length over the path, and
texc is the total execution time.

B. PATH PLANNING PROBLEM SPECIFICATION

Each path planning strategy is defined as a set of parameters
related to its main characteristics. As previously described,
each case is characterized by: (i) the reference points selection
method (over a given centreline), (ii) the type of primitive
curve, (iii) the method of the first optimization process,
(iv) method of second optimization process, and (v) the
setting of initial and/or final heading and/or curvature as
described in SectionIII.

For the sake of clarity, each test carried out in this work
is identified with a unique text string composed of a set of
sub-IDs separated by colons. The sub-IDs are taken from the
abbreviated terms specified in Section III-B for each path
planning step. The complete test ID is composed as follows:

ID = S:RS:P:O1:O2:H:K
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where
• S is the scenario number.
• RS is reference points selection method: E, D or O.
• P is the primitive type: 3 if cubic B-spline or 5 if quintic
Bézier splines is used.

• Reference points optimization process (O1): It is com-
posed of the optimizationmethod, the optimization algo-
rithm and the cost function. If it is set to 0, no reference
points optimization process is carried out. O1 is there-
fore defined by the concatenation of:
– Optimization method: A*, LA, LO, LL, LAS, LOS,
LLS.

– Optimization algorithm: IP, LM, NM, CE.
– Optimization cost function: J1, J2, J3, J4, J5.

• Seeding points optimization process (O2): It is com-
posed of the optimizationmethod, the optimization algo-
rithm and the cost function. If it is set to 0, no seeding
points optimization process is carried out. O2 is there-
fore defined by the concatenation of:
– Optimization method: LA, LO, LL, LAS, LOS, LLS,
TM, TD, TT, KJ, MK, DK.

– Optimization algorithm: IP, LM, NM, CE.
– Optimization cost function: J1, J2, J3, J4, J5.

• H indicates if the initial and final heading is imposed.
It is defined using two binary digits: the first one refers
to the initial heading and the second one to the final
heading. The considered possibilities are: 00, 10, 11,
as specified in table 1 (h0, hf = {0, 1}).

• K indicates if the initial and final curvature is imposed
in the same way thatH. The considered possibilities are:
00, 10, 11, as specified in table 1 (κ0, κf = {0, 1}).

One sample of ID could be: 1:D:3:0:LA-IP-J1:11:00. This
case addresses the scenario 1, the reference points are selected
with theDouglas-Peucker algorithm, cubic B-splines are used
as primitive curve, there is no reference points optimization
(O1= 0, so the seeding points= reference points), the seed-
ing points are optimized using LA method (lateral position
optimization) with the interior-point algorithm (IP) and min-
imizing J1 cost function. The initial and final orientation are
set and the initial and final curvatures are not set.

V. EXPERIMENTS AND RESULTS

A. TESTS CASES SETUP

In order to compare the performance of all the strategies pre-
sented in Section III-B, all feasible combinations among the
considered methods, primitives, optimization algorithms, etc.
are tested in two different scenarios. As some combinations
are not possible, the tests cases that include the configurations
listed below are excluded:

• Impose initial curvature without imposing initial tan-
gent.

• Impose final curvature without imposing final tangent.
• Impose final tangent without imposing initial tangent.
• Use cubic B-splines and

– Impose final curvature.

– Impose final tangent when initial tangent and cur-
vature are already imposed.

– The second optimization method is one of these:
TM, TD, TT, KJ, MK, DK (They only apply to
quintic Bézier spline cases).

• Use quintic Bézier splines and initial and/or final tangent
and/or curvature are not imposed.

• There is only one optimization stage and it is defined as
the first one instead of second one (seeding points).

• Tests cases in which there are two optimization stages
andCE optimization algorithm is used in the second one.
These cases are excluded because CE does not allow to
set as the initial point the output of the first optimization
stage.

Once the above test cases were excluded, 90417 tests per
scenario were executed (180834 for both scenarios). All path
planning approaches were implemented in Matlab and the
experiments were executed on an Intel Core i7-3770 3.4GHz
machine with 8GB RAM.

In order to test the path planning methods in realistic
scenarios, both driving environments were extracted from
real roads, which are shown in Fig. 2. Scenario 1 contains
two tight curves and a centreline length of 40.02m, while Sce-
nario 2 comprises a roundabout entrance, with a centreline
length of 54.79m. The lane with in both scenarios is 3m and
a vehicle track width of 1.71m (ltw) is considered.
The motivation to choose scenarios with these values of

centreline length is mainly due to the trade-off between
computational cost and anticipation capabilities, as larger
pathsmay involvemore intermediate waypoints and therefore
longer computation time. Based on the tests carried out in
this study, paths with a length around 50m are computed in a
reasonable amount of time as shown in Section V-B.

To determine the acceptable values for the large amount of
parameters of different methods, algorithms, etc. employed
in this work, specific tests were carried out. Regarding refer-
ence points selection, the length to obtain equidistant point
was set to 7.5m. In Douglas-Peucker algorithm, ξ was set
to 1m. Opheim algorithm was parametrized with minimum
and maximum tolerance of 1.8m and 30m, respectively. The
maximum function evaluation of optimization algorithms
were limited in order to avoid large execution times in cases
were the algorithms cannot find a solution. In the case of
NOMAD algorithm the maximum optimization time was set
to 20s. SMOCE algorithm parameters was set to 50 epochs,
100 solutions and 0.1 as elitist fraction.

Finally, the weights wJ3 in cost function J3 and wJ5 in cost
function J5 were set to 60 and 100, respectively.

B. RESULTS AND DISCUSSION

Fig. 6 represents the tests cases distribution of both scenarios
using the percentiles against the value of each KPI plotted
in logarithmic scales. The distribution of the tests regarding
Kt and Kcl is similar in both scenarios. However, the val-
ues of Kκ0,Kκ1,Kκ2 and Kκmax in Scenario 2 are generally
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FIGURE 6. Percentiles of all KPIs against their values for both scenarios (1 and 2).

FIGURE 7. Results of filtered tests cases with thresholds on Kt , Kκmax and path length, and percentile 50th on Kcl , K
κ0, K

κ1 and K
κ2 in

Scenario 1. Color is based on KPI Kt , ranging from 0s to 50s.

below those in Scenario 1, probably due to its tighter curves.
On another issue, the noticeable change in the distribution at
Kt = 20s is caused by the maximum imposed optimization
time when using NOMAD algorithm.

In order to extract relevant results from all tested cases,
a set of test cases of each scenario is filtered separately, based
on the values of their KPIs. The thresholds used to select
the minimum acceptable results with respect to the KPIs are
listed below:

• Kt ≤ 50s.
• Kκmax ≤ 0.4m−1

• Kκ0, Kκ1,Kκ2 ≤ 3.
• The path length is also constrained such that it does not
differs more than a 5% with respect to the centreline
length of the scenario (Lcl): |Lp − Lcl | ≤ Lcl · 0.05

The wide range of combinations of tests configurations
results in high dimensional data, and therefore specific
graphic representation tools are needed. By using parallel
coordinates plots, Fig. 7 and 8 allow to represent the resulting
KPI values in terms of its configuration values, as speci-
fied in the test ID (see section IV-B), for Scenario 1 and
Scenario 2, respectively. The color of each line represent the
value of a particular KPI (in these two particular cases Kt ).
In addition to the filtering above described, the 50th per-
centiles of Kcl,Kκ0,Kκ1 and Kκ2 were used to select the
cases plotted in Figs. 7 and 8.
As can be noticed, after applying the filters there are

significantly more valid tests cases in Scenario 2 than in
Scenario 1 (1117 and 77, respectively). Furthermore, it is also
remarkable that almost all cases in Scenario 1 needed two
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FIGURE 8. Results of filtered test cases in Scenario 2. Color is based on KPI Kt , ranging from 0s to 50s.

FIGURE 9. Results of filtered test cases in Scenario 2. Line colors are based on KPI K
κ0.

optimization stages. Just a few of them used only one stage
but with a bad performance regarding the execution time.
In contrast, although most of the cases used two optimization
stages, the ones with only one optimization stage have a
good timing performance in Scenario 2. These are signs
of the greater complexity of the path planning problem in
Scenario 1 compared to Scenario 2.
Comparing both scenarios regarding the execution time,

it is generally lower when using this Douglas-Peucker algo-
rithm as reference points selection method (as shown in
table 2). This is non surprising, as a lower number of opti-
mization variables is used in those cases.
Since the richness of information in Scenario 2 is higher,

i.e. there is a greater number of valid tests cases com-
pared to Scenario 1, the subsequent discussion is focused
on this particular information. The color of the lines in
Figs. 9, 10, 11 and 12 show the values of KPIs Kκ0,Kκ1,Kκ2
and Kcl , respectively. It can be appreciated that the cases
using LA, LO, LL, LAS, LOS, LLS methods as seeding

points optimization present a better performance regarding

Kκ0,Kκ1,Kκ2 and Kcl . Contrastingly, a worse performance
regarding Kt is observed when these methods are used
(Fig. 8), where methods TM, TD, TT, KJ, MK, DK (only
applied when using quintic Bézier splines) present better
results.
The resulting paths of two selected tests cases are shown

in Figs.13 and 14. The high smoothness of optimized paths is
observed in both cases. To demonstrate that, as curve smooth-
ness is hard to see on a 2D plane curve directly, the resultant
path curvature is shown together with its first derivative at
the bottom of both figures. As can be noticed, the curvature
remains continuous along the path in both figures. These are
two random test cases, but an insight into the best configura-
tions is shown below.

1) COMPARING BEST CASES IN BOTH SCENARIOS

Delving deeper into the results, several cases with the min-
imum value in all KPIs are selected. The resulting KPIs
are shown in table 3. Moreover, the normalized KPIs of
both scenarios are represented in radar charts of Fig. 15.
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FIGURE 10. Results of filtered test cases in Scenario 2. Line colors are based on KPI K
κ1.

FIGURE 11. Results of filtered test cases in Scenario 2. Line colors are based on KPI K
κ2.

FIGURE 12. Results of filtered test cases in Scenario 2. Line colors are based on KPI Kcl .

Note that the normalization was done to achieve scenario-
independent results, as Scenario 1 has tighter curves, and
curvature-related KPIs values are therefore higher than in
Scenario 2.

The first thing that can be noticed from the table 3 is that
in both scenarios the reference points selection method and
primitive used in all selected cases are Douglas-Peucker and
quintic Bézier splines, respectively. Furthermore, it is also
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TABLE 3. KPI values of selected tests from both scenarios.

FIGURE 13. Results of test 1:D:5:LA-CE-J1:LOS-NM-J1:11:11. Scenario and
final optimized path (top) and curvature of the final path and its first
derivative (bottom).

FIGURE 14. Results of test 2:E:3:0:LL-CE-J4:00:00. Scenario and final
optimized path (top) and curvature of the final path and its first
derivative (bottom).

remarkable that SMOCE and NOMAD algorithms are also
used in all scenarios for the first and the second optimization
stage, respectively.

FIGURE 15. Results of selected test cases of each scenario. (a) Scenario 1.
(b) Scenario 2.

Regarding (Kt ) it can be seen that test cases with
ID = 1:D:5:LA-CE-J2:LOS-NM-J3:11:11 and 2:D:5:LO-
CE-J3:TD-NM-J5:11:11 are those which take longer to per-
form the optimization of the selected tests in each scenario.
However, in these 2 specific configurations almost all val-
ues of the KPIs related to the quality of the path are much
lower than in the other cases. Focusing on Scenario 1, it is
also remarkable the influence of a greater execution time in
the higher quality of the final path. Regarding Scenario 2

it can be observed that the cases 2:D:5:LA-CE-J2:TD-NM-
J3:11:11 and 2:D:5:LA-CE-J2:KJ-NM-J1:11:11 present a
high value in almost all KPIs, i.e. a higher execution time did
not lead to better results in the quality of the final path.
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FIGURE 16. Results of selected test cases of Scenario 1 with one (a) and
two (b) optimization stages.

2) COMPARING BEST CASES WITH ONE AND TWO
OPTIMIZATION STAGES IN BOTH SCENARIOS

In order to analyze the impact of each approach, the best
results with one and two optimization stages are selected
from both scenarios separately. Fig. 16 shows the cases with
one and two optimization stages in Scenario 1, while Fig. 17
depict those in Scenario 2.
The values of the KPIs are normalized with respect to each

scenario separately, as in the previous analysis.
In this case, the tests selected in Fig. 17b are the same

than were selected in Fig. 15b as the best results present
two optimization stages. However, the KPIs are normalized
together with the selected tests with one optimization stage
for this scenario. As a result, the represented values are
different between both figures.
As can be noticed taking into account the results in both

scenarios, the KPIs reflect a better overall performance when
two optimization stages are carried out. It is also noteworthy
that even the KPI Kt is lower in cases where two optimization
stages were performed. Moreover, it is also remarkable that,
again, the best cases with one optimization stage use quin-
tic Bézier splines optimized through different approaches,
instead of cubic B-splines. This can be caused by the lower
tunability and stability of cubic B-splines compared to quintic
Bézier splines.
Note that the all shown cases in these figures are the best

selected after the filtering explained above. Therefore, despite
the normalized value of some KPIs is close to 1, all test cases
present acceptable absolute values.

FIGURE 17. Results of selected test cases of Scenario 2 with one (a) and
two (b) optimization stages.

Considering the results obtained, it can be concluded that
some of the better approaches from those proposed in this
work are those using quintic Bézier splines as primitive and
two optimization stages. Furthermore, some of the better
approaches for the first optimization stage are LA, LO, and
LL; while for the second one are LOS, KJ, and TD.

Regarding optimization algorithms, SMOCE andNOMAD
seem to deal better with the strong non-linearity of the opti-
mization problem (since most of the cost function are based
on the curvature equation) obtaining better overall results
compared with interior-point and Levenberg-Marquardt
algorithms.

With regard to the cost functions, J1, J2, J3, and J4 are
present in the first optimization stage of the best results,
while all of them are present in the second stage. In fact,
it can be observed that some of the best results use the same
configuration for the first optimization stage and different
configurations in the second. This observation highlights the
higher impact of the cost function in the first optimization
stage when compared with the second one.

The results of all tested cases are publicly available at
https://autopia.car.upm-csic.es/antonio/comparison_results.
html. In this url, parallel coordinates plots as those shown
in Figs. 7-12 can be seen. The interface allows to select the
color of the lines based on KPIs values as well as selecting the
scenario and the percentile to filter data. Moreover, additional
filters can be applied over the plot coordinates. In addition,
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the resulting KPIs values of selected test cases are shown in
a table at the bottom of the web page.

VI. CONCLUSIONS

An insight on a number of different approaches for path
planning is carried out in this work, where a wide range of
possible combinations among several primitives, optimiza-
tion methods and algorithms are compared. The results are
intended to help in future decisions about the most appro-
priate approach for local path planning in different environ-
ments or applications. To that end, the main contributions
of this paper are (i) a comparison framework to benchmark
different path-planning primitives for on-road urban driving,
(ii) the evaluation of different primitive configurations and
optimisation techniques for path-planning, and (iii) the open
publication of the results and its consequent analysis, based
on a set KPIs related to the aforementioned main features.
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