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Abstract. The goal of combining the predictions of multiple learned models is to form an improved estimator.
A combining strategy must be able to robustly handle the inherent correlation, or multicollinearity, of the learned
models while identifying the unique contributions of each. A progression of existing approaches and their limi-
tations with respect to these two issues are discussed. A new approach, PCR*, based on principal components
regression is proposed to address these limitations. An evaluation of the new approach on a collection of domains
reveals that (1) PCR* was the most robust combining method, (2) correlation could be handled without eliminat-
ing any of the learned models, and (3) the principal components of the learned models provided a continuum of
“regularized” weights from which PCR* could choose.
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1. Introduction

Combining a set of learned models to improve classification and regression estimates has
been an area of much research in machine learning and neural networks. A learned model
may be anything from a decision/regression tree to a neural network. The challenge of this
problem is to decide which models to rely on for prediction and how much weight to give
each.

Suppose a physician wishes to predict a person’s percentage of body fat,PBF. S/he has
a collection of patient records with simple measurements/attributes such as height, weight,
chest circumference, leg circumference, etc., along with a measurement ofPBF derived
from a water displacement test. The task is to predictPBF for future patients using only
the simple measurements without performing the expensive water displacement test. The
physician has derived several models for predictingPBF using various linear regression
methods, several neural network configurations, and some existing heuristic functions. The
goal is to combine the learned models to obtain a more accurate prediction than can be
obtained from any single model. The general problem of combining estimates robustly is
the focus of this paper.

One major issue in combining a set of learned models is the amount of correlation in
the set of predictors. A high degree of correlation is expected because the learned models
are attempting to perform the same prediction task. Correlation reflects the amount of
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agreement or linear dependence between models when making a set of predictions. The
more the models agree, the more correlation, or redundancy, is present. In some cases,
one (or more) models may be expressed as a linear combination (with various numerical
coefficients) of the other models. Such a high degree of correlation in the model set can
cause some combining schemes to produce unreliable estimates. In statistical terms, this is
referred to as themulticollinearity problem.

Another issue in combining the predictions of learned models is detecting each model’s
unique contribution to predicting the target outcome. Models generated using different
learning algorithms are more likely to make such contributions. For example, a neural
network may discover useful non-linear interactions amongst the initial attributes, whereas a
standard linear regression method may employ an attribute deletion strategy which simplifies
the prediction task. A good combining strategy must be able to weigh each model according
to its unique contribution.

A tradeoff exists in solving the problems mentioned above. Solutions to the multicolli-
nearity problem are likely to ignore the unique contributions of each model. On the other
hand, methods that are good at finding the unique contributions of each model are more
susceptible to the multicollinearity problem. A point between these two extremes where
prediction error is minimized is sought.

The focus of this paper is to present and study an algorithm for solving the problems of
multicollinearity and discovering unique contributions. The paper begins by defining the
task of combining regression estimates (Section 2) and discussing the limitations of existing
approaches with respect to the problems discussed above. More advanced approaches to
solving the multicollinearity problem are described in Section 3. A novel approach, called
PCR*, based on principal components regression is outlined in Section 4. Analytical and
empirical analyses are given in Sections 5 and 6, respectively. Related work is discussed in
Section 7. Directions for future work are given in Section 8, and concluding remarks are
given in Section 9.

2. Motivation

The problem of combining a set of learned models is defined using the terminology of
Perrone & Cooper (1993). Suppose two sets of data are given: a training setDTrain =
(xm, ym) and a test setDTest = (xl , yl ). Now supposeDTrain is used to build a set of
functions,F = f̂i (x), each element of which approximatesf (x). The goal is to find the
best approximation off (x) usingF .

Most approaches to this problem limit the space of approximations off (x) to linear
combinations of the elements ofF , i.e.,

f̂ (x) =
N∑

i=1

αi f̂i (x)

whereαi is the coefficient or weight of̂fi (x).
The focus of this paper is to develop a method for setting these coefficients that overcomes

the limitations of earlier approaches. To do so, a brief summary of these approaches is now
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provided progressing from simpler to more complex methods pointing out their limitations
along the way.

The simplest method for combining the members ofF is by taking the unweighted
average, (i.e.,αi = 1/N). Perrone and Cooper refer to this as the Basic Ensemble Method
(BEM), written as

f̂BEM = 1/N
N∑

i=1

f̂i (x)

This equation can also be written in terms of themisfit functionfor each f̂i (x). These
functions describe the deviations of the elements ofF from the true solution and are written
as

mi (x) = f (x)− f̂i (x).

Thus,

f̂BEM = f (x)− 1/N
N∑

i=1

mi (x).

Perrone and Cooper show that as long as themi (x) are mutually independent with zero
mean, the error in estimatingf (x) can be made arbitrarily small by increasing the size
of F . Since these assumptions break down in practice, they developed a more general
approach which finds the “optimal”1 weights while allowing themi (x)’s to be correlated
and have non-zero means. This Generalized Ensemble Method (GEM) is written as

f̂GEM =
N∑

i=1

αi f̂i (x)

= f (x)−
N∑

i=1

αi mi (x)

where

αi =
∑N

j=1 C−1
i j∑N

k=1

∑N
j=1 C−1

k j

,

Ci j = E[mi (x)mj (x)],

andE[·] is the expected value function.
C is the symmetric sample covariance matrix for the misfit function and the goal is to

minimize
∑N

i, j αiα j Ci j . Note that the misfit functions are calculated on the training data
and f (x) is not required. The main disadvantage to this approach is that it involves taking
the inverse ofC which can be unstable. That is, redundancy in the misfits leads to linear
dependence in the rows and columns ofC which in turn leads to unreliable estimates
of C−1.
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To circumvent this sensitivity redundancy, Perrone and Cooper propose a method for
discarding member(s) ofF when the strength of its agreement with another member exceeds
a certain threshold. Unfortunately, this approach only checks for linear dependence (or
redundancy) between pairs off̂i (x). In fact, f̂i (x) could be a linear combination of several
other members ofF and the instability problem would be manifest. Also, depending on
how high the threshold is set, a member ofF could be discarded while still having some
degree of uniqueness and utility. An ideal method for weighting the members ofF would
neither discard any models nor suffer when there is redundancy in the model set.

The next approach reviewed is linear regression (LR). GEM and LR are closely related
in that GEM is a form of linear regression with the added constraint that

∑N
i=1 αi = 1. The

weights for LR are found as follows.2

f̂LR =
N∑

i=1

αi f̂i (x)

where

α = (f̂ T
f̂ )−1f̂

T
y

f̂ j i = f̂i (xj ) 1≤ j ≤ M, and

yj = f (xj ).

A more general form of linear regression is linear regression with a constant term (LRC).
LRC is calculated the same way but with memberf̂0, which always predicts 1. According
to Leblanc & Tibshirani (1993) having the extra constant term will not be necessary (i.e., it
will equal zero) because in practice,E[ f̂i (x)] = E[ f (x)].

Like GEM, LR and LRC are subject to the multicollinearity problem because finding the
αi ’s involves taking the inverse of a matrix. That is, if thef matrix is composed of̂fi (x)
which strongly agree with other members ofF , some linear dependence will be present.

Given the limitations of these methods, the goal of this research is to find a method which
finds weights for the learned models with low prediction error without discarding any of
the original models, and without being subject to the multicollinearity problem.

3. Methods for handling multicollinearity

In the abovementioned methods, multicollinearity leads to inflation of the variance of the
estimated weights,α. Consequently, the weights obtained from fitting the model to a par-
ticular sample may be far from their optimal values. To circumvent this problem, several
approaches have been developed:

1. One method for handling multicollinearity is to build models which make decorrelated
errors by adjusting the bias of the learning algorithm (Opitz & Shavlik, 1996) or the data
which it sees (Meir, 1995). This approach ameliorates, but does not solve, the problem
because redundancy is an inherent part of the task of combining estimators.
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2. Gradient descent procedures (i.e., Widrow-Hoff learning, GD, EG and EG+
− (Kivinen &

Warmuth, 1997)) search for the coefficients by making iterative multiplicative or expo-
nentiated updates to theα-coefficients as a function of their performance on the training
data. This avoids the matrix inversion step which is susceptible to the multicollinearity
problem. The potential problems with gradient descent approaches are the possibility of
getting trapped in a local minima, choosing the appropriate initial weights, and deciding
how large the weight updates should be.

3. Least squares regression methods which rely on matrix inversion for finding the weights
(i.e., LR and LRC) can be made more reliable by constraining the types of weights
they may produce. Ridge regression, RIDGE (Montgomery & Friedman, 1993) has a
parameter that may be used to restrict or regularize theα-coefficients. Breiman (1996) has
devised an approach based on constrained least squares regression (Lawson & Hanson,
1974) where the coefficients are required to be nonnegative.

The focus of this paper is on a flexible approach to weight regularization based on principal
components regression (described in Section 4. Now the discussion turns to a more precise
description of weight regularization and why it is effective at handling the multicollinearity
problem.

Leblanc & Tibshirani (1993) have proposed several ways of constraining orregularizing
the weights to help produce estimators with lower prediction error:

1. Shrinkα̂ towards(1/K ,1/K , . . . ,1/K )T whereK is the number of learned models.
2.
∑N

i=1 αi = 1
3. αi ≥ 0, i = 1,2 . . . K

Breiman (1996) provides an intuitive justification for these constraints by pointing out that
the more strongly they are satisfied, the more interpolative the weighting scheme is. In the
extreme case, a uniformly weighted set of learned models is likely to produce a prediction
betweenthe maximum and minimum predicted values of the learned models. Without these
constraints, there is no guarantee that the resulting predictor will stay near that range and
generalization may be poor. An effective weight regularization technique must decide the
appropriate level of constraint to be placed on the weights. We demonstrate that selecting the
number of principle components in principal components regression allows the appropriate
amount of weight regularization to be selected for a given set of learned models.

4. The PCR* algorithm

The PCR* algorithm may be broken down into four parts: representation, regression, search
and evaluation. Section 4.1 discusses the first two parts by describing how the model set
may be mapped into a new representation using principal components analysis, and how
the resulting components may be used to build a regression model. Section 4.2 discusses
the latter two parts of the algorithm: the asterisk in PCR* denotes the search for the number
of principal components to retain which is tightly coupled with the evaluation metric for a
given model.
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4.1. Representation and regression

“PCR*” is named partly for the modeling method at its core, “Principal Components Re-
gression” (see Draper & Smith, 1981 for a summary). This section discusses the central
role PCR plays in representation and regression in PCR*.

In PCR*, the representation of the final regression estimate,f̂ (x), is restricted to linear
combinations of the learned models inF , i.e.,

f̂ (x) =
N∑

j=1

α j f̂ j (x) (1)

whereα j is the coefficient orweightof f̂ j (x).
PCR* uses an intermediate representation in order to derive the final regression estimate.

The main idea is to map the original learned models to a new set of models using Principal
Components Analysis (PCA). The new models are a decomposition of the original mod-
els’ predictions intoN independent components. The more useful initial components are
retained to build an estimate off , and the mapping is reversed to get the weights for the
original learned models. The following discussion elaborates on this process.

The intermediate representation is derived using Principal Components Analysis (PCA).
DefineAF as the matrix of learned models’ predictions where

AFi j = f̂ j (xi). (2)

PCA takes as its input the square, symmetric covariance matrix ofAF , denotedC =
cov(AF ), where

Ci j = E
[
AF∗,i A

F
∗, j
]− E

[
AF∗,i

]
E
[
AF∗, j

]
. (3)

The output of PCA is a new representation called the “principal components,” i.e.,{PC1, . . . ,

PCN}. Each principal component is a column vector in the matrix,PC, where

PCi, j = γ j,1 f̂1(xi )+ · · · + γ j,N f̂N(xi ). (4)

Associated with each principal component is an eigenvalue,λ j , denoting the percentage of
variance that componentj captures from the original matrix,AF .

One advantage of this representation is that the components are independent which means
the correlation betweenPCi andPC j is zero for alli 6= j . Another advantage is that the
components are ordered by their eigenvalues, i.e.,

λ1 > λ2 > · · · > λN .

Given this new representation, the goal is to choose the number of principal components to
include in the final regression by retaining the firstK which meet a preselected stopping
criterion. ChoosingK is the search aspect of PCR* and is covered in Section 4.2.
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OnceK has been selected, an estimate off is derived via linear least squares regression
usingPC1 throughPCK , i.e.,

f̂ β = β1PC1+ · · · + βK PCK (5)

where

β = (PCT
K PCK

)−1
PCT

K y (6)

This is known as Principal Components Regression (PCR).
Finally, the weights,α, can be derived for the original learned models by expanding

Eq. (5) according to

PCK = γK ,0 f̂0+ · · · + γK ,N f̂N,

whereγK , j is the j th coefficient of theK th principal component. Theα-coefficients can be
calculated as follows,

αi =
K∑

k=1

βkγk,i (7)

Equations (2)–(7) make up the core of the PCR* algorithm and are summarized in Table 1.
The third step, i.e., choosingK , constitutes the search aspect of PCR*. The next section
elaborates on this process.

4.2. Search procedure and evaluation

The main search component of PCR* is step 3 which involves choosingK (see Table 1). The
basic idea is to include successive principal components in the regression estimate off (x)
(see Eq. (5)) until allN components are used.3 The reason for searching forK in this manner
is that the principal components are ordered by the amount of variance they capture in the
original learned models. The first principal component explains the most variance in the

Table 1. The PCR* algorithm.

Input: AF is the matrix of predictions of the models inF
1. C = cov(AF )

2. PC= PCA(C)

3. K = ChooseCutoff(PC)

4. f̂ β = β1PC1 + · · · + βK PCK whereβ = (PCT
K PCK )−1

PCT
K y

5.αi =
∑K

k=1 βkγk,i

6. Returnα
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Table 2. The ChooseCutoff() algorithm.

Input:

AF is the matrix of predictions of the models inF
Γ, the eigenvectors derived by PCR*

y, the target output

Output: K , the number of components retained

1. FormV random partitions ofAF

2. For partitionv

• Create new principal components:

For i = 1, N

P̂C
(−v)
i = γi,0 f̂ (−v)0 + · · · + γi,N f̂ (−v)N ,

where f̂ (−v) is f̂ with the examples/rows of partitionv removed

• For k = 1, N

— f̂ β = β1PC1 + · · · + βkPCk whereβ = (PCT
k PCk)−1

PCT
k y

— Error[k] = Error[k]+∑i∈v( f̂ β(x)i − f (xi ))
2.

3. Return arg min
1≤k≤N

Error[k]

data which is where the models agree the most. The subsequent (orthogonal) components
capture more and more of the variations in the models’ predictions. Therefore, the number
of components retained directly affects how much attention is paid to the variations in the
predictions of the learned models. The value ofk (where 1≤ k ≤ N) with the lowest
estimated error is chosen. This step is very important because choosing too few or too
many principal components may result in underfitting or overfitting, respectively.

The evaluation criterion for selectingK is the measure of error for each possible value,k.
Table 2 shows howv-fold cross-validation is used to estimate the error for eachk. For a
givenk, as partitionv is held out it is evaluated on the regression equation derived from a
modified set of principal components,PC(−v), wherePC(−v)i is the same asPCi with the
examples from partitionv removed. Thek with the smallest cross-validation error is chosen
asK . Other approaches to choosingK have been explored in (Merz, 1998).

5. Understanding PCR* analytically

This section provides an analysis which illuminates how PCR* addresses some of the open
problems discussed in Section 1. Artificial data sets will be used to show that PCR* provides
a continuum of regularized weights for the original learned models. Section 5.1 shows how
PCR* produces a highly regularized set of weights to avoid the multicollinearity problem.
Section 5.2 demonstrates how PCR* handles the problem of detecting areas of specialization
of each learned model by producing a less regularized set of combining weights. Section 6
will then evaluate PCR* on real problems.
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5.1. The multicollinearity problem

The multicollinearity problem, as described in Section 3 leads to an increase in the variance
of the estimated weights,α. The resulting prediction error can be quite high because the
weights are very sensitive to minor changes in the data. To avoid this the weights must be
regularized.

Weight regularization in PCR* is controlled via the number of principal components
retained. Let PCRk denote the instantiation of PCR* where the firstk principal components
are retained. Now consider deriving theα-weights using PCR1. The first principal com-
ponent is defined as the linear combination of the members ofF with the highest average
correlation with the members ofF . In this case, the weights,γ1,∗, will tend to be quite
similar because the learned models are all fairly accurate, i.e.,E[ f̂i − f ] = 0. Equation (7)
shows that theγ -weights are in turn multiplied by a constant,β1, as derived in Eq. (6).
Thus, the resultingαi ’s will be nearly uniform. The later principal components serve as
refinements to those already included producing less constrained weight sets until finally the
Nth principal component is included resulting in an unconstrained estimator theoretically
equivalent to standard linear regression, LR.

Now an experiment will be conducted using an artificial data set to demonstrate that the
weight sets derived by PCR* become less regularized as the number of principal components
retained grows from 1 toN, whereN = 20. Let f be a Gaussian function with mean zero
and standard deviation one, i.e.,f ∼ N(0,1). Model f̂i (1 ≤ i ≤ 10) was derived as
follows:

f̂i = f + ci

f̂i+10 = f̂i

whereci ∼ N(0,0.1). This will produce ten unique models and a total of twenty models
forF . The first ten models are duplicated in the second set of ten, creating multicollinearity.
Each model will produce a slight variation off becausec has a standard deviation of 0.1.
One would expect a high degree of regularization to be in order for this data because of the
extreme multicollinearity and the fact that the models,f̂i , are uniformly distributed aboutf .

The artificial data set,A1, derived using these equations consists of 200 training examples
and 100 test examples. Figure 1 displays the collection of possible weight sets derived by
PCR* onA1. They-axis is the range of coefficient values, and thex-axis is the number of
principal components used to derive theα-weights. Each line traces a single model’s weight,
αi , as it is derived using the firstk principal components. The weights start out as small
positive values. For PCR1, αi ≈ 1/20. As more principal components are included the
weights become less regularized, e.g., whenk = 4 some of the weights become negative.
This continues ask approachesN at which point the weights take on a very broad range of
values. PCR* chose to stop atk = 1.

The corresponding error curve for this experiment is shown in figure 2. In this graph, the
y-axis is the mean absolute error, and thex-axis is the same as in figure 1. Ask increases
and approachesN, the error rate also increases. The lowest error rate occurred atk = 1, the
same value PCR* chose. This experiment was repeated 20 times with PCR* consistently
choosing highly regularized weights.
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Figure 1. Theα-weights for a single run with the artificial data set,A1. Each line corresponds toαi as it is
derived using the firstk principal components.

Figure 2. The error curve for one run with the artificial data set,A1. Each point corresponds to the error rate
associated with theαi -weights derived using the firstk principal components.
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5.2. Discovering niches

The purpose of this section is to demonstrate that PCR* chooses less regularized weights in
order to capture the unique abilities of each learned model in predictingf . Less regularized
weights are needed when the errors committed by the learned models have patterns of error
which cannot be canceled out by simple uniform weighting.

To demonstrate how PCR* handles this situation, another artificial data set was created
where each model performs particularly well for a certain range of target values. The data
set,A2, was generated in a similar fashion asA1; f ∼ N(0,1), and f̂i (1 ≤ i ≤ 10) was
derived as follows:

f̂i (x j ) =
{

f (x j )+ ci iff (x j ) ∈ [ci ′ − 0.25, ci ′ + 0.25]

(0.7+ ci, j ) f (x j )+ ci otherwise.

f̂i+10 = f̂i

whereci ∼ N(0,0.1), ci ′ ∼ UNIF(−3,3), ci, j ∼ UNIF(0,0.2). This function produces a
set of 20 models where modelf̂i performs particularly well (i.e., with a minor offset) in the
interval [ci ′ −0.25, ci ′ +0.25]. Otherwise, the model randomly guesses uniformly between
70 to 90% of the true value for a particular point,x j , plus a minor offset. A data set,A2,
of 200 training examples and 100 test examples was generated using this function.

Figure 3 displays the weights as a function of the number of principal components
retained. As with data setA1, the weights become less regularized ask increases, but
the range of values is narrower, even fork = 20 (see figure 1). The corresponding error
curve for the test data is plotted in figure 4. The error rate starts out high and decreases as
k approaches nine, and increases ask exceeds ten. In this case, PCR* choosesk = 9, the
lowest point in the error curve. The initial decrease in error stems from PCR* including the
unique contributions of each model (captured in the principal components) in the derivation
of the α-weights. The increase in error ask exceeds ten is due to the multicollinearity
contained in the model set. This experiment was repeated 20 times with PCR* consistently
choosing the appropriate amount of regularization. Note that figure 4 plots the error as
measured on unseen test data while PCR* uses an estimate of error derived from only the
training data.

5.3. Trading off bias and variance

The prediction error of a learned model can be attributed to two components: that which
is due to the “bias” of the model, and that which is due to the “variance” of the model
(for an elaborate decomposition of prediction error, see (Geman, Bienenstock, & Doursat,
1992)). Thebias of an algorithm measures how consistently the models it produces (for
various data sets of the same size) differ from the true function,f . Thevariancemeasures
how much the algorithm’s predictions fluctuate for the possible data sets. To decrease the
overall generalization error of an algorithm it is necessary to decrease the error due to bias
and/or the error due to variance.
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Figure 3. Theα-weights for a single run with the artificial data set,A2. Each line corresponds toαi as it is
derived using the firstk principal components.

Figure 4. The error curve for a single run with the artificial data set,A2. Each point corresponds to the error
rate associated with theαi -weights derived using the firstk principal components.
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Now consider the PCR* algorithm whenk = 1. The (nearly) uniform weights produced
essentially ignore the patterns of predictions inF . If the patterns inAF are useful in
predicting f , then PCR* will be consistently off in its predictions producing a biased result.
This corresponds to the points on the error curve in figure 4 where small values ofk result in
higher error. On the other hand, ifk= N and multicollinearity is present inAF , the weight
estimates may be very sensitive to minor changes in the data causing the predictions to have
high variance. This corresponds to the points in the error curve of figure 2 where larger
values ofk produce more error. PCR* attempts to find the minimum in the error curve
where the error is not being dominated by either bias or the variance.

5.4. Computational complexity

The computational complexity of PCR* is analyzed independent of the model generation
process. Given a set ofN models built fromM examples, the three largest procedures
are:

1. The calculation of the covariance matrix. This is performed once and takesO(N2M)
time.

2. The inversion of a matrix. In general, computing the inverse of a matrix is cubed in
the number of columns/rows. All matrix inversions are performed onN × N matrices
takingO(N3) time. The inversion procedure is performed a total ofN + 1 times; once
for determining theβ coefficients for the final model, and once for each partition of
L1 used in determiningk. Note that the ChooseCutoff() algorithm in Table 2 may be
optimized by computing theβ coefficients once using allN principal components. The
β coefficients derived using any subset of the components will be the same because the
principal components are uncorrelated. Therefore, matrix inversion takesO((V+1)N3)

time, whereV is typically ten.
3. The Singular Value Decomposition of a matrix. The SVD of anN × N matrix takes
O(N3) time (see Press (1992)).

Therefore, the total time complexity of PCR* isO(N2 max(M, N)).

6. Empirical evaluation of PCR*

Two experiments were run to compare PCR* with other combining strategies. The first
experiment aims to evaluate the combiners on a dozen models; half neural networks and
half adaptive regression splines. The purpose of this experiment is twofold: to evaluate some
of the combiners using stacking (described below), and to evaluate the combiners abilities
to combine models generated using different learning algorithms. The second experiment
tests the combiners’ ability to handle a large number of correlated models. The combiners
were evaluated for model sets of size 10 and 50. The parameterV in the ChooseCutoff()
algorithm was set to 10.
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Table 3. Data set descriptions.

Data set Examples Attributes Numeric Source

baseball 263 16 16 CMU

bodyfat 252 14 14 CMU

cpu 209 6 6 UCI

dementia 118 26 26 UCI-MC

hansch 111 13 0 QSAR

housing 506 12 12 UCI

imports 160 15 15 UCI

servo 167 4 0 UCI

6.1. Regression data sets

Table 3 summarizes the eight data sets used. The “Source” column lists “UCI” for data
sets taken from the UCI Machine Learning Repository (Merz & Murphy, 1996), “CMU”
for data sets taken from the Statistics Library at Carnegie Mellon University (Meyer, 1997),
“QSAR” for data sets taken from the QSAR Home Page (Kubinyi, 1997), and UCI-MC for a
proprietary data set from the UCI Medical Center. Theimportsdata set had 41 examples with
missing values which were not used due to limitations in one of the learning algorithms used.

6.2. Constituent learners

The set of learned models,F , were generated using Backpropagation networks (BP)
(Rumelhart, Hinton, & Williams, 1986) and Multivariate Adaptive Regression Splines
(MARS) (Friedman, 1991). In both experiments, preliminary BP runs were conducted to
find a network topology which gave good performance for each data set so that the com-
bining methods would have to work well to improve upon a single model.

6.3. Other combining methods

The combining methods evaluated consist of all the methods discussed in Sections 2 and 3,
as well as PCR1 and PCRN (to demonstrate PCR*s most and least regularized weight sets,
respectively). Now a more elaborate description is given of each of the methods briefly
mentioned in Section 3.

The procedures based on Widrow-Hoff learning (Kivinen & Warmuth, 1997) are gradient
descent (GD), and the exponentiated gradient procedures EG and EG+

−. These are iterative
approaches where the weights,α, are revised with multiplicative/exponentiated updates.
Each revision attempts to move the weights in a direction of lower mean squared error on
the training data.

In ridge regression, the equation for deriving the weights is similar to that of deriving the
β-coefficients in PCR* using allN of the principal components:

β = (PCTPC+ θ I M)
−1PCTy
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The major difference is that theM × M identity matrix,I M , multiplied by a constant,θ ,
is added to the matrix,PCTPC. The effect is that asθ increases, the resulting regression
coefficients generated by ordinary linear regression (LR) shrink towards zero proportion-
ally. Theα-coefficients are then derived as they are in PCR*. The end result is a more
restricted set of coefficients. An iterative approach is used to searching forθ (as discussed
in (Montgomery & Friedman, 1993)).

A “stacked” constrained regression (SCR) procedure (Breiman, 1996) has also been
included in the evaluation. The two main components of this approach are stacking and
constrained regression. Stacking (Wolpert, 1992) is simply a method of approximating the
matrix of predictions,AF . The idea is that rather than using the actual predictions of the
learned models, it is better to use an estimate because the estimate will give more informa-
tion as to how to correct for the errors in each learned model. The estimated predictions are
generated using a 10-fold cross-validation technique. It should be noted that the stacking
component can be computationally expensive because for each learned model in the final
set, 10 approximations must be generated. The other major component of SCR is con-
strained regression. Theα-weights are obtained using ordinary least square regression with
the restriction that the weights be nonnegative. A simpler version of stacked constrained
regression without the stacking component (referred to as CR) is also included to evaluate
the utility of constrained regression alone.

6.4. Experiment 1

This experiment aims to evaluate the combining strategies on a smaller number of learned
models generated by different learning algorithms. A smaller model set was used here to
make the evaluation of SCR more tractable.

Twelvemodelsweregenerated. SixweregeneratedusingMARS(version3.5) (Friedman,
1991). In the first three models, the variables were entered in an unrestricted, restricted, and
linear fashion, respectively. The other three models were generated by entering the variables
in an unrestricted fashion with each model deleting one of the three most relevant variables
as determined by diagnostic output from a preliminary run of MARS. Six BP models were
generated using three different network topologies with random weight initialization.

Thirty runs were conducted for each data set. On each trial the data was randomly
divided into 70% training data and 30% test data. Tables 4 and 5 report the means and
standard deviations of absolute error rate. The rows of the tables are divided into two
blocks. The former block consists of crude methods for obtaining highly constrained or
unconstrained weights. The latter block consists of the more advanced methods capable of
producing weight sets with varying degrees of regularization. Bold-faced entries indicate
methods which were significantly different from PCR* via two-tailed pairedt-tests with
p ≤ 0.01.

6.5. Discussion of Experiment 1

Observing the combining methods in the first block of rows reveals that more regularization
appears necessary for thebaseball, cpu, dementia andhansch data sets, and little or no
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Table 4. Means and standard deviations of absolute error rate for combining strategies on first four data sets.

Method baseball bodyfat cpu dementia

GEM 6.5E+3(3.3E+4) 19.1(27.6) 37.0(10.65) 1.318(2.8)

BEM 199.95(23) 0.645(0.14) 34.2(7.21) 0.384(0.04)

LR 1.3E+4(1.8E+4) 1.0E+5(2.5E+5) 37.0(10.48) 3.7E+2(7.8E+2)

LRC 1.6E+4(3.2E+4) 4.1E+5(1.3E+6) 36.7(10.37) 5.0E+2(1.2E+3)

GD 567.36(24) 0.644(0.14) 112.6(14.08) 0.388(0.04)

EG 194.13(21) 0.497(0.16) 35.8(9.63) 0.394(0.04)

EG+− 502.99(30) 0.664(0.13) 97.9(12.78) 0.390(0.04)

RIDGE 202.65(26) 0.545(0.14) 36.7(10.36) 0.421(0.07)

CR 194.29(21) 0.497(0.16) 35.9(9.59) 0.397(0.04)

SCR 198.52(20) 0.547(0.14) 36.6(10.15) 0.379(0.04)

PCR* 196.29(25) 0.454(0.15) 35.6(8.86) 0.405(0.06)

Table 5. Means and standard deviations of absolute error rate for combining strategies on last four data sets.

Method hansch housing imports servo

GEM 6.229(12.8) 6.41(10.2) 11292(5.3E+3) 0.364(0.05)

BEM 0.238(0.02) 2.56(0.12) 5847(444) 0.482(0.07)

LR 1.9E+5(6.7E+5) 3.8E+3(1.0E+4) 5130(5.6E+3) 0.363(0.05)

LRC 6.3E+5(1.5E+6) 2.2E+3(5.4E+3) 20930(3.4E+4) 0.363(0.05)

GD 0.238(0.02) 2.56(0.12) 11583(714) 0.382(0.05)

EG 0.223(0.02) 2.48(0.18) 1903(299) 0.370(0.05)

EG+− 0.236(0.02) 2.48(0.15) 11572(712) 0.373(0.05)

RIDGE 0.237(0.04) 2.50(0.19) 1987(296) 0.362(0.05)

CR 0.224(0.03) 2.48(0.18) 1904(300) 0.372(0.05)

SCR 0.231(0.03) 2.50(0.17) 1896(314) 0.377(0.05)

PCR* 0.231(0.03) 2.48(0.20) 1969(289) 0.362(0.05)

regularization appears necessary for theservo data set. No method in the first block does
particularly well for thebodyfat or housing data sets indicating that a moderate amount
of regularization is required there.

Examining the more advanced methods for handling multicollinearity in the second
block of rows reveals that PCR*, EG, and CR have the best overall performances. PCR*
is statistically indistinguishable from the best method in all but thehansch data set. In
this case EG and CR have a 3.5% relative reduction in error over PCR*. EG and CR are
statistically indistinguishable from the leading method in all but thebodyfat data set where
PCR* has a 9.6% relative reduction in error over EG and CR.

GD and EG+− do better than the methods in the first block, but have the most difficulty
finding a good weight set. These methods occasionally converge to poor local minima in
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Table 6. Average rankings for CR, EG, and PCR* for each data set.

Data set CR EG PCR*

baseball 6.93 6.4 7.17

bodyfat 5.73 5.8 3.13

cpu 9.23 8.27 7.767

dementia 11.27 9.97 9.13

hansch 6.13 5.83 8.37

housing 8.48 7.92 7.52

imports 6.867 6.93 7.8

servo 8.267 8.03 5.73

spite of setting the initial weights and the learning rate as Kivinen & Warmuth (1997)
recommend.

Another interesting result is that constrained regression (CR) tends to outperform con-
strained regression with stacking (SCR) with slight losses for only two data sets. This raises
the issue of whether stacking is a beneficial component of the SCR algorithm for real data
sets. The extra work does not appear to improve results.

Average rankings were also calculated for each of the methods. For a given run, each
method was assigned a rank according to the number of methods with lower error rates. The
ranks were then averaged over the 30 runs for each data set. Table 6 reports the results for
the three best combining strategies, i.e., PCR*, CR and EG. PCR* consistently performed
well with respect to ranking scores too. The closest competitors were CR and EG, each
having a better average ranking than PCR* on three data sets.

Figure 5 shows the relative error reduction made by PCR* as compared to the best
individual model for each data set. PCR* improves performance by as much as 10.5%. The
largest loss is a 4.3% increase in error. Overall, an improvement occurred in five data sets
with an average reduction of 2.5%.

6.6. Experiment 2

The second experiment tests the combiners to see how well they perform with a large
number of correlated models. The combiners were evaluated for model sets of size 10 and
50. There were 20 trials run for each of the data sets. On each trial the data was randomly
divided into 70% training data and 30% test data.

In this experiment, the collection of networks built differed only in their initial weights,
and not their topology. There was no extreme effort to produce networks with more decor-
related errors. Even with such networks, the issue of extreme multicollinearity would
still exist becauseE[ f̂i (x)]= E[ f̂ j (x)] for all i and j . As more models are included the
linear dependence amongst them goes up showing how well the multicollinearity problem
is handled. Linear dependence is verified by observing the eigenvalues of the principal
components and values in the covariance matrix of the models inF .
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Figure 5. Relative change in error for PCR* with respect to the best individual model for each data set.

Table 7 reports the results for the three most representative data sets (in terms of distin-
guishing the combiners), i.e.,bodyfat, cpu, andhousing. The means and standard deviations
for absolute error are given for each of the methods on the data sets. Two new methods
were included in Table 7, PCR1 and PCRN , representing PCR* stopping at the first and
last component, respectively. They will serve to show PCR*s performance relative to using
highly constrained and unconstrained weight sets. Each row is a particular method and
each column is the size ofF for a given data set. Bold-faced entries indicate methods which
were significantly different from PCR* via a two-tailed pairedt-test with p ≤ 0.01.

6.7. Discussion of Experiment 2

In Section 6.4, PCR* performed most similarly to EG and CR. The results in Table 7 further
distinguish PCR* from EG and CR. In thebodyfatdata set, EG and CR converge on weight
sets which are near uniform resulting in poor performance relative to PCR*.

PCR* is the only approach which is among the leaders for all three data sets. For the
bodyfat andhousing data sets the weights produced by BEM, PCR1, GD, and EG+−
tended to be too constrained, while the weights for LR tended to be too unconstrained for
the larger collection of models. The less constrained weights of GEM, LR, RIDGE, and
PCRN severely harmed performance in thecpudomain where uniform weighting performed
better.

The biggest demonstration of PCR*’s robustness is its ability to gravitate towards the
more constrained weights produced by the earlier principal components when appropriate
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Table 7. Results with many learned models.

Data bodyfat cpu housing

N 10 50 10 50 10 50

BEM 1.03(0.16) 1.04(.16) 38.6(7.9) 38.62(7.9) 2.79(.19) 2.77(.18)

GEM 1.02(0.17) 0.86(.26) 46.6(15) 227(197) 2.72(0.20) 2.57(0.28)

LR 1.02(0.16) 3.09(6.62) 44.9(13.8) 238(189) 2.72(0.20) 6.44(5.6)

LRC 1.02(0.17) 7.51(25.22) 44.8(13.7) 255(177) 2.72(0.21) 8.88(17.5)

RDG 1.02(0.16) 0.826(.27) 44.8(13.7) 191(133) 2.72(0.21) 2.55(0.26)

CR 0.99(0.16) 1.03(.17) 40.0(10.0) 38.36(7.9) 2.70(0.21) 2.66(0.23)

GD 1.03(0.16) 1.04(.16) 38.9(7.95) 38.8(7.99) 2.79(.20) 2.77(.18)

EG 1.04(0.17) 1.03(.17) 38.4(8.19) 38.0(7.75) 2.75(0.20) 2.64(0.22)

EG+− 1.03(0.17) 1.07(.16) 38.4(8.08) 38.0(7.86) 2.77(0.20) 2.75(.17)

PCR1 1.04(0.15) 1.05(.15) 39.0(7.76) 39.0(7.80) 2.78(0.21) 2.76(.19)

PCRN 1.02(0.17) 0.848(.27) 44.8(13.7) 250(166) 2.72(0.21) 2.57(0.29)

PCR* 0.99(0.16) 0.786(.21) 40.3(10.0) 40.8(10.1) 2.70(0.21) 2.56(0.26)

(i.e., in thecpu data set). Similarly, it uses the less constrained principal components closer
to PCRn when it is preferable as in thebodyfat andhousing domains.

7. Related work

Several other combining strategies exist in addition to the combining strategies described
in Sections 2, 3, and 6.3. The next three sections discuss: two more general approaches,
some data resampling techniques, and some methods for assigning weights as a function of
the example being predicted.

7.1. Other general approaches

Hashem & Schmeiser (1995) have developed a combining scheme similar to GEM as well
as a less constrained version which does not require the weights to sum to one. Like GEM,
this method is susceptible to the multicollinearity problem.

Opitz & Shavlik (1996) attempt to assign each model a weight according to an estimate
of its accuracy, i.e.,

αi = (1− Ei )∑N
j=1(1− Ej )

whereEi is the estimate of modeli ’s accuracy based on performance on a validation set.
Intuitively, model i gets more weight as its estimated performance increases relative to
the estimated cumulative performance of the other models. The weights derived using this
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approach are less susceptible to the multicollinearity problem, but less robust because the
intercorrelations of the models is not considered.

A technique for pruning weights in a neural network is given in (Levin, Leen, & Moody,
1994). This method is also applicable to theβ coefficients produced in PCR*. A threshold,
T , is set for pruning principal components as a function of training error. Any principal
component with a smallβ weight and a small eigenvalue is pruned, i.e.,β2

i λi < T . PCR*
is similar in that it retains principal components as a function of training error, however, the
pruning technique above focuses more on discarding components which have a negligible
impact on the final equation. The criterion in PCR* prunes the later principal components
which have small eigenvalues but have an unnecessarily largeβ weight.

7.2. Resampling strategies

Resampling strategies are another approach to generating and combining learned models.
In these approaches, the model generation phase is more tightly coupled with the model
combination stage. The goal is to generate a set of models which are likely to make un-
correlated errors (or to have higher variance) thus increasing the potential payoffs in the
combining stage. Each model is generated using the same algorithm, but different training
data. The data for a particular model is obtained by sampling from the original training
examples according to a probability distribution. The probability distribution is defined by
the particular approach, Bagging or Boosting.

Bagging (Breiman, 1994) is a method for exploiting the variance of a learning algorithm
by applying it to various version of the data set, and averaging them (uniformly) for an overall
reduction in variance, or prediction error. Variations on the training data are obtained by
sampling from the original training data with replacement. The probability of an example
being drawn is uniform, and the number of examples drawn is the same as the size of the
original training set. The underlying theory of this approach indicates that the models should
be weighted uniformly. Unlike PCR*, bagging is limited to a single learning algorithm.

Another resampling method has its roots in what is known as Boosting, initially devel-
oped by Schapire (1990). Boosting is based on the idea that a set of moderately inaccurate
rules-of-thumb (i.e., learned models) can be generated and combined to form a very ac-
curate prediction rule. The initial development of this research was purely theoretical, but
subsequent refinements (Freund & Schapire, 1995, 1996) have produced practical imple-
mentations of the boosting approach. This technique assigns a weight to each example
in the training data and adjusts it after learning each model. Initially, the examples are
weighted uniformly. For learning subsequent models, examples are reweighted as follows:
“easy” examples which are predicted with low error by previously learned hypotheses (i.e.,
learned models) get lower weight, and “hard” examples that are frequently predicted with
high error are given higher weight. The data sets for each learned model are resampled with
replacement according to the weight distribution of the examples.4

A common combining strategy for boosting is described in (Freund & Schapire, 1995)
AdaBoost.M1 algorithm. Thei th model’s weight is a function of its error,εi , i.e.,

αi = log
(1− εi )

εi
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In this scheme, learned models with less error (on the distribution of examples they see) tend
to get higher weights. In boosting (and bagging), more emphasis has been placed on model
generation than model combination. It’s possible that a more elaborate combining scheme
like that of PCR* may be a more effective method of combining the models generated.

Two recent experimental evaluations of Boosting and Bagging are given in (Freund &
Schapire, 1996; Quinlan, 1996). Both approaches have proven to be quite effective, but are
currently limited to a single learning algorithm. Kong & Dietterich (1995) point out that
combining heterogeneous learning algorithms can reduce bias as well as variance if the bias
errors of the various algorithms are different.

Krogh & Vedelsby (1995) have developed a method known as query by committee
(Seung, Opper, & Sompolinsky, 1992; Freund et al., 1993). In this approach, as a collection
of neural networks is trained simultaneously, patterns which have large ambiguity (i.e., the
ensemble’s predictions tend to vary considerably) are more likely to be included in the next
round of training.

7.3. Non-constant weighting functions

Some combining approaches weigh each learned model as a function of the example being
predicted. The most prevalent method in the literature for dynamically deciding how to
weight a collection of regressors (or classifiers) is the “mixture of experts” approach (Jacobs
et al., 1991) which consists of several different “expert” learned models (i.e., multilayer
perceptrons) plus a gating network that decides which of the experts should be used for each
case. Each expert reports a target attribute probability distribution for a given example. The
gating network selects one or a few experts which appear to have the most appropriate target
distribution for the example. During training, the weight changes are localized to the chosen
experts (and the gating network). Experts which are more accurate for the example5 are
given more responsibility for that example and experts which are inaccurate for the example
are given less responsibility. The weights of other experts which specialize in quite different
cases are unmodified. The experts become localized because their weights are decoupled
from the weights of other experts, and they will end up specializing on a small portion of
the input space.

Jordan and Jacobs (1994) expanded on this approach allowing the learned models/experts
to be generalized linear models. The experts are leaves in a tree-structured architecture whose
internal nodes are gating functions. These gating functions make soft splits allowing data
to lie simultaneously in multiple regions. Currently, the weights generated by PCR* do
not change as a function of the example being predicted. A comparison between the two
approaches is needed.

Tresp & Taniguchi (1995) derived a collection of non-constant weighting functions which
can be used to combine regressors or classifiers. The proposed methods weigh a learned
model according to its reliability in the region of the given example. Reliability is defined
in terms of either the model’s accuracy in the region of the given example, or the amount
of variability of the model’s predictions in that region. All of the approaches require that
the weights be positive and sum to one. The methods proposed have not been evaluated
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empirically, but may prove useful in extending methods like PCR* to allow the weights of
the learned models to change as a function of the example being classified.

8. Limitations and future work

PCR* is limited to just combining regression estimates with linear weights. One direction
currently being explored is the extension of PCR* to the classification task. This can be
accomplished by having one PCR*-like model for each possible class. Preliminary results
indicate this is an effective method of combining classifiers.

Another direction of future work is to expand PCR*s abilities allowing for non-constant
weighting. It is not likely that each model performs consistently throughout the space of
possible examples. Allowing a learned model’s weight to change with respect to an example
would further extend PCR*s ability to find the strengths and weaknesses of each model.

9. Summary and conclusion

This investigation suggests that the principal components of a set of learned models can
be useful when combining the models to form an improved estimator. It was demonstrated
that the principal components provide a continuum of weight sets ranging from highly
regularized to unconstrained. An algorithm, PCR*, was developed which attempts to au-
tomatically select the subset of these components which provides the lowest prediction
error. Experiments on a collection of domains demonstrated PCR*s ability to identify the
unique contributions of each learned model while robustly handling the inherent redundancy
amongst the models.
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Notes

1. Optimal here refers to weights which minimize mean square error for the training data.
2. Note that the constraint,

∑N
i=1 αi = 1, for GEM is a form ofregularization(Leblanc & Tibshirani, 1993).

The purpose of regularizing the weights is to provide an estimate which is less biased by the training sample.
Thus, one would not expect GEM and LR to produce identical weights.

3. Least squares regression using allN principal components (denoted PCRN ) is equivalent to standard linear
regression on the original members ofF .

4. Note that this resampling technique can be replaced by a reweighting technique when the learning algorithm
is capable of directly accepting aweightedset of examples.

5. Here, “accurate” means to have less error than the weighted average of the errors of all the experts (using the
outputs of the gating network to decide how to weight each expert’s error). A less accurate prediction for an
example will have more error than the weighted average.
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