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§ O. Introduction

In this paper we will show how all existing optimization procedures (and a

number of new ones) for discounted Markov decision processes may be derived

from one point of view.

So we consider a finite-state discrete time Markov system which is con­

trolled by a decision maker. After each transition the system may be iden­

tifies as being in one of N possible states. Let S := {I.2, .•• ,N} be the

set of states. Transitions occure at discrete points in time n = 0,1,2, ..•.

After observing state i at time n the decisionmaker selects an action k from

a nonempty finite set K(i). Now p~.(~ 0) is the probability of a transition
~J

to state j E S if the system's actual state is i E S and decision k E K(i)

has been selected. An expected reward rk(i) is earned immediately while

future income is discounted by a constant factor 8,0 < 8 < I.

The problem is to choose a policy which maximizes the total expected dis­

counted reward over an infinite time horizon.

In the literature a great number of optimization procedures for solving this

kind of problems has been presented. Each procedure requires its own proof

of convergence and possesses its own properties. We divide the proposed pro­

cedures into two classes:

policy improvement procedures;

policy improvement-value determination procedures.

In procedures of the second class in each iteration step some extra work is

done in order to estimate or compute the values for the current policy ([3J,

[4J, [5J, [6J, [7J, [8J). Procedures of the first class have been presented

in [IJ, [2J, [3J, [7J and [IIJ.



- 2 -

In § 1 we will use (as in [12J) the concept of stopping times for the gener­

ation of policy improvement procedures.

In § 2 we will show that any policy improvement procedure may be used to

generate a whole set of policy improvement-value determination procedures

(including a Howard like one).

In § 3 we will present upper and lower bounds for the values corresponding

to the policies which appear during the iteration process.

This has been done already for specific procedures [IJ, [3J, [7J, [9J.

We will present a general approach.

Finally some extensions to more general problems will be indicated.

§ 1. Policy improvement procedures

For the Markov decision process as described in the introduction the set of

11 d h '1' . Sn+ 1 SOO S S S 'h fa owe pat s unt~ t~me n ~s . So := x x ••• ~s t e set 0

all allowed paths.

Defini tion 1. 1 •
00

a) The function T on S with nonnegative integer values is called a stopping

time, if and only if its inverse satisfies T+(n) = B x SOO with B c Sn+l;

00

b) a nonempty subset A of U Sk is called a go ahead set, if and only if
k=O 00

(a,S) E A ~ a E A for all (a,S) E U Sk.
k=O

o
(S only consists of the null-tuple which concatenates to a with any a: our

definition implies that any go ahead set contains this null-tuple.)

Notations. - A
n

n
:= U

k=O
(0 S; n S; 00);

- the i-th component of a E Sn (n ~ 1) is denoted by [aJ. 1;,
~-

- if a E Sn (n ~ 0) k ~s defined to be n;a

- hence a E Sn (n .~ 1) may be written as (CaJO,CaJ 1,···,CaJk -1);
a

- hence k
y

= k
a

+ k
S

if y

- A(i) ;= {a E A I [aJ O =

= (a.,S);

~ if k ~ I} •
a
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There is a one to one correspondence between stopping times and go ahead

sets:

A = U
n=O

{a E Sn I V 00 T(a,S) ~ n} ,
SES

00

a E A, ~ E S, (a,~) t A ~ T(a,~,S) = k for all S E Sa

Definition 1.2. A stopping time T (or its go ahead set A) is said to be
00

nonzer~ if and only if T(a) ~ 1 for all a E S (or equivalently SeA).

The only nonzero stopping time which is an entry time (memoryless) is T = 00

(A = A ).
00

Examples of nonzero stopping times

with E a subset of S defined by:

(I ~ n ~ 00), (T = n);

i-I
:= sO u {(i) u (i,a) I a E U ~(j)}

j=1

1• 1. A
n

1. 2. ~

1. 3. AR

1.4. ~

defined by ~(i)

defined by A (i) :=
R

U
n=O

{a E Sn I [aJ. = i, j = 0,1,2, ••. ,n-l,
J

ifn~l}

~ := U
n=2

{a E Sn I [aJ. E E, j
J

°= 1,2, ... ,n-l} u SUS

(E =

Defini don 1.3.

kS an elementU
k=1

- A decision ruZe D is a function ascribing to each a E

D(a) of K([aJ k -I);
a

- the decision rule D ~s said to be memoryZess (stationiary Markov) if

00

D(a) = D([aJ k -1) of each a E U· Sk;
a k=1

- the set of decision rules is denoted by V; the set of memoryless decision

rules by M.
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Let a decision rule D E V be given. This decision rule determines a stochastic

process {x I n = O,I, ..• } on S.
n

DAs in [12J we now introduce the operator L where T and D are given.
T

Definition 1.4. D ( V, T is a stopping time, A its corresponding go ahead set.

The operator L~ (or L~) on lR
N

is defined by:

k D(xO""'xk ) T
S r (x ) + S v (x )

k T
x = i)a

(where ED denotes the expectation given that decision rule D is used), or

equivalently:

(L~V)(i) = L
etEA(i)

L
etEA(i)
Q,ES

(et,Q,)iA(i)

k
FD(et,Q,!i)S etv(Q,) •

WD (etli) 1S the probability of path et given that Xo = i and decision rule D

is used.

Lemma I. I. Let T be an arbitrary stopping time. For any v E lRN
, there

exists a decision rule DO such that

DO D
Lv;::: L v

T T

componentwise for all D E V. For a proof see [12J.

DO
Notation. The vector L v will be denoted by:

T

D D
max L v, U v, max LAv, UAv .

D T T D

The operators U serve for some specific choices of T to construct opti-
T

mization procedures, which aim actually at finding U~O (sometimes denoted

by UooO, ° denotes the null-vector in lRN) . The i-th component of UooO gives

the total expected discounted reward over an infinite time horizon when the

initial state is i and an optimal decision rule is used.
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From a computational point of view it is desirable to maximize only over

the memoryless decision rules when V v is computed. This is allowed when
T

the stopping time ~s transition memoryless (see [12]):

Definition 1.5. A stopping time T (and its corresponding go ahead set A) is

said to be transition memoryZess, if and only if there exists a subset T
I

2
of S and a subset So of S such that

([a] I,[a]) E TI .n- n

NLemma 1.2. If T 1S transition memoryless, then for all v E lR

V V
T

= max LDv
DEM T

For a proof see [12J.

Theorem 1. I •

Da) The operators Land U are monotone, i.e.:
T T

if v ~ w (componentwise) then:

V w •
T

D
b) The operators L and V are strictly contracting (with respect to the

T T

supnorm in lR
H

: II v II"" = max Iv(i) I) if and only if T is nonzero. the cor­
i

responding contraction radii pD and v are equal to:
T T

PD : = max lED (S T IXo = i), V
T • S T

1E

D:= max p .
D T

c) If D is
D

LA 0.
00

memoryless then for any nonzero T the fixed point of L
D

equals
T

d) For all nonzero T the operators V
T

possess the fixed point VA ° (= V""O).
00

The stopping times used in the examples of this section are all nonzero and

transition memoryless (hence: So = 0).



- 6 -

Lemma 1.3. Let T be transition memoryless; suppose rk(i) ~ a for all ~ E S

and all k E K(i) then the sequence

T n
v := U v = (U ) a

n T n-I T
(n = 1,2, ••• ) ,

1S nondecreasing and converges to uooa, ~.e.

T T
v

n
_

1
:s: v

n

T
lim v = U an 00
n-+<lO

T
Here Dn is the memoryless decision rule found by applying UT on vn_

I
'

The proof follows in a direct way from Theorem 1.1 and lemma 1.2.

Remark. The restriction rk(i) ~ a which is permitted without loss of gener­

ality, is made in order to enable us to start each algorithm with the same
T

starting vector va = a. Without this restriction it is sufficient for the

preservation of the monotonicity of the sequence v:' if v~ satisfies:

T T
UTva

~ va

Examples. 1.1. vA
sn ( I :s: n :s: 00)

n

I. 2.
v~

(3

__ QI-n .
fJ ....:..-.i;. , w~th p :=

I-Sp
m~n

i,D(i)

D(i)
p ..
~~

§ 2. Policy improvement-value determination procedures

Now, for each stopping time T which is nonzero and transition memoryless,

we introduce a class of value oriented extensions of the operator U .
T
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Defini don 2. I. For T transition memoryless, A t: IN, V E: lR
N

we define the

operator

where Dv is the memoryless strategy which is found by applying UT on v.

Now U(A) is neither necessarily strictly contracting nor necessarily mono­
T

tone.

Theorem 2.1. Suppose rk(i) 2 a for all i E: Sand k E: K(i), let T be transi­

tion memoryless and A E IN then the sequence

AT
:= 0; v

n

~s nondecreasing and converges to UA O. Furthermore
00

AT
:5 v

n-I
AT

:5 v
n

ATwhere Dn is the memoryless strategy found by applying UT on vn-
1

•

Proof. S ~nce rk(~) 2 a ( h k h d f . 1) h• • see t e remar at teen 0 sect10n we ave

D
= U a = L 10 2 a

T T

D
1so because of the monotony of L

T

D A
= (L I) a

D A-I
2 (L 1)

T
~ ... ~

D
L 10 = U a 2 vT

TTl

further in an inductive way using the fact that U and
T

Tcontractions and the fact that v converges monotonously
n

The proof proceeds
DL are monotone
T

from below to UA O.
00

on v.

D
estimate for LAva than UTv, where Dv

00

Assertion. Actually L(A)v is a better
T

is the strategy that is found by applying U
T
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For T = ] this assertion 1S illustrated in [7J. In general the statement

follows from the following considerations:

Let T be transition memoryless, let v and w be given such that w ~ v and
D

w := U v = L vv. Now from the previous section we know that
T T

D
L Vo =

A
00

D n
lim (L v) v

T
n-+oo

r n-]

= lim 1.w + L
n+oo k=]

D
w ~ v and the contraction property of L v imply

T

Since

D k D k
o s (L v) w - (L v) v s

T T

D k
v

(p T ) IIw-vll
00

w +
A

L
k=I

the statement will be clear.

Remark. If T is nonzero and A _ 00 , then the algorithm of theorem 2.1 is

clearly of the policy iteration type: in each step the values of the current

policy are computed exactly. The choice of T only influences the way of

looking for possible improvement: If T = 1, the methode equals Howard's

policy iteration algorithm [4J, [IIJ. If T is replaced by the stopping time

induced by the go ahead set ~, we get Hasting's modified policy iteration

algorithm [8J. A great number of other choices is possible, e.g. T as in­

duced by A
R

.

Now, regardless of the restriction rk(i) ~ 0, each iteration step brings a
OOT •

strict improvement in the values v , until the optimum is reached, wh1ch
n

occurs after a finite number of steps (since only finitely many memoryless

strategies are available).

§ 3. Upper and Lower bounds

If the theory developed in the previous sections is used for generating

successive approximation algorithms it will be necessary to construct upper­
D

and lower bounds for the optimal return UooO and for the return of LoonO of

the strategy D occurring in the n-th iteration step.
n
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then decision rule DO is not optimal if
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Furthermore upper and lower bounds enable us to incorporate a test for the

suboptimality of policies see for instance [13J, [14J, [15J. Such a test

may be based on the following idea:

Lemma 3. I. Le t the upper bound

U 0 be given i.e. x sUO s x
00 - 00

DO _
L x < U x (where v < w means v(i) s wei) and for at least one component:

T T-

v(i) < w(i)).

Proof. U 0 = U (U 0) ~
00 1 00

L is used.
1

Do _ D
U x > L x ~ L O(U 0) where the monotony of U

T- T TooT
and

Let us now return to the upper and lower bounds.

Lemma 3.2. For T transition memoryless. The sequence

V
-T T ~T_ (VT(~)
vn . - vn + I - v max n'"

TiES
v

T
I(i)) • en-

is the contraction radiusHere e ERN and e(i) = I, i E {1,2, •.. ,N} and v
T

-T
yields a sequence of nonincreasing upper bounds for U 0; and lim v

00 n
n-+oo

of U .
T

= U O.
00

Proof. U 0
00

However

{LD*)k T= lim, T vn_ 1 where D
k-+oo

is an optimal decision rule.

T
V +
n-I

+ ••• +
T

V -n-I

t-I { D*\k {LD*
T (' ) \T L v

T
I(i)s V

n
_

1
+ ,P T ) max - vn_ 1 ~ } . e

k=O iES ' T
n-

t-I
(v )kT L (v

T
(i) v:_I(i))s v + max . en-I

k=O T iES n

taking the limit for JI. to infinity g~ves the assertion.
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Lemma 3.2. For T transition memoryless, the sequence {VT} defined as follows:
-n

T
V
-n

D
T T) n

max{ v n + _..;.T~D-
n

I-T)
T

• min (vT(i) - vT ](i» • e, vT }n n- -n-IiES

D
nwhere 11

T

bounds for

:= min{E (STlx = i)}, yields a nondecreasing sequence of lower
. S D °~E n

D
L nO and thus U 0. Furthermore

00 00

lim v
l

= U °-n 00

11+00

Lemma 3.3. For T transition memoryless, A E:IN, the sequence {~?T} defined
n

as follows:

AT= vo
v~T(i» • e

-AT . -AT AT
v = m~n{v I' v + ~-- maxn n- n-] - \l

T iES

(U}-l (i)
T n-]

V~~l(i». e}, n> 1

yields a nonincreasing sequence of upper bounds for U 0, with
00

-AT
lim v U °n 00

n-+oo

Lemma 3.4. For T transition memoryless, A E :IN, the sequence {vAL} defined
-n

as follows:

+ __I-=-_ min (U
T
V~T (i)

D] iES
I - T)

T

• e

AT
v
-n

AT vAT +.- max{yn_ 1, n-}
1--=-- min

Dn iES
I-T)

T

(U}T (i)
Tn-I V~~l (i» • e}

D
yields a nondecreasing sequence of lower bounds for LoonO and thus for UooO,

again we have

AT
lim v = U °-n 00

n+oo

The proofs of the last three lemma's proceed in a similar way as the proof

of lemma 3. I. For special stopping times see also [3J.



Examples. 3.1. For T - k, v
1

- 1 I -

k Dn k
= S . ~ = B independent of D .

, 1 n

3.2. If T corresponds with ~

pendent of D .
n

D
n

v = (3 and ~
T T

aN ., d= ~ , aga1n 1n e-

3.3. If T corresponds with AR v = max B
T • k

1,

k
1 - p ..

11
k

1 - Bp ..
11

D

TlT
n

:= m1n B
iES

See also [3J.

§ 4. Extensions and remarks.

1 -

1 -

D (i)
n

p ..11
D (i) .

n
Bp ..

11.

The ideas which have been presented in the previous sections may also be

used in the case of a semi-Markov decision process (e.g. [5J, [6J).

In this paper we only considered pure stopping times. We avoided the use of

mixed stopping times in order to maintain a better sight of the basic

ideas. However, the introduction of mixing for stopping times produces many

more algorithms and even two already published ones: viz. the policy im­

provement algorithm of Reetz [2J and a linear programming algorithm (e.g.

[5J, [6J) with a random choice of the new basic variable from the relevant

ones.

In section 2 we introduced policy improvement-value determination procedures

characterized by a stopping time T and a natural number A. For the proofs it

is not essential that A is fixed for all random steps. The value of A may

depend on the number of the iteration and even on specific aspects of the

actual iteration process, see also [3J.

For numerical experience with a number of the methods treated in this paper

we refer to [7J.
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