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A technique is described which permits distributed 
resources to be shared (services to be offered) in a 
resilient manner. The essence of the technique is to a 
priori declare one of the server hosts primary and the 
others backups. Any of the servers can perform the 
primary duties. Thus the role of primary can migrate 
around the set of servers. The concept of n-host resil- 
iency is introduced and the error detection and recov- 
ery schemes for two-host resiliency are presented. The 
single primary, multiple backup technique for resource 
sharing is shown to have minimal delay. In the general 
case, this is superior to multiple primary techniques. 

Introduction 

The development of large packet switched networks 
servicing wide geographic areas has generated a great 
deal of interest in distributed resource sharing. A 
communications network is a necessary but, by itself, 
is not a sufficient basis to make automated distributed 
resource sharing facilities generally available. High- 
level protocols must be provided to allow cooperation 
in other than an ad hoc manner and techniques must be 
developed to provide resilient service to the user. 
This paper discusses one means by which resilient ser- 
vice may be provided to the user for a wide variety of 
situations, e.g., synchronization, data base access, 
and load sharing. 

For our purposes we will consider a distributed 
resource sharing environment which requires the sharing 
of resources dispersed over a large number of possibly 
heterogeneous host computers. Large packet switched 
computer networks llke the ARPANET, CYCLADES, and EIN 
represent examples of this environment. Since the 
hosts in this environment may be separated by very 
large distances, there is a significant and unavoidable 
message delay between hosts. Hence, a major considera- 
tion when choosing a resource sharing strategy is to 
reduce, as much as possible, the number of message 
delays required to effect the sharing of resources. 

In these networks, some of the resources to be 
shared will be identical (e.g. duplicate copies of data 
bases may be maintained for reliability). Others will 
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be completely dissimilar (e.g., weather data may be 
stored on the ARPANET datacomputer and processed on the 
ILLIAC IV). Between these two extremes lie the re- 
source sharing concerns of interest to most users. 

The user expects a tolerable, as well as tolerant, 
resource sharing environment. The user we are inter- 
ested in wants a maximum degree of automation and 
transparency in his resource sharing. He wishes the 
resource sharing to be resilient to host failures and, 
when catastroplc failures occur, he would llke a "best 
effort" recovery to be automatically initiated by the 
resource sharing system. 

Resiliency. The concept of resiliency applies to 
the use of a resource as a service. A resilient ser- 
vice has four major attributes. 

I. It is able to detect and recover from a given 
maximum number of errors. 

2. It is reliable to a sufficiently high degree 
that a user of the resilient service can 
ignore the possibility of service failure. 

3. If the service provides perfect detection and 
recovery from n errors, the (n+l)st error is 
not catastrophic. A "best effort" is made to 
continue service. 

4. The abuse of the service by a single user 
should have negligible effect on other users 
of the service. 

What we are trying to describe here are concepts of ex- 
treme reliability and serviceability. The user of a 
resilient service should not have to consider the fail- 
ure of the service in his design. He should be able to 
assume that the system will make a "best-effort" to 
continue service in the event that perfect service can- 
not be supported; and that the system will not fall 
apart when he does something he is not supposed to. 

Resiliency Criteria. In this paper we discuss a 
technique for providing resilient services. This tech- 
nique is resilient to communication system and host 
failures. Host failures include not only complete 
failure (e.g., a major hardware failure) but also par- 
tial failure (e.g., a malfunctioning host operating 
system). Resiliency cannot be perfect in the large 
network environments we are considering. It is, for 
instance, possible but not likely that all 50 of the 
hosts on a large computer network will simultaneously 
fail and all services will be disrupted. What is of 
interest is the establishment of criteria for accept- 
able resiliency in this environment. We introduce the 
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concept of n-host resiliency. In order for service to 
be disrupted, n hosts must simultaneously fail in a 
critical phase of service. We point out that it may 
be possible for n or more hosts to fail outside of such 
a critical phase without disrupting service. The re- 
siliency techniques discussed in this paper assume a 
two-host resiliency criterion. Expansion of the tech- 
niques to treat three-host or greater resiliency is 
straightforward. A two-host resiliency criterion has 
been used because it appears sufficient to provide an 
adequate level of service in most situations and to 
illustrate the principle. 

Examples. Examples of the kind of resilient ser- 
vices we envision are ntework synchronization primi- 
tives or a network virtual file system. The techniques 
discussed below can support synchronization primitives 
like P and V, lock and unlock, and block and wakeup in 
a resilient fashion on a network. Network virtual file 
systems which provide directory services and data 
access services can be provided in an automated and re- 
silient fashion. The network virtual file system would 
appear to be a single file system to the user, but 
would in fact be dispersed over a large number of pos- 
sibly heterogeneous hosts on a packet switched network. 

Related Work in Distributed Systems 

There are two main problems that are addressed by 
the technique we are presenting here: synchronization 
of the users of the service and the resiliency of the 
service. Other researchers have proposed techniques to 
achieve the synchronization but haven't treated the re- 
siliency issue carefully. 

Perhaps the first work in this area was by Johnson 
[1974]. Johnson proposed that updates to a data base 
be tlmestamped by the host which generates the update. 
The updates are then broadcast to the copies of the 
data base. The data base managers then apply the up- 
dates in chronological order, as determined by time- 
stamps. (Ties are broken by an arbitrary ordering of 
the hosts,) Johnson's model introduces the problem 
that during some time interval the copies may be mutu- 
ally inconsistent due to message delays, etc. This 
system was primarily intended for an accounting file, 
in which updates are restricted to assignments of 
values to single fields. From the resiliency stand- 
point, it is difficult to ensure that the n-host crite- 
rion has been met and that all copies of the data base 
will eventually receive all of the updates. 

Bunch [1975] attempted to avoid some of the diffi- 
culties of Johnson's scheme by introducing a central 
name (sequence number) generator. This approach has 
the additional problem of introducing a potential 
bottleneck. Grapa [1975] was able to avoid this prob- 
lem in his "reservation center" model. Grapa's model 
is somewhat more general than either the Bunch or 
Johnson model and in a sense includes them as limiting 
cases. 

Despite the fact none of these models treat the 
resiliency issues (they were never really intended to), 
there are also several problems that might be encoun- 
tered in more general data base environments. We have 
already mentioned the problem that for some time inter- 
val the data base may be inconsisten t . This may cause 
problems for some applications. Also, an update opera- 
tion on one field may use values of other fields to 
compute the new value (in an irreversible manner). In 
this case, the Johnson and Grapa models must include a 
time delay before applying the updates to guarantee 
that there are no delayed updates with earlier time- 
stamps than those already received. Similarly, it is 
difficult for these models to provide a quick response 

time for updates that modify multiple fields. The 
technique we describe here avoids these problems. It 
provides the minimum response time allowed by the n- 
host resiliency criterion but requires a somewhat more 
complex mechanism. 

A Technique for a Resilient Service 

Consider synchronization on a network. The pacing 
item in a network synchronization operation is network 
message delay time. Network message delay is on the 
order of i00 milliseconds. The execution of a process 
synchronization primitive in the typical single site 
environment is on the order of .i to 1 milliseconds. 
The processing incurred at the site is expected to be 
the same for both network and local operation. As a 
result, an appropriate measure of the efficiency of a 
network scheme is the number of message delays incurred. 

As we have indicated above, what we are interested 
in is a method by which we can provide resilient sup- 
port for some distributed resource sharing activity. 
For purposes of illustration, let us assume we have 
some sort of data base (in the general sense) which is 
being read and modified by a group of network users. 
Let us consider, at least for purposes of description, 
that there is a set of server hosts which do nothing 
but perform the updates and mediate the synchronization 
of these updates generated by user processes. (This 
may appear to be somewhat excessive for the practical 
case; but if one is really concerned about having a 
reliable service, it is unwise to make it susceptible 
to the kind of environment found in the typical appli- 
cation host. However, there is nothing about this 
scheme that requires that the synchronizing function be 
in a devoted host.) One of the hosts of this set is 
designated as the primary and the rest are backups. 
The backups are ordered in a linear fashion. We will 
discuss recovery schemes in a subsequent section. For 
now, let us consider how the resiliency scheme works 
without failures. 

Update operations may be sent to the primary or to 
any backup. The user process then blocks, waiting for 
either a response from the service or a timeout indi- 
cating that the message has been lost and should be 
retransmitted. 

For the purposes of this discussion we will ignore 
to some extent the details of the end-to-end transmis- 
sion. Some of the ACK's and tlmeouts mentioned below 
may be provided by an end-to-end protocol such as those 
described in Cerf and Kahn [1974] and Cerf et al. 
[1975]. In addition, the communication between the 
user and the service could be a single message connec- 
tion to the service. Such a connection would take more 
than one message to convince both sides that no mes- 
sages have been lost or duplicated [Belsnes, 1975]. 
However, for our purposes we are mainly interested in 
the delays incurred. Although multiple parallel mes- 
sages may be generated, the number of sequential mes- 
sage delays will be inherent to any system performing 
this service. 

Dedicated Servers. Figure I shows the message 
flow for an update operation which has been transmitted 
to the primary server host of a data base. The first 
network message delay is incurred in figure la. The 
application host transmits the update to the primary 
server host. 

The second network message delay is incurred in 
figure lb. The primary server host requests cooperation 
in executing the update operation from the first backup 
server host. The primary server host has already up- 
dated its data base. The first backup synchronization 
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l a :  Application host transmits update request to primary server host. 

cooperate 

ib: Primary server host requests cooperation from the first 
backup in executing the update request. 

3: cooperate I: backup 

IC : First backup issues three messages in the following order: 

i. 
2. 
3. 

A backup for an update request is sent to the next backup host. 
An acknowledgement message is sent to the application host. 
An acknowledgement of the cooperate message is sent to 
the primary server host. 

Figure i 

Update request sent to a primary server host 
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host will perform the same update. The backup host 
will be expected to issue the update ACK message to the 
application host. 

In figure ic the third network message delay is 
incurred. Three messages are transmitted by the first 
backup server host. In terms of network delay, these 
messages are essentially simultaneously transmitted. 
Small improvements in resiliency can be achieved by 
issuing them in the designated order. First, the back- 
up server host passes a backup update message to the 
next backup server host. At this time only two server 
hosts, the primary and the first backup, have positive 
knowledge of the existence of the update operation. 
Should the backup message be successfully received at 
the second backup server host, a third server host 
would also be aware of the update operation. The third 
host would be able to assist in recovery should the 
first backup server host or network fall to transmit 
the next two messages. The second "simultaneous" mes- 
sage would be the update ACK message to the application 
host. The third "simultaneous" message would be trans- 
mitted back to the primary server host to acknowledge 
that the cooperation request on an update operation has 
been received. 

Once the primary server host has received the co- 
operation acknowledgement, it is certain that the two- 
host resiliency criterion has been met. Similarly, 
once the application host has received the update ACK 
message it is also certain that the two-host resiliency 
criterion has been met. Should the primary server host 
fall to receive the cooperation acknowledgement, appro- 
priate retry and recovery techniques will be initiated. 

Figure 2 shows the message flow for an update 
operation which has been transmitted to a backup server 
host. The first network message delay is incurred in 
figure 2a. The application host transmits the update 
to a backup server host. 

The second network message delay is incurred in 
figure 2b. The backup server host forwards the update 
operation to the primary server host. The application 
hosts have no knowledge of the ordering of server hosts. 
However, each of the server hosts is assumed to have 
explicit knowledge of the ordering. The backup server 
host performs no updates on the data base. All updates 
must be initiated by the primary server host. However, 
the backup now has knowledge of the existence of the 
update request from the application host. It will not 
discard this request until a backup message referring 
to that same update operation ripples down the backup 
chain and through it. 

In figure 2c the third network message delay is 
incurred. Three messages are transmitted by the pri- 
mary server host. As was the case previously, these 
messages are essentially simultaneous but a specific 
ordering can provide some small improvements in resil- 
iency. First, a backup message is sent to the first 
backup server host. Second, an update ACK message is 
transmitted to the application host since the two-host 
criterion has now been met. Third, a forward message 
acknowledgment is transmitted to the forwarding backup 
host. The message flow is summarized in figure 3. 

Participatin~ Servers. In a service environment 
where there is no special set of hosts dedicated to the 
service, updates from a user on one of the hosts parti- 
cipating in the service will only experience two net- 
work delays as opposed to the three found in the dedi- 
cated host case. Figure 4 shows that the first delay 
is generated when the host in which the update was gen- 
erated sends the update to the primary as a forward re- 
quest. (Note that since members of the service will 
most likely maintain the necessary connections among 

each other, many of the single message connection dif- 
ficulties can be avoided in this case.) The second 
delay is incurred when the primary responds with a for- 
ward ACKmessage to the originating backup host. The 
primary also sends the backup request to the first 
backup server. From this point on, the procedure is 
identical to the dedicated server scheme. 

Alternative Backup Architectures. The backup ser- 
vers have been arranged in a linear, ordered string. 
This is not essential. We have used the linear archi- 
tecture in this paper for several reasons. It is easy 
to describe. It is one example of the single primary, 
multiple backup strategy for resilient resource sharing. 
It is also a minimum delay scheme for two-host resil- 
iency. An example of a non-linearly ordered backup 
scheme is a broadcast scheme. In this scheme the pri- 
mary broadcasts backup messages simultaneously to all 
backups. The broadcast scheme also has minimum delay. 
It requires fewer total messages than the linearly 
ordered scheme, but error recovery is more complex. 
Grapa is currently investigating the range of feasible 
backup architectures. 

Summary. Resiliency is achieved in this scheme by 
a combination of techniques. The basic organization of 
the resiliency scheme provides the skeleton on which to 
construct the resilient service. The additional mecha- 
nisms used for a particular application will depend 
heavily on the degree of resiliency required~ This 
additional resiliency is gained by applying a combina- 
tion of sequence numbering schemes and ACK and time-out 
mechanisms. For instance, to get two-host resiliency 
for updates being passed down the chain, a "Backup for- 
warded ACK" is used in the following way: 

When a backup server host receives the "backup 
ACK" corresponding to the backup message sent to its 
right-hand neighbor (see figure 3), it sends a "backup 
forwarded ACK" to its left-hand neighbor. This assures 
that neighbor that the update has progressed to at 
least the second backup beyond itself. 

Also, for most applications one sequence number 
scheme can be applied to the messages to detect lost or 
duplicate messages. A second sequence number scheme 
can be applied to the requests themselves. This allows 
proper recovery in the event of failures. It also de- 
fines the order in which requests will be applied to 
the data base. 

There are two properties of this scheme that should 
be noted. First, regardless of where the user process 
sends the update request, he will get a response in 
three message delay times. (If the synchronizing scheme 
is moved into the application hosts, this delay can be 
cut to two message times.) Second, two nearly simul L 
taneous host falures during a small critical interval 
are required to disrupt the scheme. 

Failure Detection and Recovery 

Failure Detection. The detection of failures may 
be accomplished in a variety of ways. Clearly, the 
time-outs associated with the ACK's will allow the sys- 
tem to detect a failure during the course of performing 
a request. If there are relatively long idle periods 
between requests, and if one wants to avoid the delays 
required to recover from a failure, it may be useful, 
for some applications, to have a low level "are you 
alive" protocol among the members of the chain. Other- 
wise, the error will not be detected until the next 
request is sent. 

There are basically two kinds of failures which 
must be handled: i) host failure and 2) network parti- 
tion. Recovery from a host failure is relatively 
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2a: Application host transmits update request to a backup server. 

forward 

I • • 

2b: Backup host forwards update request to the primary host. 

3: forward 

2c: Primary host issues three messages in the following order: 

i. A backup for an update request is sent to the first backup host. 
2. An acknowledgement message is sent to the application host. 
3. An acknowledgement of the forwarding message is sent to the 

forwarding backup host. 

Figure 2 

Update request sent to a backup server host 
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cooperate backup backup backup 

request request request 
{ server ~ { server ~ { server 

% 

Figure 3 

Summary of the message flow for the resiliency scheme. 
(BF ACK refers to the Backup Forwarded ACK mentioned in the text.) 

4a: 

forward 

An update request generated by the third host journalizes the request 
and sends a forward request message to the primary. 

4b : 

forward 
ACK 

The primary records the update. The two host criteria has now 
been fulfilled. The primary sends two messages: 

i. a forward acknowledgement back to the third host. 
2. a backup request to next backup host. 

backup 

ACK 

4c: The next backup host records the update and sends a backup request 
to next server and acknowledges the one he received. 

Figure 4 

Application of the Resiliency Scheme for Undedicated Hosts 
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straightforward and will be discussed in the next sec- 
tion. However, operation during a network partition is 
much more difficult to handle and for a majority of 
applications will probably consist of providing very 

degraded service. 

To give the reader an idea of the complexity of 
providing service across partitions, let us consider 
the case where as close to full service as possible is 
provided. First, each side must organize itself into a 
resilient system and have a way to rectify the exis- 
tence of the two primaries when the partition is re- 
paired. It must be possible to restore the data base 
to the state it was just before the partition and to 
journalize all updates made during the partition. When 
the partition is repaired the update journals of both 
sides must be merged according to the chronological 
order in which the updates were generated. If the same 
event has been observed and entered by groups on both 
sides of the partition, the journals may contain dupli- 
cate entries. Duplicates must be recognized and all 
but one discarded. It should be further noted that 
answers to queries submitted by a partitioned subset 
may be inconsistent with answers given queries after 
the partition has been repaired. 

Since network partitions are so difficult to han- 
dle it is highly desirable that they be very infrequent. 
It may appear on the surface that this problem is 
easily solved by proper network topology. To a degree 
this is the case. But the solution is also highly 
dependent on how much information the subnet returns 
about failures. Suppose the communications subnet only 
indicated whether or not it could deliver a message. 
Then every apparent failure would have to be treated as 
a possible partition, and the rather expensive parti- 
tioned mode of operation would have to be initiated. 
However, if the subnet distinguishes between "I was 
unable to deliver the message" and "I got the message 
to the destination node, but the host is not servicing 
the interface"; it would be possible to classify many 
of the failures as host failures and take a less expen- 
sive recovery procedure. There would still be a small 
group of failures that would have to be treated as 
partitions until the communications were restored and 
it was determined whether or not a partition had 
actually occurred. 

Host Failure Recovery. Although much of the 
detail for failure recovery will depend heavily on the 
application and the degree of resiliency desired, it is 
possible to describe the basic mechanism by which host 
failures and network partitions are recovered. Let us 
consider the case of a host failure first (see figure 
5). Assume that the subnet has notified a service host 
that messages to that host cannot be delivered because 
the host is dead. In figure 5 the dead host is a back- 
up host. (If the primary dies a new primary must be 
elected. There are a variety of criteria that could be 
used. A simple algorithm would be to designate the 
first backup host as the new primary.) 

In figure 5 we assume that the adjacent upstream 
host is notified of the failure. It will notify the 
primary of the failure so that the primary may delete 
the host from the backup table. The primary will then 
pass a "structure modification" message along the chain. 
(The "restructuring host", the one that started this 
recovery, will set a time-out waiting for the "struc- 
ture modification" message to ripple down the chain.) 
After the "structure modification" has rippled back to 
the "restructuring host", it will attempt to establish 
communication with the next llve downstream host and 
continue the propagation of the "structure modification 
message". The "restructuring host" will set a tlme-out 
and wait for the return ACK's to propagate. Once the 
"restructuring host" has receivedthe restructuring 

ACK from the downstream host, it will then send any 
"backup requests" it has been holding on down the chain 

and normal operation has resumed. 

When a host comes up after a crash it will send an 
"initialization request" to some host in the service. 
If that host is not the primary, it will forward the 
request on to the primary. The primary will add the 
new host to its tables and pass a message down the 
chain indicating that the other hosts in the service 
should add the new host to their tables. The primary 
will also assign one host (possibly the last one in the 
chain) to bring the newcomer up-to-date. How the new 
host is brought up to date depends on the application. 
It may be done by transferring to that host the journal 
of all updates since the host went down. It may re- 
quire transferring the data base. 

Note that there is no protection from a malicious 
backup server declaring itself to be the new primary. 
While malicious users can be addressed by this resil- 
iency approach, servers must be benevolent. The 
approach to primary recovery discussed here is not 
resilient to single host error when, for example, the 
single host declares itself primary. Further work is 
required to make host failure recovery two-host 
resilient. 

Apparent Network Partition Recovery. Let us now 
consider the problem of an apparent network partition. 
In this case the subnet has notified the host that it 
could not deliver a message. For some reason the mes- 
sage did not get as far as the destination node. Per- 
haps, after some number of retries, this host has a 
reasonable suspicion that the network has partitioned. 
It will then broadcast "are you alive" messages to 
everyone in the service. After some time period, it 
will assume that all responses that can arrive have 
arrived. It will then modify its structure tables 
according to the responses, and send messages to the 
other members with which it can communicate to do the 
same. If this fragment of the partition has the old 
primary in it, the primary will coordinate partitioned 
mode operation. If not, a new primary may be chosen by 
whatever algorithm is fitting, depending on the level 
of partitioned service that is desired. The service 
then enters partitioned operation mode. As mentioned 
above, what the service does in this case will depend 
heavily on the application, the degree of resiliency 
desired, and the frequency of partition. In the genera] 
case, two or more partitions can produce incompatible 
states that cannot be joined later. Thus, the opera- 
tion of a service, while the network is partitioned, 
can easily span the entire spectrum from doing nothing 
to the rather complex scheme described above. 

Alternative Resource Sharin~ Strategies 

We have proposed the use of a single primary with 
multiple backups to support resilient resource sharing. 
The alternative to this approach is to share primary 
duties among several members of the resource set. This 
can take the form of designating all members of the 
resource set as primary or some subset as the group of 
primaries and another subset as the group of backups. 
In the case of two-host resiliency, it has been shown 
that the single primary, multiple backup strategy pro- 
duces the theoretically minimum message delay that en- 
sures the resiliency criteria have been met. 

Let us consider the case where there is more than 
one primary. In the general case the primary which re- 
ceives a service request must synchronize the execution 
of that service request with all other primaries. 
Otherwise, the system cannot guarantee that service re- 
quests are executed in the same order at all resource 
sites. (This requirement is essential in the general 

568 



struc. 

5a: Host 2 sends the primary a structure modification message to 
notify it that host 3 has failed. 

s?ruc. 

• r o o d .  r o o d .  

5b: The modification propagates back down to the instigating host who 
then establishes a connection with the next available host and 
notifies it of the change. 

5c: 

struc. 

ack. 

The modification propagates to the end of the chain while acknowledge- 
ments are used guarantee that the messages arrived safely. 

(Host 3 

Figure 5 

Restructuring after a Host Failure 
has failed and it has been detected by host2. ) 

case. There may be specific applications where the 
nature of the service permits the out of order pro- 
cessing of requests. An example is an inventory system 
where only increments and decrements to data fields are 
permitted and where instantaneous consistency of the 
data base is not a requirement.) The synchronization 
of multiple processes reduces to the execution of an 
algorithm in each of the processes that will result in 
distinguishing one process. The distinguished process 
then establishes, for example, the order in which opera- 
tions will be performed, notifies the other primaries 
of its decision and then relinquishes its distinguished 
role. 

In the single primary case the distinguished re- 
source is designated a priori. Hence, any additional 
message traffic, processing load, or protocol complexity 
to distinguish a primary is avoided. Instead emphasis 
is placed on electing a new primary should the original 
primary fail. 

An alternative strategy may require all members of 
a resource set to be primary or only some of those mem- 
bers to be primary. However, the requirement for syn- 
chronization tends to increase processing load at each 
host, message traffic in the communications subnet, and 
the complexity of the service protocols. At the same 
time, there is no increase in resiliency or decrease in 
delay. Thus a multiple primary strategy can never be 
~uperior, in the general case, to a single primary 

strategy. Hence, the single primary, multiple backup 
strategy is, in a sense, fundamental to resilient, dis- 
tributed resource sharing. 

Range of Application 

The resilient resource sharing strategy discussed 
above can be applied to a wide range of distributed 
system services. In particular, the authors have 
studied the questions of resilient network synchroniza- 
tion, resource directories, data access and load 
sharing. In all cases the resiliency technique seems 
to provide a convenient framework to support automated 
distributed resource sharing. 

Synchronization Primitives. The application of 
the resiliency technique to the support of synchroniza- 
tion primitives is straightforward. Service requests 
are transmitted to the synchronizatio~ service host 
exactly as shown in figures 1 and 2. The synchroni- 
zation primitives can be traditional P and V, block and 
wakeup, lock and unlock, and similar primitives. When 
a process requests synchronization service (e.g., a P, 
a lock, or a block) it transmits this primitive request 
to one of the synchronization service hosts. The 
acknowledgment returned by a synchronization host will 
be either a block or proceed message. This tells the 
requesting process whether it is prevented from or per- 
mitted to enter its critical section. If the process 
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blocks, it may choose to exercise a local system primi- 
tive to block its further progress. Alternatively the 
application process can go blocked waiting for a read 
on the communications network. In this latter case the 
read will not be satisfied until a proceed message is 
received from one of the synchronization service hosts. 
This proceed message is generated by a synchronization 
host following the execution of a V, unlock, or wakeup 
primitive by another process. 

Directories and Data Access. In a distributed 
environment the problem of accessing and updating net- 
work virtual file systems and their associated direc- 
tories is difficult. For example, consider the problem 
of a single network-wide tree-structured file directory 
scheme. Each host on the network must be able to deter- 
mine, in some reasonably transparent fashion, where 
individual files are stored. If each site in a large 
network is required to keep the entire directory struc- 
ture, the cost for updates and synchronization of 
access to all of those directories (whenever they are 
updated) would clearly be prohibitive. It is relative- 
ly straightforward to use a scheme where the very high- 
est levels of the directory structure are fixed and 
replicated on all hosts. Alterable directories and 
files are at lower levels of the tree. A list of poten- 
tial service hosts is stored at the point where the 
hierarchy becomes variable. These service hosts are 
coordinated via the resiliency technique to provide 
access to files below that point. This approach has 
the advantage of partitioning the hierarchy in such a 
way as to minimize the number of hosts required to 
cooperate in an update. 

Load Sharln$. Automated load sharing requires 
that multiple processors be controlled in a resilient 
and transparent fashion to provide processing services 
to requesting hosts. The resiliency technique can be 
applied in a straightforward way to coordinate the 
offering of that service. Any potential service site 
can receive a request for service and pass it on to the 
primary for determination of an optimum processor for 
the work. Once the task has been successfully for- 
warded to the primary it would not matter if one of the 
service hosts involved in the task were to die. Ade- 
quate information would be maintained to support the 
automatic recovery of the service host. 

Summary 

A single primary, multiple backup strategy has 
been proposed to support resilient distributed resource 
sharing. The flow of messages and service requests has 
been described for one possible architecture, a single 
primary with linearly ordered backup service hosts. 
Other architectures for structuring the backup service 
hosts are feasible and under investigation. 

In the case of the linearly ordered backup archi- 
tecture, the detection of host failure and recovery 
from that failure was discussed. The use of the resil- 
iency technique to support a wide range of distributed 
networking services was also discussed. These included 
resource directories, network virtual file access, load 
sharing, and synchronization primitives. 

The single primary, multiple backup strategy can 
support resilient resource sharing service requirements 
in the most general case. At the same time it achieves 
the minimum theoretical message delay. In the general 
case, this strategy is less resource consumptive, less 
complex, and no less resilient than a strategy that 
would employ more than one primary with or without 
backup service sites. In that sense a single primary 
strategy is always preferred over a multiple primary 
strategy for general applications. 
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