
A PRINCIPLE FOR RESILIENT SHARING OF DISTRIBUTED RESOURCES*

Peter A. Alsberg and John D. Day
Center for Advanced Computation

University of Illinois at Urbane-Champaign

Keywords: resilient protocols, resource sharing, dis-
tributed control, distributed computer systems, resil-
ient resource sharing

A technique is described which permits distributed
resources to be shared (services to be offered) in a
resilient manner. The essence of the technique is to a
priori declare one of the server hosts primary and the
others backups. Any of the servers can perform the
primary duties. Thus the role of primary can migrate
around the set of servers. The concept of n-host resil-
iency is introduced and the error detection and recov-
ery schemes for two-host resiliency are presented. The
single primary, multiple backup technique for resource
sharing is shown to have minimal delay. In the general
case, this is superior to multiple primary techniques.

Introduction

The development of large packet switched networks
servicing wide geographic areas has generated a great
deal of interest in distributed resource sharing. A
communications network is a necessary but, by itself,
is not a sufficient basis to make automated distributed
resource sharing facilities generally available. High-
level protocols must be provided to allow cooperation
in other than an ad hoc manner and techniques must be
developed to provide resilient service to the user.
This paper discusses one means by which resilient ser-
vice may be provided to the user for a wide variety of
situations, e.g., synchronization, data base access,
and load sharing.

For our purposes we will consider a distributed
resource sharing environment which requires the sharing
of resources dispersed over a large number of possibly
heterogeneous host computers. Large packet switched
computer networks llke the ARPANET, CYCLADES, and EIN
represent examples of this environment. Since the
hosts in this environment may be separated by very
large distances, there is a significant and unavoidable
message delay between hosts. Hence, a major considera-
tion when choosing a resource sharing strategy is to
reduce, as much as possible, the number of message
delays required to effect the sharing of resources.

In these networks, some of the resources to be
shared will be identical (e.g. duplicate copies of data
bases may be maintained for reliability). Others will

* This work was performed as part of Contract DCAI00-75-
C-0021 with the Command and Control Technical Center -
WWMCCS ADP Directorate of the Defense Communications
Agency.

be completely dissimilar (e.g., weather data may be
stored on the ARPANET datacomputer and processed on the
ILLIAC IV). Between these two extremes lie the re-
source sharing concerns of interest to most users.

The user expects a tolerable, as well as tolerant,
resource sharing environment. The user we are inter-
ested in wants a maximum degree of automation and
transparency in his resource sharing. He wishes the
resource sharing to be resilient to host failures and,
when catastroplc failures occur, he would llke a "best
effort" recovery to be automatically initiated by the
resource sharing system.

Resiliency. The concept of resiliency applies to
the use of a resource as a service. A resilient ser-
vice has four major attributes.

I. It is able to detect and recover from a given
maximum number of errors.

2. It is reliable to a sufficiently high degree
that a user of the resilient service can
ignore the possibility of service failure.

3. If the service provides perfect detection and
recovery from n errors, the (n+l)st error is
not catastrophic. A "best effort" is made to
continue service.

4. The abuse of the service by a single user
should have negligible effect on other users
of the service.

What we are trying to describe here are concepts of ex-
treme reliability and serviceability. The user of a
resilient service should not have to consider the fail-
ure of the service in his design. He should be able to
assume that the system will make a "best-effort" to
continue service in the event that perfect service can-
not be supported; and that the system will not fall
apart when he does something he is not supposed to.

Resiliency Criteria. In this paper we discuss a
technique for providing resilient services. This tech-
nique is resilient to communication system and host
failures. Host failures include not only complete
failure (e.g., a major hardware failure) but also par-
tial failure (e.g., a malfunctioning host operating
system). Resiliency cannot be perfect in the large
network environments we are considering. It is, for
instance, possible but not likely that all 50 of the
hosts on a large computer network will simultaneously
fail and all services will be disrupted. What is of
interest is the establishment of criteria for accept-
able resiliency in this environment. We introduce the

562

concept of n-host resiliency. In order for service to
be disrupted, n hosts must simultaneously fail in a
critical phase of service. We point out that it may
be possible for n or more hosts to fail outside of such
a critical phase without disrupting service. The re-
siliency techniques discussed in this paper assume a
two-host resiliency criterion. Expansion of the tech-
niques to treat three-host or greater resiliency is
straightforward. A two-host resiliency criterion has
been used because it appears sufficient to provide an
adequate level of service in most situations and to
illustrate the principle.

Examples. Examples of the kind of resilient ser-
vices we envision are ntework synchronization primi-
tives or a network virtual file system. The techniques
discussed below can support synchronization primitives
like P and V, lock and unlock, and block and wakeup in
a resilient fashion on a network. Network virtual file
systems which provide directory services and data
access services can be provided in an automated and re-
silient fashion. The network virtual file system would
appear to be a single file system to the user, but
would in fact be dispersed over a large number of pos-
sibly heterogeneous hosts on a packet switched network.

Related Work in Distributed Systems

There are two main problems that are addressed by
the technique we are presenting here: synchronization
of the users of the service and the resiliency of the
service. Other researchers have proposed techniques to
achieve the synchronization but haven't treated the re-
siliency issue carefully.

Perhaps the first work in this area was by Johnson
[1974]. Johnson proposed that updates to a data base
be tlmestamped by the host which generates the update.
The updates are then broadcast to the copies of the
data base. The data base managers then apply the up-
dates in chronological order, as determined by time-
stamps. (Ties are broken by an arbitrary ordering of
the hosts,) Johnson's model introduces the problem
that during some time interval the copies may be mutu-
ally inconsistent due to message delays, etc. This
system was primarily intended for an accounting file,
in which updates are restricted to assignments of
values to single fields. From the resiliency stand-
point, it is difficult to ensure that the n-host crite-
rion has been met and that all copies of the data base
will eventually receive all of the updates.

Bunch [1975] attempted to avoid some of the diffi-
culties of Johnson's scheme by introducing a central
name (sequence number) generator. This approach has
the additional problem of introducing a potential
bottleneck. Grapa [1975] was able to avoid this prob-
lem in his "reservation center" model. Grapa's model
is somewhat more general than either the Bunch or
Johnson model and in a sense includes them as limiting
cases.

Despite the fact none of these models treat the
resiliency issues (they were never really intended to),
there are also several problems that might be encoun-
tered in more general data base environments. We have
already mentioned the problem that for some time inter-
val the data base may be inconsisten t . This may cause
problems for some applications. Also, an update opera-
tion on one field may use values of other fields to
compute the new value (in an irreversible manner). In
this case, the Johnson and Grapa models must include a
time delay before applying the updates to guarantee
that there are no delayed updates with earlier time-
stamps than those already received. Similarly, it is
difficult for these models to provide a quick response

time for updates that modify multiple fields. The
technique we describe here avoids these problems. It
provides the minimum response time allowed by the n-
host resiliency criterion but requires a somewhat more
complex mechanism.

A Technique for a Resilient Service

Consider synchronization on a network. The pacing
item in a network synchronization operation is network
message delay time. Network message delay is on the
order of i00 milliseconds. The execution of a process
synchronization primitive in the typical single site
environment is on the order of .i to 1 milliseconds.
The processing incurred at the site is expected to be
the same for both network and local operation. As a
result, an appropriate measure of the efficiency of a
network scheme is the number of message delays incurred.

As we have indicated above, what we are interested
in is a method by which we can provide resilient sup-
port for some distributed resource sharing activity.
For purposes of illustration, let us assume we have
some sort of data base (in the general sense) which is
being read and modified by a group of network users.
Let us consider, at least for purposes of description,
that there is a set of server hosts which do nothing
but perform the updates and mediate the synchronization
of these updates generated by user processes. (This
may appear to be somewhat excessive for the practical
case; but if one is really concerned about having a
reliable service, it is unwise to make it susceptible
to the kind of environment found in the typical appli-
cation host. However, there is nothing about this
scheme that requires that the synchronizing function be
in a devoted host.) One of the hosts of this set is
designated as the primary and the rest are backups.
The backups are ordered in a linear fashion. We will
discuss recovery schemes in a subsequent section. For
now, let us consider how the resiliency scheme works
without failures.

Update operations may be sent to the primary or to
any backup. The user process then blocks, waiting for
either a response from the service or a timeout indi-
cating that the message has been lost and should be
retransmitted.

For the purposes of this discussion we will ignore
to some extent the details of the end-to-end transmis-
sion. Some of the ACK's and tlmeouts mentioned below
may be provided by an end-to-end protocol such as those
described in Cerf and Kahn [1974] and Cerf et al.
[1975]. In addition, the communication between the
user and the service could be a single message connec-
tion to the service. Such a connection would take more
than one message to convince both sides that no mes-
sages have been lost or duplicated [Belsnes, 1975].
However, for our purposes we are mainly interested in
the delays incurred. Although multiple parallel mes-
sages may be generated, the number of sequential mes-
sage delays will be inherent to any system performing
this service.

Dedicated Servers. Figure I shows the message
flow for an update operation which has been transmitted
to the primary server host of a data base. The first
network message delay is incurred in figure la. The
application host transmits the update to the primary
server host.

The second network message delay is incurred in
figure lb. The primary server host requests cooperation
in executing the update operation from the first backup
server host. The primary server host has already up-
dated its data base. The first backup synchronization

563

~ f e

est

l a : Application host transmits update request to primary server host.

cooperate

ib: Primary server host requests cooperation from the first
backup in executing the update request.

3: cooperate I: backup

IC : First backup issues three messages in the following order:

i.
2.
3.

A backup for an update request is sent to the next backup host.
An acknowledgement message is sent to the application host.
An acknowledgement of the cooperate message is sent to
the primary server host.

Figure i

Update request sent to a primary server host

564

host will perform the same update. The backup host
will be expected to issue the update ACK message to the
application host.

In figure ic the third network message delay is
incurred. Three messages are transmitted by the first
backup server host. In terms of network delay, these
messages are essentially simultaneously transmitted.
Small improvements in resiliency can be achieved by
issuing them in the designated order. First, the back-
up server host passes a backup update message to the
next backup server host. At this time only two server
hosts, the primary and the first backup, have positive
knowledge of the existence of the update operation.
Should the backup message be successfully received at
the second backup server host, a third server host
would also be aware of the update operation. The third
host would be able to assist in recovery should the
first backup server host or network fall to transmit
the next two messages. The second "simultaneous" mes-
sage would be the update ACK message to the application
host. The third "simultaneous" message would be trans-
mitted back to the primary server host to acknowledge
that the cooperation request on an update operation has
been received.

Once the primary server host has received the co-
operation acknowledgement, it is certain that the two-
host resiliency criterion has been met. Similarly,
once the application host has received the update ACK
message it is also certain that the two-host resiliency
criterion has been met. Should the primary server host
fall to receive the cooperation acknowledgement, appro-
priate retry and recovery techniques will be initiated.

Figure 2 shows the message flow for an update
operation which has been transmitted to a backup server
host. The first network message delay is incurred in
figure 2a. The application host transmits the update
to a backup server host.

The second network message delay is incurred in
figure 2b. The backup server host forwards the update
operation to the primary server host. The application
hosts have no knowledge of the ordering of server hosts.
However, each of the server hosts is assumed to have
explicit knowledge of the ordering. The backup server
host performs no updates on the data base. All updates
must be initiated by the primary server host. However,
the backup now has knowledge of the existence of the
update request from the application host. It will not
discard this request until a backup message referring
to that same update operation ripples down the backup
chain and through it.

In figure 2c the third network message delay is
incurred. Three messages are transmitted by the pri-
mary server host. As was the case previously, these
messages are essentially simultaneous but a specific
ordering can provide some small improvements in resil-
iency. First, a backup message is sent to the first
backup server host. Second, an update ACK message is
transmitted to the application host since the two-host
criterion has now been met. Third, a forward message
acknowledgment is transmitted to the forwarding backup
host. The message flow is summarized in figure 3.

Participatin~ Servers. In a service environment
where there is no special set of hosts dedicated to the
service, updates from a user on one of the hosts parti-
cipating in the service will only experience two net-
work delays as opposed to the three found in the dedi-
cated host case. Figure 4 shows that the first delay
is generated when the host in which the update was gen-
erated sends the update to the primary as a forward re-
quest. (Note that since members of the service will
most likely maintain the necessary connections among

each other, many of the single message connection dif-
ficulties can be avoided in this case.) The second
delay is incurred when the primary responds with a for-
ward ACKmessage to the originating backup host. The
primary also sends the backup request to the first
backup server. From this point on, the procedure is
identical to the dedicated server scheme.

Alternative Backup Architectures. The backup ser-
vers have been arranged in a linear, ordered string.
This is not essential. We have used the linear archi-
tecture in this paper for several reasons. It is easy
to describe. It is one example of the single primary,
multiple backup strategy for resilient resource sharing.
It is also a minimum delay scheme for two-host resil-
iency. An example of a non-linearly ordered backup
scheme is a broadcast scheme. In this scheme the pri-
mary broadcasts backup messages simultaneously to all
backups. The broadcast scheme also has minimum delay.
It requires fewer total messages than the linearly
ordered scheme, but error recovery is more complex.
Grapa is currently investigating the range of feasible
backup architectures.

Summary. Resiliency is achieved in this scheme by
a combination of techniques. The basic organization of
the resiliency scheme provides the skeleton on which to
construct the resilient service. The additional mecha-
nisms used for a particular application will depend
heavily on the degree of resiliency required~ This
additional resiliency is gained by applying a combina-
tion of sequence numbering schemes and ACK and time-out
mechanisms. For instance, to get two-host resiliency
for updates being passed down the chain, a "Backup for-
warded ACK" is used in the following way:

When a backup server host receives the "backup
ACK" corresponding to the backup message sent to its
right-hand neighbor (see figure 3), it sends a "backup
forwarded ACK" to its left-hand neighbor. This assures
that neighbor that the update has progressed to at
least the second backup beyond itself.

Also, for most applications one sequence number
scheme can be applied to the messages to detect lost or
duplicate messages. A second sequence number scheme
can be applied to the requests themselves. This allows
proper recovery in the event of failures. It also de-
fines the order in which requests will be applied to
the data base.

There are two properties of this scheme that should
be noted. First, regardless of where the user process
sends the update request, he will get a response in
three message delay times. (If the synchronizing scheme
is moved into the application hosts, this delay can be
cut to two message times.) Second, two nearly simul L
taneous host falures during a small critical interval
are required to disrupt the scheme.

Failure Detection and Recovery

Failure Detection. The detection of failures may
be accomplished in a variety of ways. Clearly, the
time-outs associated with the ACK's will allow the sys-
tem to detect a failure during the course of performing
a request. If there are relatively long idle periods
between requests, and if one wants to avoid the delays
required to recover from a failure, it may be useful,
for some applications, to have a low level "are you
alive" protocol among the members of the chain. Other-
wise, the error will not be detected until the next
request is sent.

There are basically two kinds of failures which
must be handled: i) host failure and 2) network parti-
tion. Recovery from a host failure is relatively

565

2a: Application host transmits update request to a backup server.

forward

I • •

2b: Backup host forwards update request to the primary host.

3: forward

2c: Primary host issues three messages in the following order:

i. A backup for an update request is sent to the first backup host.
2. An acknowledgement message is sent to the application host.
3. An acknowledgement of the forwarding message is sent to the

forwarding backup host.

Figure 2

Update request sent to a backup server host

566

cooperate backup backup backup

request request request
{ server ~ { server ~ { server

%

Figure 3

Summary of the message flow for the resiliency scheme.
(BF ACK refers to the Backup Forwarded ACK mentioned in the text.)

4a:

forward

An update request generated by the third host journalizes the request
and sends a forward request message to the primary.

4b :

forward
ACK

The primary records the update. The two host criteria has now
been fulfilled. The primary sends two messages:

i. a forward acknowledgement back to the third host.
2. a backup request to next backup host.

backup

ACK

4c: The next backup host records the update and sends a backup request
to next server and acknowledges the one he received.

Figure 4

Application of the Resiliency Scheme for Undedicated Hosts

567

straightforward and will be discussed in the next sec-
tion. However, operation during a network partition is
much more difficult to handle and for a majority of
applications will probably consist of providing very

degraded service.

To give the reader an idea of the complexity of
providing service across partitions, let us consider
the case where as close to full service as possible is
provided. First, each side must organize itself into a
resilient system and have a way to rectify the exis-
tence of the two primaries when the partition is re-
paired. It must be possible to restore the data base
to the state it was just before the partition and to
journalize all updates made during the partition. When
the partition is repaired the update journals of both
sides must be merged according to the chronological
order in which the updates were generated. If the same
event has been observed and entered by groups on both
sides of the partition, the journals may contain dupli-
cate entries. Duplicates must be recognized and all
but one discarded. It should be further noted that
answers to queries submitted by a partitioned subset
may be inconsistent with answers given queries after
the partition has been repaired.

Since network partitions are so difficult to han-
dle it is highly desirable that they be very infrequent.
It may appear on the surface that this problem is
easily solved by proper network topology. To a degree
this is the case. But the solution is also highly
dependent on how much information the subnet returns
about failures. Suppose the communications subnet only
indicated whether or not it could deliver a message.
Then every apparent failure would have to be treated as
a possible partition, and the rather expensive parti-
tioned mode of operation would have to be initiated.
However, if the subnet distinguishes between "I was
unable to deliver the message" and "I got the message
to the destination node, but the host is not servicing
the interface"; it would be possible to classify many
of the failures as host failures and take a less expen-
sive recovery procedure. There would still be a small
group of failures that would have to be treated as
partitions until the communications were restored and
it was determined whether or not a partition had
actually occurred.

Host Failure Recovery. Although much of the
detail for failure recovery will depend heavily on the
application and the degree of resiliency desired, it is
possible to describe the basic mechanism by which host
failures and network partitions are recovered. Let us
consider the case of a host failure first (see figure
5). Assume that the subnet has notified a service host
that messages to that host cannot be delivered because
the host is dead. In figure 5 the dead host is a back-
up host. (If the primary dies a new primary must be
elected. There are a variety of criteria that could be
used. A simple algorithm would be to designate the
first backup host as the new primary.)

In figure 5 we assume that the adjacent upstream
host is notified of the failure. It will notify the
primary of the failure so that the primary may delete
the host from the backup table. The primary will then
pass a "structure modification" message along the chain.
(The "restructuring host", the one that started this
recovery, will set a time-out waiting for the "struc-
ture modification" message to ripple down the chain.)
After the "structure modification" has rippled back to
the "restructuring host", it will attempt to establish
communication with the next llve downstream host and
continue the propagation of the "structure modification
message". The "restructuring host" will set a tlme-out
and wait for the return ACK's to propagate. Once the
"restructuring host" has receivedthe restructuring

ACK from the downstream host, it will then send any
"backup requests" it has been holding on down the chain

and normal operation has resumed.

When a host comes up after a crash it will send an
"initialization request" to some host in the service.
If that host is not the primary, it will forward the
request on to the primary. The primary will add the
new host to its tables and pass a message down the
chain indicating that the other hosts in the service
should add the new host to their tables. The primary
will also assign one host (possibly the last one in the
chain) to bring the newcomer up-to-date. How the new
host is brought up to date depends on the application.
It may be done by transferring to that host the journal
of all updates since the host went down. It may re-
quire transferring the data base.

Note that there is no protection from a malicious
backup server declaring itself to be the new primary.
While malicious users can be addressed by this resil-
iency approach, servers must be benevolent. The
approach to primary recovery discussed here is not
resilient to single host error when, for example, the
single host declares itself primary. Further work is
required to make host failure recovery two-host
resilient.

Apparent Network Partition Recovery. Let us now
consider the problem of an apparent network partition.
In this case the subnet has notified the host that it
could not deliver a message. For some reason the mes-
sage did not get as far as the destination node. Per-
haps, after some number of retries, this host has a
reasonable suspicion that the network has partitioned.
It will then broadcast "are you alive" messages to
everyone in the service. After some time period, it
will assume that all responses that can arrive have
arrived. It will then modify its structure tables
according to the responses, and send messages to the
other members with which it can communicate to do the
same. If this fragment of the partition has the old
primary in it, the primary will coordinate partitioned
mode operation. If not, a new primary may be chosen by
whatever algorithm is fitting, depending on the level
of partitioned service that is desired. The service
then enters partitioned operation mode. As mentioned
above, what the service does in this case will depend
heavily on the application, the degree of resiliency
desired, and the frequency of partition. In the genera]
case, two or more partitions can produce incompatible
states that cannot be joined later. Thus, the opera-
tion of a service, while the network is partitioned,
can easily span the entire spectrum from doing nothing
to the rather complex scheme described above.

Alternative Resource Sharin~ Strategies

We have proposed the use of a single primary with
multiple backups to support resilient resource sharing.
The alternative to this approach is to share primary
duties among several members of the resource set. This
can take the form of designating all members of the
resource set as primary or some subset as the group of
primaries and another subset as the group of backups.
In the case of two-host resiliency, it has been shown
that the single primary, multiple backup strategy pro-
duces the theoretically minimum message delay that en-
sures the resiliency criteria have been met.

Let us consider the case where there is more than
one primary. In the general case the primary which re-
ceives a service request must synchronize the execution
of that service request with all other primaries.
Otherwise, the system cannot guarantee that service re-
quests are executed in the same order at all resource
sites. (This requirement is essential in the general

568

struc.

5a: Host 2 sends the primary a structure modification message to
notify it that host 3 has failed.

s?ruc.

• r o o d . r o o d .

5b: The modification propagates back down to the instigating host who
then establishes a connection with the next available host and
notifies it of the change.

5c:

struc.

ack.

The modification propagates to the end of the chain while acknowledge-
ments are used guarantee that the messages arrived safely.

(Host 3

Figure 5

Restructuring after a Host Failure
has failed and it has been detected by host2.)

case. There may be specific applications where the
nature of the service permits the out of order pro-
cessing of requests. An example is an inventory system
where only increments and decrements to data fields are
permitted and where instantaneous consistency of the
data base is not a requirement.) The synchronization
of multiple processes reduces to the execution of an
algorithm in each of the processes that will result in
distinguishing one process. The distinguished process
then establishes, for example, the order in which opera-
tions will be performed, notifies the other primaries
of its decision and then relinquishes its distinguished
role.

In the single primary case the distinguished re-
source is designated a priori. Hence, any additional
message traffic, processing load, or protocol complexity
to distinguish a primary is avoided. Instead emphasis
is placed on electing a new primary should the original
primary fail.

An alternative strategy may require all members of
a resource set to be primary or only some of those mem-
bers to be primary. However, the requirement for syn-
chronization tends to increase processing load at each
host, message traffic in the communications subnet, and
the complexity of the service protocols. At the same
time, there is no increase in resiliency or decrease in
delay. Thus a multiple primary strategy can never be
~uperior, in the general case, to a single primary

strategy. Hence, the single primary, multiple backup
strategy is, in a sense, fundamental to resilient, dis-
tributed resource sharing.

Range of Application

The resilient resource sharing strategy discussed
above can be applied to a wide range of distributed
system services. In particular, the authors have
studied the questions of resilient network synchroniza-
tion, resource directories, data access and load
sharing. In all cases the resiliency technique seems
to provide a convenient framework to support automated
distributed resource sharing.

Synchronization Primitives. The application of
the resiliency technique to the support of synchroniza-
tion primitives is straightforward. Service requests
are transmitted to the synchronizatio~ service host
exactly as shown in figures 1 and 2. The synchroni-
zation primitives can be traditional P and V, block and
wakeup, lock and unlock, and similar primitives. When
a process requests synchronization service (e.g., a P,
a lock, or a block) it transmits this primitive request
to one of the synchronization service hosts. The
acknowledgment returned by a synchronization host will
be either a block or proceed message. This tells the
requesting process whether it is prevented from or per-
mitted to enter its critical section. If the process

569

blocks, it may choose to exercise a local system primi-
tive to block its further progress. Alternatively the
application process can go blocked waiting for a read
on the communications network. In this latter case the
read will not be satisfied until a proceed message is
received from one of the synchronization service hosts.
This proceed message is generated by a synchronization
host following the execution of a V, unlock, or wakeup
primitive by another process.

Directories and Data Access. In a distributed
environment the problem of accessing and updating net-
work virtual file systems and their associated direc-
tories is difficult. For example, consider the problem
of a single network-wide tree-structured file directory
scheme. Each host on the network must be able to deter-
mine, in some reasonably transparent fashion, where
individual files are stored. If each site in a large
network is required to keep the entire directory struc-
ture, the cost for updates and synchronization of
access to all of those directories (whenever they are
updated) would clearly be prohibitive. It is relative-
ly straightforward to use a scheme where the very high-
est levels of the directory structure are fixed and
replicated on all hosts. Alterable directories and
files are at lower levels of the tree. A list of poten-
tial service hosts is stored at the point where the
hierarchy becomes variable. These service hosts are
coordinated via the resiliency technique to provide
access to files below that point. This approach has
the advantage of partitioning the hierarchy in such a
way as to minimize the number of hosts required to
cooperate in an update.

Load Sharln$. Automated load sharing requires
that multiple processors be controlled in a resilient
and transparent fashion to provide processing services
to requesting hosts. The resiliency technique can be
applied in a straightforward way to coordinate the
offering of that service. Any potential service site
can receive a request for service and pass it on to the
primary for determination of an optimum processor for
the work. Once the task has been successfully for-
warded to the primary it would not matter if one of the
service hosts involved in the task were to die. Ade-
quate information would be maintained to support the
automatic recovery of the service host.

Summary

A single primary, multiple backup strategy has
been proposed to support resilient distributed resource
sharing. The flow of messages and service requests has
been described for one possible architecture, a single
primary with linearly ordered backup service hosts.
Other architectures for structuring the backup service
hosts are feasible and under investigation.

In the case of the linearly ordered backup archi-
tecture, the detection of host failure and recovery
from that failure was discussed. The use of the resil-
iency technique to support a wide range of distributed
networking services was also discussed. These included
resource directories, network virtual file access, load
sharing, and synchronization primitives.

The single primary, multiple backup strategy can
support resilient resource sharing service requirements
in the most general case. At the same time it achieves
the minimum theoretical message delay. In the general
case, this strategy is less resource consumptive, less
complex, and no less resilient than a strategy that
would employ more than one primary with or without
backup service sites. In that sense a single primary
strategy is always preferred over a multiple primary
strategy for general applications.

,570

References

Belsnes, Dag
"Single-Message Communication", IEEE Transactions
on Communication, Vol. Com-24, No. 2, Feb 1976.

Bunch, Steve
"Automated Backup" in Preliminary Research Study
Report, CAC Document 162, May 1975.

Cerf, V.G. and Kahn, R.E.
"A Protocol for Packet Network Intercommunication",
IEEE Transactions on Communication, Vol. Com-22,
No. 5, May 1974.

Cerf, V., McKenzie, A., Scantlebury, R., and
Zimmerman, H.
"A Proposal for an Internetwork End to End
Protocol", INWG Note 96, Jul 1975.

Grapa, Enrique
"Thinking Aloud about a Distributed Data Base
Model", CAC Dileptus Project Internal Modeling
Memo #5, Nov 1975.

Johnson, P.R. and Beeler, M.
"Notes on Distributed Data Bases", Draft, Aug 1974.

Johnson, P.R. and Thomas, R.H.
"The Maintenance of Duplicate Data Bases", RFC
677, Jan 1975.

