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ARTICLES 

A prion protein epitope selective for the pathologically 

misfolded conformation 

Eustache Paramithiotis1, Marc Pinard1, Trebor Lawton2, Sylvie LaBoissiere1, Valerie L Leathers2, Wen-Quan 

Zou6, Lisa A Estey2, Julie Lamontagne 1 ,Marty T Lehto6, Leslie H Kondejewski1, Gregory P Francoeur2,8, 

Maria Papadopoulos1, Ashkan Haghighat1, Stephen J Spatz2,9, Mark Head3, Robert Will3, James Ironside3, 

Katherine O'Rourke4, Quentin Tonelli2, Harry C Ledebur1, Avi ChakrabarttyS & Neil R Cashman1,S,6,7 

Conformational conversion of proteins in disease is likely to be accompanied by molecular surface exposure of previously 

sequestered amino-acid side chains. We found that induction of ~-sheet structures in recombinant prion proteins is associated 

with increased solvent accessibility of tyrosine. Antibodies directed against the prion protein repeat motif, tyrosine-tyrosine­

arginine, recognize the pathological isoform of the prion protein but not the normal cellular isoform, as assessed by 

immunoprecipitation, plate capture immunoassay and flow cytometry. Antibody binding to the pathological epitope is saturable 

and specific, and can be created in vitro by partial denaturation of normal brain prion protein. Conformation-selective exposure 

of Tyr-Tyr-Arg provides a probe for the distribution and structure of pathologically misfolded prion protein, and may lead to new 

diagnostics and therapeutics for prion diseases. 

The prion diseases are a group of neurodegenerative disorders char­

acterized by neuronal cell loss, spongiform change, gliosis and depo­

sition of abnormal amyloid protein 1-3. Animal prion diseases 

include scrapie in sheep and goats, bovine spongiform encephalopa­

thy (ESE) in cattie, chronic wasting disease in deer and elk, transmis­

sible mink encephalopathy, and feline spongiform encephalopathy in 

domestic and exotic cats. In humans, recognized prion diseases 

include kuru, classical Creutzfeldt-Jakob disease (CJD), Gerstmann­

Straussler-Scheinker syndrome (GSS), fatal familial insomnia and 

variant Creutzfeldt -Jakob disease (variant CJD). Of particular recent 

concern is variant CJD, presumably resulting from oral inoculation 

of BSE prions. Currentiy, cases of this emergent prion disease have 

been identified in the United Kingdom, France, the Republic of 

Ireland, Hong Kong, Italy, the United States and Canada2,3. There is 

no authoritative consensus on the ultimate extent of the primary 

variant CJD epidemic, nor to the risk of secondary human-to­

human transmission by iatrogenic routes. 

The 'protein-only' hypothesis contends that prion infectivity 

resides in pathologically misfolded prion protein (designated Prpsc, 

PrpBSE, or PrpCJD, depending on the species of origin; Prpsc is used 

here to denote disease-associated PrP), which can 'recruit' cellular 

prion protein (Prpc) by a template-directed process l . Prpsc generally 

possesses partial protease resistance and high ~-sheet content, unlike 

the protease-sensitive, a-helix-rich Prpc (refs. 4-6). As a distinct 

structural isoform of PrP, one would anticipate that Prpsc should 

possess unique conformational epitopes. A 'shotgun' immunization 

of PrP-nuli mice with recombinant bovine PrP has yielded a single 

putative IgM monoclonal antibody to Prpsc (ref. 7), the specificity of 

which has not been confirmed outside of the reporting laboratory 

(refs. 8,9 and data not shown). We now report that antibody access to 

the PrP repeat motif Tyr-Tyr-Arg defines a Prpsc-selective epitope. 

RESULTS 

PrP tyrosine exposure is dependent on conformation 

Prpsc is poorly soluble and tends to aggregate under physiological con­

ditions4-6, properties often associated with molecular surface expo­

sure of hydrophobic amino-acid side chains. We hypothesized that 

side chains not normally exposed to solvent might participate in the 

formation of unique immunological epitopes for selective antibody 

recognition of Prpsc. Low-pH treatment of recombinant PrP induces 

increased ~-sheet content and promotes aggregation, perhaps model­

ing aspects of the conformational conversion of Prpc to Prpsc in dis­

ease (refs. 10-12 and data not shown). We now report that low-pH 

treatment of full-length recombinant mouse PrP is accompanied by 

increased solvent exposure of tyrosine side chains, as indicated by 

increased tyrosine-specific fluorescence (Fig. la) and enhanced access 

to the collisional quenching agent acrylamide l3 (Fig. Ib). In contrast, 

tryptophan-specific fluorescence was unchanged at low pH (Fig. la), 

with no observable change in acrylamide fluorescence quenching 

(data not shown). As virtually all tyrosine residues reside in the C-ter-

l Caprion Pharmaceuticals Inc., 7150 Alexander-Fleming, St-Laurent , Quebec H4S 2C8, Canada. 21DEXX Laboratories Inc., 1 IDEXX Drive , Westbrook, Maine 04092 , 

USA. 3The Nat ional Creutzfeldt-Jakob Disease Surveillance Un it , Western General Hospital , Crewe Road , Ed inburgh EH4 2XU , UK . 4USDA-ARS-ADRU , 3003 ADBF, 

Washington State University, Pullman, Washington 99164-6630 , USA. 5Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, 610 

University Avenue, Toronto , Ontario M5G 2M9 , Canada . 6Centre for Research in Neurodegenerat ive Diseases, 6 Queen 's Park Crescent West , University of Toronto , 

Toronto, Ontario M5S 3H2, Canada. 7Sunnybrook & Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 

3M5 , Canada . BDeceased . 9Present address: Vertex Inc., 130 Waverly Street, Cambridge , Massachusetts 02139-4242 , USA. Correspondence should be addressed to 

N .R.C. (nei l.cashman@utoronto.ca) . 
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14 ,-------------------, H urn an I --MANLGCWML VL FVA TWS DLGLCKKRPK PGG-WNTGGSR Y FGQGS PGGNR Y P PQGGGGWSQPHGGGWGQ PHGGGWGQP HGGGWSQ PHGGG-WGQ-GGG 
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Figure 1 Conformational changes in PrP are associated with solvent exposure of tyrosine side chains. 

(a) pH-induced changes in tyrosine (e) and tryptophan (0 ) fluorescence of recombinant PrP. (b) pH­

dependent changes in acrylamide quenching of tyrosine residues of PrP(23- 2311 against acrylamide 

concentration . The increased slope of the Stern-Volmer plots at pH 3 (.) compared with pH 7 (0) 

indicates that the tyrosyl groups are more accessible to acrylamide at lower pH. Plots represent the 

ratio between fluorescence in the absence (fo) and presence (f) of acrylamide . (c) Conserved Tyr-Tyr-X 

motifs (boxes) in aligned amino-acid sequences of human, sheep, mouse, hamster and bovine PrP. 

IAcrylamidel (M) 

minal two-thirds of PrP, changes in tyrosine solvent access are proba­

bly indicative of conformational changes in this 'structured 

domain'14-16, which also contributes to the infectious, protease-resist­

ant fragment of Prpsc (refs. 4- 6). 

Tyr-Tyr-Arg antibodies selectively recognize Prpsc 

The majority of tyrosine residues in the structured domain of PrP 

appear in pairs conserved across mouse, hamster, sheep, bovine and 

human PrP (Fig. lc). Two tyrosine pairs, located in a-helix 1 and ~­

strand 2, are found in conjunction with a C-terminal arginine 

(human sequence residues 149-151 and 162-164, respectively), 

whereas a tyrosine pair at the C terminus of helix 3 (residues 

225-227) is flanked by a C-terminal aspartate in mouse and hamster 

or a glutamine in sheep, bovine and human PrP. We reasoned that the 

increased solvent exposure of tyrosyl side chains in ~ - sheet - rich 

recombinant PrP might involve at least one such bi- tyrosine motif. 

Furthermore, if recombinant ~-sheet-rich models some structural 

features of Prpsc (refs. 10-12), antibody access to one or several Tyr­

Tyr-X motifs may provide a Prpsc-selective conformational epitope. 

To test this hypothesis, rabbits were immunized with Tyr-Tyr-Arg­

NH2 peptides coupled through an N-terminal cysteine residue to 

keyhole limpet hemocyanin (KLH) . Purified rabbit IgG fractions 

were conjugated to magnetic beads and used in immunoprecipita­

tion experiments with normal and prion-infected brain 

homogenates (see Supplementary Methods online) . This bead-con­

jugated antibody (designated C2) specifically immunoprecipitated 

Prpsc from ME7 scrapie-infected mouse brain homogenates (Fig. 2a, 

lanes 11 and 12; Table 1) but not Prpc from uninfected brains (Fig. 

2a, lanes 9 and 10). Additionally, the C2 polyclonal antibody 

immunoprecipitated the protease-resistant core of Prpsc 

(PrP(27-30)) from protease K-treated mouse scrapie brain 

homogenates (Fig. 2a, lane 12), indicating that its reactivity was not 

directed against the protease-sensitive domain of Prpsc (residues 23 

to -90) or against a protease-sensitive coprecipitated protein. As 

controls, magnetic beads coupled with monoclonal antibody 6H4, 

which recognizes an epitope present on both Prpc and Prpsc (ref. 7), 

immunoprecipitated PrP from both normal and prion-infected 

brain (Fig. 2a, lanes 1-4), whereas beads coupled to BSA (Fig. 2a, 

lanes 5-8) or preimmune sera (Table 1) precipitated neither PrP iso-
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form. Similar results were obtained with goat polyclonal IgG against 

KLH -Cys-Tyr-Tyr-Arg (Table O. 

Table 1 Species reactivity of Prpsc-selective Tyr-Tyr-Arg antibodies 

Polyclonals 

Rabbit C2 

Goat p165 

Monoclonals 

lA12 

17D10 

17D4 

16A18 

20A13 

1A7 

3A2 

9A4 

12A5 

12Bl 

Recombinants 

16A18 

20A13 

1A7 

9A4 

12A5 

Control antibodies 

Rabbit pre 

Goat pre 

4E4 IgM 

10D41gM 

115 IgM 

Mouse 

++ 

++ 

++ 

++ 

++ 

++ 

+ 

++ 

+ 

++ 

++ 

++ 

++ 

++ 

+ 

++ 

++ 

Hamster 

+ 

+ 

++ 

++ 

++ 

++ 

+ 

+ 

++ 

++ 

++ 

++ 

ND 

ND 

ND 

ND 

ND 

Sheep 

ND 

ND 

++ 

+ 

+ 

+ 

+ 

++ 

+ 

++ 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

Bovine 

ND 

ND 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

++ 

+ 

++ 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

Human 

ND 

ND 

++ 

++ 

++a 

ND 

ND 

ND 

+ 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

Tyr-Tyr-Arg antibodies recognize Prpsc from prion-infected brains of multiple 
species. Reactivity (graded - , + or ++) was compiled from at least three brain 
immunoprecipitat ions. ND , not determ ined; pre, pre- immune sera . We used 
mouse prion strains ME? and 139A, hamster strain 263K and human prion 
disease strains variant CJD, classical sporad ic CJD and GSS . aCJD and GSS only. 
bVariant CJD only. 
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We next generated Tyr-Tyr-Arg mono­

clonal antibodies by immunizing BALB/c 

mice with KLH conjugated to the peptide 

CYYRRYYRYY (this peptide sequence was 

chosen because one PrP bi-tyrosine motif is 

flanked by arginine at both Nand C termini). 

Sixty monoclonal antibodies were selected by 

ELISA screening against the Tyr-Tyr-Arg 

antigen coupled to a backbone comprising 

branched lysines (four-branch multiple anti­

gen peptide; 4-MAP). Ten monoclonal anti­

bodies binding 4-MAP-Tyr-Tyr-Arg, but not 

control 4-MAP-Ala-Ala -Ala, were tested for 

Prpsc-specific recognition by immunopre­

cipitation as described above. All ten mono­

clonal antibodies displayed Prpsc-specific 

immunoprecipitation from scrapie-infected 

ME7 and 139A mouse brain or 263K 

infected hamster brain, and from naturally 

prion-infected sheep and cattle (Table 1). 

Some monoclonal antibodies preferentially 

recognized Prpsc from a subset of these 

species, suggesting that the monoclonal anti­

bodies did not recognize identical epitopes, a 

findingsupported by peptide competition 

experiments (see below). Immuno­

precipitation studies performed with two 

monoclonal antibodies (lA12 and 17D10) 

are shown (Fig. 2b). Magnetic beads 

ARTICLES 

a 6H4 BSA C2 c vCJD OND 
_1 ___ 2 ___ 3_ ,Mg>...6Q.. ....E.§.. 

30koa-[I!]O 
N Sc N Sc N Sc 

-=-+ -- --+ ~ ~ -=-+ 

30 koa-I I I . _ _!! -30kOa 
~ 1 ~ 2 ~~ 3 - 4~~ 5 ~ 6 ~ 7 ~ 8 ~ 9 ~ 1 ~ 0 ~ 11 ~ 1 ~ 2 

d GSS CJD 

b PK IP PK IP PKIP PK IP PK IP 
N Sc N Sc N Sc 

30 k oa -~1 _ ___ I 30 kDa-1 I Mouse 

1==========9 
30 kDa-l- I Hamster 

30 kDa-l. - IShee p 
e 

30 kDa-11il I ~Bovine 

Figure 2 Tyr-Tyr-Arg antibodies selectively recognize Prpsc. (a) Rabbit polyclonal antibody (C2) 

selectively immunoprecipitates Prpsc and PrP(27- 30) but not Prpc C2-conjugated magnetic beads were 

incubated with normal (N) or scrapie-infected (Sc) mouse brain homogenate with (+) or without H 
proteinase K (PK) treatment. (b) Monoclonal antibodies 1A12 and 17DlO selectively immunoprecipitate 

Prpsc from experimentally and naturally infected prion disease brain, but not Prpc from uninfected brain . 

4E4, isotype-control monoclonal antibody. (c) 17D10 immunoprecipitates Prpsc from variant CJD 

(vCJD)-infected brain (1 , 2 , 3) but not Prpc from brains with other neurological disease (OND; MCl, 

multifocal calcifying leucoencephalopathy; AD, Alzheimer disease; PS, paraneoplastic syndrome) +, 

17D10; -, 4E4 immunoprecipitations. (d) Efficiency comparison of PK resistance and Tyr-Tyr-Arg 

immunoprecipitation (monoclonal antibody 16A18) from equivalent samples of frontal (1 - 4, 7, 8) and 

cerebellar (5, 6, 9 , 10) regions of a CJD and a GSS brain . (e) Chimeric dog-mouse Prpk specific IgG 

selectively precipitates Prpsc, but not Prpc, from scrapie-infected mouse brain homogenate. 

Immunoprecipitated PrP was detected by immunoblotting with 6H4 (a,b,e) or 3F4 (c,d). 

coupled to the positive control monoclonal antibody 6H4 immuno­

precipitated PrP from both normal and prion-infected tissues, 

whereas beads coupled to three isotype-control monoclonal anti­

bodies immunoprecipitated neither PrP isoform (Fig. 2b and Table 

1). In addition, monoclonal antibodies to Tyr-Tyr-Arg selectively 

immunoprecipitated Prpsc from prion-infected human brain 

homogenates (two classical sporadic CJD, one GSS, and three variant 

CJD) but did not immunoprecipitate PrP from 12 brains of other 

neurological diseases (Fig. 2c,d, Table 1 and data not shown) . Direct 

efficiency comparison of the sensitivity of protease K digestion and 

Tyr-Tyr-Arg monoclonal antibody immunoprecipitation showed 

comparable signal in most species and brain regions (Fig. 2a,d) but 

revealed that selected prion disease brains contain immunoprecipi­

tatable PrP, which is poorly resistant to protease K (Fig. 2d and data 

not shown). 

Although Prpsc-specific polyclonal IgG antibodies to Tyr-Tyr-Arg 

have been successfully raised in rabbits (Fig. 2a) and goats (data not 

shown), all mouse monoclonal antibodies to Tyr-Tyr-Arg produced to 

date have been IgMs, even at the screening stage. In order to exclude 

the possibility that Prpsc recognition is a low-affInity interaction 

dependent on the high avidity conferred by ten IgM antigen-binding 

sites, we constructed and expressed chimeric IgG monoclonal anti-

a 

4E4 

N Sc 

a 
N C 

.... 

N Sc 

a 
N C 

.... 

1
17010 

9 1 0 11 12 L 1'"'3----:1""'4-""'1'::'5 -'-16,.J 

b 16A18 beads (Il l ) 
d 

Treated + + + + 

6R4 1Ai2 1704 4E4 
- PK +PK - PK +PK 17D10 1A12 

Precipitated Supernatant 

Figure 3 Characterization of Prpsc-selective antibodies. (a) Prpsc-selective antibodies and 6H4 recognize different sites on Prpsc. Normal (N) or scrapie­

infected (Sc) hamster brain homogenates were incubated with unconjugated controllgM 4E4 (lanes 1- 4) , 6H4 (lanes 5- 8) , 1A12 (lanes 9- 12) or 17DlO 

(lanes 13- 16), followed by immunoprecipitation with rnagnetic bead-conjugated 6H4 (lanes 1, 2 , 5 , 6 , 9 , 10, 13 and 14), 1A12 (lanes 3 , 7 , 11 and 15), 

or 17D10 (lanes 4,8, 12 and 16). (b) Saturability of Tyr-Tyr-Arg monoclonal antibody binding. A fixed quantity of 263K scrapie brain homogenate was 

probed with a titration of 16A18 rnonoclonal antibody beads followed by PK digestion. PrP(27- 30) signal is proportional (irnrnunoprecipitates directly, 

supernatants indirectly) to bead quantity. (c) 17D10 and 1A12 epitope characterization. ELISA data are presented as percent inhibition of binding 

compared to binding without peptide (. , 4-MAP YYR ; D, 4-MAP YAR ; , 4-MAP YYA ; . , 4-MAP AAA) . Shown are means ± s.d . (n = 3) . (d) Monoclonal 

antibodies 1A12 and 17D10 selectively immunoprecipitate partially denatured human brain PrP. lanes 2 , 4 , 6 , 8: acidic pH- and guanidine HCI-treated 

brain samples; lanes 1, 3, 5, 7 : mock-treated samples. Immunoprecipitated PrP was detected by immunoblotting with 6H4 (a- c) or 3F4 (d). 
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bodies from recombinant light- and heavy-chain variable regions of 

five different Tyr-Tyr-Arg monoclonal antibodies in a dog IgG frame­

work l ? All five recombinant bivalent IgG antibodies retained selective 

immunoprecipitation activity against Prpsc (Fig. 2e and Table 1), con­

sistent with a relatively high -affinity recognition of Prpsc by the native 

IgM monoclonal antibodies. Tyr repeats have been reported to define a 

dominant B-cell epitope 1S, suggesting that the highly skewed IgM 

monoclonal antibody frequency we observed may be the result of a 

specific mouse immune response to Tyr-Tyr-Arg antigens. 

The Prpsc Tyr-Tyr-Arg epitope is saturable a nd spec ific 

We carried out antibody competition experiments to test the 

immunological authenticity of the Prpsc-selective Tyr-Tyr-Arg epi­

tope (Fig. 3a). Scrapie-infected hamster brain homogenates were 

incubated overnight with soluble Tyr-Tyr-Arg monoclonal antibodies 

lA12 and l7DlO, or the nondistinguishing PrP antibody 6H4, or the 

control antibody 4E4. These homogenates were then subjected to 

immunoprecipitation with the same series of antibodies covalently 

coupled to magnetic beads. Whereas pretreatment with soluble lA12 

or l7DlO inhibited the immunoprecipitation of Prpsc by either bead­

conjugated Tyr-Tyr-Arg monoclonal antibody, neither soluble 6H4 

nor 4E4 monoclonal antibodies blocked Prpsc immunoprecipitation 

by lA12 and l7DlO. Similarly, lA12 and l7DlO did not block the 

immunoprecipitation of Prpc or Prpsc with 6H4, despite the overlap 

of the reported 6H4 epitope and a Tyr-Tyr-Arg motif in helix 1 

(ref. 7). The saturability of the Prpsc-monoclonal antibody interac­

tion was also tested by titration of 263K hamster scrapie brain 

896 

Figure 4 Tyr-Tyr-Arg antibodies detect Prpsc in diagnostic platforms and 

tissues. (a) Mouse Prpsc detected in a 96-well capture format using 

monoclonal antibody- conjugated beads (Tyr-Tyr-Arg monoclonal antibodies 

16A18, 1A7, 9A4, 12A5, 12B1; isotype-control monoclonal antibody 4E4) 

and an isoform-nondiscriminating rabbit polyclonal antibody to PrP N 

terminus (., scrapie; D , control). Results displayed as absorbance (00) at 

450 nm . (b) Tyr-Tyr-Arg antibodies recognize low concentrations of Prpsc in 

ME7-infected mouse spleen . Top, normal (N) and scrapie-infected (Sc) 

mouse brain and spleen homogenates were mock- (-) or protease K (PK)­

digested (+) and PrP isoforms were revealed by 6H4 immunoblot. Bottom, 

Tyr-Tyr-Arg monoclonal antibodies lA12 and 17010 selectively precipitate 

Prpsc from scrapie-infected mouse spleen. (c) Tyr-Tyr-Arg monoclonal 

antibody 9A4 recognizes a population of dendritic cells from scrapie­

infected sheep lymph nodes. C058+C045RO- retropharyngeal lymph node 

cells from scrapie-infected and normal sheep stained with 9A4 or control 

monoclonal antibody 4E4 . 

homogenate with Tyr-Tyr-Arg l6Al8-conjugated beads (Fig. 3b), 

showing that bead quantity is proportional to Prpsc and PrP(27-30) 

content of immunoprecipitates and supernatants. These data are con­

sistent with specific and saturable immune recognition of a discrete 

Prpsc epitope by antibodies to Tyr-Tyr-Arg. 

To further characterize the Tyr-Tyr-Arg epitope, the fine specifici­

ties of lA12 and l7DlO were determined in a peptide competition 

ELISA system (Fig. 3c) . As expected, the two Tyr-Tyr-Arg mono­

clonal antibodies bound to plate-immobilized 4-MAP-Tyr-Tyr-Arg, 

but the isotype-control monoclonal antibody 4E4 and the isoform­

nonspecific monoclonal antibody 6H4 did not (data not shown). 

Plate binding of IA12 and l7DlO was efficiently inhibited by soluble 

4-MAP-Tyr-Tyr-Arg, but not by 4-MAP-Ala-Ala-Ala. Tyr-Tyr-Ala 

conjugate did not compete for binding of lA12 or 17DlO, whereas 

Tyr-Ala-Arg conjugate partially competed for the binding of l7DIO, 

but not lA12. These data suggest that lA12 and l7DlO possess over­

lapping, but not identical, specificities in which all three amino-acid 

side chains participate in epitope recognition, although access to the 

terminal tyrosine and arginine residues may be more important than 

the central tyrosine. 

Our data indicate that the Prpsc-specific Tyr-Tyr-Arg epitope must 

be cryptic in Prpc, but exposed to antibody binding in Prpsc. Efforts 

to immunoprecipitate p-sheet-rich recombinant mouse PrP treated 

at low pH (Fig. la,b) revealed that this preparation bound non­

specifically to all tested antibodies, including isotype-control mono­

clonal antibodies (data not shown) . However, Prpc in normal 

human and mouse brain homogenates treated under identical con­

ditions l9 acquires the Tyr-Tyr-Arg epitope (Fig. 3d and data not 

shown), suggesting that the tripeptide epitope is exposed when PrP is 

partially denatured in the context of native post-translational modi­

fications (including two N-linked glycans and a glycosyl-phos­

phatidylinositol anchor). 

PrPSc Tyr-Tyr-Arg reactivity is platform-independent 

Using a 96-well sandwich ELISA system, we observed Prpsc detection 

sensitivity with Tyr-Tyr-Arg monoclonal antibodies for capture, and 

a pan-PrP N-terminus polyclonal antibody for detection (Fig. 4a). In 

these experiments, scrapie-to-normal ratios ranged up to 25-fold for 

the panel of monoclonal antibodies tested, using a I,OOO-foid final 

dilution of mouse ME7 scrapie brain. These data suggest that Tyr­

Tyr-Arg antibodies may be useful in a robust high-throughput 

immunodetection system targeted against native Prpsc. 

Several important natural prion diseases (such as scrapie and vari­

ant CJD) are accompanied by agent accumulation in biopsy-accessi-
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ble peripheral lymphoid tissues. In mouse spleen, however, prion 

titers are at least 3-4 logs lower than those in brain 20,21, and 

PrP(27-30) load in moribund animals is estimated to be at least 1-2 

logs less than that of brain21 ,22. Despite low levels of Prpsc in spleen 

compared with brain (Fig. 4b, upper panel), Tyr-Tyr-Arg mono­

clonal antibodies 17DI0 and lA12 immunoprecipitated Prpsc from 

this tissue, but not Prpe (Fig. 4b, bottom panel). These data indicate 

that the sensitivity of the Tyr-Tyr-Arg monoclonal antibodies is suf­

ficient to maintain PrP isoform specificity even in the presence of 

high concentrations of heterologous proteins. 

In diseases accompanied by lymphoid replication of prions, Prpsc 

preferentially accumulates in follicular dendritic cells (FDCs)23-25. 

Retropharyngeal lymph node dendritic cells (CD45RO-CD5S+) 

from three of three scrapie-infected sheep displayed Tyr-Tyr-Arg 

surface immunoreactivity with the monoclonal antibody 9A4 

(S-29% of cells), but not the 4E4 isotype-control monoclonal anti­

body (0-0.4%), whereas similar cells from three uninfected sheep 

did not stain with either monoclonal antibody (Fig. 4c). No signifi­

cant Tyr-Tyr-Arg surface immunoreactivity was observed on sheep 

or rodent lymphocytes, or on dissociated brain cells from end-stage 

ME7 scrapie-infected mice (data not shown), suggesting that FDCs 

may selectively accumulate cell-surface Prpsc. 

DISCUSSION 

We believe that the Tyr-Tyr-Arg motif constitutes the first hypothesis­

driven Prpsc-selective epitope derived from consideration of isoform­

selective antibody accessibility to amino-acid side chains exposed 

during conformational conversion in prion diseases. Tyr-Tyr-Arg 

antibodies, in addition to recognizing the protease-resistant PrP that 

is key to most current diagnostic tests for prion infection, can also 

recognize misfolded but protease-sensitive PrP (Figs. 2d and 3c and 

data not shown) . In prion disease, the latter, newly recognized molec­

ular species26 is characteristic of certain prion strains27, early prion 

infection2o-22 and interspecies prion transmission28. Protease-sensi­

tive Prpsc may represent a transient intermediate between normal 

structure and the abnormal, misfolded and aggregated PrP isoform 

that has acquired protease resistance29. The population of misfolded 

protease-sensitive molecules may also contain PrP*, the hypothetical 

PrP isoform responsible for the property of prion infectivity3o. 

We showed surface immunoreactivity for Tyr-Tyr-Arg on living 

dendritic cells from scrapie-infected sheep lymph nodes, suggesting 

that Prpsc can be maintained in the native (infectious) conformation 

on these cells. FDCs are implicated in the immune presentation to B 

cells of native-structure antigens, complexed at the cell surface with 

antibody or complement or both31. Recent studies have shown a role 

for complement components32,33 and B cells34 in lymphoid replica­

tion and subsequent neuroinvasion of prions. It is thus possible that 

native Prpsc, perhaps complexed with complement, may accumulate 

on FDCs for immune presentation to other lymphoid cells, which 

become concurrently infected with prions. Immune presentation of 

Prpsc must be ineffectual, as no antiprion humoral or cellular 

immune response has been detected in prion infection35. 

The Prpsc-selective Tyr-Tyr-Arg epitope may prove useful in 

immunotherapy or immunoprophylaxis of prion diseases. Recent 

findings show that antibodies directed predominantly against Prpe 

can clear scrapie-infected cells ofPrpsc in vitro36,37 and can block the 

propagation of experimental scrapie in transgenic mice in vivo9• 

However, autoimmune recognition of Prpe could cause inappropri­

ate activation of signaling cascades38, immunosuppression39 and 

widespread complement-dependent cellular lysis40, although in 

some experimental paradigms such antibodies are apparently toler-
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ated9,41. Considering the key role of dendritic cells in scrapie, BSE 

and variant CJD23,24,25, and the immunologic recognition of den­

dritic cell-surface Prpsc by Tyr-Tyr-Arg antibodies in physiological 

buffers (Fig. 4c), it is conceivable that circulating Tyr-Tyr-Arg anti­

bodies could block prion neuroinvasion by neutralizing or opsoniz­

ing gut or lymphoid prions during the peripheral incubation phase 

of these diseases. 

The isoform-selective exposure of Tyr-Tyr-Arg may help deter­

mine the structure of Prpsc, for which only low-resolution fragmen­

tary structures are currently available42. The three Tyr-Tyr-X motifs 

of PrP are apparently obscured to antibody recognition in Prpe by 

tertiary structural elements14- 16 and native post-translational modi­

fications . We believe that the best candidate for the Prpsc-selective 

epitope is the Tyr-Tyr-Arg motif located in the Prpe ~ - strand 2. In 

support of this idea, Tyr-Tyr-Arg monoclonal antibody binding is 

not inhibited by 6H4 antibody (recognizing an overlapping epitope 

in a-helix 1; ref. 7), Tyr-Tyr-Arg monoclonal antibody binding 

seems to be critically dependent on the terminal arginine residue 

(lacking in the Tyr-Tyr-Gln and Tyr-Tyr-Asp sequences of a-helix 3), 

and antibody access to the C terminus of native PrP (a-helix 3) does 

not differ for Prpe and Prpsc (ref. 43). Moreover, considering that 

access to all three side chains is necessary for Tyr-Tyr-Arg antibody 

binding, we speculate that ~-strand 2 becomes exposed in disease as 

a result of the dissolution of the short ~ - sheet of Prpe. This notion is 

consistent with experimental data indicating that Prpsc has features 

of a molten globule 12,44 lacking some of the tertiary structural ele­

ments of Prpe. 

The prion diseases may provide a prototype for disorders of pro­

tein misfolding, including Alzheimer disease, amyotrophic lateral 

sclerosis and Parkinson disease. We hypothesize that conformational 

conversion of proteins in disease is accompanied by molecular sur­

face exposure of previously sequestered amino-acid side chains. It is 

possible that exploitation of this 'side-chain accessibility' hypothesis, 

applied here to isoform-selective antibodies for PrP, may provide 

new diagnostic and therapeutic approaches to other post-transla­

tional disorders of the proteome. 

METHODS 

Tyrosine and tryptophan fluorescence at varying pH. Recombinant mouse 

PrP(23- 23!) (400 nM; gift ofK. Qin and D. Westaway, University of Toronto) 

dissolved in 1.5 M guanidine hydrochloride (Sigma), 2 mM sodium phos­

phate (Sigma) and 2 mM sodium citrate (Sigma) buffers was monitored by 

steady-state fluorescence using a 2 nm bandpass. The excitation and emission 

wavelengths were 275 nm and 310 nm for tyrosine fluorescence and 293 nm 

and 350 nm for tryptophan fluorescence measurements, respectively. 

Acrylamide quenching of tyrosine fluorescence. PrP(23- 23 J) (400 nM) in 

1.5 M guanidine hydrochloride, 2 mM sodium phosphate and 2 mM sodium 

citrate was titrated with increasing concentrations of acrylamide (Sigma) at 

pH values of 7 and 3. Tyrosine fluorescence was measured using an excitation 

wavelength of275 nm (bandpass of2 nm ) and an emission wavelength of 311 

nm (bandpass of 7 nm) . Stern-Volmer plots were obtained by plotting the 

ratio of the observed fluorescence in the absence of acrylamide to the fluores­

cence in the presence of acrylamide. 

Antibody generation. Polyclonal antibody C2 was produced by immunizing 

rabbits with KLH-conjugated Cys-Tyr-Tyr-Arg peptide. IgG from sera were 

purified on a protein A-Sepharose column (Pharmacia Amersham). 

Monoclonal antibodies were developed by immunizing and thrice boosting 

mice with KLH-conjugated CYYRRYYRYY peptide, in Freund complete 

adjuvant. Initial screening was done by testing antibody reactivity on 4-MAP­

Tyr-Tyr-Arg-coated plates. Positive IgM was purified by size fractionation 

from ascites fluid . Monoclonal antibody variable regions were cloned into a 
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dog IgG framework from cDNA produced from hybridomas by PCR amplifi­

cation. Light- and heavy-chain variable regions were amplified using forward 

primers specific to the leader sequences and reverse primers specific to the 

first exon of the constant regions. Dog light- and heavy-chain constant 

regions were amplified in a similar fashion. PCR products were annealed and 

amplified using primers specific to the outer ends. Overlapped light- and 

heavy-chain PCR fragments were cloned into pcDNA3 vectors. Plasmid DNA 

was transfected into 293 cells, at a 3:1 Iight-to-heavy chain molar ratio, using 

Lipofectamin2000 (Invitrogen) under standard conditions. Recombinant 

chimeric IgGs were purified on protein A- Sepharose. A polyclonal nondistin­

guishing antibody against PrP was produced by immunizing rabbits with a 

peptide corresponding to residues 23- 56 of bovine PrP. IgG was purified 

from sera as described above. 

Preparation of acidic guanidine-HCI- treated PrP. We mixed 100 fll of 10% 

brain homogenate with an equal volume of 3.0 M guanidine HCI (final con­

centration 1.5 M) in PBS at pH 7.4 or pH 3.5 adjusted with 1 N HCl, followed 

by incubation at room temperature with shaking. After 5 h, samples were 

mixed with five volumes of prechilled methanol and incubated at - 20°C for 

2 h to precipitate the proteins. The samples were subjected to centrifugation 

at 16,000 g for 20 min at 4 °C to remove the acidic buffer and guanidine HC!, 

and pellets were resuspended in 100 fll of lysis buffer. The samples treated at 

pH 7.4 were designated as mock-treated samples. 

Peptide ELISA. Hybridoma supernatants were produced by culturing 

hybridoma cells in DMEM (Wisent) supplemented with 20% FBS (Wisent). 

The culture medium was separated from the cells by centrifugation (1,000 g) 

for 10 min. Supernatants were diluted one-third in medium with 10% FCS 

and incubated with the indicated 4-MAP-peptide conjugates at 1 mg/ml final 

concentration for 2 h at 20- 24 0c. Immulon-4 96-well plates (Dynex) were 

coated with 100 fll of peptide diluted to 10 flg/ml in 100 mM carbonate buffer 

(pH 9.6). The coated plates were blocked with PBS and 1 % BSA (Sigma) for 

2 h at room temperature. The supernatant mixtures were added to the 

4-MAP-Tyr-Tyr-Arg- coated plates for 30 min. After 6- 8 washes with PBS and 

0.5% Tween 20, bound antibody was revealed using a horseradish peroxi­

dase-labeled goat antibody to mouse immunoglobulin, diluted 1 :3,000. 

Bead ELISA. Five microliters of mouse 10% brain homogenates were incu­

bated with 15 fll of magnetic bead-conjugated antibodies to Tyr-Tyr-Arg in 

0.2 ml of immunoprecipitation binding buffer for 2 h at 20-24 °C with shak­

ing. Washes were done in a similar fashion to the usual immunoprecipitation. 

Captured PrpSe was detected with purified rabbit IgG to PrP, followed by 

horseradish peroxidase- labeled donkey antibody to rabbit immunoglobulin 

(jackson), diluted 1:1,000. 

Flow cytometry. Fresh retropharyngeal lymph nodes from normal and 

scrapie-infected sheep were processed as modified from ref. 45. The tissue was 

dissected into small chunks and incubated three times, at 37 °C for 15 min, 

with a solution containing 0.15 mg/ml Blenzyme I (Roche Diagnostics) and 

0.03 mg/ml DNase I (Roche Diagnostics). Viable lymph node cells were 

sequentially incubated for 15 min on ice with normal mouse serum, antibody 

to sheep CDS8 (VMRD, Inc.), phycoerythrin-conjugated goat antibody to 

mouse IgGI (Southern Biotech Associates), antibody to sheep CD45RO 

(VMRD, Inc.), biotin-conjugated goat antibody to mouse IgG3 (Southern 

Biotech Associates), phycoerythrin-Cy5-conjugated streptavidin (Serotec) 

and 10 flg/ml of either a Prpse-specific antibody or the isotype control, fol­

lowed by FITC-conjugated goat antibody to mouse IgM (Southern Biotech 

Associates) . All antibody dilutions and washes were done using Dulbecco PBS 

supplemented with 2.5% FBS. 

Note: Supplementary information is available on the Nature Medicine website. 
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