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A PRIORI ERROR ANALYSIS FOR DISCRETIZATION OF SPARSE
ELLIPTIC OPTIMAL CONTROL PROBLEMS IN MEASURE SPACE∗
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Abstract. In this paper an optimal control problem is considered, where the control variable
lies in a measure space and the state variable fulfills an elliptic equation. This formulation leads to
a sparse structure of the optimal control. In this setting we prove a new regularity result for the
optimal state and the optimal control. Moreover, a finite element discretization based on [E. Casas,
C. Clason, and K. Kunisch, SIAM J. Control Optim., 50 (2012), pp. 1735–1752] is discussed and
a priori error estimates are derived, which significantly improve the estimates from that paper.
Numerical examples for problems in two and three space dimensions illustrate our results.
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1. Introduction. In this paper we consider the following optimal control
problem:

(1.1) Minimize J(q, u) =
1

2
‖u− ud‖2L2(Ω) + α‖q‖M(Ω), q ∈ M(Ω),

subject to

(1.2)

{
−Δu = q in Ω,

u = 0 on ∂Ω.

Here, Ω ⊂ R
d (d = 2, 3) is a convex bounded domain with a C2,β-boundary ∂Ω.

The control variable q is searched for in the space of regular Borel measures M(Ω),
which is identified with the dual of the space of continuous functions vanishing on the
boundary C0(Ω). The state variable u is the solution of the state equation (1.2); see
the next section for the precise weak formulation. The desired state ud is in L2(Ω);
see also further assumptions (ud ∈ Lp(Ω) or ud ∈ L∞(Ω)) below. The parameter α is
assumed to be positive.

This problem setting with the control from a measure space was considered in [11],
where it has been observed that this setting leads to optimal controls with sparse
structure. This is important for many applications; cf., e.g., [12]. For another func-
tional analytic concept utilizing the L1(Ω)-norm of the control combined with an
L2-regularization and/or with control constraints, we refer, e.g., to [20, 22, 10].

This paper is mainly concerned with the discretization of the problem (1.1)–(1.2).
In [8] a discretization concept for this problem is presented and the following error
estimates are derived:

J(q̄, ū)− J(q̄h, ūh) = O
(
h2−

d
2

)
and ‖ū− ūh‖L2(Ω) = O

(
h1−

d
4

)
,
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where (q̄, ū) is the unique solution to (1.1)–(1.2), h is the discretization parameter,
and (q̄h, ūh) is the discrete solution. Our main contribution is the improvement of
these estimates using the same discretization concept as

(1.3) J(q̄, ū)− J(q̄h, ūh) = O
(
h4−d|lnh|γ

)
and ‖ū− ūh‖L2(Ω) = O

(
h2−

d
2 |lnh|

γ
2

)
with γ = 7

2 for d = 2 and γ = 1 for d = 3. Moreover we provide an estimate for the

error in the control variable. Although one can only expect q̄h
∗
⇀ q̄ in M(Ω) (see [8]),

we derive the following estimate with respect to the H−2(Ω)-norm:

‖q̄ − q̄h‖H−2(Ω) = O
(
h2−

d
2 |lnh|

γ
2

)
.

We obtain these improved estimates with similar assumptions as in [8], employing
error estimates for the state solution in Lp(Ω) for p < 2, which are of (almost) optimal
order (see Lemma 3.3), combined with a more careful study of the regularity of the
state solutions for a measure valued right-hand side. However, the assumption on the
desired state ud needs to be slightly stronger than in [8]; see Remark 4.1 below.

The numerical examples (see section 8) indicate that the estimates (1.3) are sharp.
However, we make the following observation: In the two-dimensional case we see the
predicted order of almost O(h) with respect to the state variable in all examples.

But for the three-dimensional case, the predicted order of (almost) O(h
1
2 ) is observed

only in examples where the exact optimal control contains Dirac measures. For op-
timal controls q̄ with better regularity, we observe convergence rates similar to the
two-dimensional case. Motivated by this observation, we show in section 2 (see The-
orem 2.5) that assuming a bounded desired state ud ∈ L∞(Ω) implies that ū must
be bounded as well, which immediately rules out controls containing Dirac measures.
Another direct consequence is q̄ ∈ H−1(Ω), which allows us to show an order of
convergence of (almost) order O(h) for the state error ‖ū − ūh‖L2(Ω) independent of
dimension d; see Theorem 5.1.

We remark that these improved regularity results and the improved convergence
estimates strongly exploit the specific structure of the problem under consideration.
In a more general setting, where the control and the observation domains do not
coincide with the whole domain Ω, the optimal control may contain Dirac measures,
even if the desired state ud is bounded; see the discussion in section 6.

The paper is structured as follows. In the next section we recall the optimality
conditions from [11] and [8], discuss some consequences of them, and prove that the
optimal state ū is bounded provided that ud ∈ L∞(Ω). In section 3 we describe the
finite element discretization and derive some error estimates for the state equation.
In section 4 we prove the main estimates (1.3), and in section 5 we derive an improved
estimate resulting from additional regularity. In section 6 we discuss some extensions
of our results for the case where the control action is restricted to a subdomain Ωc ⊂ Ω
and the observation domain is another subset Ωo ⊂ Ω. In the last section we present
numerical examples illustrating our results.

Throughout we will denote by (·, ·) the L2(Ω) inner product and by 〈·, ·〉 the
duality product between M(Ω) and C0(Ω).

2. Optimality system and regularity. As the first step we recall the weak
formulation of the state equation (1.2). For a given q ∈ M(Ω) the solution u = u(q)
is determined by

u ∈ L2(Ω) : (u,−Δϕ) = 〈q, ϕ〉 for all ϕ ∈ H2(Ω) ∩H1
0 (Ω).
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It is well-known that the above formulation possesses a unique solution, which belongs
to W 1,s

0 (Ω) for all 1 ≤ s < d
d−1 ; see, e.g., [7]. Moreover, there holds the following

stability estimate.
Lemma 2.1. For each 0 < ε ≤ 1

d−1 let sε be given as

sε =
d

d− 1
− ε.

There exists a constant c independent of ε such that for all q ∈ M(Ω) and the corre-
sponding solution u of (1.2) the following estimate holds:

‖u‖W 1,sε
0 (Ω) ≤

c

ε
‖q‖M(Ω).

Proof. The estimate for ‖u‖W 1,s
0 (Ω) with an s-dependent constant is shown in [7].

To obtain the precise dependence of ε we use the continuous embedding of W
1,s′ε
0 (Ω)

into C0(Ω), where

1

s′ε
+

1

sε
= 1, s′ε > d.

From Theorem 8.10 in [2] we obtain

‖v‖C0(Ω) ≤
c

ε
‖v‖

W
1,s′ε
0 (Ω)

for all v ∈ W
1,s′ε
0 (Ω) with the constant c independent of ε. Using the result from [1]

(see also [16]), we estimate

‖∇u‖Lsε(Ω) ≤ c sup
v∈W

1,s′ε
0 (Ω)

(∇u,∇v)
‖∇v‖

Ls′ε(Ω)

= c sup
v∈W

1,s′ε
0 (Ω)

〈q, v〉
‖∇v‖

Ls′ε(Ω)

≤ c

ε
‖q‖M(Ω).

This completes the proof.
Due to the embedding of W 1,s

0 (Ω) into L2(Ω) for 2d
d+2 ≤ s < d

d−1 the cost func-
tional (1.1) is well-defined. Moreover, the solution operator mapping q ∈ M(Ω) to
u = u(q) ∈ L2(Ω) is injective and therefore the cost functional is strictly convex.
Using this fact, the existence of a unique solution (q̄, ū) to (1.1)–(1.2) can be directly
obtained; see [11] for details. The following optimality system is obtained in [11, 8].

Theorem 2.2. Let (q̄, ū) be the solution to (1.1)–(1.2). Then there exists a
unique adjoint state z̄ ∈ H2(Ω) ∩H1

0 (Ω) ↪→ C0(Ω) satisfying

(2.1)

{
−Δz̄ = ū− ud in Ω,

z̄ = 0 on ∂Ω,

and

(2.2) −〈q − q̄, z̄〉+ α‖q̄‖M(Ω) ≤ α‖q‖M(Ω) for all q ∈ M(Ω).

Furthermore this implies

(2.3) ‖z̄‖C0(Ω) ≤ α,
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the support of q̄ is contained in the set { x ∈ Ω | |z̄(x)| = α }, and for the Jordan-
decomposition q̄ = q̄+ − q̄− we have

(2.4) supp q̄+ ⊂ {x ∈ Ω|z̄(x) = −α} and supp q̄− ⊂ {x ∈ Ω|z̄(x) = α}.

Remark 2.3. The optimality condition (2.2) can be equivalently reformulated as

(2.5) (u(q)− ū, ū− ud) + α
(
‖q‖M(Ω) − ‖q̄‖M(Ω)

)
≥ 0 for all q ∈ M(Ω).

The statement of the above theorem directly implies the following corollary on
the structure of the optimal control q̄.

Corollary 2.4. There exist η > 0 depending on the data of the problem such
that

(2.6) supp q̄ ⊂ Ωη = {x ∈ Ω| dist(x, ∂Ω) > η},

and additionally

(2.7) dist(supp q̄+, supp q̄−) > η.

The first property implies that the support is compact.
Proof. The adjoint state z̄ belongs to W 1,p(Ω) with p > d and W 1,p(Ω) ↪→

C0,β(Ω̄) with some β > 0. This implies (due to the homogeneous Dirichlet boundary
conditions) the existence of η > 0 such that

|z̄(x)| < α

2
for x ∈ Ω \ Ωη.

We complete the first part of the proof using the statement on the support of q̄ from
Theorem 2.2. With a similar argument we derive the second statement, since due
to (2.4), the adjoint state attains the values ±α respectively on the support of q̄−

and q̄+.
Finally, we will derive an additional regularity for ū if the desired state ud is

bounded. This structural property is not required for the general error estimate in
section 4 and is only used for the improved estimate in section 5.

Theorem 2.5. Assume that the desired state ud is in L∞(Ω). Then the optimal
state ū is also in L∞(Ω) and there holds

‖ū‖L∞(Ω) ≤ ‖ud‖L∞(Ω).

A direct consequence of this theorem is an additional regularity for the optimal control
q̄ and for the optimal state ū.

Corollary 2.6. Assume that the desired state ud is in L∞(Ω). Then the optimal
state ū lies in H1

0 (Ω)∩L∞(Ω) and the optimal control q̄ lies in H−1(Ω). There holds

‖∇ū‖2L2(Ω) ≤ ‖q̄‖M(Ω)‖ud‖L∞(Ω) and ‖q̄‖H−1(Ω) = ‖∇ū‖L2(Ω).

In order to prove Theorem 2.5 and Corollary 2.6 we use some results from potential
theory. First, we introduce the Green’s function GΩ : Ω × Ω → R

+ ∪ {+∞} as in,
e.g., [3] or [15]. Then, for a positive measure μ ∈ M(Ω), μ ≥ 0, we define the numeric
function v∗ : Ω → R

+ ∪ {+∞} by

(2.8) v∗ = S(μ) :=

∫
Ω

GΩ(·, y)dμ(y),
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which is subharmonic and thus lower semicontinuous (see again [3]). If we normalize
GΩ by the right constant, we obtain the following simple result.

Lemma 2.7. For a compactly supported μ ∈ M(Ω), μ ≥ 0, the weak solution
v ∈ W 1,s

0 (Ω) with 1 ≤ s < d
d−1 to the problem

(2.9)
−Δv = μ in Ω,

v = 0 on ∂Ω

is equal to v∗ = S(μ) (Lebesgue-) almost everywhere.
Proof. With [3, Theorem 4.3.8] the function v∗ is a distributional solution of (2.9),

and by a density argument, it is also a weak solution, unique in an almost everywhere
sense.

With the help of the above lemma, we obtain a pointwise representative of the
optimal solution u∗ : Ω → R ∪ {−∞,∞}, defined as

u∗ := S(q̄+)− S(q̄−) = S(q̄).

Due to (2.6) the measures q̄+ and q̄− are compactly supported, and with (2.7) u∗

is well-defined with values in R ∪ {−∞,∞}. With Lemma 2.7 we easily derive that
u∗ = ū almost everywhere.

The next lemma states (roughly speaking) that if the optimal state is bounded
on supp q̄, then it is bounded everywhere on Ω by the same constant. For positive
measures in M(Ω) this statement can be directly obtained from [15, Theorem 1.6′] in
the two-dimensional case. For d = 3, the analogous theorem (see [15, Theorem 1.10])
is stated only for Ω = R

d. Therefore, we provide a direct proof.
Lemma 2.8. Let q̄ ∈ M(Ω) be the optimal control. If u∗ = S(q̄) is bounded from

above by some constant C+ ≥ 0 on supp q+, then it is bounded everywhere by C+.
Analogously, if u∗ is bounded from below by some C− ≤ 0 on supp q−, then u∗ is
bounded from below everywhere by C−.

Proof. Suppose u∗ ≤ C+ on supp q+. With (2.7) we estimate

S(q̄+) = u∗ + S(q̄−) ≤ C+ + cη‖q̄−‖M(Ω) on supp q̄+ ,

where cη = c log( 1η diamΩ) for d = 2 and cη = c
η for d = 3 due to the growth prop-

erties of the Green’s function. Thus, S(q̄+) is bounded on supp q̄+ as well. With [3,
Corollary 4.5.2] we can now construct a sequence of compact sets {Ki} with

(2.10) q̄+(supp q̄+ \Ki) → 0 for i→ ∞

such that the functions S(q̄+|Ki) are continuous. Now, we consider the solutions

ui = S(q̄+|Ki)− S(q̄−) ≤ u∗.

Recalling that −S(q̄−) is upper semicontinuous, we obtain that each ui is upper
semicontinuous as well. For each x0 on the boundary of Ω\ supp q̄+, which is a subset
of supp q̄+ ∪ ∂Ω, we have ui(x0) ≤ u∗(x0) ≤ C+ and with upper semicontinuity

(2.11) lim sup
x→x0

ui(x) ≤ C+.

Using the fact that ui is subharmonic on Ω\supp q+ and the condition (2.11) we apply
the maximum principle for subharmonic functions [3, Theorem 3.1.5] and obtain that
ui is bounded by C+ everywhere on Ω for every i.
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To complete the proof, it remains to show the convergence ui(x) → u∗(x) for all
x ∈ Ω\ supp q̄+. Let x ∈ Ω\ supp q̄+ be fixed. We denote by δ = dist(x, supp q̄+) > 0.
There holds

|ui(x)− u∗(x)| = |S(q̄+|Ki)(x) − S(q̄+)(x)| ≤ cδ q̄
+(supp q̄+ \Ki) → 0, i→ ∞,

where we have again used growth properties of the Green’s function and (2.10).
The second statement is proved completely analogously.
With these preparations we can give proofs of the claimed results.
Proof of Theorem 2.5. Assume the contrary, i.e., that we have C, ε > 0, such that

|ud| ≤ C almost everywhere in Ω, but |ū| > C + ε on some set of positive Lebesgue
measure,

|{ x ∈ Ω | ū(x) > C + ε }| > 0.

Due to Lemma 2.8 we can find some point x ∈ supp q+ where the state u∗ = S(q̄) is
larger than C+ε. Considering a ball Bη(x) of radius η around this point, we have with
Corollary 2.4 that q̄−|Bη(x) = 0 and therefore that S(q̄|Bη(x)) is lower semicontinuous.
We decompose

u∗ = S(q̄|Bη(x)) + S(q̄|Ω\Bη(x))

and obtain that S(q̄|Ω\Bη(x)) is harmonic and consequently continuous on Bη(x). This
implies the lower semicontinuity of u∗ on Bη(x). Thus, the set

{ y ∈ Bη(x) | u∗(y) > C + ε }

is open, and we can find a radius r > 0 such that ū ≥ C + ε almost everywhere in the
ball Br(x).

Note that x ∈ supp q̄+ implies z̄(x) = −α with Theorem 2.2. We define w to be
the solution to

−Δw = ε in Br(x),

w = 0 on ∂Br(x),

which is clearly strictly positive at x. Considering the minimum principle for z̃ = z̄−w
which solves

−Δz̃ = ū− ud − ε ≥ 0 in Br(x),

z̃ = z̄ on ∂Br(x),

we see that the minimum value zmin = infx∈Br(x) z̃(x) must be attained for some
x′ ∈ ∂Br(x). Comparing with the center x we find

z̄(x′) = z̃(x′) = (z̄ − w)(x′) ≤ (z̄ − w)(x) < z̄(x) = −α,

which is a violation of the bounds on the adjoint state (2.3) and thus a
contradiction.

Proof of Corollary 2.6. The result can be derived by considering a sequence of
smooth approximations to q̄, testing the corresponding state equation with the smooth
solution and a subsequential weak limit argument.
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However, the statement directly follows from a well-known classical result: Since
u∗ is Borel-measurable (as the difference of two lower semicontinuous functions) we
can pair u∗ with q̄, and since, by the previous theorem, u∗ is bounded, we obtain

‖q̄‖M(Ω)‖u∗‖L∞(Ω) ≥ 〈q̄, u∗〉 =
∫
Ω

u∗(x)dq̄(x) =

∫
Ω

∫
Ω

GΩ(x, y)dq̄(x)dq̄(y).

With [15, Theorem 1.20], this implies ∇u∗ ∈ L2(Ω) and∫
Ω

∫
Ω

GΩ(x, y)dq̄(x)dq̄(y) = ‖∇u∗‖2L2(Ω),

which implies the first part of the claim. The second assertion is evident.

3. Discretization. For the discretization of the state equation we use linear
finite elements on a family of shape regular quasi-uniform triangulations {Th}h; see,
e.g., [4]. The discretization parameter h denotes the maximal diameter of cellsK ∈ Th.
We set

Ω̄h =
⋃

K∈Th

K̄

and make the usual assumption

|Ω \ Ωh| ≤ ch2.

The finite element space associated with Th is defined as usual by

Vh = { vh ∈ C0(Ω) | vh|K ∈ P1(K) for all K ∈ Th and vh = 0 on Ω \ Ωh }.

For a given q ∈ M(Ω) the discrete solution uh = uh(q) is determined by

(3.1) uh ∈ Vh : (∇uh,∇vh) = 〈q, vh〉 for all vh ∈ Vh.

To define the approximation of the optimal control problem (1.1)–(1.2) we follow the
approach from [8] and do not discretize the control space; cf. the variational approach
by [14]. The discrete optimal control problem is then given as

(3.2) Minimize J(qh, uh), qh ∈ M(Ω) and subject to (3.1).

The existence of a solution can be shown as on the continuous level. The optimal
state ūh is unique. The discrete solution operator mapping q ∈ M(Ω) to uh(q) is not
injective and the uniqueness of the optimal control cannot be guaranteed. However,
one special solution can be identified, which is numerically accessible; see [8] and the
discussion below.

By {xi}, i = 1, 2 . . . , Nh, we denote the interior nodes of Ωh and by {ei} ⊂ Vh the
corresponding node basis functions. We introduce the space Mh consisting of linear
combination of Dirac functionals associated with the nodes xi:

Mh =

{
qh ∈ M(Ω)

∣∣∣∣∣ qh =

Nh∑
i=1

βi δxi , βi ∈ R, i = 1, 2, . . . , Nh

}

and an operator Λh : M(Ω) → Mh (see [8]) by

(3.3) Λhq =

Nh∑
i=1

〈q, ei〉 δxi .

There holds the following theorem; see [8].
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Theorem 3.1. Among the solutions to (3.2) there exists a unique solution q̄h ∈
Mh with the corresponding state ūh = uh(q̄h). Any other solution q̃h ∈ M(Ω) satisfies
Λhq̃h = q̄h. Moreover there holds

q̄h
∗
⇀ q̄ in M(Ω) and ‖q̄h‖M(Ω) → ‖q̄‖M(Ω)

for h→ 0.
For the solution (q̄h, ūh) from this theorem the following discrete version of the

optimality conditions holds, which can be derived as in the continuous case; cf. [8].
Theorem 3.2. Let (q̄h, ūh) ∈ Mh×Vh be the discrete solution; see Theorem 3.1.

Then there exists the discrete adjoint state z̄h ∈ Vh fulfilling

(∇vh,∇z̄h) = (ūh − ud, vh) for all vh ∈ Vh

and the optimality condition

(3.4) −〈q − q̄h, z̄h〉+ α‖q̄h‖M(Ω) ≤ α‖q‖M(Ω) for all q ∈ M(Ω).

The last condition can be equivalently rewritten as

(3.5) (uh(q)− ūh, ūh − ud) + α
(
‖q‖M(Ω) − ‖q̄h‖M(Ω)

)
≥ 0 for all q ∈ M(Ω);

cf. Remark 2.3.
In order to prove our main result mentioned in the introduction, we first provide

some estimates for the error u(q)− uh(q) for a fixed control q ∈ M(Ω).
Lemma 3.3. Let q ∈ M(Ω) with associated continuous and discrete states u =

u(q) and uh = uh(q) be given. Then the following holds:

(i) ‖u− uh‖Lp(Ω) ≤ cph
2− d

p′ ‖q‖M(Ω), p ∈
(
1, d

d−2

)
,

1

p
+

1

p′
= 1,

(ii) ‖u− uh‖L1(Ω) ≤ ch2|lnh|r ‖q‖M(Ω)

with r = 2 for d = 2 and r = 11
4 for d = 3.

Proof. (i) For the first estimate in case p = 2 we refer, e.g., to [6]. For a general
case, p ∈ (1, d

d−2), we set e = u− uh and

gp(x) = |e(x)|p−1 sgn(e(x)).

By a direct calculation it follows that gp ∈ Lp′
(Ω) and

‖gp‖Lp′(Ω) = ‖e‖p−1
Lp(Ω).

We consider a dual problem

w ∈ H1
0 (Ω) : (∇w,∇v) = (gp, v) for all v ∈ H1

0 (Ω)

and its Ritz projection

wh ∈ Vh : (∇wh,∇vh) = (gp, vh) for all vh ∈ Vh.

With the help of this we can write

‖e‖pLp(Ω) = (e, gp) = (∇e,∇w)
= (∇e,∇(w − wh)) = (∇u,∇(w − wh))

= 〈q, w − wh〉 ≤ ‖q‖M(Ω) ‖w − wh‖C0(Ω)
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using the Galerkin orthogonality for both errors u − uh and w − wh. By the elliptic
regularity we obtain w ∈W 2,p′

(Ω) with

‖∇2w‖Lp′(Ω) ≤ c‖gp‖Lp′(Ω)

and since p′ > 2
d , a corresponding L∞-estimate can be obtained. With an inverse

estimate we get

‖w − wh‖C0(Ω) ≤ ‖w − ihw‖C0(Ω) + ch
− d

p′ ‖ihw − wh‖Lp′(Ω),

where ih is the nodal interpolation. With well-known interpolation estimates for the
nodal interpolant in L∞ and Lp′

and a further application of the triangle inequality,
we arrive at

‖w − wh‖C0(Ω) ≤ ch
2− d

p′ ‖∇2w‖Lp′(Ω) + ch
− d

p′ ‖w − wh‖Lp′(Ω).

The optimal estimate

‖w − wh‖Lp′(Ω) ≤ cph
2‖∇2w‖Lp′(Ω)

was first given in [18], albeit only for d = 2. However, the stability of the Ritz-
projection in W 1,p′

, which is the central ingredient of the proof, is also known to hold
for d = 3 (see [4, Theorem 8.5.3]), so the proof can be repeated one for one.

Putting everything together, we obtain for the error ‖e‖Lp(Ω) the estimate

‖e‖pLp(Ω) ≤ ‖q‖M(Ω) ‖w − wh‖C0(Ω)

≤ cph
2− d

p′ ‖q‖M(Ω)‖e‖p−1
Lp(Ω),

which gives the desired result.
(ii) To obtain the second estimate, we set g1 = sgn(e) ∈ L∞(Ω). There holds

‖e‖L1(Ω) = (e, g1).

We consider a dual problem

w ∈ H1
0 (Ω) : (∇w,∇v) = (g1, v) for all v ∈ H1

0 (Ω)

and its Ritz projection

wh ∈ Vh : (∇wh,∇vh) = (g1, vh) for all vh ∈ Vh.

Then we obtain using the Galerkin orthogonality for both errors u− uh and w − wh

‖e‖L1(Ω) = (e, g1) = (∇e,∇w)
= (∇e,∇(w − wh)) = (∇u,∇(w − wh))

= 〈q, w − wh〉 ≤ ‖q‖M(Ω) ‖w − wh‖C0(Ω).

For the pointwise error in w we use the result from Frehse and Rannacher [13] for
d = 2 and Rannacher [17] for d = 3 and obtain

‖w − wh‖C0(Ω) ≤ ch2|lnh|r ‖g1‖L∞(Ω).

This completes the proof.
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Via the Sobolev embedding theorem we can easily derive an estimate of the form

‖u‖Lt(Ω) ≤ ct‖q‖M(Ω) for all t <
d

d− 2

for the continuous solutions. For the discrete solutions we can also give a result in
the limiting case for t.

Lemma 3.4. Let q ∈ M(Ω) with the discrete solution uh = uh(q) as above. Then
we have

‖uh‖L∞(Ω) ≤ c|lnh| 32 ‖q‖M(Ω) for d = 2,

‖uh‖L3(Ω) ≤ c|lnh|‖q‖M(Ω) for d = 3.

Proof. In the first step we estimate

‖uh‖L∞(Ω) ≤ c|lnh| 12 ‖∇uh‖L2(Ω) for d = 2

by the discrete Sobolev inequality (see [4, Lemma 4.9.1]) and

‖uh‖L3(Ω) ≤ c‖∇uh‖
L

3
2 (Ω)

for d = 3

by the Sobolev embedding. Defining σ = d
d−1 (σ = 2 and σ = 3

2 for two and three
dimensions, respectively), we proceed in a common way with an inverse estimate
and the stability of the Ritz projection with respect to the W 1,s-seminorm (see [4,
Theorem 8.5.3]),

‖∇uh‖Lσ(Ω) ≤ c h
d
σ− d

s ‖∇uh‖Ls(Ω)

≤ ch
d
σ− d

s ‖∇u‖Ls(Ω)

for any 1 < s < σ, where the constant c is independent of s. Then we choose
s = sε = σ − ε for 0 < ε < σ − 1, which implies that

d

σ
− d

sε
= − dε

σ(σ − ε)
> −ε dσ−1 = −ε(d− 1).

We obtain by Lemma 2.1

‖∇uh‖Lσ(Ω) ≤
c

ε
h−ε(d−1)‖q‖M(Ω).

Choosing now ε = 1
|lnh| we obtain

‖∇uh‖Lσ(Ω) ≤ c|lnh|‖q‖M(Ω),

which, together with the first estimate, completes the proof.

4. General error estimates. In the next theorem we provide an error estimate
for the error with respect to the cost functional. To state this theorem we need an
assumption on the desired state ud.

Assumption 1. We assume

ud ∈
{
L∞(Ω) for d = 2,

L3(Ω) for d = 3.



2798 KONSTANTIN PIEPER AND BORIS VEXLER

Remark 4.1. Assumption 1 is only slightly stronger than the corresponding as-
sumption in [8], where ud ∈ L4(Ω) in two dimensions and ud ∈ L

8
3 (Ω) in three

dimensions is assumed.
Theorem 4.2. Let Assumption 1 be fulfilled. Moreover let (q̄, ū) be the solution

to (1.1)–(1.2) and (q̄h, ūh) ∈ Mh×Vh be the discrete solution; see Theorem 3.1. Then
there holds

|J(q̄, ū)− J(q̄h, ūh)| ≤ c h4−d|lnh|γ

with γ = 7
2 for d = 2 and γ = 1 for d = 3.

Proof. By the optimality we obtain

J(q̄, ū) ≤ J(q̄h, u(q̄h)) and J(q̄h, ūh) ≤ J(q̄, uh(q̄)).

Consequently we have

J(q̄, ū)− J(q̄, uh(q̄)) ≤ J(q̄, ū)− J(q̄h, ūh) ≤ J(q̄h, u(q̄h))− J(q̄h, ūh).

Therefore, it remains to estimate the error with respect to the cost functional for a
fixed q ∈ M(Ω), i.e.,

|J(q, u(q))− J(q, uh(q))| =
∣∣∣∣12‖u(q)− ud‖2L2(Ω) −

1

2
‖uh(q)− ud‖2L2(Ω)

∣∣∣∣
and then to apply this estimate for both q = q̄ and q = q̄h.

For fixed q ∈ M(Ω) we now use the notation u = u(q) and uh = uh(q). There
holds

(4.1)

J(q, u)− J(q, uh) =
1

2
‖u− ud‖2L2(Ω) −

1

2
‖uh − ud‖2L2(Ω)

=
1

2
(u − uh, u+ uh − 2ud)

= −(u− uh, ud) +
1

2
‖u− uh‖2L2(Ω) + (u− uh, uh).

For the second term in (4.1) we obtain by the estimate (i) for p = 2 from Lemma 3.3

‖u− uh‖2L2(Ω) ≤ ch4−d‖q‖2M(Ω).

The other terms are estimated separately in two dimensions and in three dimensions.
The case d = 2. The first and last terms in (4.1) are estimated using (ii) from

Lemma 3.3:

(u− uh, ud) ≤ ‖u− uh‖L1(Ω) ‖ud‖L∞(Ω) ≤ ch2|lnh|2‖q‖M(Ω),

(u− uh, uh) ≤ ‖u− uh‖L1(Ω) ‖uh‖L∞(Ω) ≤ ch2|ln h|2‖q‖M(Ω)‖uh‖L∞(Ω).

Additionally, by Lemma 3.4 we have ‖uh‖L∞(Ω) ≤ |lnh| 32 ‖q‖M(Ω).

The case d = 3. Now, we use (i) for p = 3
2 from Lemma 3.3 for the remaining

terms in (4.1) to obtain

(u− uh, ud) ≤ ‖u− uh‖
L

3
2 (Ω)

‖ud‖L3(Ω) ≤ ch‖q‖M(Ω),

(u− uh, uh) ≤ ‖u− uh‖
L

3
2 (Ω)

‖uh‖L3(Ω) ≤ ch‖q‖M(Ω)‖uh‖L3(Ω).

We apply Lemma 3.4 again and complete the proof.
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Remark 4.3. Assumption 1 excludes the case where the desired state ud is given
as a Green’s function. However, for construction of irregular examples with known
exact solutions (see section 8), it is desirable to choose ud to be the solution of

−Δud = δx0 in Ω,

ud = 0 on ∂Ω

with some x0 ∈ Ω. For this choice of ud there holds

ud ∈ Lp(Ω) for all p ∈ (1,∞) for d = 2

and

ud ∈ L3−ε(Ω) for all ε ∈ (0, 1) for d = 3.

The result of Theorem 4.2 can be directly extended to this situation. In this case an
additional logarithmic term |lnh| will appear.

In the next theorem we prove the main estimate for the error in the state variable,
as announced in (1.3).

Theorem 4.4. Let the conditions of Theorem 4.2 be fulfilled. Then there holds

‖ū− ūh‖L2(Ω) ≤ ch2−
d
2 |lnh|

γ
2 .

Proof. We use the optimality condition (2.5), choose q = q̄h, and obtain

(u(q̄h)− ū, ū− ud) + α
(
‖q̄h‖M(Ω) − ‖q̄‖M(Ω)

)
≥ 0.

For the corresponding discrete optimality condition (3.5) we choose q = q̄, resulting
in

(uh(q̄)− ūh, ūh − ud) + α
(
‖q̄‖M(Ω) − ‖q̄h‖M(Ω)

)
≥ 0.

Adding these two inequalities we arrive at

(u(q̄h)− ū, ū− ud) + (uh(q̄)− ūh, ūh − ud) ≥ 0.

Rearranging the terms we obtain

(ūh − ū, ū− ud) + (u(q̄h)− ūh, ū− ud) + (ū− ūh, ūh − ud) + (uh(q̄)− ū, ūh − ud) ≥ 0,

resulting in

‖ū− ūh‖2L2(Ω) ≤ (u(q̄h)− ūh, ū− ud) + (uh(q̄)− ū, ūh − ud)

(4.2)

= (u(q̄h)− ūh, ū− uh(q̄)) + (u(q̄h)− ūh, uh(q̄)− ud) + (uh(q̄)− ū, ūh − ud).

For the first term in (4.2) we obtain by the estimate (i) for p = 2 from Lemma 3.3

(u(q̄h)−ūh, ū−uh(q̄)) ≤ ‖u(q̄h)−ūh‖L2(Ω) ‖ū−uh(q̄)‖L2(Ω) ≤ ch4−d‖q̄‖M(Ω) ‖q̄h‖M(Ω).

The second and third terms in (4.2) are estimated with the same procedure as in the
proof of Theorem 4.2, resulting in

‖ū− ūh‖2L2(Ω) ≤ ch4−d|lnh|γ .

This completes the proof.
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With help of this result, we can also provide an estimate for the error of the
control in H−2(Ω).

Corollary 4.5. Let the conditions of Theorem 4.2 be fulfilled. Then there holds

‖q̄ − q̄h‖H−2(Ω) ≤ ch2−
d
2 |lnh|

γ
2 .

Proof. For each q ∈ M(Ω) we have

‖q‖H−2(Ω) = sup
ϕ∈H2(Ω)

(q, ϕ)

‖ϕ‖H2(Ω)
= sup

ϕ∈H2(Ω)

(u(q),−Δϕ)

‖ϕ‖H2(Ω)
≤ c‖u(q)‖L2(Ω).

Thus we obtain (recall that ū = u(q̄), ūh = uh(q̄h))

‖q̄ − q̄h‖H−2(Ω) ≤ c‖u(q̄)− u(q̄h)‖L2(Ω) ≤ c(‖ū− ūh‖L2(Ω) + ‖uh(q̄h)− u(q̄h)‖L2(Ω)).

The first term is covered by Theorem 4.4, and for the second term we can apply the
a priori estimate from Lemma 3.3(i) with p = 2.

5. Improved error estimates. In the following we exploit the additional reg-
ularity derived in section 2 to provide an improved estimate under the assumption
that ud is bounded.

Theorem 5.1. For both d = 2 and d = 3, let (q̄, ū) be the solution to (1.1)–(1.2)
and let (q̄h, ūh) ∈ Mh × Vh be the discrete solution; see Theorem 3.1. Moreover let
ud ∈ L∞(Ω), which implies ū ∈ H1

0 (Ω) ∩ L∞(Ω) and q̄ ∈ H−1(Ω) with Theorems 2.5
and 2.6. Then there holds

‖ū− ūh‖L2(Ω) ≤ c h|lnh| r2

with the constant r as in Lemma 3.3.
Proof. First, we obtain an L2(Ω) estimate for ūh − ū in terms of an L∞(Ω)-error

for the adjoint state. For that, we use the optimality condition (2.2), choosing q = q̄h,

−〈q̄h − q̄, z̄〉+ α‖q̄‖M(Ω) ≤ α‖q̄h‖M(Ω),

and the optimality condition (3.4), choosing q = q̄,

−〈q̄ − q̄h, z̄h〉+ α‖q̄h‖M(Ω) ≤ α‖q̄‖M(Ω).

Adding these two inequalities results in

〈q̄h − q̄, z̄ − z̄h〉 ≥ 0.

We introduce a discrete adjoint state ẑh ∈ Vh for the continuous optimal solution
defined by

(∇vh,∇ẑh) = (ū − ud, vh) for all vh ∈ Vh

and ûh = uh(q̄), the discrete solution for the continuous optimal control. There holds

0 ≤ 〈q̄h − q̄, z̄ − z̄h〉 = 〈q̄h − q̄, z̄ − ẑh〉+ 〈q̄h − q̄, ẑh − z̄h〉
= 〈q̄h − q̄, z̄ − ẑh〉+ (∇(ūh − ûh),∇(ẑh − z̄h))

= 〈q̄h − q̄, z̄ − ẑh〉+ (ūh − ûh, ū− ūh)

= 〈q̄h − q̄, z̄ − ẑh〉+ (ū− ûh, ū− ūh)− ‖ū− ūh‖2L2(Ω).
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Rearranging terms and using Young’s inequality we obtain

‖ū− ūh‖2L2(Ω) ≤ ‖q̄h − q̄‖M(Ω)‖z̄ − ẑh‖L∞(Ω) +
1

2
‖ū− ûh‖2L2(Ω) +

1

2
‖ū− ūh‖2L2(Ω),

which results in

(5.1) ‖ū− ūh‖2L2(Ω) ≤ c‖z̄ − ẑh‖L∞(Ω) + ‖ū− ûh‖2L2(Ω),

since ‖q̄‖M(Ω) and ‖q̄h‖M(Ω) are bounded. For the first term we obtain with an
L∞-estimate as in the proof of Lemma 3.3(ii)

‖z̄ − ẑh‖L∞(Ω) ≤ ch2|lnh|r‖ū− ud‖L∞(Ω).

The square root of the second term in (5.1) can be estimated by

‖ū− ûh‖L2(Ω) ≤ ch‖q̄‖H−1(Ω),

which can be obtained from standard estimates with a simple duality argument. To-
gether with the improved regularity for ū and q̄ this completes the proof.

6. Extensions. Let us consider some possible extensions of our results to more
general problem settings. We remark that all the results will transfer with only minor
modifications to the case of more general elliptic operators with smooth coefficients
instead of the Laplacian in (1.2).

In the following, we will briefly consider a problem where the control is allowed
to act only on a subset Ωc ⊂ Ω of the domain and the observation is restricted to
another subset Ωo ⊂ Ω:

(6.1) Minimize J(q, u) =
1

2
‖u− ud‖2L2(Ωo)

+ α‖q‖M(Ωc), q ∈ M(Ωc),

subject to the state equation (1.2). For well-definedness, we require Ωo to be open
and Ωc to be relatively closed in Ω, i.e.,

Ωc = Ωc \ ∂Ω.

See [12] for a detailed exposition. Denote by χΩo the characteristic function of Ωo.
Note that the solutions to (6.1) are not unique in general, since the strict convexity of
the first term of J only guarantees uniqueness for the expression χΩo ū for any optimal
state solutions ū. The corresponding optimality system, as obtained in [12], is given
in the following theorem.

Theorem 6.1. Let (q̄, ū) be a (not necessarily unique) solution to (6.1). The
corresponding unique adjoint state is given by

(6.2)

{
−Δz̄ = χΩo(ū− ud) in Ω,

z̄ = 0 on ∂Ω

and satisfies the inequality

(6.3) |z̄| ≤ α on Ωc.

Furthermore, the support of q̄ is contained in the set { x ∈ Ωc | |z̄(x)| = α }, and for
the Jordan-decomposition q̄ = q̄+ − q̄− we have

(6.4) supp q̄+ ⊂ { x ∈ Ωc | z̄(x) = −α } and supp q̄− ⊂ { x ∈ Ωc | z̄(x) = α }.
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The optimality of ū can also be characterized by the following variational inequality:

(6.5) (u(q)− ū, χΩo(ū− ud)) + α‖q‖M(Ωc) − α‖q̄‖M(Ωc) ≥ 0 for all q ∈ M(Ωc).

In the discrete setting, we consider the optimal control problem

(6.6) Minimize J(qh, uh), qh ∈ M(Ωc) and subject to (3.1).

As before, the control is not discretized at first. However, for practical computations
it should be replaced with a discrete control q̄h ∈ Mh as in Theorem 3.1. Therefore,
to ensure that the operator Λh defined in (3.3) maps from M(Ωc) to M(Ωc) ∩Mh,
we require that for each h we have

(6.7) Ωc ∩ Ωh =
⋃

K∈T c
h

K,

where T c
h ⊂ Th is the collection of all the cells of the triangulation which make up the

control region. Then, we can verify that

Λh(q) ∈ M(Ωc) ∩Mh for all q ∈ M(Ωc),

and any optimal solution q̃h of (6.6) can be replaced by a discrete optimal solution
q̄h = Λh(q̃h) with the same objective value as in Theorem 3.1. There may still be
more than one discrete solution for the same reasons as in the continuous case.

Most of our results are valid as well for problem (6.1) without any additional
assumptions, since Lemmas 3.3 and 3.4 are applicable to this case without modifica-
tion. In fact, if we repeat the steps of Theorems 4.2 and 4.4 line by line we obtain
the following result.

Theorem 6.2. Let Assumption 1 be fulfilled. Moreover let (q̄, ū) be any solution
to (6.1) and let (q̄h, ūh) ∈ (M(Ωc) ∩Mh) × Vh be any discrete solution. Then there
holds

|J(q̄, ū)− J(q̄h, ūh)| ≤ c h4−d|lnh|γ ,
‖ū− ūh‖L2(Ωo) ≤ c h2−

d
2 |ln h|

γ
2

with γ as in 4.2.
In comparison, Theorem 6.2 is not as strong as the version for Ωo = Ωc = Ω,

since we only get an estimate for the state on the observation domain. However, since
ū is not even unique (there are counterexamples), an estimate on the whole domain
or any estimate for the controls cannot be expected in general.

In this setting we can also construct examples where the optimal control contains
Dirac measures, even if ud is bounded, by making sure that the singularities of ū are
located outside of Ωo. Thus, the higher regularity of Theorem 2.5 and Corollary 2.6
does not hold in general. If Ωc and Ωo are disjoint, we can typically expect the optimal
control to be a linear combination of Dirac delta functions; cf. [5] for an application,
where this is explicitly desired.

However, we can extend the estimate for the state error from Theorem 6.2 to the
whole domain if the control domain is contained in the observation domain, i.e., if
we have Ωc ⊂ Ωo. Then, the optimal control is uniquely determined by the values of
ū on the observation domain: Since χΩou(q) = 0 implies u(q) = 0 with Lemma 2.8
and thus q = 0 for any q ∈ M(Ωc), the control to observation operator mapping
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q ∈ M(Ωc) to χΩou(q) ∈ L2(Ωo) is injective. Therefore, the optimal solution (q̄, ū) is
unique. Under this condition we can additionally prove the following lemma.

Lemma 6.3. Assume Ωc ⊂ Ωo. Then

supp q̄h , supp q̄ ⊂ { x ∈ Ωo | dist(x, ∂Ωo) > η }
for some η > 0 depending only on the data.

Proof. We use that the adjoint state z̄ is Hölder continuous as in Corollary 2.4.
For the discrete adjoint states we can obtain the uniform bound

‖z̄h‖C0,β(Ω) ≤ c‖z̄h‖W 1,p(Ω) ≤ c‖z(ūh)‖W 1,p(Ω) ≤ c‖ūh − ud‖L2(Ωo) ≤ c‖ud‖L2(Ωo)

using the stability of the Ritz projection in W 1,p for p > d, where z(ūh) solves the
continuous adjoint equation (6.3) with the discrete ūh instead of ū on the right-hand
side. Together with the Dirichlet boundary conditions and the conditions on the
support of the optimal controls we therefore get

supp q̄h , supp q̄ ⊂ { x ∈ Ωc | dist(x, ∂Ω) ≥ η1 } = Aη1

for some η1 > 0 depending on the constant in the estimate before. The set Aη1 is
compact since Ωc is relatively closed. With Aη1 ⊂ Ωo and Ωo open, we find a suitable
η ≤ η1 by considering that dist(·, ∂Ωo) > 0 must assume a minimum on Aη1 .

Under these conditions the higher regularity results from Theorem 2.5 and Corol-
lary 2.6 can be transferred without modification and we can also derive an error
estimate for the state on the whole domain.

Theorem 6.4. Assume Ωc ⊂ Ωo and the conditions of Theorem 6.2. Then we
have the estimate

‖ū− ūh‖L2(Ω) + ‖q̄ − q̄h‖H−2(Ω) ≤ cη h
2−d

2 |lnh|
γ
2

with γ as in Theorem 4.2 and η from Lemma 6.3.
Proof. With the elliptic regularity and Lemma 3.3(i) we obtain

‖ū− ūh‖L2(Ω) ≤ ‖u(q̄− q̄h)‖L2(Ω)+ ‖u(q̄h)− ūh‖L2(Ω) ≤ ‖q̄− q̄h‖H−2(Ω)+ c h2−
d
2 .

For the estimate of the control we choose a smooth function κη ∈ C∞
0 (Ω) which is

zero on Ω\Ωo and equal to one on { x ∈ Ωo | dist(x, ∂Ωo) > η } ⊆ Ωc. This is possible
due to Lemma 6.3. Then we have for any ψ ∈ H2(Ω) that

〈q̄ − q̄h, ψ〉 = 〈q̄ − q̄h, κηψ〉 = (∇u(q̄ − q̄h),∇(κηψ)) = −(ū− u(q̄h),Δ(κηψ)).

For the expression in the last term we obtain

Δ(κηψ) = Δκηψ + 2∇κη∇ψ + κηΔψ,

and since the derivatives of κη are bounded and depend only on η, we can estimate

‖Δ(κηψ)‖L2(Ω) ≤ cη‖ψ‖H2(Ω).

Moreover Δ(κηψ) = 0 on Ω \Ωo and thus we have

〈q̄ − q̄h, ψ〉 ≤ cη‖ψ‖H2(Ω)‖ū− u(q̄h)‖L2(Ωo).

Dividing by ‖ψ‖H2(Ω) and taking the supremum, we obtain

‖q̄ − q̄h‖H−2(Ω) ≤ cη‖ū− u(q̄h)‖L2(Ωo)

≤ cη(‖ū− ūh‖L2(Ωo) + ‖ūh − u(q̄h)‖L2(Ωo)) ≤ cηh
2− d

2 |lnh|
γ
2 ,

where we applied with Theorem 6.2 the result of Lemma 3.3(i). This concludes the
proof.
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7. Computational aspects. For the numerical computation of optimal controls
we are going to consider a Tikhonov regularized version of the optimal control problem.
Then, the Tichonov-parameter is driven to zero with a continuation method. The
regularized problem is given in the continuous setting by

min
q∈L2(Ω)

1

2
‖u− ud‖2L2(Ω) + α‖q‖L1(Ω) +

ε

2
‖q‖2L2(Ω)

s.t. (∇u,∇v) = (q, v) for all v ∈ V,

(7.1)

where ε ≥ 0 is the regularization parameter. See [11] for a detailed analysis of the
connection of (7.1) and the original problem. Specifically, it is shown there that
the optimal controls q̄ε converge to q̄ weakly in H−2(Ω) for ε → 0. For analysis of
the problem (7.1) for a fixed ε see also [20] and [10].

The optimality condition for (7.1) with ε > 0 is known to be given by the projec-
tion formula

q̄ε =
1
ε shα(−z̄ε),

where the Nemizkij-operator shα (soft-shrinkage) can be written as

shα(y) = max(0, y − α)−min(0, y + α),

and z̄ε fulfills the adjoint equation (2.1) with a corresponding state solution ūε solving
(1.2). Thus, the control variable can be eliminated to obtain the system

G(z, u) =

(
−u+ ud −Δz

−Δu− 1
ε shα(−z)

)
= 0,

which can be solved with a semismooth Newton method; see, e.g., [21].
We proceed completely analogously for the discrete problem. However, since the

controls are discretized as nodal Diracs measures, it is not immediately clear how to
interpret the regularization term in the discrete setting. For simplicity, we implement
the regularization term as

(7.2)
ε

2
‖qh‖2L2

h
=
ε

2

N∑
i=1

d−1
i q2i ,

where qi is the coefficient of the control qh ∈ Mh at the nodal Dirac measure δxi

and (di)i=1...N is the diagonal of the lumped mass matrix. The discrete regularized
problem is then given by

(7.3)
min

qh∈Mh

1

2
‖uh − ud‖2L2(Ω) + α‖qh‖M(Ω) +

ε

2
‖qh‖2L2

h

s.t. (∇uh,∇vh) = 〈qh, vh〉 for all vh ∈ Vh.

A related mass lumping for discretization of L1-control costs is also employed in [9].
The optimality system for (7.3) can then be derived as in the continuous setting.

We only point out that here we obtain the optimality condition

d−1
i qi =

1

ε
shα(−z̄h,ε(xi)) for i = 1 . . .N,

where qi is the coefficient of the optimal control qh,ε ∈ Mh at the nodal Dirac δxi . The
corresponding algorithm for the discrete regularized problem (7.3) was implemented
with [19], and the arising linear systems were solved with a Schur-complement method
and conjugate gradients.
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8. Numerical examples. We present some examples to verify the rates of con-
vergence established in sections 4 and 5.

8.1. Example for d = 2. We take Ω = B1(0) as the unit ball and construct a
radially symmetric example with the optimal state given as

ū(x) = − 1

2π
ln(max{ρ, |x|})

with a kink in the radial direction at ρ ∈ [0, 1). See Figure 8.1 for the representative
cases ρ = 1

2 and ρ = 0. For ρ = 0 the state ū is simply a Green’s function, and the
optimal control is then given by q̄ = δ0. For ρ > 0 we obtain the surface measure
(given in terms of the one-dimensional Hausdorff measure H)

q̄ =
1

2πρ
H1|∂Bρ(0),

which, due to the choice of scaling, has a norm of ‖q̄‖M(Ω) = 1. The optimal dual
state can then be chosen as any element in H2(Ω) ∩ H1

0 (Ω) such that |z̄| ≤ α and
z̄|∂Bρ(0) = −α. We make the specific choice

z̄(x) = h(|x|),

where h ∈ C1([0, 1]) is a piecewise cubic polynomial interpolating h(0) = h(1) = 0,
h(ρ) = −α with the choices h′(ρ) = h′(0) = h′(1) = 0. (For ρ = 0, the conditions
h(0) = h′(0) = 0 are dropped.) This yields z̄ ∈ C1(Ω), which is piecewise twice

Fig. 8.1. Radially symmetric example for the unit circle in R
2 in radial direction r.
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Fig. 8.2. Convergence rates for the two-dimensional example at different refinement levels.

continuously differentiable with bounded second derivatives, and a matching desired
state ud ∈ L∞(Ω) can be computed in strong formulation as

ud = Δz̄ + ū,

as depicted in Figure 8.1 for ρ ∈ {0, 12}. For the convenience of the reader, the exact
formula for ud is given by

ud(r) =

⎧⎨
⎩
α 6 (3 r−2 ρ)

ρ3 − 1
2π ln(ρ) for r < ρ,

α
6 (3 r2−2 rρ−2 r+ρ)

(ρ−1)3r
− 1

2π ln(r) for r ≥ ρ,

where r = |x|.
The convergence rates for a choice of ρ = 1

2 and ρ = 0 are given in Figure 8.2.
The inital grid (refinement level 0) consists of five cells, a small square in the middle
and four additional trapezoids at each edge, glued together at the corners. For both
examples we plot the error in the cost functional J(q̄, ū)− J(q̄h, ūh) and the L2-error
in the state variable. The dashed lines indicate the orders of convergence O(h2) and
O(h), which are what theory predicts for the respective quantities (up to logarithmic
contributions). Since the regularization is present in the numerical computations,
we also report the size of the term ε

2‖q̄h‖2L2
h
. As a parameter choice rule, at each

refinement level the regularization parameter ε is decreased until

ε

2
‖q̄h‖2L2

h
≤ cregh

2

is fulfilled, where creg > 0 is a constant chosen heuristically in advance. This is done
to ensure that at least the asymptotic best case convergence behavior of the functional
O(|ln h|γh2) is not altered by the regularization. In Figure 8.2(a), e.g., we observe that
the regularization term is an order of a magnitude smaller than the exact functional
error, such that the reported error in the functional should be at least accurate in the
first significant digit.

We see that the observed rates agree with the rates predicted by theory. In
Figure 8.2(a) the rates seem to be even slightly better; however, this is far from
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Fig. 8.3. Convergence rates for the three-dimensional example at different refinement levels.

conclusive. In Figure 8.2(b), even though the rate for the functional is somewhat
wiggly, we observe the expected rates. The wiggles could be caused by the fact that
the initial mesh was perturbed slightly, and thus the approximation quality depends
for a large part on the smallest distance of a grid-point to the origin, where the optimal
control q̄ = δ0 is located. If we choose a mesh which has a point at the origin, the
exact control is representable at each level, and the wiggles disappear. In the Dirac
case, due to the low regularity of ud, it is also clear that the rate of almost O(h) for
the state error is the best theoretically possible.

8.2. Example for d = 3. The construction of an example in three dimensions
is completely analogous, except for the different Green’s function

ū(x) =
1

4π

(
1

max{ρ, |x|} − 1

)
;

thus we omit a detailed description. The final formula for ud in this case is given by

ud(r) =

⎧⎨
⎩
α 6 (4 r−3 ρ)

ρ3 + 1
4π

(
1
ρ − 1

)
for r < ρ,

α
6 (4 r2−3 rρ−3 r+2 ρ)

(ρ−1)3r
+ 1

4π

(
1
r − 1

)
for r ≥ ρ,

where r = |x|. The computational results can be seen in Figure 8.3. Note that the
parameter choice rule for ε is simply the same as before. In this case, the general
theory predicts an order of convergence close to O(h) for the functional and close

to O(h
1
2 ) for the L2-error of the state. This is clearly observed in the case ρ = 0,

where the optimal control q̄ is a single Dirac delta function; see Figure 8.3(b). In
this case the rate for the state error is again the theoretically best possible. However,
in the case ρ = 1

2 , depicted in 8.3(a), where ud is bounded and the optimal control
is a surface measure, the rates are clearly better. For visual comparison we plot the
rates O(h) for the state in accordance with Theorem 5.1 and O(h2) for the functional,
which seems to be the closest match. Here, the order of convergence is the same as
in the case d = 2.
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