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Abstract. We develop an a priori error analysis for the finite element Galerkin discretization
of parameter identification problems. The state equation is given by an elliptic partial differential
equation of second order with a finite number of unknown parameters, which are estimated using
pointwise measurements of the state variable.
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1. Introduction. We consider parameter identification problems governed by
an elliptic partial differential equation of second order. The finitely many unknown
parameters are estimated using the measurements of point values of the state variable.
Let Ω ⊂ R

2 be a convex polygonal domain; L2(Ω) the corresponding Lebesgue space
with inner product and norm denoted by (·, ·) and ‖ · ‖2, respectively; and Hm(Ω) the
Sobolev space of order m ∈ N. With this notation, we set

V := {v ∈ H1(Ω) ∩ C(Ω) | v = 0 on ∂Ω}.

The state variable u ∈ V is determined by an elliptic partial differential equation (the
state equation)

−∇ · (A(q)∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

for given Hölder continuous f ∈ Cα(Ω), α ∈ (0, 1). Here, Q ⊂ R
np denotes the

open admissible set of parameters q ∈ R
np , for which A(q) = (Aij(q)) is a symmetric

and positive definite 2 × 2 matrix with twice continuously differentiable entries Aij :
Q → C1+α(Ω). The above conditions guarantee that, for any admissible value of
the parameter q, the corresponding solution u of the state equation (1.1) is in H2(Ω)
(see, e.g., Grisvard [12]). At the corner points of ∂Ω, the second derivatives of the
solution may become singular. However, u has Hölder continuous second derivatives,
u ∈ C2+α(Ωd), for each subdomain Ωd ⊂ Ω with distance d > 0 to the corner points.

The usual weak formulation of (1.1) is

a(q)(u, φ) = (f, φ) ∀φ ∈ V,(1.2)
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where the bilinear form a(q)(·, ·) is defined by

a(q)(u, φ) := (A(q)∇u,∇φ).(1.3)

Further, the observation operator C(·) describing the mapping of the state variable u
to the space of measurements Z = R

nm is given by

Ci(v) = v(ξi), i = 1, 2, . . . , nm,(1.4)

where {ξi} ⊂ Ω is a finite set of measurement points. We assume that nm ≥ np. The
Euclidean product and norm on Q and Z are denoted by 〈·, ·〉 and ‖ · ‖, respectively,
and the same notation is also used for the corresponding natural norms of matrices.

The values of the parameters are estimated from a given set of measurements
Ĉ ∈ Z using a least squares approach such that we obtain a constrained optimization
problem with the cost functional J : V → R:

Minimize J(u) :=
1

2
‖C(u) − Ĉ‖2(1.5)

under the constraint (1.2). Throughout, we assume the existence of a solution (u, q) ∈
V × Q of the problem (1.2), (1.5). For an analysis of the existence of solutions for
parameter identification problems, see, e.g., Banks and Kunisch [2], Kravaris and
Seinfeld [16], and Litvinov [17].

The state equation is discretized by a conforming finite element Galerkin method
defined on a family {Th}h>0 of shape regular quasi-uniform meshes Th = {K} consist-
ing of closed cells K which are either triangles or quadrilaterals. The straight parts
which make up the boundary ∂K of a cell K are called faces. The mesh parameter h
is defined as a cellwise constant function by setting h|K = hK , and hK is the diameter
of K. Usually we use the symbol h also for the maximal cell size, i.e.,

h = max
K∈Th

hK .(1.6)

For convenience, we assume that 0 < h < 1. On the mesh Th we define finite element
spaces Vh ⊂ V consisting of linear or bilinear shape functions; see, e.g., Brenner and
Scott [5] or Johnson [14]. The corresponding discrete state uh ∈ Vh and parameter
qh ∈ Q are determined by

Minimize J(uh),(1.7)

under the constraint

a(qh)(uh, φh) = (f, φh) ∀φh ∈ Vh.(1.8)

Since Q is finite dimensional, the parameter qh is determined in the same space Q.
The main purpose of this paper is to analyze the behavior of the error in param-

eters ‖q − qh‖ for h tending to zero. There are a number of publications in which
a priori error estimates are derived for optimal control problems governed by partial
differential equations; see, e.g., Falk [8], Arada, Casas, and Tröltzsch [1], Deckelnic
and Hinze [6], and Gunzburger and Hou [13]. However, there are only few published
results on this topic in the context of parameter identification problems; see Falk [9],
Neittaanmäki and Tai [18], and Kärkkäinen [15].

In Vexler [26], an a priori error analysis for the case of V -stable observation
operators Ci(·) is developed and optimal-order convergence is shown,

‖q − qh‖ = O(h2),(1.9)
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essentially under the assumption that |Ci(u) − Ci(uh)| ≤ ch2‖u‖H2 . However, the
generalization of this result to pointwise observations is not straightforward. For this
case, we prove in this paper that, under certain regularity conditions,

‖q − qh‖ = O(h2| log(h)|2).(1.10)

The proof uses the technique for estimating discrete Green functions developed in
Frehse and Rannacher [10]. A complementary result of a posteriori error analysis for
parameter identification problems is given in Becker and Vexler [4].

To the authors’ knowledge, this is the first a priori error analysis for parameter
identification problems with pointwise observations. The consideration of pointwise
observations in determining discrete parameters seems very natural in view of practical
measurement techniques; see [3] for applications in reactive flow analysis.

The paper is organized as follows. In the next section, we describe an algorithm
for solving problem (1.7), (1.8). In section 3, we present a paradigm for a priori error
analysis for discretization of a class of optimization problems. Thereafter, in section 4,
we derive the announced error estimate using an L∞-stability result, which is proven
in section 5. In section 6, we present a numerical example confirming the asymptotic
sharpness of our error estimate. Possible extensions are addressed in the last section.

2. Optimization algorithm. In this section, we reformulate the problem un-
der consideration as an unconstrained optimization problem and describe a solution
algorithm for it. Since the coefficient matrix A(q) is assumed to be positive definite
for parameters q ∈ Q ⊂ R

np , the relation

a(q)(S(q), φ) = (f, φ) ∀φ ∈ H1
0 (Ω)(2.1)

defines an operator S : Q → H1
0 (Ω). By the assumptions on the data of the problem

and the Sobolev embedding theorem,

S : Q → H1
0 (Ω) ∩H2(Ω) ⊂ V.(2.2)

The solution operator S can be shown to possess first and second derivatives which
are continuous with respect to the norm of V ; see Theorem 2.1 below. We recall that
the existence of a solution q ∈ Q of problem (1.5) is assumed. Let Q0 ⊂ Q be an open
bounded set containing the optimal parameter q on which the coefficient matrix A(q)
is uniformly positive definite; i.e., there exists γ ∈ R+ such that

p∗A(q)p ≥ γ‖p‖2 ∀p ∈ Q, ∀q ∈ Q0,(2.3)

uniformly with respect to x ∈ Ω. We introduce the reduced observation operator
c : Q0 → Z by

c(q) := C(S(q)).(2.4)

This allows us to reformulate the problem under consideration as an unconstrained
optimization problem with the reduced cost functional j : Q0 → R:

Minimize j(q) :=
1

2
‖c(q) − Ĉ‖2, q ∈ Q0.(2.5)

Denoting by G = c′(q) ∈ R
np×nm the Jacobian matrix of the reduced observation

operator c(·), the first-order necessary optimality condition j′(q) = 0 for (2.5) reads

G∗(c(q) − Ĉ) = 0,(2.6)
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where G∗ denotes the transpose of G. The positive semidefiniteness of the Hessian
matrix H := ∇2j(q) is the second-order necessary optimality condition. A solution q
of problem (2.5) is called stable if the sufficient optimality condition holds, i.e., if the
Hessian H is positive definite. Throughout, we will assume the solution q to be stable.
The stability of the solution is given, for instance, if the value of the cost functional
‖C(u) − Ĉ‖ is small enough and the matrix G has full rank np; see, e.g., [26] for
details.

Since by assumption the matrix coefficient A(·) is twice continuously differen-
tiable, there holds

sup
ξ∈Q0

|||A(ξ)|||1,∞ + sup
ξ∈Q0

|||A′
qj (ξ)|||1,∞ + sup

ξ∈Q0

|||A′′
qjqk

(ξ)|||1,∞ < ∞,(2.7)

where |||B|||1,∞ := maxi,j=1,2 ‖Bij‖1,∞ for a matrix function B = (Bij) ∈ C1(Ω)2×2.
In the following propositions, we give representations of the Jacobian G of c(·),

the Hessian H of j(·), and the Hessian of ci(·).
Theorem 2.1. Let the reduced observation operator c(·) and the reduced func-

tional j(·) be defined as in (2.4) and (2.5), respectively.
(i) The elements of the Jacobian of c(·) at some q ∈ Q0 are given by

Gij =
∂ci
∂qj

(q) = Ci(wj), i = 1, . . . , nm, j = 1, . . . , np,(2.8)

where wj ∈ V are the solutions of the problems

a(q)(wj , φ) = −(A′
qj (q)∇u,∇φ) ∀φ ∈ V,(2.9)

with u = S(q). The functions wj ∈ V depend continuously on q ∈ Q.
(ii) The Hessian of j(·) can be expressed by

H = G∗ G + M,(2.10)

where the matrix M ∈ R
np×np is given by

M =

nm∑
i=1

c′′i (q)(ci(q) − Ĉi).(2.11)

The Hessian of ci(q) is given by

∂2

∂qj ∂qk
ci(q) = Ci(vjk),(2.12)

where the vjk ∈ V are the solutions of the problems

a(q)(vjk, φ) = −(A′
qj (q)∇wk,∇φ) − (A′

qk
(q)∇wj ,∇φ)

− (A′′
qjqk

(q)∇u,∇φ) ∀φ ∈ V,
(2.13)

with wj as defined in (2.9). The functions vjk ∈ V depend continuously on q ∈ Q.
Proof. The derivation of the derivatives of c(·) uses the chain rule,

∂ci
∂qj

(q) =
∂

∂qj
Ci(S(q)) = S′

qj (q)(ξi) =: wj(ξi),
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for i = 1, . . . , nm, j = 1, . . . , np, where the functions wj are determined by the
relations (2.9). This is seen by considering the limit of difference quotients

0 = lim
t→0

1

t
(a(q + tqj)(S(q + tqj), φ) − (f, φ) − a(q)(S(q), φ) + (f, φ))

= a(q)(S′
qj (q), φ) + a′qj (q)(S(q), φ) = a(q)(wj , φ) + a′qj (q)(u, φ).

Analogously, we obtain

∂2ci
∂qj∂qk

(q) =
∂2

∂qj∂qk
Ci(S(q)) = S′′

qjqk
(q)(ξi) =: vjk(ξi),

where the functions vjk are determined by the relations (2.13). To see this, we consider
the limit of the difference quotient

0 = lim
t→0

1

t
(a(q + tqk)(S

′
qj (q + tqk), φ) + a′qj (q + tqk)(S(q + tqk), φ)

− a(q)(S′
qj (q), φ) − a′qj (q)(S(q), φ))

= a(q)(S′′
qjqk

(q), φ) + a′qk(q)(S′
qj (q), φ) + a′qj (q)(S

′
qk

(q), φ) + a′′qkqj (q)(S(q), φ).

In Lemma 2.2 below, we will show that all the functions u, wj , vjk are in V ∩H2(Ω).
This is due to the fact that they are determined by second-order elliptic boundary
value problems on a convex domain, with smooth coefficients and right-hand sides
in L2(Ω) which depend continuously on the parameter q ∈ Q. This implies that
also their solutions depend continuously on q ∈ Q with respect to the norm of the
solution space H1

0 (Ω)∩H2(Ω) ⊂ V . Hence, the solution operator S : Q → V is twice
continuously differentiable. This completes the proof.

In practice the Hessian H of j(·) is computed using the representation

Mjk = −(A′
qj (q)∇wk,∇z) − (A′

qk
(q)∇wj ,∇z) − (A′′

qjqk
(q)∇u,∇z),(2.14)

with the function z determined by the dual equation

(A(q)∇φ,∇z) = 〈C(u) − C̄, C(φ)〉.(2.15)

For later purposes, we provide some a priori bounds for the solutions of the boundary
value problems introduced in Theorem 2.1, which follow by standard results of elliptic
regularity theory.

Lemma 2.2. For the solutions of the elliptic boundary value problems (2.9) and
(2.13) there hold the global L2 a priori estimates

‖u‖2,2 + ‖wj‖2,2 + ‖vjk‖2,2 ≤ c,(2.16)

where c is a generic constant depending only on the data of the problem. Further, for
each subdomain Ωd ⊂ Ω with distance d > 0 to the corner points, there hold the L∞

a priori estimates

‖u‖C2+α(Ωd) + ‖wj‖C2+α(Ωd) + ‖vjk‖C2+α(Ωd) ≤ cd(2.17)

with a generic constant cd ≈ d−1.
Proof. The variational equations defining u as well as wj and vjk can be rewritten

in such a form that they represent second-order elliptic boundary value problems with
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smooth coefficients and right-hand sides which are bounded functionals on L2(Ω) and
Cα

loc(Ω), respectively, as follows:

a(q)(u, φ) = (f, φ) ∀φ ∈ V,(2.18)

a(q)(wj , φ) = (∇ ·A′
qj (q)∇u, φ) ∀φ ∈ V,(2.19)

a(q)(vjk, φ) = (∇ ·A′
qj (q)∇wk, φ) + (∇ ·A′

qk
(q)∇wj , φ)(2.20)

+ (∇ ·A′′
qjqk

(q)∇u, φ) ∀φ ∈ V.

By assumption the coefficient functions A′
qj (q) and A′′

qjqk
(q) are smooth. In view of

the convexity of the polygonal domain Ω, the H2-regularity estimates then follow
by results from Grisvard [12]. A reference for the corresponding C2+α-estimates is
Gilbarg and Trudinger [11]. In the first step, from (2.18), we get

‖u‖2,2 ≤ c‖f‖2 ≤ c,

‖u‖C2+α(Ωd) ≤ cd
{
‖f‖Cα(Ωd/2)

+ ‖u‖2,2

}
≤ cd.

Then, using this in (2.19), we conclude that

‖wj‖2,2 ≤ c‖u‖2,2 ≤ c,

‖wj‖C2+α(Ωd) ≤ cd
{
‖u‖C2+α(Ωd/2)

+ ‖u‖2,2

}
≤ cd.

Finally, this is used in (2.20) and allows us to conclude that

‖vjk‖2,2 ≤ cmax
{
‖wj‖2,2, ‖wk‖2,2

}
+ c‖u‖2,2 ≤ c,

‖vjk‖C2+α(Ωd) ≤ cd
{
‖wj‖C2+α(Ωd/2)

+ ‖u‖C2+α(Ωd/2)
+ ‖wj‖2,2

}
≤ cd.

This completes the proof.
Similar to the continuous case, we introduce a discrete solution operator Sh:

Q0 → Vh by the equation

a(qh)(Sh(qh), φh) = (f, φh) ∀φh ∈ Vh, qh ∈ Q0.(2.21)

As before, we turn the discrete problem (1.7), (1.8) into an unconstrained minimiza-
tion problem,

Minimize jh(qh) :=
1

2
‖ch(qh) − Ĉ‖2, qh ∈ Q0,(2.22)

where the discrete reduced observation operator ch is defined by

ch(qh) = C(Sh(q)).(2.23)

Denoting the corresponding Jacobian by Gh = c′h(qh), the necessary optimality con-
dition j′h(qh) = 0 reads

G∗
h(ch(qh) − Ĉ) = 0.(2.24)

The derivatives of the discrete observation operator ch can be computed in a way
analogous to that in Theorem 2.1.

Problem (2.22) is solved iteratively starting with an initial guess q0
h and using the

recursive setting qk+1
h = qkh + δqh. The update δqh is obtained as the solution of the

system of linear equations

Hk δqh = G∗
h(Ĉ − ch(qkh)),(2.25)
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where Gh = c′h(qkh), and Hk is an appropriate symmetric approximation of the Hessian
∇2jh(qkh). The most widely used choice of the matrix Hk = G∗

h Gh leads us to the
Gauß–Newton algorithm; see, e.g., Nocedal and Wright [21].

For one step of the Gauß–Newton algorithm the state equation and np tangent
problems (2.9) have to be solved, which involves the same linear operator but with
different right-hand sides. Due to the small dimension np of the parameter space Q,
the solution of (2.25) is uncritical. For discussing other Newton-type methods and
trust-region techniques for globalization of the convergence in this context, see [26].

3. A paradigm for a priori error analysis. In this section we present a
general approach to the error analysis of a class of optimization problems such as are
considered in this paper. The main result is stated in the following theorem. It is
a variant of well-known perturbation theorems for differentiable mappings, which is
particularly tailored to the present situation. However, it seems easier to include the
elementary proof than to search for the precise reference.

Theorem 3.1. Let F, Fh : R
n → R

n, for a discretization parameter h ∈ R+, be
continuously differentiable operators, and x ∈ R

n be a solution of F (x) = 0. Let the
following conditions be fulfilled:

(i) The derivative F ′(x) is positive definite; i.e., there is a constant γ > 0 such
that

p∗F ′(x)p ≥ γ‖p‖2, p ∈ R
n.(3.1)

(ii) There is a neighborhood U of x and a positive number L(h) ∈ R+ such that

‖F ′
h(ξ) − F ′

h(η)‖ ≤ L(h)‖ξ − η‖ ∀ξ, η ∈ U.(3.2)

(iii) With the h-dependent constant L(h), there holds

lim
h→0

L(h)‖F (x) − Fh(x)‖ = 0.(3.3)

(iv) There holds

lim
h→0

‖F ′(x) − F ′
h(x)‖ = 0.(3.4)

Then, for h small enough, there exists xh ∈ U such that Fh(xh) = 0, and F ′
h(xh) is

positive definite uniformly in h. Further, there holds the a priori error estimate

‖x− xh‖ ≤ 2

γ
‖F (x) − Fh(x)‖.(3.5)

Proof. Due to condition (iv), we can choose a positive number h1 ∈ R+ such that
for h ≤ h1 there holds

‖F ′(x) − F ′
h(x)‖ ≤ 1

4
γ.(3.6)

Moreover, for ρ = ρ(h) = γ
kL(h) , with some k ≥ 4 sufficiently large, there holds

Bρ(x) = {ξ ∈ R
n, ‖x− ξ‖ ≤ ρ} ⊂ U.(3.7)

For this choice, we obtain that, for h ≤ h1, F
′
h(·) is positive definite on Bρ(x):

p∗F ′
h(ξ)p = p∗F ′(x)p + p∗(F ′

h(x) − F ′(x))p + p∗(F ′
h(ξ) − F ′

h(x))p

≥ γ‖p‖2 − ‖F ′
h(x) − F ′(x)‖ ‖p‖2 − ‖F ′

h(ξ) − F ′
h(x)‖ ‖p‖2

≥
(
γ − 1

4
γ − L(h)ρ

)
‖p‖2 ≥ 1

2
γ‖p‖2.
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In a similar way, we conclude that, for h ≤ h1, F
′
h(·) is also bounded on Bρ(x):

‖F ′
h(ξ)‖ ≤ β := ‖F ′(x)‖ +

1

2
γ.

Next, we prove that there exists a unique xh ∈ Bρ(x) with Fh(xh) = 0. To this end,
we define an operator Ds : R

n → R
n, for s ∈ R+, by

Ds(ξ) = ξ − sFh(ξ).

For a certain choice of s, we show that Ds is a contraction on Bρ(x), and we use the
Banach fixed point theorem. For ξ ∈ Bρ(x), h ≤ h1, and an arbitrary p ∈ R

n, there
holds

‖D′
s(ξ)p‖2 = ‖p− sF ′

h(ξ)p‖2 = ‖p‖2 − 2sp∗F ′
h(ξ)p + s2‖F ′

h(ξ)p‖2

≤ (1 − sγ + s2β2)‖p‖2.

For the choice s = γ(2β2)−1, we obtain

‖D′
s(ξ)p‖2 ≤

(
1 − γ2

4β2

)
‖p‖2,

and consequently,

‖D′
s(ξ)‖ ≤

(
1 − γ2

4β2

)1/2

< 1.

Moreover, for arbitrary ξ ∈ Bρ(x), there holds

‖x−Ds(ξ)‖ = ‖Ds(x) −Ds(ξ) + sFh(x)‖
≤ ‖Ds(x) −Ds(ξ)‖ + s‖Fh(x) − F (x)‖
≤ ‖D′

s(η)‖ ‖x− ξ‖ + s‖Fh(x) − F (x)‖

for a certain η ∈ Bρ. Hence, the above estimate implies

‖x−Ds(ξ)‖ ≤
(
1 − γ2

4β2

)1/2

ρ + s ‖Fh(x) − F (x)‖

= ρ

{(
1 − γ2

4β2

)1/2

+ s
k

γ
L(h)‖Fh(x) − F (x)‖

}
.

Due to condition (iii), there is a number h2 ∈ R+ such that, for h ≤ h2, there holds

L(h)‖Fh(x) − F (x)‖ ≤ γ

ks

{
1 −

(
1 − γ2

4β2

)1/2
}
.

Hence, for h < h0 := min{h1, h2},

‖x−Ds(ξ)‖ ≤ ρ,

and consequently Ds(ξ) ∈ Bρ(x). For h ≤ h0, by the Banach fixed point theorem,
we obtain the existence of xh ∈ Bρ(x) with Fh(xh) = 0. By construction of Bρ(x),
the derivative F ′

h(xh) is positive definite with the h-independent constant 1
2γ. This

implies that, for a certain ξ ∈ Bρ(x),

(x− xh)∗(Fh(x) − Fh(xh)) = (x− xh)∗F ′
h(ξ)(x− xh) ≥ γ

2
‖x− xh‖2.
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Hence, using F (x) = Fh(xh) = 0,

‖x− xh‖2 ≤ 2

γ
(x− xh)∗(Fh(x) − Fh(xh)) =

2

γ
(x− xh)∗(Fh(x) − F (x))

≤ 2

γ
‖Fh(x) − F (x)‖ ‖x− xh‖.

This completes the proof.

4. A priori error estimation. In this section we apply the paradigm presented
in section 3 to the problem under consideration. We prove the following theorem.

Theorem 4.1. Let q ∈ Q be a stable solution of (2.5). Then, for h small enough,
there exists a stable solution qh ∈ Q of (2.22), and there holds the following a priori
error estimate:

‖q − qh‖ = O(h2| log(h)|2).(4.1)

On the basis of the estimate (4.1), we can also derive optimal-order estimates for
the error u − uh in the corresponding states. However, since this would be a simple
exercise using the arguments developed below, and since the optimal states are of
only minor practical interest in parameter estimation problems, we do not state these
estimates.

The proof of Theorem 4.1 is given by checking the conditions from Theorem 3.1
for the operators

F (ξ) := ∇j(ξ), Fh(ξ) := ∇jh(ξ).

The constant in (4.1) turns out to depend in a reciprocal way on the distance

δ := min
i=1,...,nm

dist(ξi,Σ)

of the set of measurement points ξi to the set Σ of corner points of ∂Ω. Therefore,
we will use generic constants c and cδ, where c depends only on the domain Ω, the
force f , and the characteristics of the mesh family {Th}h, while cδ may additionally
depend on the distance δ like cδ ≈ δ−1. Further, by Lp(Ω) and Wm,p(Ω), for m ∈ N

and 1 ≤ p ≤ ∞, we denote the standard Lebesgue and Sobolev spaces, respectively,
and by ‖ · ‖p and ‖ · ‖m,p the corresponding norms. The restriction of such a norm to
a subset Ω′ ⊂ Ω is indicated by ‖ · ‖m,p;Ω′ .

By ih : C(Ω) → Vh we denote the usual (linear) operator of nodal interpolation
for which the following cellwise estimate is well known (see Brenner and Scott [5]):

h−2
K ‖v − ihv‖p;K + h−1

K ‖∇(v − ihv)‖p;K + ‖∇2ihv‖p;K ≤ c‖∇2v‖p;K ,(4.2)

for 1 ≤ p ≤ ∞, with constants c independent of h.
An important ingredient of the proof of Theorem 4.1 is the following L∞-stability

theorem. For d > 0, we define the subset Ωd ⊂ Ω by

Ωd := {x ∈ Ω, dist(x,Σ) > d}.

Theorem 4.2 (stability theorem). Let q ∈ Q0, ψ ∈ H1
0 (Ω)∩C(Ω̄), and a matrix

B = B(x) ∈ W 1,∞(Ω)2×2 be given. Moreover, let vh ∈ Vh be a solution of

a(q)(vh, φh) = (B∇ψ,∇φh) ∀φh ∈ Vh.(4.3)
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Then, there hold the L2-stability estimate

‖vh‖2 + h‖∇vh‖2 ≤ c |||B|||1,∞
{
‖ψ‖2 + h‖∇ψ‖2

}
(4.4)

and the local L∞-stability estimate

‖vh‖∞;Ωd
≤ cd |||B|||1,∞

{
| log(h)| ‖ψ‖∞;Ωd/2

+ ‖ψ‖2 + h‖∇ψ‖2

}
,(4.5)

with a constant cd ≈ d−1.
The L2 estimate (4.4) is a standard result from finite element analysis, while the

L∞ estimate (4.5) can be concluded by estimates of discrete Green functions such as
these developed in Frehse and Rannacher [10] and Rannacher and Scott [24] (see
also Brenner and Scott [5, Chapter 7]). The proof for this is given in section 5
below. A similar L∞-stability result has been proven in Rannacher [22] in the time-
dependent parabolic case. For the solution q of problem (2.5), we introduce ūh ∈ Vh

determined by

a(q)(ūh, φh) = (f, φh) ∀φh ∈ Vh.(4.6)

Further, we define wj,h ∈ Vh and vjk,h ∈ Vh, for j, k = 1, 2, . . . , np, as the solutions
of the problems

a(q)(wj,h, φh) = −(A′
qj (q)∇ūh,∇φh) ∀φh ∈ Vh(4.7)

and

a(q)(vjk,h, φh) = −(A′
qj (q)∇wk,h,∇φh) − (A′

qk
(q)∇wj,h,∇φh)

− (A′′
qjqk

(q)∇ūh,∇φh) ∀φh ∈ Vh,
(4.8)

respectively. The next lemma provides necessary estimates for the errors u − ūh,
wj − wj,h, and vjk − vjk,h. We recall the notation δ := mini=1,...,nm

dist(ξi,Σ).
Lemma 4.3. Under the above assumptions the following estimates hold:

‖C(u− ūh)‖ ≤ cδh
2| log(h)|,(4.9)

‖C(wj − wj,h)‖ ≤ cδh
2| log(h)|2, j = 1, 2, . . . , np,(4.10)

‖C(vjk − vjk,h)‖ ≤ cδh
2| log(h)|3, j, k = 1, 2, . . . , np.(4.11)

Proof. The proof uses the a priori bounds (2.16) and (2.17) provided in Lemma 2.2
for u, and the auxiliary functions wj , vjk, j, k = 1, . . . , np, corresponding to arbitrary
q ∈ Q0.

(i) By definition, ūh is the Ritz projection of u corresponding to the energy form
a(q)(·, ·), i.e.,

a(q)(ūh, φh) = a(q)(u, φh) ∀φh ∈ Vh.

By the standard L2-error estimate for finite elements, there holds

‖u− ūh‖2 + h‖∇(u− ūh)‖2 ≤ ch2.(4.12)

Further, applying the L∞-stability estimate (4.5) of Theorem 4.2 for the equation

a(q)(ihu− ūh, φh) = a(q)(ihu− u, φh) ∀φh ∈ Vh,
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with the nodal interpolant ihu ∈ Vh of u, yields the estimate

‖ihu− ūh‖∞;Ωδ
≤ cδ

{
| log(h)| ‖ihu− u‖∞;Ωδ/2

+ ‖ihu− u‖2 + h‖∇(ihu− u)‖2

}
.

From this, using the approximation properties (4.2) of ih, we conclude the error
estimate

‖u− ūh‖∞;Ωδ
≤ ‖u− ihu‖∞;Ωδ

+ ‖ihu− ūh‖∞;Ωδ
≤ cδh

2| log(h)|.(4.13)

Here, the constant cδ depends on the global H2 norm and the local W 2,∞ norm of the
solution, which are both known to be bounded in view of the a priori bounds (2.16)
and (2.17). Since ξi ∈ Ωδ, we obtain the estimate (4.9).

(ii) For proving (4.10), we introduce an additional discrete variable w̄j,h deter-
mined by the equation

a(q)(w̄j,h, φh) = −(A′
qj (q)∇u,∇φh) ∀φh ∈ Vh.

The error e = wj−wj,h is split like e = e1+e2, with e1 = wj−w̄j,h and e2 = w̄j,h−wj,h.
For the Ritz-projection error e1, as before, there holds the L2-error estimate

‖e1‖2 + h‖∇e1‖2 ≤ ch2‖wj‖2,2 ≤ ch2

and the pointwise error estimate

‖e1‖∞;Ωδ
≤ cδh

2
{
| log(h)| ‖∇2wj‖∞;Ωδ/2

+ ‖wj‖2,2

}
≤ cδh

2| log(h)|.

For e2 ∈ Vh, we have

a(q)(e2, φh) = −(A′
qj (q)∇(u− ūh),∇φh) ∀φh ∈ Vh.

Hence, the L2-stability estimate (4.4) of Theorem 4.2 and the estimate (4.12) imply

‖e2‖2 + h‖∇e2‖2 ≤ c
{
‖u− ūh‖2 + h‖∇(u− ūh)‖2

}
≤ ch2.

This shows that, for j = 1, . . . , np,

‖wj − wj,h‖2 + h‖∇(wj − wj,h)‖2 ≤ ch2.(4.14)

Further, the L∞-stability estimate (4.5) of Theorem 4.2 yields

‖e2‖∞;Ωδ
≤ cδ

{
| log(h)| ‖u− ūh‖∞;Ωδ/2

+ ‖u− ūh‖2 + h‖∇(u− ūh)‖2

}
,

which, by (4.12) and (4.13), implies ‖e2‖∞;Ωδ
≤ cδ| log(h)|2h2. We obtain

‖wj − wj,h‖∞;Ωδ
≤ cδ| log(h)|2h2, j = 1, . . . , np,(4.15)

which implies the desired estimate (4.10).
(iii) The proof of (4.11) uses the same line of argument as before. Using the

additional discrete variable v̄jk,h determined by the equation

a(q)(v̄jk,h, φh) = −(A′
qj (q)∇wk,∇φh) − (A′

qk
(q)∇wj ,∇φh)

− (A′′
qjqk

(q)∇u,∇φh) ∀φh ∈ Vh,
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the error e = vjk − vjk,h is split like e = e1 + e2, with e1 = vjk − v̄jk,h and e2 =
v̄jk,h − vjk,h. For the Ritz-projection error e1, as before, we conclude the pointwise
error estimate

‖e1‖∞;Ωδ
≤ cδh

2
{
| log(h)| ‖∇2vjk‖∞;Ωδ/2

+ ‖vjk‖2,2

}
≤ cδh

2| log(h)|.

For e2 ∈ Vh, we have

a(q)(e2, φh) = −(A′
qj (q)∇(wk − wk,h),∇φh) − (A′

qk
(q)∇(wj − wj,h),∇φh)

−(A′′
qjqk

(q)∇(u− ūh),∇φh) ∀φh ∈ Vh,

and therefore, again by the L∞-stability estimate (4.5) of Theorem 4.2,

‖e2‖∞;Ωδ
≤ cδ| log(h)|

{
max

j=1,...,np

‖wj − wj,h‖∞;Ωδ/2
+ ‖u− ūh‖∞;Ωδ/2

}

+ c max
j=1,...,np

{
‖wj − wj,h‖2 + h‖∇(wj − wj,h)‖2

}
+ c

{
‖u− ūh‖2 + h‖∇(u− ūh)‖2

}
.

Then, by the foregoing error estimates, we obtain ‖e2‖∞;Ωδ
≤ cδh

2| log(h)|3, and
consequently,

‖vjk − vjk,h‖∞;Ωδ
≤ cδ| log(h)|3h2, j, k = 1, . . . , np.(4.16)

This eventually yields the desired estimated (4.11).
A direct application of Lemma 4.3 leads to the following result.
Lemma 4.4. Under the above assumptions, there holds

∣∣∣ ∂

∂qj
(j − jh)(q)

∣∣∣ ≤ cδh
2| log(h)|2, j = 1, 2, . . . , np,(4.17)

∣∣∣ ∂2

∂qj∂qk
(j − jh)(q)

∣∣∣ ≤ cδh
2| log(h)|3, j, k = 1, 2, . . . , np.(4.18)

Proof. We have the representation

∂

∂qj
(j − jh)(q) = 〈C(u) − Ĉ, C(wj)〉 − 〈C(ūh) − Ĉ, C(wj,h)〉

= 〈C(u) − Ĉ, C(wj − wj,h)〉 + 〈C(u− ūh), C(wj,h)〉,

from which we obtain

∣∣∣ ∂

∂qj
(j − jh)(q)

∣∣∣ ≤ ‖C(u) − Ĉ‖ ‖C(wj − wj,h)‖ + ‖C(u− ūh)‖ ‖C(wj,h)‖.

By the a priori bounds (2.16) and (2.17) and the Sobolev embedding theorem, we see
that

‖C(u)‖ + ‖C(wj)‖ + ‖C(vjk)‖ ≤ c.(4.19)

Combining this with the error estimate (4.10) implies ‖C(wj,h)‖ ≤ c. Then, we can
conclude the first estimate (4.17) from the error estimates of Lemma 4.3. To prove
(4.18), we write
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∂2

∂qjqk
(j − jh)(q) = 〈C(wj), C(wk)〉 + 〈C(u) − Ĉ, C(vjk)〉

− 〈C(wj,h), C(wk,h)〉 − 〈C(ūh) − Ĉ, C(vjk,h)〉
= 〈C(wj − wj,h), C(wk)〉 + 〈C(wj,h), C(wk − wk,h)〉

+ 〈C(u− ūh), C(vjk)〉 + 〈C(ūh) − Ĉ, C(vjk − vjk,h)〉.

Using as before the bounds (4.19) and the error estimates of Lemma 4.3 completes
the proof.

For the application of Theorem 3.1 it remains to check the Lipschitz condition
(3.2). For two arbitrary parameter sets ξ, η ∈ Q0, we set uξ = Sh(ξ) and uη = Sh(η).
Correspondingly, we define wj,ξ, wj,η ∈ Vh and vjk,ξ, vjk,η ∈ Vh similarly to wj,h and
vj,h for q = ξ and q = η, respectively.

Lemma 4.5. For ξ, η ∈ Q0, there hold

‖C(uξ − uη)‖ ≤ cδ| log(h)| ‖ξ − η‖,(4.20)

‖C(wj,ξ − wj,η)‖ ≤ cδ| log(h)|2 ‖ξ − η‖,(4.21)

‖C(vjk,ξ − vjk,η)‖ ≤ cδ| log(h)|3 ‖ξ − η‖.(4.22)

Proof. Due to the definition of uξ and uη, we have

(A(ξ)∇(uξ − uη),∇φh) = −((A(ξ) −A(η))∇uη,∇φh) ∀φh ∈ Vh.

Using Theorem 4.2, with d = δ, we obtain

‖C(uξ − uη)‖ ≤ c |||(A(ξ) −A(η)|||1,∞
{
| log(h)| ‖uη‖∞;Ωδ/2

+ ‖uη‖2 + h‖∇uη‖2

}
.

Since uη is the Ritz projection of an H2 function, all its norms occurring on the right-
hand side are bounded independent of h and η ∈ Q0 by standard estimates from finite
element analysis. This implies (4.20) since

|||A(ξ) −A(η)|||1,∞ ≤ c‖ξ − η‖.

The estimates (4.21) and (4.22) are obtained in a similar way.

Lemma 4.6. For ξ, η ∈ Q0, there holds

∣∣∣∣ ∂2

∂qjqk
jh(ξ) − ∂2

∂qjqk
jh(η)

∣∣∣∣ ≤ L(h)‖ξ − η‖,(4.23)

where L(h) = cδ| log(h)|3.
Proof. We have

∂2

∂qjqk
jh(ξ) − ∂2

∂qjqk
jh(η) = 〈C(wj,ξ), C(wk,ξ)〉 + 〈C(uξ) − Ĉ, C(vjk,ξ)〉

− 〈C(wj,η), C(wk,η)〉 − 〈C(uη) − Ĉ, C(vjk,η)〉
= 〈C(wj,ξ − wj,η), C(wk,ξ)〉 + 〈C(wj,η), C(wk,ξ − wk,η)〉

+ 〈C(uξ − uη), C(vjk,ξ)〉 + 〈C(uη) − Ĉ, C(vjk,ξ − vjk,η)〉,
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and, consequently,

∣∣∣ ∂2

∂qjqk
jh(ξ) − ∂2

∂qjqk
jh(η)

∣∣∣ ≤ ‖C(wj,ξ − wj,η)‖ ‖C(wk,ξ)‖

+ ‖C(wj,η)‖ ‖C(wk,ξ − wk,η)‖ + ‖C(uξ − uη)‖ ‖C(vjk,ξ)‖
+ ‖C(uη) − Ĉ‖ ‖C(vjk,ξ − vjk,η)‖.

Now, the assertion follows by the estimates of Lemma 4.5 if we can bound the terms
C(uη), C(wj,η), and C(vjk,ξ). This is achieved by using the bounds for C(u), C(wj),
and C(vjk) in (4.19) together with the error estimates of Lemma 4.3.

To complete the proof of Theorem 4.1 we check the conditions of Theorem 3.1.
Condition (3.1) is fulfilled due to the stability of the solution q of the problem (2.5).
Condition (3.2) is shown in Lemma 4.6. Condition (3.3) is obtained by Lemma 4.4
and Lemma 4.6 using limh→0 h

2| log(h)|5 = 0. Finally, condition (3.4) holds due to
Lemma 4.4. Hence, the estimate (3.5) of Theorem 3.1 completes the proof.

5. Proof of Theorem 4.2. (i) We begin with the L2-stability estimate. Taking
φh := vh in (4.3), we obtain

‖∇vh‖2 ≤ c|||B|||1,∞‖∇ψ‖2.(5.1)

To estimate ‖vh‖2, we use the solution z ∈ V ∩H2(Ω) of the auxiliary equation

a(q)(φ, z) = (φ, vh)‖vh‖−1
2 ∀φ ∈ V.

Taking φ := vh as test function and integrating by parts, we have

‖vh‖2 = a(q)(vh, z) = a(q)(vh, z − ihz) + a(q)(vh, ihz)

= a(q)(vh, z − ihz) + (B∇ψ,∇ihz)

= a(q)(vh, z − ihz) + (B∇ψ,∇(ihz − z)) − (ψ,∇ ·BT∇z).

Then, using the approximation properties (4.2) of the interpolant ihz ∈ Vh, we con-
clude that

‖vh‖2 ≤ c‖∇vh‖2‖∇(z − ihz)‖2 + |||B|||1,∞‖∇ψ‖2‖∇(z − ihz)‖2

+ |||B|||1,∞‖ψ‖2‖z‖2,2

≤ c
{
h‖∇vh‖ + |||B|||1,∞h‖∇ψ‖2 + |||B|||1,∞‖ψ‖2

}
‖z‖2,2.

Hence, observing (5.1) and the bound ‖z‖2,2 ≤ c, we obtain

‖vh‖2 ≤ c|||B|||1,∞
{
‖ψ‖2 + h‖∇ψ‖2

}
.(5.2)

(ii) Next, we prove the L∞-stability estimate. Let a ∈ Ωδ be an arbitrary point
lying in a cell K. For any fixed h, there exists a cellwise polynomial function δh with
supp(δh) ⊂ K such that

(φh, δh) = φh(a) ∀φh ∈ Vh.

The function δh plays the role of an approximate Dirac function. Correspondingly,
we introduce a regularized Green function g ∈ V ∩H2(Ω) by

(A(q)∇φ,∇g) = (δh, φ) ∀φ ∈ V,
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and the corresponding Ritz projection gh ∈ Vh by

(A(q)∇φh,∇gh) = (δh, φh) ∀φh ∈ Vh.

For functions which are only cellwise defined, we will use the “broken” norm ‖v‖′p :=∑
K∈Th

‖v‖p;T . The following three lemmas provide the key estimates for the proof
of the theorem.

Lemma 5.1. The following global L2 estimates hold:

‖g‖2 + | log(h)|−1/2‖∇g‖2 + h‖∇2g‖2 ≤ c,(5.3)

h−1‖g − gh‖2 + ‖∇(g − gh)‖2 + h‖∇2gh‖′2 ≤ c.(5.4)

Proof. The assertion follows by standard L2 a priori and error estimates for g
and g − gh, respectively. We skip the details and refer to [10]. Note that ‖∇2gh‖′2
vanishes for linear finite elements. In the case of bilinear elements, we estimate using
the interpolant ihg as follows:

‖∇2gh‖′2 ≤ ‖∇2(gh − ihg)‖′2 + ‖∇2(g − ihg)‖′2 + ‖∇2g‖2.

For the first term, we obtain, using an inverse inequality,

‖∇2(gh − ihg)‖′2 ≤ ch−1‖∇(gh − ihg)‖2

≤ ch−1
{
‖∇(g − ihg)‖2 + ‖∇(g − gh)‖2

}
and obtain by the interpolation estimate (4.2), with p = 2, and by the other estimates
derived before,

‖∇2gh‖′2 ≤ c
{
h−1‖∇(g − gh)‖2 + ‖∇2g‖2

}
≤ ch−1.

This completes the proof.
Lemma 5.2. For sufficiently small h � δ, the following local L2 estimate holds:

‖∇(g − gh)‖2;Ω\Ωδ/2
+ h‖∇2g‖2;Ω\Ωδ/2

≤ cδh,(5.5)

with a constant cδ ≈ δ−1 but independent of h.
Proof. The assertion follows by standard local elliptic a priori estimates and by

arguments from the local L2 error analysis for finite elements, as provided in Nitsche
and Schatz [20]:

‖∇2g‖2;Ω\Ωδ/2
≤ c‖Δg‖2;Ω\Ω3δ/4

+ cδ‖g‖2,

‖∇(g − gh)‖2;Ω\Ωδ/2
≤ c‖∇(g − ihg)‖2;Ω\Ω3δ/4

+ cδ‖g − gh‖2,

with constants cδ ≈ δ−1. Now, the assertion follows by the interpolation estimate
(4.2) and the other estimates already proven.

Lemma 5.3. The following L1 a priori and error estimates hold:

‖∇g‖1 + ‖∇2g‖′1 ≤ c| log(h)|,(5.6)

‖∇(g − gh)‖1 + h‖∇2(g − gh)‖′1 ≤ ch| log(h)|,(5.7)

with a constant c independent of h and δ.
Proof. The proof can be found in [10].
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For the point a ∈ Ωd, there holds

vh(a) = (vh, δh) = (A(q)∇vh,∇gh) = (B∇ψ,∇gh).

We employ a standard localization argument. Let ω ∈ C∞
0 (Ω) be a smooth function

with the properties

0 ≤ ω ≤ 1, ω|Ωδ/2
≡ 1, ω|Ω\Ωδ/4

≡ 0.

With this notation, we have

(B∇ψ,∇gh) = (B∇(ωψ),∇gh) + (B∇((1 − ω)ψ),∇gh) =: Σ1 + Σ2.

First, we estimate the term Σ1. By integration by parts and observing that ψ|∂Ω = 0,
we obtain

(B∇(ωψ),∇gh) =
∑

K∈Th

{
(ωψ,−∇ · (B∇gh))T + (ωψ, n ·B∇gh)∂K\∂Ω

}
,

where n is the outward unit normal vector to ∂K. Let [∇gh] denote the jump of the
gradient across the interior faces Γ ⊂ ∂K. Using this notation, we obtain

Σ1 ≤ ‖ψ‖∞;Ωδ/2

∑
K∈Th

{
‖∇ · (B∇gh)‖1;K +

1

2
‖n · [B∇gh]‖1;∂K\∂Ω

}
.

First, the estimates of Lemma 5.3 yield

∑
K∈Th

‖∇ · (B∇gh)‖1;K ≤ c |||B|||1,∞
{
‖∇gh‖1 + ‖∇2gh‖′1

}
≤ c |||B|||1,∞ | log(h)|.

Next, observing that g ∈ H2(Ω) and therefore [B∇g] = 0, we obtain by a trace
theorem

∑
K∈Th

‖n · [B∇gh]‖1;K\∂Ω =
∑

K∈Th

‖n · [B∇(gh − g)]‖1;∂K\∂Ω

≤ c |||B|||1,∞
∑

K∈Th

{
h−1‖∇(g − gh)‖1;K + ‖∇2(g − gh)‖′1;K

}
.

Hence, collecting the foregoing estimates,

Σ1 ≤ c |||B|||1,∞ ‖ψ‖∞;Ωδ/2

{
| log(h)| + h−1‖∇(g − gh)‖1 + ‖∇2(g − gh)‖′1

}
.

Again using the estimates of Lemma 5.3, we obtain

Σ1 ≤ c |||B|||1,∞ ‖ψ‖∞;Ωδ/2
| log(h)|.(5.8)

For the term Σ2, we estimate as follows:

Σ2 = (B∇((1 − ω)ψ),∇(gh − g)) + (B∇((1 − ω)ψ),∇g)

≤ |||B|||1,∞
{
‖∇ψ‖2 ‖∇(gh − g)‖2;Ω\Ωδ/2

+ cδ‖ψ‖2 ‖∇(gh − g)‖2

}
+ c |||B|||1,∞‖ψ‖2

{
‖∇2g‖2;Ω\Ωδ/2

+ ‖∇g‖2;Ω\Ωδ/2

}
.
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Then, by the L2 estimates of Lemmas 5.1 and 5.2, it follows that

Σ2 ≤ cδ|||B|||1,∞
{
‖ψ‖2 + h‖∇ψ‖2

}
.(5.9)

This completes the proof of the theorem.

6. Numerical results. In this section, we discuss a sample problem confirming
the a priori error estimate of Theorem 4.1. The state equation is given by

−∇ · (A(q)∇u) = 2 in Ω,

u = 0 on ∂Ω,
(6.1)

where Ω is the unit square. The matrix A(q) is a function of the parameter q =
(q1, q2) ∈ Q = R

2, given by

A(q) =

(
q2
1 q1q2

q1q2 exp(q2)

)
.

In this case the admissible set of parameters is Q0 = {(q1, q2) ∈ Q : q1 �= 0, eq2 > q2
2}.

The parameters are estimated from the measurements of the state variable at nine
different points ξi ∈ Ω; see Figure 6.1.

Fig. 6.1. The computational domain with measurement points marked by circles.

The vector of measurements Ĉ is given by

Ĉi = Ci(S(q̂))(1 + εi), i = 1, . . . , 9,

where the reference parameter is q̂ = (5, 6) and ε = (εi) describes the data perturba-
tion. We consider two cases:

(a) ε ≈ 0, (b) ε ≈ (0.12,−0.26, 0.29,−0.37,−0.49, 0.13,−0.04,−0.45, 0.20).

Since the values of Ci(S(q̂)) are not available analytically, they are computed approx-
imately by solving state equation (6.1) on a very fine mesh with about 106 degrees
of freedom. For case (a) the solution q(a) of the parameter identification problem
matches the reference parameter q̂, and hence the cost functional J(u) almost van-
ishes in q(a). Case (b) is more realistic because of the “measurement errors” modeled
by a randomly chosen ε. Moreover, in this case in contrast to case (a), the solution q(b)

of the corresponding parameter identification problem and the reference parameter q̂
differ.

The parameter identification problem is discretized using bilinear finite elements
on uniformly refined meshes. The results are listed in Tables 6.1 and 6.2. For both
cases the theoretically predicted orders of convergence are achieved.
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Table 6.1

Case (a): the error and the order of convergence with respect to the components of q without
data perturbation; N ∼ h−2 number of unknowns.

N q
(a)
1 − q

(a)
1,h q

(a)
2 − q

(a)
2,h

81 5.955e-1 9.902e-4

289 1.407e-1 1.731e-4

1089 3.436e-2 4.343e-5

4225 8.509e-3 1.080e-5

16641 2.098e-3 2.668e-6

66049 4.993e-4 6.352e-7

Order 2.05 2.04

Table 6.2

Case (b): the error and the order of convergence with respect to the components of q with data
perturbation, N ∼ h−2 number of unknowns.

N q
(b)
1 − q

(b)
1,h q

(b)
2 − q

(b)
2,h

81 2.059e-0 1.874e-2

289 5.172e-1 2.999e-3

1089 1.467e-1 8.341e-4

4225 3.771e-2 2.111e-4

16641 9.832e-3 5.640e-5

66049 2.350e-3 1.348e-5

Order 2.01 1.98

7. Conclusions and extensions. In this paper we have derived an a priori
error estimate for the finite element discretization of an elliptic discrete parameter
identification problem with pointwise measurements. The crucial point in our argu-
ment is the stability estimate of Theorem 4.2. The result of Theorem 4.1 can be
extended to situations in which such a stability estimate is available. We list some
possible directions of generalization.

1. More general meshes. For simplicity, we have assumed a quasi-uniform mesh
family {Th}h. The analysis can be extended to locally refined meshes, provided that
the ratio of hmin and h = hmax is polynomial, hmin ≈ hp, with some p ≥ 1. For such
meshes the stability result of Theorem 4.2 holds true with | log(hmin)| ≈ p| log(h)|.
This will be shown in the forthcoming paper [23]. Related results for L∞-error esti-
mates can be extracted (with some work) from Schatz and Wahlbin [25].

2. More general domains. Our argument uses that the solution operator S(·)
maps Q into H1

0 (Ω) ∩ H2(Ω), which is guaranteed on smoothly bounded or convex
domains. In the case of a domain with reentrant corners or edges this regularity
property is lost. This lack of regularity of the solution can be compensated by an
appropriate refinement of the mesh near the critical corner points or edges. The
stability estimate of Theorem 4.2 also holds in this situation, in two as well as in
three dimensions. This will be shown in a forthcoming paper.

3. Higher-order approximation. The result of Theorem 4.1 can be also extended
to the case of higher-order finite elements, similar to the analysis of Nitsche [19].
In this case the logarithmic factor | log(h)| can be dropped in the stability Theo-
rem 4.2.
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4. More general equations. Theorem 4.1 can also be extended to more general
elliptic equations or systems of the form

−∇ · (A(q)∇u + b1(q)u) + b2(q)u = f,

with parameter-dependent coefficients A(q), b1(q), b2(q). Corresponding L∞-error es-
timates for very general (nonlinear) elliptic systems have been derived in Dobrowolski
and Rannacher [7].
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[15] T. Kärkkäinen, Error estimates for distributed parameter identification in linear elliptic equa-
tions, J. Math. Systems Estim. Control, 6 (1996), pp. 117–120.

[16] C. Kravaris and J. H. Seinfeld, Identification of parameters in distributed parameter systems
by regularization, SIAM J. Control Optim., 23 (1985), pp. 217–241.

[17] V. G. Litvinov, Optimization in Elliptic Problems with Applications to Mechanics of De-
formable Bodies and Fluid Mechanics, Oper. Theory Adv. Appl. 119, Birkhäuser, Basel,
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