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A Priori Estimates and Analysis
of a Numerical Method

for a Turning Point Problem
By Alan E. Berger*, Houde Han and R. Bruce Kellogg**

Abstract. Bounds are obtained for the derivatives of the solution of a turning point problem.
These results suggest a modification of the El-Mistikawy Werle finite difference scheme at the
turning point. A uniform error estimate is obtained for the resulting method, and illustrative
numerical results are given.

I. Introduction. We will examine the following two-point boundary value problem
with Dirichlet data at the endpoints:

(1.1a)    Ly=-eyxx(x)-p(x)yx(x) + q(x)y(x)=f(x)    for-l<x<l,

(1.1b) y{-\) = dx,      y(\) = d2.
Here e is a constant in (0, l], p is assumed to be in C2[ — 1,1], q and/are required to
be in C'[- 1,1], and dx and d2 are given constants. The function p(x) is allowed to
have a finite number of zeros located at points zx,..., zr in (— 1,1). The zeros of p
are assumed to be simple, and p(- l)p(\) must not vanish. The points z, are called
turning points of (1.1). Also q(x) is required to be bounded below by some positive
constant kq, so we are thus excluding the so-called resonance cases, e.g. [1]. The
above assumptions will be in force throughout the rest of this paper. This type of
problem arises, e.g., as a linearized one-dimensional slice of a fluid flow problem
having a region of recirculation. Under these conditions (1.1a) satisfies a maximum
principle [16, p. 6], i.e.,
/. .x ii y(x) in C2[— 1,1] is such that Ly > 0 on (-1,1) and
(     ' y(±l)> 0, theny(x)> 0 for -1 ^ x < 1.
Existence and uniqueness of the solution of (1.1) follow easily from (1.2) and
existence of solutions of the initial value problem for (1.1a).

We will see below that the bounds on the behavior of y(x) near a given turning
point z, depend specifically on e and on the constant /?, = q(zi)/px(zi). If ß, < 0, it
will be shown that ^(x) is "smooth" near x = z¡; on the other hand if /?, > 0, then
there is in general an "internal layer" at x = z¡, the nature of which depends in a
fundamental way on /},.. Results in [12] will be used to show that in general y has a
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boundary layer at x = - 1 [x = +1] if and only if p(- 1) > 0 [p(l) < 0]- These
results will be stated precisely in Section 2, and their proofs will be given in Section
4.

The a priori estimates given in Section 2 are direct explicit bounds on the
derivatives of y(x) which are obtained by local examination of y(x) near each
turning point. When /?, > 0 this entails employing appropriate parabolic cylinder
functions and the Green's function for a local approximation of the operator L. This
is a somewhat different approach from the asymptotic expansions obtained by, e.g.
[7], [8], [9]. The results obtained here remain valid as ß varies though positive integer
values.

In Section 3 we describe the modification for use with turning point problems of
the El-Mistikawy Werle exponential finite difference scheme [6] which is suggested
by the results in Section 2. A uniform error estimate is also proven in this section by
using comparison functions and the a priori estimates, and some illustrative numeri-
cal results are displayed in Section 5. We note that Farrell [8], [9], [21] has obtained a
set of general sufficient conditions for a scheme to be uniformly accurate for turning
point problems. Other results for numerical methods for turning point problems
have been obtained in [2], [13], [14], [15].

II. Statement and Discussion of the A Priori Estimates. We first use the maximum
principle to show that the solution of (1.1) is bounded. Then we make some further
preliminary observations concerning (1.1) which will effectively reduce the situation
to considering the case of one turning point located at jc = 0 for which ß > 0. The a
priori estimates will then be stated.

For any given function g(x) in C*[-l,l] (k a nonnegative integer) let \\g\\k
denote Lf=0 max_Ux<1|Z)JJg(x)|, where D'xg(x) denotes the ;th derivative of g (and
where Dxg(x) = g(x) and Dx = Dx). Let y(x) be the solution of (1.1) and set
*(*) B H/lloA, + max(|rf,|, \d2[).

Then, applying the maximum principle (1.2) to 4>(x) ± y(x), one finds that

(2.1) IHIo^ll/Ho/^ + maxiKM^I).
From (2.1) and (1.2) we now show that the turning points and boundary points

can be treated individually for the purpose of studying the regularity of the solution.
Suppose [a, b] is a subinterval of [- 1,1] which contains none of the turning points
(z,,..., zr). Recall (2.1) provides a bound for/(a) and y(b). Then Lemma 2.3 of
[12] can be used to bound the derivatives of y on [a, b]; we restate a form of this
lemma here making more precise what the constants in the estimates depend on.
Suppose p, q, and / are in Cm[a, b] with m a positive integer, \p(x)\ > Bx for
a < x < b (Bx a positive constant), and let Sx(m) denote the set {||/?||m, \\q\\m, \\f\\m,
Bx, b - a, y(a), y(b), m) (here the Cm norms of p, q, and / are on the interval
[a, b]). Then

Lemma 2.1 [12]. There are positive constants 17 and C depending only on Sx(m) such
that ifp(x) > 0 on [a, b], then

(2.2a) |ZJ¿j;(jc)| < C + Ce"'exp(-2r,(x - a)/e)

for i = 1,..., m + 1, a < x < b,
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while ifp(x) < 0 on [a, b], then

(2.2b)    \Dxy(x)\^ C+ Ce"'exp(-2Tj(¿> - x)/e)
for i = 1,..., m + l,a ^ x ^ b.

Lemma 2.1 provides bounds on the behavior of y at the endpoints x = ±1, and
shows that if/?(-l)<0[/?(l)>0], then there is no boundary layer at x = -1
[x = 1], since, for k and c given positive constants,

(2.3) sk exp( — cs)   is bounded for s > 0.

Another consequence of Lemma 2.1, (2.1) and (2.3) is the fact that the solution
y(x) of (1.1) is "smooth" away from{- 1,1, z,,..., zr), i.e.,

Remark 2.2. Let [ax, bx] be a subinterval of [- 1,1] contained in an interval (a, b)
such that [a, b] contains none of the points {- 1,1, z,,..., zr). Assume/,/» and q are
in C""[- 1,1] with m a positive integer and let S2(m) denote the set {||/>||m, ||?||m,
ll/IL, mina5.Xi.ô|/?(x)|, b- a, b- bx, ax - a, kq, \dx\, \d2\, m). Then there is a
constant C depending only on S2(m) such that

(2.4) \Dxy(x)\aC   for i = \,...,m+ \,ax «jc<6,.
Lemma 2.1 and Remark 2.2 and (2.1) reduce the matter of a priori estimates for

y(x) to producing bounds for Dxy(x) in a neighborhood 7V¡ of each turning point z,.
Toward this end one can easily verify

Remark 2.3. There is a positive constant 8 depending only on the set S3 = {\p(- 1)|,
\p(\)\, \\p\\2, max(|j8,|,..., \ßr\), kq) such that for i- \,...,r the neighborhood
N¡ - [z¡ - 8, z, + 8] of the turning point z, does not contain any other turning point
of (1.1) or the points ± 1. Furthermore
(2.5) \pAx)\>\pAZi)/A    forxin/V;..

The condition (2.5) will be convenient for some of the proofs. By using the
transformation
(2.6) x = 8~x(x - z,)   forxinN¡

one may thus reduce the study of the behavior of y(x) near a given turning point z,
to the case of (1.1) wherep(x) has precisely one zero located at x = 0. Note that the
quantity ß for a given turning point remains invariant under the change of
independent variable given by (2.6). We are thus led to considering (1.1) under the
following hypotheses.

(2.7a) />(x)isinC2[-l,l] and/and q are in C'[- 1,1],
(2.7b) eis in (0,1],
(2.7c) q(x) > kq > 0 on [- 1,1], where kq is a positive constant,

(2.7d) p ( x ) has a simple zero at x = 0 and no other zeros on [ -1,1 ],

(2.7e) \px(x)\>\px(0)\/2   for-K*<l.

Let ß = q(0)/px(0), and let ßh ßs be fixed positive constants such that ß, < 1 < ßs
and

(2.7f) ß, < m < ßs.
We next show that y(x) is "smooth" near x = 0 if ß < 0; cf. [1].
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Theorem 2.4. Assume (2.7a-f), suppose ß < 0, let p, q, and f be in C""[- 1, 1] with
m a positive integer, and define S4(m) = {\\p\\m, \\q\\„„ ||/||m, ßs, kq, \dx\, \d2\, m).
Then there is a constant C depending only on S4(m) such that

(2.8) \D¿y(x)\^C   fork = 1,..., m,and\x\ < 1/2.

We remark that the choice of 1/2 in (2.8) is arbitrary, and Lemma 2.1 and
Remark 2.2 can be used to describe the behavior of y for |x| ^ 1/2.

Proof. From the mean value theorem and (2.7e, f),

(2.9) \p(x)\=\p(x) -p(0)\ = \x\\px(!;)\>\x\\px(0)\/2> .5\x\kq/ßs.

Remark 2.2 implies that \Dxy(± 1/2)| < C, for k = 1,..., m where C, depends only
on S4(m). For k = 1,..., m, if (1.1a) is differentiated k times, one finds that the
differential equation satisfied by z(x) = Dxy(x) is

(2.10) -ezxx-p(x)zx+ [q(x)-kpx(x)]z(x) = g(x),

where g depends any,..., Dx~ly and on at most kth order derivatives of p, q, and
/. Applying (2.1) with q replaced by q - kpx, and using an inductive argument, we
obtain (2.8).

We have thus reduced the study of the solution to the case of (2.7a-f) together
with

(2.7g) ß > 0.
We now state the results for the case of (2.7a-g). The proofs will be given in Section
4.

For convenient reference define, for m any positive integer, the set S5(m) = {\\p\\2,
IMI„ ll/lh, *,, ¿8„ ßs, Wx\, \d2\, \\p\\m, \\q\\m, ll/IL, m). Then we have

Theorem 2.5. Assume (2.7a-g) and let y(x) denote the solution o/(l.l). Then there
is a constant C, depending only on S ¡(I) such that

(2.11a)        \Dxy(x)\^Cx(x2 + ef-])/2I(x,e,ß)   for-l*x<l,
where

(2.11b) I(x,e,ß)=[6    st-'-Wds.

The choice of 6 as the upper limit of integration in (2.11b) is a matter of
convenience in the proofs (any number larger than 2 would be valid). Note also that
there are constants c and C depending only on ßl and ßs such that if

(2.11c) p = e'/2,

then

(2.12) c(\x\ + pf-' < (x2 + e)iß-])/2 < C(\x\ + p)ß~\

so that (2.1 la) could just as well be written as

(2.lid) \Dxy(x)\^ Cx(\x\+ p)ßlI(x,e,ß)    for-l<x<l.
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Also, we note that

I        2        (60-ßV2_{x2 + ef-ßV2^       ß^{
(2.11e)       I(x,e,ß)={ P

ln^—, /3=1.
\     x2 + e

Here we are employing the convention that c, C, cx, Cx, etc. denote generic
positive constants which may depend on S5(m), but which do not depend on e or x
(or the mesh size h when the approximate problem is under discussion), and whose
values may change from one usage to the next. In particular, insofar as ß is
concerned, these constants may depend only on ß, and ßs and the assumption that
0 < ß, < \ß\ < ßs.

To get a clearer picture of the dependence on ß of the bound for yx(x) given in
Theorem 2.5, one can observe the following. Suppose jS is in [/8/, 1 — k] for some
positive constant k. Then I(x, e, ß) < C(k), and so (2.1 Id) becomes

\yx(x)\^Cx(k)(\x\ + p)ß^    for-1 <x< l,j8in[|8„l - *].

If ß is in [1 + k, ßs], then I(x, e, ß) < C(k)(\x\ + p)1^, and so

\yx(x)\< Cx(k)   for-1 <x< l,j8in[l + k,ßs];
while if ß = 1 evaluation of I(x, e, 1) shows that

\yx(x)\ < C, ln[6/(x2 + e)]    for -1 < x < 1, ß = 1.
The following technical lemma, which one would expect to be true from (2.11 ),

will be proven in Section 4.

Lemma 2.6. There is a positive constant c2 depending only on /?, and ßs such that for e
in(0,\]andß,<ß<ßg,

(2.13) (x2 + e)(ß~l)/2l(x,e,ß)>c2   /or-1 < jc < 1.

We also have the following estimates on the higher derivatives.

Theorem 2.7. Assume (2.7a-g) and in addition assume f, p, and q are in CK[- 1,1],
where K ¿> 2 is an integer. Then there is a constant C depending only on S5(K) such
that for y the solution o/(l.l)

(2.14) \D£y(x)\*C(\x\+p)ß-kl(x,e,ß)
for -I < x < \andk= 1,2,..., K + 1.

When ß is above 1, (2.14) is not a good estimate for the higher derivatives of y
since I(x, e, ß) increases with ß. An improved result for this situation is:

Theorem 2.8. Suppose ß = m + A where m is a positive integer and /?, < A < ßs,
and assume (2.7a-g). (For this result the "appropriate " choice of[ßh ßs] is [c0,1 + c0],
where c0 is a "small"positive constant.) Letf,p, andq be in Cm+'[— 1, \\for i > 2 an
integer. Then there is a constant C depending only on S5(m + i) such that for y the
solution o/(l.l)

(2.15a) \D£y(x)\^C   for -1 < x < 1 andk = 1,..., m,
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(2.15b)    \Dxky(x)\ < C(\x\ + P)ß'kI(x, e, A)

for — 1 < x < 1 and k = m + l,..., m + i + 1.

In the above situation where i = 1; (2.15a) is valid, and (2.15b) holds for
k = m + 1.

We note that for /? > 0 not an integer and for sufficiently smooth p, q, and /,
Farrell [9] has previously shown that

\D?y(x)\<M(k,ß)[l + (\x\+p)ß~k]    for-1 < x « l,fc= 1,2,...,

where the positive constant M(k, ß) does not depend on x or e. This result
corresponds to (2.14), (2.15) since for ß not an integer one can write ß = m + A
with 0 < A < 1 and so I(x, e, A) < C(A).

The above theorems, together with Remark 2.3, may be used to derive estimates
for the solution of (1.1), with turning points x¡ * ± 1, 1 < i < r, and with possible
boundary layers at x = ± 1. For this we require some notation. We define the index
set / c (1,..., r) by / = {i: /?, > 0}. In a similar way, we define x* = — 1, x* = +1,
and we define /* C (1,2} by /* = {/: (-l)Jp(x*) < 0}. Either of the sets / or /*
may be empty, but it cannot happen that both sets are empty.

Let 8 > 0 and N¡, 1 < / < r, be as in Remark 2.3. Let kp = nún{\p(x)\: x <£ N¡,
1 < i < r>. Let S6(m) = (||/7||m, ||9||m, ll/IL, |d,|, \d2\, kp, kq, 8, ß„ ßs, m}. The
following theorem is the generalization of Theorem 2.7 to the case of an arbitrary set
of boundary layers and interior turning points. A similar generalization of Theorems
2.5 and 2.8 could also be made.

Theorem 2.9. Suppose f, p, q are in CK[— 1,1], where K > 2 /s an integer. Then
there are positive constants C and 7j, depending only on S6(K), such that if ß, < |/?,| ^
ßs, 1 < /' < r, then

(2.16) \Dx'y(*)\ < c{ E {\x - *,| + p)ßi~kl(x - x„ e, ß,)
\iel

+  E e"* exp[-T/|x - x*|/e] + 1

-1 < x < 1,1 < k < K + 1.

Finally, we note that the preceding estimates enable one to examine how the
solution y(x) of (1.1) approaches the solution v(x) of the reduced problem (i.e.,
(1.1a) with e = 0, and the boundary condition v(—l) = dx [v(l) = d2] imposed if
and only if p(-\) < 0 [p(\)> 0]). For a discussion of the reduced problem and
estimates of y - v see, for example, [22], [1, pp. 54, 59, 68]. In the case of a single
turning point at x = 0, one can easily show the following result (the proof is in
Section 4). A similar result could be formulated for the case of an arbitrary number
of turning points.

Remark 2.10. Assume (2.7a-e), ß > 0, and suppose/», q, and/are in C3[- 1,1].
Then there is a constant C(ß) depending only on S5(3) and ß such that

(2.17) \\y-v\\0^C(ß)[e + eß/2(ln(6/e)y]
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where if ß = 1, then 17 = 1, if ß = 2, then r/ = 2, while tj = 0 for all other ß > 0.
This also shows that v(x) is continuous at x = 0.

Remark 2.11. Assume (2.7a-e), ß < 0, and suppose/», g, and/are in C2[— 1,1].
Then there is a constant C depending only on the set 54(2) (defined in Theorem 2.4)
such that

(2.18) \y(x)-v(x)\^Ce   for |x| < 1/2.

III. A Uniform Error Estimate for a Modification of the El-Mistikawy Werle
Scheme for (1.1). In this section we will consider approximating the solutiony(x) of
(1.1) using a modification of the exponential scheme of El-Mistikawy and Werle [6]
which they constructed by using a specific choice of the general approach of Pruess
[17] and Rose [18]. We will then use the bounds on 1^(^)1 given in Section 2 along
with appropriate comparison functions to estimate the difference in L°°(-l, 1)
betweeny(x) and its approximation.

We now describe in detail the general approach of the El-Mistikawy Werle
scheme, which is to replace (1.1) by a piecewise constant coefficient approximating
differential equation. Consider (1.1) and assume (2.7a-c). Let J be a positive integer
and define the uniform mesh length h = 2/J. Let the grid points {x }. be given by
Xj = -1 + jh for / = 0,1,..., /, and let Y, denote the approximate value (to be
determined) for^ = y(xj). The solution Y(x) of the problem

(3.1a) LY = -eYxx(x) - P(x)Yx(x) + Q(x)Y(x) = F(x),
(3.1b) r(-l)=y0 = if„       Y(l)-Yj-d2

is used to approximate the solution y(x) of (1.1), where P, Q, and F are constants on
each subinterval (x_,,xy), 1 </</ (the values of which may vary from one
subinterval to the next). Y(x) satisfies (3.1) in the sense that Y(x) is in C'[- 1,1],
(3.1b) holds, and (3.1a) is valid for x in A" = U^_,(jcy_i, Xj). We will assume in
what follows that Q(x) is chosen such that

(3.2a) Q(x)>kq,        x in X'

and P, Q, and F satisfy

(3.2b)    \P(x)-p(x)\ + \Q(x)-q(x)\+\F(x)-f(x)\^Ch    îorxinX',

where C depends only on \\p\\x, \\q\\x, and ||/||,. More specific choices for P, Q, and F
will be made below.

The discussion in the beginning of Section 2 of [4] shows that (3.1) has a unique
solution in the sense just described. (The specific choices of P and Q given there are
not required in the proof, which remains valid for the case of (3.1) if (3.2a) holds.)
From [6] or from Section 2 of [4] one has that at each interior grid point Xj a
tridiagonal relationship of the form

(3.3) -eh-^r-Yj^+r/Yj + r+Yj^)

- sJfj-1 + sjfj + tffj+1.     1 < j < J - 1,
is valid for the solution y of (3.1) where for each/ the r and 5 coefficients in (3.3)
can be determined as follows [4]. Let P~ [P+] denote the value of P(x) on (xj_,, x¿)
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[(X:,Xj+x)] and similarly for Q' and Q+. Let ñx denote the negative root of
-ew2 - P~w + Q"= 0, and let kx denote the positive root. Define nx = hñt and
kx = hkx. Similarly define n2 and k2 using the quadratic polynomial -ew2 - P+w
+ Q+. Define the following functions; e(w) = exp(w), g(w) = (e(w) - \)/w, with
g(0) = 1, and let 2vx = [1 - e(nx - kx)]] and 2v2 = [1 - e(n2 - k2)]~x. Then
(suppressing the/ subscripts) the r and í coefficients in (3.3) are given by

r~= e(nx)/g(nx - kx), r+= e(-k2)/g(n2 - k2),

r\ = "«i - l/s("i - ^i). r2 = k2- \/g(n2 - k2),
(3.4)      rc = rx + r2,

s~=g("i)«i - e(nx)g(-kx)vx,
s+= g(-k2)v2 - e(-k2)g(n2)v2,    sc = s'+ s+.

Remark 2.2 of [4] shows that the linear system (3.1b), (3.3), (3.4) has a unique
solution which may be calculated using simple tridiagonal Gaussian decomposition.
Thus (3.1) yields a readily implementable algorithm for obtaining an approximation
to the solution of (1.1).

If q(x) = 0 andp(x) is nonzero on [- 1,1], it has been shown [4] that \\Y - y\\0 <
Ch, with C > 0 independent of h and e. If q = 0, F(x) = (Pj-X + pf)/2 and
P{x) = (fj-\ + //)/2 on (Xj_x, Xj) for each/, then one has maxy|y(xy) -y(xj)\ <
Ch2 [4], [10]. A similar result holds in the case that P(x) = 0 and q(x) > 0 on
[- 1,1] [10]. We will use a numerical scheme based on (3.1) for the solution of our
turning point problem. Our analysis uses a comparison function argument. For this,
we require the following lemma.

Lemma 3.1. Consider the operator Lw(x) = -ewxx(x) - P(x)wx(x) + Q(x)w(x),
where e > 0 and P and Q are constant on each subinterval (Xj_x, Xj),j = \,...,J, and
where here we only need assume Q(x) > 0. Suppose w(x) is in C'[— 1,1], w restricted
to [Xj_x, Xj] is in C2[Xj_,, Xj]for eachj, w(- 1) > 0, w(l) > 0, andLw(x) > 0 for all
x in X'. Then w(x) > 0 for - 1 < x < 1.

Proof. If not, then there is an x0 in (- 1,1) at which w attains its minimum and
w(x0) < 0. Furthermore since w(± 1) ^ 0, x0 may be chosen such that x0 is in an
interval [xf_x, x¡] on which w is not constant. One can then use the maximum
principles in [16, pp. 6-7] applied to u = —w on the interval [*,_,, x¡] to obtain a
contradiction.

The comparison function estimate for Y(x) - y(x) proceeds in the following
fashion. Letting e(x) = Y(x) - y(x), we have

(3.5a) Le(x) = F(x) - f(x) + (P(x) -p(x))yx(x)

+ (q(x)-Q(x))y(x)^g(x)   forxinA",
(3.5b) e(-l)-e(l)-0.

Suppose we can choose a comparison function f(x) in C2[ - 1,1] such that

(3.6) f( + l)>0    and   U(x) >\g(x)\    for x in X'.
Then Lemma 3.1 applied to w(x) = Ç(x) ± e(x) implies that

(3.7) \e(x)\<l;(x)    for-1 < x < 1.
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The estimates in Section 2 are used to bound g(x). A suitable Ç(x) is then chosen
which satisfies (3.6) thus yielding an error estimate (3.7).

We will give the error estimates for the situation when there is one turning point
located at x = 0. The analysis of this case, together with Theorem 2.9, will make it
clear how to treat (1.1) when there is more than one turning point.

Theorem 3.2. Assume (2.7a-f) and (3.2) and let ß < 0. Then there is a constant C
depending only on S4(\) (defined in Theorem 2.4) such that

(3.8) ||y-j»||0<CA.

Proof. From the maximum principle Y(x) and y(x) are both bounded so we may
suppose h is bounded above by a fixed positive constant (described below). Recall
Lemma 2.1 (on the intervals [— 1, - 1/2] and [1/2, 1] with m = \) and then define
the comparison functions

(3.9a) xpx(x) = C, exp(-2T,c4(x + l)/e),

(3.9b) 4'2(^) = C2exp(-2T,c4(l - x)/e),

where Cx, C2, c4 are positive constants to be chosen. By direct substitution and use
of (2.9) and (3.2) one can easily verify that for h near 0 and for c4 fixed sufficiently
small, there is a positive constant c5 depending only on 54(1) such that

(3.10a)    L^x(x) 3? c5e~l\px(x)    for x in X' satisfying - 1 < x <- 1/2,

(3.10b)    Dp2(x)> c5e~ty2(jc)   for x in X' satisfying 1/2 < x < 1.
From (2.3) one has in addition that

(3.11a) \E^x(x)\^C   for x in A" satisfying x > -1/2,

(3.11b) \L42(x)\^C   for x in X' satisfying x < 1/2.

Now let
(3.12) S(x) = C3h + h$x(x) + hrp2(x).
We conclude that (3.6) holds (with g(x) given in (3.5)) if C, and C2 are chosen
sufficiently large and then an appropriately large C3 is fixed: this follows from (3.2),
(2.1), (2.2) (with i = 1), Theorem 2.4 (with m = 1) and (3.10), (3.11). Then (3.7) and
(3.12) yield (3.8), and the proof is complete.

We now give the result for the case where ß > 0 for which it will be convenient to
define the following comparison function:

(3.13) <¡>(x, c) = (c2x2 + e)(ß~])/2I(cx, e, ß),

where c is a (small) positive constant to be chosen below. Note that for c = 1,
Cx$(x, c) is just the right side of (2.1 la). We have

Theorem 3.3. Assume (2.7a-f) and (3.2) and let ß > 0. Suppose P(x) > 0 for
x > 0 and P(x) < 0 for x < 0. Then there are positive constants c and Cx depending
only on S5(\) such that for y the solution o/ (1.1) and Y the solution o/(3.1) it is true
that

(3.14) \Y(x)-y(x)\^Cxh<t>(x,c)   for - 1 < x < 1
with <i»(x, c) defined by (3.13).
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Note that Lemma 2.6 shows that for c in (0, l], <i>(x, c) is bounded from below by
a positive constant. In order to demonstrate (3.14) we first prove the following
lemma.

Lemma 3.4. For any c in (0, l], Dx<f>(x) < 0 for 0 < x < 1, and hence ifO < c, <
c2 < 1 and \x\ < 1, then <b(x, cx) > <¡>(x, c2). Assuming the hypotheses of Theorem 3.3,
there are positive constants c < 1 and c3 depending only on S5(\) such that

(3.15) Dt>(x,c) > c3<j>(x,c)   forxinX'.

Proof. We first show Dx$(x, c) < 0 for 0 < x < 1. Write out Dx<j>(x, c) and
consider the term containing the factor I(cx, e, ß) and (except when ß = 1) ex-
plicitly evaluate this integral. The contribution from the lower limit of integration
exactly cancels the other term, and one finds that Dx$(x, c) has the form xd(x, e)
where d(x, e) < 0 for |x| =$ 1 and e in (0, l]. We now prove (3.15). By (3.2a) and
Lemma 2.6 one has that

Q(x)<j>(x,c) > kq$(x,c)/2 + kqc2/2   fore in (0, l] and x in A".

Since P(x) > 0 for x > 0 and P(x) < 0 for x < 0 we have -P(x)<j>x(x, c) > 0.
Explicitly evaluating -e<¡>xx(x, c) and observing that e =^ (c2x2 + e) and c2x2 <
(c2x2 + e), one finds that, for c > 0 sufficiently small, -e<f>ÏX.(x, c) > —/c c2/4 -
kjt>(x, c)/4, and (3.15) follows.

With Lemma 3.4 in hand, the proof of Theorem 3.3 is then an immediate
consequence of (3.5a), (3.2b), (2.1), and Theorem 2.5. The bound on the error given
in (3.14) suffers a large growth when \x\ < h, ß < 1 and e is small. This can be
remedied with stronger conditions on the choice of P(x). Numerical results given in
Section 5 for the unmodified El-Mistikawy Werle scheme (i.e., for each/, P(x) =
(Pj + Pj+\)/2 on (Xj,xJ+x) and similarly for Q and F) suggest that some such
stronger conditions are indeed necessary to prevent loss of accuracy when e •« h,
\x\ < h, and ß < 1. We have

Theorem 3.5. Assume the hypotheses of Theorem 3.3 and furthermore assume
\P(x)\ < C4|x|/or x e X'. Then there is a constant C5 > 0 depending only on Q and
55(1) such that with c the same as in Theorem 3.3

(3.16) \Y(x)-y(x)\^Cih<t,(h,c)   for |x|<l.

The condition \P(x)\ < C4\x\ may be easily satisfied by slightly modifying the
choice of P(x) near the turning point: if there is a mesh point x, coinciding with the
turning point x = 0 then the condition |.P(x)| < c4|x| will be satisfied if (in addition
to (3.2b)) P(x) = 0 on (*,_,, xi+i). If the turning point x = 0 is in the interior of
(x(, xj+x), then the condition | f(x)| ^ C4|x|may be imposed by setting P(x) = p(x¡)
on (x¡_x,x¡), P(x) = 0 on (x„x,+ 1). and pix) = p(xl+x) on (x,+ 1,x,+2) (in
addition to (3.2b)).

Proof of Theorem 3.5. From (3.2a), (3.5)—(3.7), and with f a (large) constant, it
suffices to show g(x) in (3.5a) is bounded by Ch$(h, c). Since <i>(x, c) is decreasing
for x > 0 (by Lemma 3.4) it remains to prove the latter for x in A" with 0 < x < h
(the case of x < 0 being symmetric). It is thus sufficient to show that

\P(x) -p(x)\$(x,c) < Ch<t>(h,c)    for x in A" with 0 < x < h,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



numerical method for a TURNING POINT problem 475

and hence it suffices to demonstrate that

x<i>(x, c) < Ch<b(h, c)    for0<x</z.

Let b(x) = x<f>(x, c). Then by the mean value theorem, for any x in [0, h) there is a
£ in (x, h) such that

x<i>(x, c) = b(x) = b(h) - (h - x)bx(£)

= hï(h,c) - (h - x)[<t>(Z,c) + &x(t,c)].

By combining <i>(l, c) and the term in £<i>x(!, c) containing 7(c£, e, ß), one can verify
that for £ in (0, h), </>(£, c) + £<t>x(l;, c) > -2 and so x<j>(x,c) ̂  h$(h,c) + Ch
which, recalling Lemma 2.6, completes the proof.

It should be noted that Theorems 3.3 and 3.5 are not sharp, e.g., when e = 1 they
only demonstrate 0(h) accuracy while for e = 1 the unmodified El-Mistikawy Werle
scheme is 0(h2) [17]. Observe that Theorem 3.3 yields 0(h) accuracy away from the
turning point for any ß in [ßh ßs], and (3.16) implies that

(3.17a) ||y-.HIo< C(ß)(hß + h)    when ß > 0, ß * 1,

(3.17b) ||y - y\\0 < C5h In -^- whenj8=l.
ch

Farrell [8], [9], [21] has obtained a general set of sufficient conditions on the
coefficients of a large class of tridiagonal finite difference schemes for (1.1), (2.7),
ß > 0 not an integer, which when satisfied imply that the error at all the grid points
is bounded by C(ß)(hß + h).

IV. Proofs of the A Priori Estimates When ß > 0. In this section we will provide
the proofs of the results in Section 2 which were not proven there, starting with
Theorem 2.5. Unless otherwise stated, in this section conditions (2.7a-g) will be
assumed to hold for (1.1). Note that it suffices to prove the results for e in (0, e0] for
a fixed positive e0 < 1.

We may rewrite (1.1) in the form

(4.1a) -eyxx(x)-Px(0)xyx(x) + q(0)y(x) = g2(x)   for|x|<l,

where

(4.1b) g2(x)=f(x) + {p(x)-px(0)x)yx(x) + (q(0) - q(x))y(x),

(4.2) y(-\) = dx    and   y(\) = d2.
We first show that without loss of generality we may take q(0) = 1 in (4.1). Note
that q(0) is bounded between kq and ||û~||,. Define a by

(4.3) a=\/ß=px(0)/q(0),
and then divide (4.1a) by q(0), obtaining

(4.1c) - (e/q(0))yxx(x) - axyx(x) + y(x) = g2(x)/q(0).

It can be verified that if ë = e/q(0), then for k any given positive integer

(x2 + e)(ß-k)/2 ^ C(x2 + ef'k)/2   and   l(x, ë, ß) < Cl(x, e,ß);

for this observe that in the case c = l/<?(0) < 1

/6     s(-/»-n/2 ds < f6      s(-e-^2ds,
x2 + ce cx +ce
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and then use the change of variable s = s/c; the other parts are straightforward to
check. The a priori estimates are hence not materially affected by replacing e by
z/q(0), and it will be seen below (cf. the discussion below (4.20)) that neither is the
relevant behavior of g(x). Thus instead of (4.1c, b), (4.2) it suffices to consider the
problem

(4.4a) My = -eyXK(x) - axyx(x) + y(x) = g(x)    for|x|<l,

where

(4.4b) g(x)=f(x) + (p(x)-px(0)x)yx(x) + (q(0) - q(x))y(x),

(4.4c) y(-\) = dx   and   y(\) = d2.

The general approach to be used in treating (4.4) is to write y(x) in the form
ux(x) + u2(x), where Mux = 0 and ux(- 1) = y(- 1), «,(1) = y(\), and where Mu2
= g with u2(± 1) = 0. A priori estimates on the behavior of the function w,(x) are
obtained through the direct use of parabolic cylinder functions. These functions are
also used to construct and obtain bounds on the Green's function for M which is
then used to obtain the desired bound on Dxu2(x). Higher derivatives of u2 are
bounded via an inductive argument.

4.1. Parabolic Cylinder Functions. We recall some properties of the parabolic
cylinder functions that are relevant to our analysis. Given a function w(t) consider
the corresponding function w(x) defined by

(4.5a) w(x) = 4>(x)w[t(x)],

where

(4.5b)    t(x) = ax/2x/p   and   <#»(x) = exp(-ax2/(4e)) = exp(-i2/4).

One can then check that w(x) satisfies Mw = 0 if and only if w(t) satisfies

(4.6) w„ - [t2/4 + ß + 1/2] w = 0.

From [3], [20], one recalls that (4.6) determines the parabolic cylinder function with
the index a of [3] given by a = ß + 1/2. Following [3], there are two linearly
independent solutions of (4.6), U(a, t) and V(a,t). These functions satisfy, for
arbitrary real a:

(4.7a)      (7(a,i) = exp(-r2/4)f"û"1/2-(l + 8X) for f>C,(a),

(4.7b)      V(a,t) = (2/77)1/2exp(f2/4)fa"1/2- (1 + 62) for t>C2(a),

(4.7c)      trV(a, t) = T(a + l/2)(sin7ra • U(a, t) + U(a, -/)},

where Cx(a) and C2(a) are (large) positive constants and |ô,| + |52| < 1/3. Note
that when a = ß + 1/2 - k for k = 0 or 1, and ß, < ß < ßs, T(a + 1/2) is nonzero
and finite, and hence for such an a

(4.7d)        U(a, -t) = (1 +83)trV(a,t)/T(a+ 1/2)    for?>C3(a),
where C3(a) is a positive constant and |S3| < 1/3. From this it follows that

(4.7e) \V(a,-t)\^C4(a)\V(a,t)\    for t > C5(a),

where C4(a) and C5(a) are positive constants.
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It is also true [3] that for arbitrary real a

(4.8a) Ut(a, t) = .5tU(a, t) - U(a - 1, t),
(4.8b) Vt(a, t) = .5tV(a, t)+(a- \/2)V(a - 1, f),
from which it follows that for arbitrary real a

(4.9a) Ux(a, x) = -ax/2U(a - 1, x)/p,

(4.9b) Vx(a, x) = (a- \/2)al/2V(a - \,x)/p.

Now consider the two functions p~ and p+ which are solutions of Mp = 0 and
such that p~(- 1) = ju,+(l) = 0 and p~(\) = p+(- 1) = 1. We may write

(4.10) ux(x) = ux(l)p~(x) + ux(-l)p+(x),

and thus to analyze ux(x) it suffices to analyze the behavior of p~ and ¡u+. These
functions will also be used below to explicitly examine the Green's function for the
operator M which will be used to obtain the desired estimates for h2(x).

4.2. Analysis of p~ and ju,+. Let U(x) = <p(x)U(t), V(x) = <$>(x)V(t) as in (4.5a);
we suppress the dependence of these functions on a when the value of a is clear from
the context. Write p+(x) = y+ U(x) + 8+ V(x), p~(x) = y~Ü(x) + 8 V(x), where
y ±, 8 ± are constants whose dependence on e we wish to determine. Then

V(-0\   w
p-(l) j  ll,

where

C/(-i)    F(-i)
¿7(1)       V(\)

We assume that e is so small that for ß, < ß < ßs, and a = ß ± 1/2, (4.7) holds for

(4.11) = A

— «iai/2/p. Using (4.7), we find that the inverse of the matrix A has the form

(4.12a) A
kiPf cy

C2p2ß+]exp(-.5a/e)    k2pß

where
(4.12b) 0 <c3 ^\k¡\*z C4,       i=l,2,
and where c3 and Q depend only on a and the upper bound on e. We thus obtain
y~= Cxpß, 8~= k2pß. In a similar way, we may obtain y+, 8+. Summarizing these
calculations, we have

rU(x)
(4.13)

where

M  (x)    Px(x)
p+(x)    p:(x)

= B

B CxPß

V(x)

k2pß

U_x(x)

Vx(x)

kxpß    C2p3ß+lexp(-.5a/e)

Then from (4.9) and (4.13), for ;' > 1,

(4.14a)    Dxp~(x) = Cpß~iÜ(a - i, x) + Cpß~iV(a - i, x),

(4.14b)   Dxp+(x) = Cpß-'Ü(a - i,x) + Cp3ß+^'exp(-.5a/e)V(a - i,x).
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Note that since U(a - i,0) and V(a - /,0) are finite, (4.7a, b) and the maximum
principle for M imply that U(a - i, x) and V(a - i, x) are bounded for 0 < x <> Cp.
We now establish estimates for the derivatives of ux(x). (See also [8, Lemma 2].)

Lemma 4.1. Let ux(x) satisfy Mux = 0 with w,(± 1) = y(± 1). Then for i = 1,2,...
there is a constant C, such that

(4.15a) \Dxux(x)\ < C,/p'-P       for \x\ < p,

(4.15b) |A>i(*)| < Ci/\x\'~P   for \x\ > p.

Proof. Recalling (4.10), for x ^ 0 the result follows from (4.14) and (4.7a, b) and
from observing that, for x > p, (x/p)2'~2ß~] exp(-.5ax2/e) < C. For the case
x < 0, observe that
(4.16) p+(-x) = p-(x),
since w(x) = p+(-x) is a solution of Mw = 0, and its boundary values at x = ±1
agree with those of p(x). Then, from (4.10) and (4.16), we have

(4.17) (-\y{D'ux)(-x) = ux(l)Dxp+(x) + ux(-\)D'p(x),

so the result for x < 0 follows from the analysis for x > 0.
We next turn our attention to the Green's function for M in order to obtain the

desired bounds on u2(x).
4.3. The Green's Function for M. From, e.g., [5, p. 192] or [19] one may verify that

the Green's function for M is given by

(4.18a)     G(x,t) = -Ju-(x)iu+(T)e-1exp(.5aT2/e)/^(0)    forx<r,

(4.18b)    G(x,t)= -p+(x)p-(T)e-{exT}(.5aT2/e)/W(0)    forx.>r,

where

(4.18c) W(x) - p-(x)p+x(x) - p+(x)p'x(x),

and the solution of Mu2 = g with u2(± 1) = 0 is given by

(4.19) u2(x)=[l G(x,r)g(T)dT

= f G(x, T)g(r) dr + fG(x, r)g(r) di,

and so

(4.20) Dxu2(x)=f Gx(x,T)g(r)dr.

We now discuss some properties of the function g given by (4.4b). We write
g(x)=/(0) + Kx), where

(4.21) g(x)=f(x) -/(0) + [p(x) - xpx(0)]yx(x) + [q(0) - q(x)]y(x).
Using Lemma 4.4 below, we see that \g(x)\ < C|x|. A solution of Mw =/(0) is
H'(x) = /(0). We may then write/ = w, + /(0) + u2 with Mux = 0, and the boundary
data of u, adjusted so ux + /(0) agrees with y at x = ±1, and with Mu2 = g(x) -
/(0) and u2(± 1) = 0. Hence, taking Lemma 4.4 to be true, we may without loss of
generality assume g has the form

(4.22) g(x) = gx(x)x,    where |g,(x)| < C.
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In order to use (4.20) to estimate Dxu(x), we need some further bounds on p , p+,
and W(0). From (4.13) and (4.9), for e < c one finds that

(4.23) \W(G)\ >kp2P->
for some constant k > 0. By the maximum principle, p(x) and p+(x) are in [0,1]
for -1 < x < 1. From (4.13), (4.9), and (4.7) we have

(4.24a)     p~(x) + p+(x) < Cpß for0<x<p,
(4.24b) p~(x)^Cxß forp<x<l,
(4.24c) p+(x)^ Cp2ß+lx~ßlexp(-.5ax2/e) farp<x<l,

and so (4.16) shows that

(4.24d)      /x+(x)<C|xf
(4.24e)      p-(x)^Cp2ß+l

Similarly we have

(4.24f)       \p-x(x)\ + \p+x(x

(4.24g) \p-(x
(4.24h) ¡p+ix

(4.24Í) \p~x(x

(4.24J) \p+x(x
We can now prove

for - 1 < x <

p( - .5ax2/e)     for - 1 < x <ex

^Cpßl

< Cp2ß-] exp(-.5ax2/e)/xß

< Cp2ß~] exp(- .5ax2/e)/|x|^

<ci*r'

■p-

for |x| < p,

for p < x < 1,

for p < x < 1,

for - 1 < x < -p,

for-1 < x < -p.

Lemma 4.2. Let u2(x) be given by (4.19) and assume g(x) satisfies (4.22). Then
there is a constant C, depending only on S5(\) such that

(4.25a) \Dxu2(x)\^Cx + CxPß^f

(4.25b) \Dxu2(x)\ < C, + C,|x|P~' /"

max(|jc|, p)

/3-1  /•!

max(|x|,p)

ß dr      for \x\ < p,

"^ Jt    /or |x| ^ p.

Proof. We first show that it suffices to prove that

(4.26a) Fx(x)= r\Gx(x,T)T\dr

is bounded by the right-hand side of (4.25a) [(4.25b)] for |x| < p [|x| > p]. Suppose
Fx(x) satisfies these bounds. By (4.20) and (4.22) it remains to show that

(4.26b) /x \Gx(x,T)T\dT

also satisfies these bounds. Now, by (4.18) and (4.16),

(4.27) Gx(-x, -r)= -Gx(x,t),

so then

Gx{-x,-T)r\dT= f
l

/X I /"'    I|Gx(-x, -t)t|¿t = J    \Gx(-x, s)s\ds = Fx(-x),
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so it suffices to estimate Fx(x). We complete the proof by using (4.18), (4.23), and
(4.24) to show that the integral of \Gx(x, t)t| over the following t intervals (and for
various ranges of x) is bounded as claimed.

Case I. —1 <x< — p; x < t < — p, — p ^ t < p, p ^ r ^ 1.
Case II. —p<x<p;x<T<p, p<T< 1.
Case III. p<x< 1; x < t < 1.

We present two representative verifications of the claimed bound, the rest being
similar. First consider Case I with x < t < - p. Then

(4.28) \Gx(x,t)t\^ -exp(-.5a(x2 - t2)/e)tp^2|t/x|/3,

and, for x < t ^ -p, |t/x|^ < 1. Replacing the latter term by 1 in (4.28), we find
that the integral of \Gx(x, t)t| from t = x to t = -p is < C. For Case I with
P «= t< 1,

(4.29a) \Gx(x,r)i\< exp(-.5ax2/£)p20-'|xf V

= exp(-.25ax2/e)[exp(-.25ax2/£)(|x|/p)]

■ I |x|    p • p p    |x|      -|x|       J|x|      T  p.

The two bracketed terms are bounded by C and 1, respectively, and so

(4.29b) [l\Gx(x,r)i\dr< C /"'*' exp(- .25ax2/e)\x/rf\xf ' di

+ C\xf~] \\-»dt.•Vi
Now in (4.29b) t > p, so |x/t| < \x/p\ and hence, using (2.3), the first term in the
right side of (4.29b) is bounded by (|x| - p)C|x|" ' < C giving the result.

4.4. A Bound for yx(x). We prove the following lemma.

Lemma 4.4. Let y(x) be the solution o/ (1.1). Then there is a constant C depending
only on S5(l) such that

(4.30) \xDxy(x)\^C   for -1 < x < 1.

Proof. From the results in Section 2, y(x) is "smooth" for |x| > c, so it is only
necessary to demonstrate (4.30) in a neighborhood of x = 0. We will show that

(4.31) e\D2y(x)\^C,
which then implies (4.30). Let z(x) = D2y(x). Then since p(0) = 0, |z(0)| < C/e.
Differentiating (1.1a) once, we find that

(4.32a) Nz = -ezx(x) - p(x)z(x) = s(x),

where

(4.32b)    s(x) = sx(x) + í2(x)   withsx(x) = fx(x) - qx(x)y(x) and

i2(*)= (Px(x)-q(x))yx(x).

Let

(4.33a)    P(x)=-fp(S)dl   and   4>(x, |) = exp[(P(x) - P(Ç))/e].
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Then, as can easily be verified, the solution of (4.32a) is given by

(4.33b) z(x) = z(0) exp(P(x)/e) - e"1 fj(ÉH(*, 0 dt-

From the conditions (2.7) we have that px(x) > y, - 1 < x < 1, for some positive
constant y depending only on S5(\). Then

(4.34a) P(x) < -Y^2/2   for - 1 < x < 1,

(4.34b) P(x) - P(Í) = - fXp(r) dr < - .5Y(x2 - ¿2) < 0

for 0 < £ < x < 1 and for - 1 < x < £ < 0,
and so

(4.35a) |z(0) exp(/»(jc)/e)| < C/e,

(4.35b) \-E-1[Xsx(t)t(x,Ç)dt <C/e.
I •'o

To deal with

(4.36a) /0= -e-^U)-U(l)-?(£))*(*, ÉWÉ
•'o

we integrate by parts obtaining

(4.36b) I, = [-e-V(0(A(0 - 9(É)M*. 0]S

■'0

+ e-irr(|)(oJC(x)-o(|))^(x,¿)^.
■'o

The first two terms on the right side of (4.36b) are clearly < C/e, and the last term
is bounded by

(4.36c) Ce~] fXW(x, |)|rf£ = Ce~]\<j>(x, x) - <p(x,0)\ < C/e.

Equations (4.35) and (4.36) imply (4.31), and the proof of the lemma is complete.
Proof of Theorem 2.5. Using (4.15) and the inequality I(x, e, ß) > c, we find that

the inequality (2.11a) is satisfied with y replaced by «,. To show that (2.11a) is
satisfied with y replaced by u2, we use Lemma 4.2 and Lemma 2.6. We must then
show that

(4.37) f Tßdr^Cl(x,e,ß).
^max(|x|, p)

Using the change of variable s = t2, one finds that

j\~ßdr = j\.5s(-ß-^2ds   for z in (0,1).

Setting

(4.38) i(s,ß) = s<-ß-W,
to prove (4.37) it is thus certainly sufficient to show that

(4.39) i* = [x2 + c     i(s,ß)ds < Cf6    i(x,ß)ds.
-'max(j<:2,e) Jx2 + e
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Now using the change of variable f = s + e, we have

r=f*2^       (t/2 + (t/2-e)rß-l)/2dt
•^max(Aí2, e) + e

<f3    (t/2)(-ß-V)/2dt^CI(x,e,ß)
J v2-t- c'jf + e

completing the proof of (4.37).
Proof of Lemma 2.6. Using the notation (4.38), define

(4.40) <p(z) = z<ß~"/2f6i(s,ß)ds.

An easy calculation shows that, for z > 0 and ß in [ßh ßs],

(4.41) D¿(z) = -6<'-^)/2z^-3>/2 < 0.

Hence <í>(x2 + e) > <f>(2) > c2 for |x| < 1, e in (0, l], and ßl < ß < jfL, which is the
desired result.

We now turn our attention to obtaining a priori bounds on the higher derivatives
oty(x).

4.5. A Priori Estimates for the Higher Derivatives. The estimates for the higher
derivatives will follow from an inductive argument, using the fact that each higher
derivative satisfies an equation of the form (4.32a) having a solution of the form
(4.33). To begin the induction, we need to bound D2y(0), where y is the solution of
(4.4) (and where we are continuing to assume (2.7a-g)).

Lemma 4.5. Let y be the solution o/(4.4). Then

(4-42) |^(0)| <Ce<'-2>/2/(0,e,/}).

Proof. Note that Lemma 2.6 shows that the right side of (4.42) is > Cp~l. From
the results already obtained, in particular Lemma 4.1 and (4.30), without loss of
generality we may assume y( ± 1) = 0 and (4.22) is valid. In this case,

(4.43a) y(x) = f G(x, r)g(r) dr + Cg(x, r)g(r) dr,
J —I "X

and by (4.22) g(0) = 0, hence differentiating (4.43a) twice gives

(4.43b) D2y(0) = f° Gxx(0, r)g(r) dr + fcxx(0, r)g(r) dr.

From (4.14) with i = 2 and x = 0,

\D2p- (o)| + |z>,y (o)| <cPß-2.

Also observe that (D2G)(x, r) = (D2G)(-x, -r), and so, using (4.22) and (4.43b),
one only needs to bound the integral of IG^O, r)r\ from r = 0 to p and from r = p
to 1. Using (4.18), (4.23), (4.24a, c) and (4.37), we obtain (4.42).

We can now bound the higher derivatives at x = 0.

Lemma 4.6. In addition to (2.7a-g), assume that f, p, and q are in CK [ - 1,1 ] where
K > 2, and let y be the solution of (I.I). Then

(4.44a) \Dxky(0)\^Cp^kI(0,e,ß)   fork = 1,2,..., K + 2.
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Furthermore, (4.44a) is also valid if fis a function ofx and e satisfying

(4.44b)     |D*/(*. e)| < C, k = 0,1, |x| < 1,

(4.44c)      \Dxxf(x,e)\*iC{\x\+ p)ß~k+]l(x,e,ß),     2 ^ k ^ K, -1<x<1.

77ie constant in (4.44a) depends only on S5(K) and the constants in (4.44b, c).

Proof. We have already proven (4.44a) for k = 1 and k = 2, and we now proceed
by induction, assuming the result is true for derivatives 1 through k (2 < k < K + 1).
Differentiating (1.1a) k - 1 times with respect to x and recalling that p(0) = 0, we
find that

(4.45) e|Z)x* + V(0)| < C\D£- xy(0)\ + C\Dk~ '/(O, e)| + lower order terms.

By the inductive hypothesis, Z>*_1j»(0) is bounded by Cpß~(k~X)I(0,e, ß) and so
(4.45), (4.44b, c) and Lemma 2.6 yield the result.

We note that (4.44c) is overly restrictive here, but it will turn out to be appropriate
for a later result. With Lemma 4.6 we can prove

Lemma 4.7. In addition to (2.7a-g), assume f, p, and q are in CK[- 1,1] where
K > 2, and let y be the solution o/(l.l). Then

(4.46) \Dxky(x)\^CPß-kl(0,e,ß)   fork = 1,2,..., K + 1, - 1 < x < 1.

Furthermore (4.46) remains valid when f is a function of x and e satisfying (4.44b, c).
The constant in (4.46) depends only on S5(K) and the constants in (4.4b, c).

Proof. The result is true for k = 1 by Theorem 2.5 and (4.40), (4.41). Assume the
result is true for derivatives 1 through k (\ < k < K). Differentiate (1.1a) k times
and let z(x) = Dk+Xy(x). Then z(x) satisfies

(4.47) - ezx(x) -p(x)z(x) = s(x)    for-1 <x<l,

where s(x) involves kth and lower order x-derivatives of y and f. Recall (4.32a),
(4.33), (4.34), and Lemma 4.6, and use the inductive hypothesis to find that

(4.48) |D*+V(jc)|< Cpß-<k+ »7(0, e, ß)

+ Cp-2fX]pß-kl(0,e,ß)^p[-.5y(x2 - |2)/e] dt
Jo

If |x| < p, then the second term is bounded by Cp~2\x\pß~kI(0, e, ß) giving the
result. For |x| > p, in the integral use the change of variable \p = \x\ - | and then
use the inequality 2|x| - \f/ > |x| > p for ^ in [0, |x|] to obtain the result.

We can now prove

Theorem 4.8. In addition to (2.7), assume /, p, and q are in CK[- 1,1], where
K > 2, and let y be the solution o/(l.l). Then

(4.49) \Dky(x)\^C(\x\+p)ß-kl(x,e,ß)

for k = 1,2,..., k + 1, -1 <x< 1.
Furthermore (4.49) remains valid iff is a function of x and e satisfying (4.44b, c). The
constant in (4.49) depends only on S5(K) and the constant in (4.44b, c).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



484 ALAN E. BERGER, HOUDE HAN AND R. BRUCE KELLOGG

Proof. Let tt > 1 be a number depending only on S5(K); a specific choice of tr
will be made right after (4.58) below. Since it is sufficient to prove the result, for e
bounded above by some fixed positive constant e0, we may assume 27rp < 1. We
first demonstrate that when |x| < 27rp, (4.49) follows from (4.46). In this case, since
(|x| + p)ß~k lies between pßk and (2mp + p)ßk, it suffices to show

(4.50a) 7(0,e,j8)<Q/(2irp,e,j8),

and so using the notation (4.38) it suffices to show

(4.50b) f'+4m2'i(s, ß) ds < CJ(2mp, e, ß).

Using the change of variable t = s + 4ir2e, we have

(4.51)     (e+4"\s,ß)ds

= (£ + *"2ei[{4n2t/(l +47T2)-4772e) + ?/(l +4ir2),ß] dt
•'f + 4ir2í

^ft + ̂ [t/(\+4,2)Y-ß-l)/2dt^Cj(2np.e,ß)

as claimed. We may thus suppose |x| > 2mp for the rest of the proof of (4.49).
We now proceed inductively as in the proof of Lemma 4.7, using (4.47). It will be

convenient to define

(4.52a) E(x, {) = exp[- .5y(x2 - ¿2)/e].

From (4.32), (4.33), (4.34), (4.44), (2.13) and the inductive hypothesis

(4.52b)       |z(x)|< Cpß-kxI(0, e,ß)exp(-yx2/(2e))

C-'Alíl+p)" kI(i,e,ß)E(x,t)di
Jn

STX + T2.

Examination of (4.52) shows that we can, for convenience, suppose that x > 0. We
first treat the term Tx. Let m be an integer larger than 2{ß+X)/2. Then since
x > 2ttp > p, from (4.50a) 1(0, e, ß) < CJ(2mp, e, ß) < Q/(p, e, ß) and so using
(2.3),

(4.53)    Tx = C1
,)8-*-l

eß-k-\

,ß-k-\

(x + pY
k-l

-k-\

(x + p)p-K-lI(x,e,ß)
l(0,e,ß)p2m

I(x,e,ß)x2m r.2m
exp(-yx2/(2E))

< C(x + p)ß~k-ll(x, e, ß)[l(p, e, ß)p2m/{l(x, e, ß)x2m)].

If the last term in brackets is shown to be bounded by 1, then the contribution Tx to
the bound on Dk+ ly(x) will be bounded as claimed. For this it suffices to show that

F(z) = zmf6 i(s,ß)ds(4.54)
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is increasing for z in (0, l], to which end we have

(4.55) DzF(z) = mzmX T i(s, ß) ds - zmi(z + e, ß)
Jz + c

> mzm-x(z + e)i(2(z + e),ß) - zmi(z + e,ß),

which is larger than zero by the choice of m.
We next turn our attention to the second term, T2, on the right side of (4.52b). We

have

(4.56) T2^Cp'2f   U + p)ß-klU,e,ß)E(x,t)dt
Jo

+ C2fUß  k-]l(Le,ß)][ytp-2E(x,t)]dt=T3 + C2T4.

Now since x^-2-np,

(4.57) T3 < TTpCp-2pßkl(0, e, ß) exp(- .25yx2/e),

and so 7/3 can be bounded as desired exactly as was Tx.
To bound T4, perform integration by parts as delimited by the brackets in (4.56)

and find

(4.58a)    T4^{xß-kXI(x,e,ß)-0}

+ f[-(ß-k- l)y-'p2r2]p-2^ VU, e, ß)E(x, 0 dt

+ (X2$-k-lE(x,Odt

From Lemma 2.6, and since here | > p,

(4.58b)    fX2rk-iE(x, 0 dt < Cfikxe~ '/(£, e, ß)E(x, |) d£

= C3 fV-*Y(p2r2)p-2/(¿, e, ß)E(x, t) dt.

Now choose v > 1 so that C3p2/(irp)2 < 1/3 and so that

\-(ß-k- l)y-xp2/(irp)2\^ 1/3.

Then, having selected such a ir, (4.58) shows that

(4.59) T4 < xß-k-xI(x, e, ß) + T4ß + T4/3.

Since here x ^ p, (4.59) completes by induction the establishment of (4.49) and the
proof of the theorem is finished.

We now complete the establishment of the a priori estimates by proving Theorem
2.8.

Proof of Theorem 2.8. First recall that for k = 1,..., m the differential equation
satisfied by z(x) = Dxy(x) is given by (2.10) with the dependence of g(x) on the
derivatives of y and the data (p, q and/) as described below (2.10). Also note that
the value of ß associated with (2.10) is given by [<¡r(0) - kpx(0)]/px(0) = m + A - k
> A for 1 < k < m, and so in particular

[,7(0) - kPx(0)] > APx(0) > Akq/(m + A) > ß,kq/(m + ßs).
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Thus [q(x) - kpx(x)] is positive in a neighborhood N of 0 and so using Remark 2.2
to bound Dky at the endpoints of N, one may use the maximum principle to bound
Dky(x) for x in N (for 1 < k < m) and thereby obtain (2.15a).

Analogous to the discussion in Remark 2.3, we can just as well assume that for
— 1 < x < 1, [q(x) - mpx(x)\ is bounded above a positive constant k* which
depends only on S5(m). Now for k = m; g(x) in (2.10) depends on at most wth
order derivatives of p, q and /and ony, yx,..., Dx xy and so |g(x)| + |gx(x)| < C,
also the value of ß for (2.10) with k = m is A, and so Theorem 2.5 applies to (2.10)
and yields precisely the bound (2.15b) for Dx+Xy(x), since A-l=/?-(m+l).
Now suppose i > 2. We establish the rest of (2.15b) by induction with the aid of
Theorem 4.8. Suppose (2.15b) is true for derivatives m + 1 through/ where m + 1 <
/ < m + i. Then apply Theorem 4.8 to (2.10) taking ß = A, K = max(2, / - m) and
k = j + 1 - m and obtain the result.

We complete this section by proving the claims concerning the convergence as e
approaches 0 of y to the solution v of the reduced problem.

Proof of Remark 2.10. Let e(x) denote y(x) - v(x). Subtracting the equation
satisfied by v from that satisfied by y yields

(4.60a)      ex(x) + (-q(x)/p(x))e(x)= -eyxx(x)/p(x)    forx^O

(4.60b) e(-l) = e(l) = 0.

Now the solution of an equation of the form

(4.61a) ex(x) + a(x)e(x) = b(x),       e(xQ) = 0,

is given by

(4.61b)    e(x) = exp(-/l(x))rexp(^(í))¿»(í)¿f   whereA(t) = f'a(s) ds

and where t0 in ( - 1,1) is arbitrary.
Note that by using the change of variable x = —x, the inequality (2.17) in the

case — 1 < x < 0 will follow from the case where 0 < x < 1, so we proceed
assuming x > 0. We may thus take x0 = t0 = 1 in (4.61b) to solve (4.60) for x > 0,
and obtain

(4.62)    #W_^'^1*)

Now integrate by parts as indicated by the braces in (4.62) and obtain

is)

■ {-eq(t)D?y(t) + eqx(t)yxx(t))q-2(t) dt).

(4.63)   e(x) = sxp[p-^-ds
\Jx     P
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Noting Ihatp(x) > 0 for x > 0, (4.63) shows that for x > 0

(4.64) \e(x)\^\eyxx(\)/kq\ + \eyxx{x)/kq\ + Ce\D¡y(t)\k-qx dt
Jx

+  max   \eqx(t)yxx(t)kq2\.

The inequality (2.17) for x > 0 then follows from (4.64) and Theorems 2.7 and 2.8
and the argument in the first part of the proof of Theorem 2.8, while the inequality
(2.17) for x = 0 follows from the results just mentioned and from the fact that

(4.65) q(0)e(0) = eyxx(0).
The proof of this can be organized by verifying the result for the cases 0 < ß < 1,
ß = 1,1 < ß < 2, ß - 2,2 < ß < 3, ß = 3, and ß > 3.

Proof of Remark 2.11. Let e(x) = y(x) - v(x). Then e(x) satisfies

(4.66) L°e(x) = -p(x)ex(x) + q(x)e(x) = eyxx(x).

By Theorem 2.4 and (2.1) we have that for |x| <; 1/2, y, yx and yxx are all bounded in
magnitude by a constant depending only on S4(2), and so

k(o)|+k»(*)l<c,« forW< 1/2.
We now use a comparison function argument to bound e(x). Define the two
functions^"1" and \p~ by ^(jc) = ±e(x) + Cxe/kq + C,e. Then

(4.67a) ¿V^ ±eyXx(x) + Cxe + kqCxe > 0   for |x| < 1/2,

and

(4.67b) ^±(0) > 0.
Using the fact that q > 0, and p(x) < 0 for x > 0 and p(x) > 0 for x < 0, one can
easily check by contradiction that (4.67) implies that ^Hx) > 0 for |x| < 1/2
proving the result.

V. Numerical Results. In this section we present some numerical experiments
which illustrate Theorem 3.5 (particularly (3.17a)) and which suggest that modifica-
tion of the El-Mistikawy Werle scheme near the turning point to satisfy \P(x)\ < Cx
is indeed necessary to prevent loss of accuracy when e •« h and |x| < h.

Calculations were done for Eq. (1.1) on the interval [0,1] instead of [-1,1] with
one turning point located at z = 1/2 for which a = \/ß was chosen to be either 4,
2, or 4/3. The coefficientsp(x) and ^f(x) were defined by

(5.1) p(x) = a(x- z) + .3121 a(x-z)2,
q(x)= 1 + .2764(x-z).

The right-hand side f(x) = Ly(x) and the boundary data dx = y/0) and d2 = y(\)
were determined by defining the solutiony(x) to be

(5.2) y(x) = [.29l(x - zf + e]ß/1 + [.291(x - zf + e](^"1)/2(x - z)

+ exp(- .5x2).

The form of the function y(x) in (5.2) was chosen such that its various derivatives
have behavior as bad as and no worse than the estimates in Theorem 2.7 for any
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given ß in (0,1). For a given choice of ß, uniform meshes with h = 1/7, J =
32,64,..., 1024 were used. To obtain a wide variation of relationships between h
and e, the problem was solved with e = hs for various values of s, i.e., the equation
solved was

(5.3a)      -hyxx(x)-p(x)yx(x) + q(x)y(x)=f(x)    for0<x<l,

(5.3b) >>(0) = dx   and   >»(1) = d2.
The calculations presented here were done in single precision on a CDC-6500
(approximately 14 significant digits) except that the decomposition and backsolve of
the linear system (3.1b), (3.3), (3.4) was done in double precision (approximately 28
significant digits). A few comparison runs using single precision throughout revealed
no substantial changes in the results given here. Table 1 contains results from solving
(5.3) with ß = 1/4 using the El-Mistikawy Werle scheme (i.e., P(x) on each interval
(Xj, xJ+i) equals (/?■ + pJ+x)/2 and similarly for Q and F) but with the definition
of P(x) modified near the turning point as described immediately after (3.16).
Results for particular values of s are given in each column. The /°° error defined to
be the maximum over/ = 1,..., J - 1 of \Yj - y(Xj)\ is listed under Ex, and the
value of J is given in the first column. The numerical rate of convergence (listed
under the heading rate) is determined from the Eœ values for two successive values
of / (e.g., E^ and £¿ corresponding to h = \/J and h = 1/(27), respectively) by

(5.4) rate-(ln£¿-In£¿)/to(2).

Table 1
Numerical results for the modified El-Mistikawy Werle scheme
applied to (5.1)- (5.3), ß => 1/4

e = 1 e = h .5 e = h £ = h1.5 E = h E=h"

E«, Rate Em Rate E„ Rate E„ Rate E„ Rate E„ Rate

32

64

128

256

512

1024

6.2E-5

2.22

1.3E-5

2.14

3.0E-6

2.08

7.2E-7

2.04

1.8E-7

1.99

4.4E-8

3.6E-4

1.97

9.3E-5

1.53

3.2E-5

1.45

1.2E-5

1.53

4.1E-6

1.57

1.4E-6

1.9E-3

1.48

6.7E-4

1.40

2.5E-4

1.34

1.0E-4

1.12

4.6E-5

1.12

2.1E-5

1.1E-2

.60

7.5E-3

.67

4.7E-3

.73

2.8E-3

.76

1.7E-3

.79

9.7E-4

3.2E-2

.19

2.8E-2

.22

2.4E-2

.23

2.0E-2

.24

1.7E-2

.25

1.4E-2

1.3E-1

.27

1.0E-1

.32

8.4E-2

.35

6.6E-2

.36

5.1E-2

.37

4.0E-2
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TABLE 2
Numerical results for the modified El-Mistikawy Werle scheme
applied to (5.1)- (5.3), ß = 1/2

e = 1 e = h" E = h E = h1.5 E=h' E=h"

E Rate E Rate E Rate E Rate E Rate E Rate

32

64

128

256

512

1024

1.7E-5

2.40

3.3E-6

2.27

6.7E-7

2.16

1.5E-7

2.08

3.6E-8

1.89

9.6E-9

1.6E-4

1.96

4.1E-5

1.96

1.1E-5

1.88

2.9E-6

1.51

1.0E-6

1.58

3.4E-7

7.0E-4

1.66

2.2E-4

1.47

8.0E-5

1.48

2.9E-5

1.47

1.0E-5

1.46

3.8E-6

4.5E-3

.85

2.5E-3

.90

1.4E-3

.95

7.0E-4

.98

3.6E-4

1.00

1.8E-4

1.5E-2

.43

1.1E-2

.46

7.9E-3

.48

5.7E-3

.48

4.1E-3

.49

2.9E-3

3.5E-2

.62

2.3E-2

.68

1.4E-2

.71

8.6E-3

.73

5.2E-3

.74

3.1E-3

TABLE 3
Numerical results for the modified El-Mistikawy Werle scheme
applied to (5.1)- (5.3), ß = 3/4

E = 1 E = h .5 £ = h. E = h1.5 e = h' E = h°

F  Rate E  Rate E Rate E Rate E Rate E Rate

32

64

128

256

512

1024

7.7E-6

2.47

1.4E-6

2.27

2.9E-7

1.89

7.8E-8

1.96

2.0E-8

2.22

4.3E-9

8.7E-5

1.94

2.3E-5

1.92

6.0E-6

1.92

1.6E-6

1.94

4.1E-7

1.98

1.1E-7

3.2E-4

1.84

8.9E-5

1.73

2.7E-5

1.58

8.9E-6

1.56

3.0E-6

1.54

1.0E-6

1.8E-3

1.05

8.5E-4

1.10

4.0E-4

1.14

1.8E-4

1.17

8.0E-5

1.19

3.5E-5

5.8E-3

.67

3.6E-3

.70

2.2E-3

.71

1.4E-3

.72

8.3E-4

.73

5.0E-4

9.4E-3

.96

4.8E-3

1.04

2.4E-3

1.07

1.1E-3

1.09

5.2E-4

1.10

2.4E-4
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Table 4
Numerical results for the original El-Mistikawy Werle scheme
applied to (5.1)- (5.3), ß = 1/4

e = l e = h* e = h e = h1.5 E = h* £ = h-

E Rate

4.4E-5

2.00

1.1E-5

2.00

2.7E-6

2.00

6.8E-7

2.00

1.7E-7

1.97

4.4E-8

E Rate

2.6E-4

1.43

9.5E-5

1.46

3.5E-5

1.51

1.2E-5

1.56

4.1E-6

1.59

1.4E-6

E Rate E Rate E Rate E Rate

1.4E-3

1.18

6.1E-4

1.21

2.6E-4

1.19

1.2E-4

1.18

5.1E-5

1.13

2.3E-5

4.9E-3

.66

3.1E-3

.63

2.0E-3

.65

1.3E-3

.67

8.0E-4

.66

5.1E-4

1.6E-2

.30

1.3E-2

.28

1.1E-2

.26

9.0E-3

.25

7.6E-3

.25

6.4E-3

1.4E-2

-.55

2.1E-2

-.35

2.7E-2

-.19

3.0E-2

-.08

3.2E-2

-.01

3.2E-2

Table 5
Numerical results for the original El-Mistikawy Werle scheme
applied to (5.1)- (5.3), ß = 3/4

E = 1 E = h E = h E = h 1.5 e = h e = h

E Rate E Rate E Rate E  Rate E Rate E Rate

5.3E-6

2.00

1.3E-6

2.00

3.3E-7

2.00

8.4E-8

2.01

2.1E-8

2.25

4.4E-9

5.5E-5

1.66

1.7E-5

1.75

5.1E-6

1.83

1.5E-6

1.89

3.9E-7

1.94

1.0E-7

1.0E-4

1.58

3.5E-5

1.39

1.3E-5

1.46

4.8E-6

1.50

1.7E-6

1.52

5.9E-7

2.3E-4

1.23

9.9E-5

1.27

4.1E-5

.91

2.2E-5

.90

1.2E-5

.99

5.9E-6

4.6E-4

.55

3.1E-4

.55

2.2E-4

.66

1.4E-4

.71

8.3E-5

.73

5.0E-5

2.6E-3

.57

1.8E-3

.55

1.2E-3

.27

1.0E-3

.43

7.5E-4

.53

5.2E-4

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL METHOD FOR A TURNING POINT PROBLEM 491

The corresponding results for ß = 1/2 and ß = 3/4 are displayed in Tables 2 and 3.
These results are consistent with (3.17a) and also indicate that the estimate (3.17a) is
not sharp unless £ = h2. The results in Tables 4 and 5 are for the case ß = 1/4 and
ß = 3/4 when the original El-Mistikawy Werle scheme (P(x) not modified near the
turning point) is used to solve (5.3). Note that when e ^ h2 the rates for the modified
and original El-Mistikawy Werle schemes are similar while the magnitude of the
errors is actually in general smaller for the original method. However, when e = h3
the results suggest that the rate of convergence of the original scheme deteriorates.
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