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§1 Introduction

In recent years much attention has been devoted to

- the formulation and analysis of Galerkin methods for
approximating solutions of parabolic problems. 1In [9],
Douglas and Dupont obtained H1 error estimates for the
continuous time and for several discrete time Galerkin
procedures. Price and Varga in [18] obtained L, error
estimates for the continuous time Galerkin procedure for
linear parabolic problems. It appears however that their
proofs are restricted to linear problems and the use of
L-splines. Fix and Strang [14] have also obtained L,
estimates for linear initial value problems.

This thesis is an extension of the work of Douglas
and Dupont [9]. 1In this thesis L, error estimates for
continuous time and several discrete time Galerkin
approximations of some second order nonlinear parabolic
boundary value problems are derived. It appears that
this analysis carries over to higher order parabolic
problems and to systems of parabolic equations.

This thesis is divided into three main chapters.

In Chapter II the variational problem and the Galerkin
procedure are described. The basic techniques of this
thesis are developed in Chapter ITI. There L, error
estimates for Galerkin approximations of linear elliptic
problems are used to derive a priori L, error estimates

for continuous time Galerkin approximations of nonlinear



parabolic problems. These estimates are independent

of the choice of basis functions used in the Galerkin
procedure. However, they do depend on an L_ estimate
of the derivative of a function which is the Galerkin
solution to a certain linear elliptic problem. 1In
Chapter III we also derive L, and L _error estimates
for Galerkin approximations'and derivatives of Galerkin
approximations where the region under consideration

is a rectangular parallelepiped and the tensor products
of piecewise Hermite polynomials of degree 2m-1, m = 1,
are used as a basis. 1In Chapter IV we use the techniques
of Chapter III to obtain Ly error estimates for several

discrete time Galerkin procedures.



§2 TFormulation of the Variational Problem and the

Galerkin Procedure

2.1 Definitions and notation: In this thesis all

functions are real-valued. Let (O be a bounded domain

. n
in R,

Definition 2.1: Cg(n) is the set of infinitely

differentiable functions with compact support in Q.

Definition 2.2: CS*(Q), s a positive integer, is
a subset of C5(Q) consisting of functions w with

2
( % P )2 < o

|aj<s L2(7)

where q = (al,qz,...,ah) is a n-tuple with non-negative

inteéger components and

o, o o. 9 A Bn
D"‘=Dl1 D22...Dnn= G, Ay .. A
axl axz axn
and
im] = aq + ay + ... 4+ o

Definition 2.3: H%(q), s a positive integer, denotes

the completion of CS*(Q) with respect to the norm



2 %
(R = ( = |p%y )

H () la<s L,(Q)

(see Agmon [1])

Definition 2.4: Hé(ﬂ) denotes the closure in H;(n)
of CO(Q).

If w e Hé(n) then

(2.0) 2 n f 2
.0 Wi < C z w dx
Q 52 J X,
Lz(Q) i=1 O 1
Gee [4]). We norm Hé(ﬂ) by
2 n 2
'!W!‘ 1 = T ’[‘ wo dx

Definition 2.5: Let H be a normed linear space

consisting of a set of functions defined on Q. If w is a

function defined on [0,T] x Q we say w € LP([O,T],H),
1<p< oif for t ¢ [0,T] w(-,t) ¢ H and !w! ¢ Lp([O,T]).

We define

= "F(t)!
Mg r1y ¢ )"r (fo.™h)

-—NeT 5 - gy
P

where



In this thesis we use ( , ) to denote

W,vH = f wv dx W,V € LZ(Q)
9]

1
and Hy = H%(Q), Ls = LS(Q), and H° = H%(Q), s a

positive integer. Also L_=1L (Q), | -Hw =.p .
‘ L (2)xL_[0,T]

If fxi € Lm(n x [0,T]), 1 < i < n, we define

!

|vE] = max £ |
L

o 1<i<n

2.2 The variational problem and the Galerkin procedure.

Consider the parabolic partial differential equation

(2.1) u, = v-a(x,u)vu xeQ, t>0

with boundary condition

(2.2) u(x,t) = 0 Xe 3, t>0

and initial condition

(2.3)  u(x,0) = (x) X €Q

where n is a bounded domain in R". a(x,p), (x,p) e 0 xR,



is assumed to be positive and bounded. It is evident

that if u is a solution to (2.1) - (2.3) then u satisfies

(2.4) (Ue,v) = -I a(x,u)vu. vvdx, t >0, ve Hé(n),
Q

(2.5) ((x,0), v) = (4,v) v € Ha),

and
(2.6) u(x,t) ¢ Hy(a) £ >0

If u satisfies (2.4) - (2.6) we say that u is a weak
solution to (2.1) - (2.3). 1In fact (2.1) - (2.3) and
(2.4) - (2.6) are ennivaiept if u(x;t) and a(x;u) have
sufficient regularity.

In the Galerkin method, we seek a differentiable

function U(-,t) ¢ M, a finite dimensional subspace of

Hé(ﬂ), such that

(Ut,v) = - a(x,U)vU0-vvdx, t >0, ven
(2.7) Q

U,vy = (§,Vv)H t =0, ve%

=

Let % denote the span {v,}, ., where v,,...,V, are linearly

i=1

independent and let



M
U(x,t) = B> gi(t) vi(x)

i=1
Then (2.7) reduces to an initial value problem for the

system of nonlinear ordinary differential equations

Gg'(t) = -B(g)=

and

Here b is a vector whose kth component bk = (w,vk), G =

(GkL) with

k4, = <Vk’ V&>:

M
Lz

l=

Bk‘ﬂ(g) = J‘ a(x: 1gi(t)vi(x))vvk'VVde
0

The matrices G and B(2) are positive definite since the Vi

s

1l <1 <M, are linearly independent and a(x,p) for
(x,p) € OXR 1is positive and bounded. We will also
assume that a(x,-+) is uniformly Lipschitz continuous
with respect to its (n+l)st variable. It then follows
from the theory of ordinary differential equaticas that
zg(t) exists and is unique for t > 0.

The solution to (2.7) is called the continuous time




Galerkin approximation to u. In Chapter IV, we discuss

several procedures for approximating U in which the
variable t will be discretized. The solution to the

discrete problem is called the discrete time Galerkin

approximation to u.

2.3 Basis functions for the Galerkin procedure.

Throughout this thesis, Sh will denote the span of M
linearly independent functions in V, where V is
appropriately Hé(ﬂ) or Hl(Q). For parabolic problems
with homogeneous Dirichlet boundary conditions Sh will
be an St 0(Q) space and for Neumann problems Sh will

be an Sk,m(n) space. The spaces Sk (Q) and Sk (o)

will now be defined. (gee [5])

Definition 2.6: Let h, 0 < h < 1,be a parameter and
G a bounded open set in R™. For any two positive integers
k and m with k <m, let S&’g(c) be any finite dimensional

subspace of H (G) n H (G) with norm || || which satisfies:
H (G)

For any v ¢ HJ(G)HH%(G) there exists a

congtant O indenendent of Lk and v siich thar
R e e —— -~ Lt At A - N — - S — - - Tt o fat
(2.8) inf 'v-X|| < ool Yy
xes?: O¢qy nte) 1 (e)
K.m*" - N N~/

for all non-negative j and 4 with i<k and

L <3 <m.



Likewise let SE m(G) denote any finite dimensional subspace
of Hk(G) such that if u e HJ(G) then (2.8) with Sﬂ’g(G)

replaced by Sﬂ’m(G) holds for all non-negative integers

j and ¢ such that £ < k and £ £ j < m.

. h
We now describe an example of an Sm,Zm

where B is a rectangular parallelepiped in R".

(B) space

Let A denote a partition of [a,b] with a = X <Kq <o ..

<Xy T b and xj+1 - xj = h. The set of piecewise

Hermite polynomials of degree 2m-1, m = 1, which are
. . N+1 m-1

defined on 4 is {sik(x,m)}i=0 k=0 Where

) - -1 - 3
D sik(xj,m) = bijbbkh , 04 <m-1, 05 j <N+

(see [7])
We note that sik(x,m) has support in [xi-l’xi+1] and
1 -2 .
that |[D s, || ‘ sCh?®” 0=<4¢=m where C  is
L,la,b]
N+1 m-1

a constant independent of h. The {sik(x,m)}
i=0 k=0

is a basis for H_(a) where H_(a) is the collection of
all real piecewise polynomial functions w(x) on [a,b]
such that w(x) e Cm'l([a,b]) and such that on each
interval {xj,xj+1], w is a polynomial of degree Zm-i,
m= 1.

et B = (ai’bi)’ Ay denote a partition of [a,,b.],

=1
and h be the maximum interval length of by 1 <1i<n.



In [21] Schultz shows that the tensor products of the

piecewise Hermite polynomials of degree 2m-1, m > 1,

n
which are defined on X A, form a basis for an Sh 2 (B)
i=1 t o, <m

space.

10
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§3. A Priori L, Error Estimates for the Continuous Time

Galerkin Procedure

3.1 Estimates for the heat equation in one dimension

with homogeneous Dirichlet boundary conditions. We will

consider the heat equation in one dimemsion to illustrate
the techniques used in this thesis without becoming
involved in complex details. 1In this section we will
also choose a particular basis for the Galerkin proce-
dure in order to derive Lm as well as L, error estimates.
Let u be a unique solution to the one dimensional

heat equation

with initial and boundary conditions

(3.2) u(x,0) = ¥(x) x el

and

(3.3)  u(0,£) =u(l,t) =0 £ e (0,T]

where I = (0,1). We will assume that £ is uniformly

Lipschitz continuous with respect to its second variable
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with Lipschitz constant K, and £(-,0) € LZ(I)' In

addition, we assume u, u,

positive r and u ¢ CZ(I x [0,T]).

e L,([0,T], HY(I)) for some

Let & denote a partition of [0,1] with uniform

mesh h. We choose Sh to be the span [vi(x)}M , the
i=1

piecewise Hermite polynomials of degree Z2m-1, m 2 1, which
are defined on A and contained in Hé(l). These basis
functions are defined in Section 2.3. For simplicity

we assume VY € Sh.

The Galerkin approximation U to u is defined as

follows:

M
(3.4)  U(x,t) = 5 g(t) v;(x) (x,t) eT x [0,1],
i=1
(3.5) (Ut,v) = (Ux,vx) + (£(x,U0),v) t >0, v e Sh
and
(3.6) U(x,0) = ¥(x)

For t ¢ [0,T] we denote the Hé(I) projection of

u(x,t) onto Sh by u(x,t), that is u(x,t) is defined by
(3.7) j(u(x,t)-ﬁ(x,t))xvxdx =0 v e st
I

We now determine an a priori estimate of "UJEHLZ(I)(T)
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for v ¢ (0,T].

Theorem 3.1: Let u be the solution to (3.1)-(3.3).
Assume that the above conditions imposed on u and £(x,u)
hold. Let U and U be defined by (3.4)-(3.6) and (3.7)

respectively. Then for 7 ¢ (0,T]

2
ng-u (1) + 2|u-ay 4
L, (1) H(I) x L,(0,7)
0
(3.8)
2 2
+'Kllu_'i‘1n )

< Ly n(u-a
e (ii(u u)t”Lz(l'.)xLz(o,T) ’ ”Lz(I)xLz(O,T)

where L = 3K + 1.

Proof: Since u satisfies

(u,,vy = -(u_,v ) + (£(x,u),vy v € Sh
we have by (3.7)

(3.9) (Gt,v) = -(ﬁk,vx) + ((ﬁ-u)t,v) + (£(x,u),v) Vv € Sh

Subtracting (3.9) from (3.5) with (U-U) as a test function,

we obtain
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R P 2 N ~
Y —(”U-u” ) = - ‘.!U-ﬁ-‘"l 1~ ((u-u)t, U-u) +
2 at L, Hy
(3.10)  ((£(x,0)-£(x,u)), U-T) <=1U-&4°, + 3@-u) " 1U-&"
Hp 2
KijU-ul|  fU-ul

Applying the triangle inequality and the inequality
2
ab < (a + bz)/z to the right hand side of (3.10) we see

that
a2 2 2 L2
—(|U-u_ ) + 2)U-u} ; < Y(u-d) |+ Kiu-u} o+
(3.11) ~ 2
Liju-u}
L,

where L = 3K + 1. Integrating (3.11) with respect to t

T
e

b}

btain

(

v Ovrarmansllla 1Tammas 21
5 SICOWIRLL S L8N (25

™

2 Q)
2.8).
From Theorem 3.1 we see that if one determines

estimates for !|u-Ul (t) and n(u-ﬁ)t" (t) for

t € [0,T] then an a priori estimate of |U-ul|| (1)
T L)

can be found for 7 ¢ (0,T]. We mow obtain L, estimates of

(u-u) and (u-G)t. Notice that Et(x,t) is the Hé(I)

+

L,
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f((u-ﬁ3t)xvxdx = TFE j(u-ﬁﬁxvxdx =0 vVve Sh

I I

We remark that for t ¢ (0,T] u(x,t) is the Galerkin

approximation to the linear elliptic boundary value

problem

Wox T U + f(x,u(x,t)) =0 x ¢ (0,1)

w(0) = w(l) =0 .

Thus for 7 ¢ (0,T], L, error estimates of (u-u) (%, 1)
and (u-ﬁ)t(x,T) can be obtained using known L, error

estimates for the Galerkin approximation to a linear
AT T Semterd A o
CL.L.LPI— - PLU
arbitrary S space when more general nonlinear parabolic

problems are considered, (see Theorem 3.5). 1In this

section however we obtain these error estimates by proving

an interpolation result.

Lemma 3.1: Let w € Hé(l). If w is the Hé(I) projection

of w onto Sh, then w interpolates w and

(3.12) w-W < 2hiw-Wh oy
L, H-

&~ v
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Proof: This lemma holds for m = 1 since the Hé

projection of w onto Sh is the Hermite interpolate of w.

(see [18]). We will assume that m > 2.
Let w* ¢ Hm(A), m2 2, (Hm(A) is defined in Section

2.3) satisfy

I(w:w*)x vedx = 0, vV € Hm(A).
I

w¥ is not unique; however since x € Hm(A) we have

{(W-W*)x dx = 0

Since (w-w%) ¢ Hl(I) and is absolutely continuous on
[0,1], we conclude that w*(l) = w¥(0). Let W(x) = wk(x) -

h

w*(1l). Therefore w ¢ S and w satisfies

I(w-ﬁoxvxdx = 0, v e H (8)
I

h

i
2

Since S c Hm(A), W e Sh, and w is unique, we have w

We now construct functions Fj € Hm(b), 0 £ 3j £ N, such

R (G+Lh N
f (w-w)(Fj)xxdx = - j(w-w)x(Fj)xdx = 0
I

jh
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where (Fj)xx is of one sign in (jh,(j+1)h). This would

imply W interpolates w.

For 0 £ j £ N define
rO 0 <x < jh
(x-30)"{vg j+vy 5 (x-(J+1)h)

. (x-GHLB™ 3 5h < x <(GG+D)h
PG = S Feooet Ypo3sy (x-(F1)D) jh = x =(3+1)

+(x-(§+1)h) ™2}

o + 8y GHh < x <1

The constants oy 5 B 0 < i< m-3, are chosen

] and T

so that Fj € Cm-l(I) and F1 € Hm(A), m=2. It is easy
to verify that

Mo (x-i)™ 2 (x-G+1DW™?  jh < x < (J+1)h

0 x € [0,1]-[jh, (§j+1)h]

e, = m{m=-1) + 2m(m=-2) + (m-2)(wm-3)

N+2
Thus there exists lgjjj=0’ with §, = 0, go.» = 1,

and gy € ((j-1)h, jh) 1 £ j < N+1 such that
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(W-ﬁ) (gj) = 0.

Note that
|gi-gi+1| < 2h 0<is<N+1
Now
2. N G,
jw-¥) dx = = J (w-%)"dx
I = B4

N+l 5441 x 5
= 2 L [-®) (mdn]@-9) ) dx

i= "
51 gi

N+l 5il N
< = [ nw-d S, | (wii) (x) | dx

= n

1 gi Lz(gi’x)

N 5
P 2™ o " loe 2N\ i oo
= Al .(.; J\WTW)Y 4 ”w-w

1=0 Ly (8s ) LRy 2 0)

<

Zh tw-w o lw-R)
0 Ly
The above inequalities follow from Hélder's inequality. The

proof of the lemma is completed.
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Applying Lemma 3.1 to u and u, and recalling that Sh
is a~SB’O (I) space we have
m, 2m P

.

(3.13) u-T) (r) < 2Qh° jul (t) t e [0,T]
L H

2

and

(3.14) t(u-¥) 0 (£) =< 2q0° "u.t _(t) t ¢ [0,T]
V t t S
LZ H

where s = min (r,2m). The constant Q depends on m. (see

[21]). Using the above estimates we can now obtain a priori

L, estimates for (U-u)(x,7), 7 ¢ (0,T].

Theorem 3.2: Assume the hypotheses of Theorem 3.1.
Then for 7 ¢ (0,T]

~ | i
w11 .U” T v l

LZSI'_.LT r4 2 [l e | 2
m L \1\“ t

=z
{
[

-~

<
AN

+ HUHHS(T)]

2 H®(I) xL,(0,7) H® (1) xL, (0, 7)

\
J

where Cm is a constant independent of u, Uy, and h, L = 3K + 1,

and s = min (r,2m).

Proof: From Theorem 3.1 and (3.13) and (3.14) we

have for 17 € (0,T]
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2
(3:15)  u-Fj (7) < 2Qe"™n?S [kjjuy?
) H® (1) %L, (0, 7)

2
+ ”ut” ]
H®(I) xLy (0, 7)
We note that

2 2 2
(3.16) U~y (7) < 2[jU-Tl (1) + §-uj] (7)]
L, L, L,

The required result now follows by substituting (3.13)

and (3.15) into the right hand side of (3.16).

Using Theorem 3.1 we can also

O
=
-t
3]
|-h
3
]
"3
31
wde
>
3
wle
t-l
0]
o]
(&N

- A

L, estimates of Dj(U~u), 0<3j <m. We now prove

Theorem 3.3: Assume the same hypotheses as in Theorem

3.2 with r 2 m. Then for 7 ¢ (0,T]

(3.17) lw-u)y () < Ch¥d, 0<jsm
L
2

If for 7 e (0,T], (M%) (x,1) ¢ L (I), then
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(3.18) nnj(U~¢uL () S h%"3"%, 0<j<m

©

where 8 = min(r, 2m). Here Cq and C, are positive

constants which depend on m, K, Q,7, |u! (),
H® (1)
fa el - In addition, C, also depends
HS(I) XLZ(O, T)
s
on ||D7ul ().
L_(1)

Proof: From [6] we have

3.19) "pJ (u-u) < c*n8-3p® ,
(3-19) b= (u “m”"Lq(I)(T) o "”Lqmm

0<j<mqgq=2, o

where um(x,w) is the piecewise Hermite interpolate of u{x,r)
on § and e is a comnstant independent of u and h. -By the

the triangle inequality we see that
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i S
(3.20) U=y (1) S [U-ut (1) + fueug] (1) < ggh
2 2 2
where X 1is a constant depending on K, 1, ljull s (7),
m H™(I)
adl . » and ljuj .
H (I)XLZ(O,T) H (I)XLZ(O,T)

Now (U-um) € Sh and has the expansion

M
(U-u ) (x,7) = & v; (1) vi(x) T e (0,T]
We note that for 1 ¢ (0,T]

2
(3.21) D (U-u)| (1) = (G, ¥(N.v(r)), 0<i<m
L, 3

where Gy is the Gramian matrix corresponding to the

functions {Djvi} . It can be easily verified that

i=1

Gj’ 0<j<mis a positive definite matrix with eigen-
-2j+1 ;

values bounded above by Kmh where K, is a constant
independent of h. In [15] Gardner proved that for m = 2
the eigenvalues of Gy are bounded below by c,h where c, is
-~ emem L A nm o msm mdmmem e e D e B B L L Ml demmlecnd e~
a puUsLLLvVe ColtdLalle LilUCpCELIUCLIL UL 1L L1l LELLMLLYUED

developed in [15] have an obvious extension to arbritrary
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m = 1, and it can be shown that form 21 the eigenvalues
of G0 are bounded below by cmb where ¢ is a positive
constant independent of h. Thus from (3.20) and (3.21)

we obtain
2 M 2 2g-1
(3.22) v, = T ¥,() S (x /e yh”S T e (0,T]

and for 0 £ j S m

2 .
i (U-u )| (1) = (6¥(n), (D)
L,
2
1-2j
<K h uv(v)uz
(3.23)
S(Kmxm/cm)hz(s'3> e (0,T]
Inequality (3.17) now follows form (3.19) with q = 2
and (3.23).
Similarly for 0 < j <m and 7 ¢ (0,T]

pd (u-u )| < T v:(n) Dlv, (0]
i - . h 14
P (8- l (T) xet IRANEE

| " 1/2
j 2
< ty(m)ll_ sup ( T (D7v,(x))")
2 xel i=1

Using the definition of the v; we note that |Djvi(x)| < th"i
0 <3 <m and that for x € I no more than Zm of

M
{vi(x)iial are not identically zero. Thus for 0 £ jJ € m
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and 7 ¢ (0,T]

”DJ(U-um)”LQ(I)(T) < JZm cmh‘Juy(T)nz
(3.24)

. 1
< (%Im;\/kam ) W32

Inequality (3.18) now follows from (3.19) with q =
and (3.24).

3.2 Some general estimates for nonlinear parabolic

problems with homogeneous Dirichlet boundary conditions

In this secticn we shall derive L, error estimates for the
Galerkin approximations to solutions of the boundary

value problems:

n
(3.30) u_ = v.a(x,u)vu + % by (x,u)u, + £(x,u)
i=1 i

(x,t) e o x (0,T]

and

(3.31) T (a,. ()p(x,u)ug ) b, (ouwu, + £0xu)

(3.31) u_= % (a, (X)p(x,u)uy )x. + £ b .(x,u)u I(x;u
tog,5=1 L7 i M S R S Y

(x,t) € g9 x (0,T]

The boundary and initial conditions are respectively
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(3.32) u(x, t) 0 (x,t) € 3 x (0,T]

and

(3.33) u(x,0) ¥(x) X €N
We first consider the parabolic problem defined
by (3.30), (3.32), and (3.33). We make several assumptions

which will be referred to as Condition A.
Condition A

(1) For (x,p) e 0 xR
0 <n < alx;p) < Co

|bi(x,p)| <Cjp 1<i<n

{(2) a, £, and bi’ 1 <1i<n, are uniformly
Lipschitz continuous with respect to
their (n+l)st variable with Lipschitz

(3.34)
constant K, and £(,0) ¢ L2(9)= Further

assume au(x,u(x,t)) exists for (x,t) €

(3) Y ¢ Hr(Q) n Hé(n) for some positive integer r.
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(4) ue C2(Q x [0,T]) is a unique

solution to (3.30), (3.32), and

(3.33), and u, u, € LZ([O,T],
H(Q) n Hé(Q)) (same r as in

(3)).

(5) For 1 <1i<n(b;(x,u)),
i

exists and is bounded by M*¥ for

t e [0,T].

For convenience we will define

a(p; w,v) = [ a(x,p)vw-vvdx
Q

B pe a Sk m(Q) space. The Galerkin
J{:,8) € Sh to the solution U ©

approxz.matlo Uis

(3.32), and (3.33) is defined by

Let S

(3-35) (Ut,V) = -a(U; U’V) + (f(X,U), )
t >0, v e Sh

n
+ I (bi(x,U)Ux’,v), t

i=1 i
(3.36) U(x,0) = ¥5(x)
B ang Y-y < cxh®ny = min (r,m)
! O“ - u 'HS’ 5 min 4 '

where YO € S
L
2
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For example, one could define Yq as the L, projection of

¥ onto Sh.
For t ¢ [0,T], we define U(x,t) € sh
by
(3.37) a(u(x,t); (u-d)(x,t), v) = 0 vV e Sh

M

Let Sh be the span {vil where VysVgs e s Vy are linearly

i=1

independent, and let

M
E(X,t) - _?-31 Yi(t)vi(x) (x,t) € qa x {0,T]
l=

Then (3.37) reduces to a system of linear algebraic

equations

B(t) v(t) = q(t) t ¢ [0,T]

where

B(t) = (bk{,(t)> =(j‘ a(x,u(x,t))wk-VVde) t e [0,T]

and

q,(t) =([ alx,ux,t)) Tu-ov dx) t e [0,T]
Q

The matrix B(t), t ¢ [0,T], is positive definite since
M

{vi] ig linearly independent and a(x,u{x,t)) 211 >0.
i=1
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Notice that U has as many t derivatives as a(x,u(x,t))

and u, 1 £ j £n, have since
J

v(t) = B~ L) q(t)
and

B l(t) = (det B(t))™! (adj B)

where adj B = (BLk(t))and Bk&(t) is the cofactor of bkL(t)’

Also, we note that for 7 € (0,T] u(x,7) is the Galerkin

h

approximation in S to the weak solution of the linear

elliptic boundary value problem

vea(x,u(x,7))ve = g(x,1) X €N
o=0 X € 3N
where
n
g(xs T) = ut(x,'r) - f(xsu(x"")) - bi(x:u(x: T))ux (%, )
i=1 i
We now obtain an L, estimate of (U-u)(x,1) for 7 €(0,T].
Theorem 3.4: Let u be the solution to (3.30), (3.32),

and (3.33). Assume Condition A, (3.34). Let U and U be
defined by (3.35)-(3.36) and (3.37) respectively.
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Then for 7 ¢ (0,T]

2 2
U- (1) + U-u
[ G"LZ(Q) D T 0,0

2 2

o+ c;uu-ﬁu (0)
L, (Q) XL, (0, 1) L,(q)

2
Lz(Q) XLZ(OJ T)

% ~
S'Clnu-u”

+ C3l|u-D) |

* K
where Cl’ C,, and Cg are positive constants which

depend on 1, n, K, n, M*, ¢, and "o .
0 © L ()xL_[0,T]

(In Section 3.4 we will give examples in which

vu is bounded independently of h.)
I HLQ(Q)meIO,T]

Proof: From (3.30) and (3.37) we have for
T e (0,T]

(3.38) (Gk,V) = -a(u; T,v) + ((T-u),,Vv)

n h
+ I (bi(x,u)ux

s vY + (£(x,u),v), v e S
i=1 i

Subtracting (3.38) from (3.35) with U-U as a test function,

o n N
((U-8),,0-8) = -a(U;U,U-u) + = (b.(x,0DV, ,U-u)
t i=1 i

. [24 e N, I wr 1

+ (£{x,U0),U-T) + a{u;T,0-4) +
(3.39) ,
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n
+ ((u-u)t, U-uy - i§1<bi(x’u)uxi, U-a)

- (£(x,u), U-u)

On rearranging terms, the right hand side of (3.39)

becomes

_a(U; U-T, U-3) + ((a(x,u)-a(x,U0)), vu-v(U-T))
n
+ i__5:_1[<bi(x,U)(U-’fi)xi, U-4) + ((bi(x,U)-bi(x,u)){;Xi,U_a*>

(3.40)
+ (bi(x,u)(ﬁ-u)x_, U-@y] + ((u-0); U-4)
i

+ ((£(x,U)-£(x,u)), U-U)
Now

n

n
(3.41) (bi(x,u)(a-u)x., U-dy = & ((bi(x,u)(U-ﬁ))x.,u-E)

=
i=1 i i=1 i

Thus from (3.39), (3.40), and (3.41) and assumptions (1),
(2), and (5) made in Condition A, (3.34),

2 2 -

d A = @i - ' ~
(%) Qu-dlf ) £ -qiu-up + £ K|u-Utg, (U-u), |dx
2] gt il llL. : hH]- £i=l . xil‘ Xg

0
U-G}y + K i
i=1 i i=1 i

"
I
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* ~~ ~ n ~, ~
+nM  (|U-u], |u-T]) + C0<.21|(U-u)x.|’ |u-a}y
i= i

+K (Ju-ul, |U-8ly + ¢ (u-D) |, |u-@]y

Applying the Holder inequality to the integrals on the

right hand side of (3.42), we obtain

2) 2
V< -nliu-a!
| n I 1

) (-
L,

+ K/n ||vd]| "U-ul] |U-T)
H = Lz ul
0 0

+ Cq/f -8y U-T) o+ RO u-v) T
Hy 2 2 2
(3.43)

# g " &h g ! g
+ ool -Gy ey, + Co/R UGy -y

0 2

~

+ K lfju-Ul, WwW-8'. + |[(u-u) |, Uu-td
‘ Lz. L2 ‘ t LZ r| |iL2

If we now use the triangle inequality and the inequality

ab < (%)[632'+(1/e)b2](€ =n/4 when |0} ; is a factor;
Hy
otherwise ¢ = 1), we see that

; d ~2 ' ~|2
(%) e (u-8)7) < -n/2U-G)
L, 1

H

-y
v

+ (ZKZj;vEninn'l)[uu-i}‘uz + ;;U-G”z)
L, L,

~
w
B
&S
~

onn “ -uHLZ + n ”Vu|°|U-u!|L2 +



Thus

(3.45)

Here

and

+ oM 4+ 3K + 1+ 4ann'

% -
+ nM + K + 4C%nn

. 2 2
+(oK||va)_/2) [he-ul  + |u-8) ]
= L, L,
N 2 2
+ (oM /2) [Wu-a)  + fu-T) ]
L, - Ly
2 1

+ 2C.nn" |u-{I||2 + 3K/2!|U-G'[|2
0 L L

2 2
+ 1</2uu-i‘i||2 + (%)[!\U-an + || (u-8) ||
L, L,

2 i 2
d ~ ~
£ =gy ) + nj-|
dt L 1
2 HO

2
WO-u||
L,.

2

\ ~ 2 i ~ 2
< Cy + Czdu-unL + I|(u-u)t||L
2 2

= nKYval_ (3 + 4ot vy )

1

ooy -1 Lot
= oRye) | (6Ra" ), + 1)

1

2
2

32
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Recall that for t € (0,T], 4 is the Galerkin approxi-
mation to a solution of a linear elliptic partial differ-
ential equation.. We now discuss the error of the
approximate solutions of boundary value problems for linear
elliptic partial differential equations by Galerkin's
method.

Let G be a sufficiently smooth bounded open subset
of R™ with boundary 3G. Let V = Hé(G) or V = Hl(G). We
introduce the bilinear form

(3.46) a(w,v) = I c q(x) DPu(x)D¥(x) w, veV

z
Ipl:lq‘S]- G P

where the coefficients ®hq are real and belong to L_(G).

We will assume that

la(w,v)| < Cqyiw|| livi w,v eV
v
and

a(w,w) =2 n ‘v weV
\
. *
We define a ( , ) by
*
a (w,v) = a(v,w) w, velV

. * . N s o~ - s
and shall assume that a ( , ) 1s U-regular on V where

k-regularity on V is defined as follows.
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Definition 3.1: The form a( , ) is k-regular

on V if given f € H°(G), 0 £ s < k, any solution w € V

of a(w,v) = (f,v) for every v € V satisfies w ¢ HS+2(G).

We now prove Theorem 3.5. The proof given here is due
Nitsche [17]. 1In [8], Dendy gives an alternate proof based

upon the work of Aubin [Z].

Theorem 3.5: Let Sh denote a Sk (G) space if

V = HO(G) or an S (G) space if V = H (G). Assume

ak( , ) is O-regular on V. Then if w ¢ HP(G) n V,

p a positive integer, and wh € Sh such that
(3.47) a(w-wh, v) =0 vV € Sh
we have
Hw-whn < Con-l inf HW-QH
v v
eV
< Con-lth-l”w”
H°(G)
and
et < crclee Sy
L,(G) THE(6)
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where C' is some positve constant independent of w and h

and s = min (p,m).

Proof: Let € = w-wh. We deduce from (3.47) that

a(e,e) = a(e,w-&) 9 e Sh,

This implies that

wﬂVS%ézhwﬁ%

Since S is a Sh’O(G) or a gh (G) space
k,m k,m
Jell = mlcoQ STy
v HS(G)
where s = min(p,m)
TAr 2~ awmcrh +hat
% = SNy D A — e
a*(g,v) = (e,V) vevV

Since a* is 0O-regular on V, € ¢ HZ(G) and

(3:68) g, SClel
n(e) 2

where C' is some positive constant. (See [8] for example).



We note that

(e,e) = a*(g,e) = a(e,8)

Thus from (3.47) we have

£>

(€,€) = a(e, §'V/3) €

Therefore
: f
(3.49) hell < Cgllell,, inf jie-¥|
LZ(G) v Qesh v
Since ¢ € HZ(G),
(3.50) inf |g-@) < Quig]
A_h v 2 s n

From (3.48), (3.49), and (3.50), we conclude that

g-w <c 'COQhHw-wh "
v

i LZ(G)

Proof of theorem is now completed.

N’/

)

)

36
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P(w,v) = j Yw * vvdx W,V € Hé(ﬂ)

and

A(w,v) = I(VW‘VV + wv)dx W,V € Hl(n)
B

are O-regular on Hl(B) and Hl(B) respectively where
0

B is a rectangular parallelepiped in R™.
We now wish to apply Theorem 3.5 to

(3.51) aT(w,v) = I a(x,u(x,7))vwWw . vvdx w, veHé(n)
Q

to obtain estimates of Hu:ﬁﬂLéT) and "(u:ﬁ)tn (1)
L,

T € [0,T). For 1 e [0,T] we recall that u(x,7) € Sh
and aT(u,v) = aT(E,V), v € Sh. We assume that P( , )

is O~regular on H%(Q) where

(3.52) P(w,v) = Y- Vvdx w,v e Hy()
0
and that for t ¢ [0,T], a(-, u(-,t)) ¢ Cl(Q) and

(a(-.,u(-,+)), el ([0,T]. L (n)), 1 <4i<n.
i ® ®
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Let t ¢ [0,T]) and g ¢ LZ(O). From the theory of

linear elliptic equations (see Agmon [1]) there exists

a unique w € Hé(ﬂ) such that
1 * 1
(3.52") at(w,v) = at(w,v) = (g,V) v € HO(Q).

Substituting v/a(x,u(x,t)), v ¢ Hé(Q), for v in (3.52'),

we see that

P(w,v) = (g*,v> v € H%(Q)

where

e¥ (x) = g(x)/a(x,u(x,t))-a(x,ulx,t)) w(x)-v(1/a(x,u(x,t)))
Since P( , ) is O-regular on Hé(n) and g*eLZ(Q), W € HZ(Q)
and

*
i, = ol

where Cp is some constant which depends on P( , ) and is
independent of t. We conclude that at( , ) is O-regular

on H%(Q) for t € [0,T]. It is easily verified that

Red
v

IA

+ -p-]‘,.fﬁ- galx . uYl ilwil
] v :l ~ 7/ V4 &” i

T Lx‘ Vew
2 Z H

Q-

S ML+ G 0 A et w | ey
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where C, is defined by (2.0). Thus

Wi 2 % C'llglly,

where C' is a constant independent of t. We can now

apply Theorem 3.5 to at( s ), t € [0,T], to obtain

Lemma 3.2: Assume Condition A, (3.34), and

assume a(-, u(-,t)) € Cl(n) for t ¢ [0,T] and

(a(',u(-,°))x_ € Lm([O,T], Lm(Q)), 1 <1i<n. Further
assume that P? s ) is O-regular on Hé(g) where P is
defined by (3.52). Let u be defined by (3.37). Then
for t € [0,T],

~ -1.3-1
g= < C h Hal
xlu u”Hé(t) O"ﬁl Q Alul!Hs(t)

and

~ 2 L, =12
-y, (£ < 65 C'n LQ%hS ) ®

H
where s = min (r,m).
We now wish to obtain an L, estimate for (u--ﬁ')t

using the above analysis. We first obtain an H% estimate

for (u-ﬁ)t.
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Lemma 3.3: Assume that hypotheses of Lemma 3.2

and assume u, € Lw([O,T], L_(0)). Then for 7 ¢ [o,T],

| (u-T) | 1(T) < Con‘1QhS'1[n-lKHuthHuHHS + HutHHs]

Hy

where s = min(r,m).

Proof: Differentiating (3.37) with respect to t

we see that

(3.53) at((u-ﬁ)t,v) + I a(x,u)tV(u-E)'Vvdx =0

Q
Vv € Sh

Define u* € Sh by

(3.54) at(ut-u*,v) = 0 v esS

Since at( , ) is O-regular on Hé(ﬂ) from Theorem 3.5 we

have for 7 ¢ [0,T]

(3.55)  lu.-u'f (1) < C.mlonSTlhe ()
noc 1] 1 ‘ (€ I j st} R
s
HO H
where 5 = min {(r,m) From (3.53) and (3.54) with

v = u*-ﬁt we deduce that
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(3.56) Hu*—ﬁtu 1(7) £ Kn null, ”u- )
Ho HO

< K(n‘l)znutn°° CthS-lnuHHS(T)

where s = min(r,m). The last inequality follows from.
Lemma 3.2. Proof of the lemma now follows from estimates

(3 55) and (3.56) and the trlangle inequallty

o rn e - ~*

USLng the above Hé estimate on (u-u)t we obtain

Lemma 3.4: Assume the hypotheses of Lemma 3.3.

Further assume that(a(x,u)t)x eL ([0,T], L)), 1 <1i<
i x x®
Then for v ¢ [0,T],
Hu-®) .1 (1) S BS[RIu) (0 + Kyfu ]l ()]
t’ LZ( Q) 1 LHS 2“ t g8
where s = min(r,m),
2 -1 2

and Kl is a positive constant which depends on K, n, CO’

' a(x, u)
C E] Q: o, uut“ and "V("':'I:_-T)”

\ "“I

o
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Proof: From equation (3.53) we easily obtain

a.(q,v) = g*¥(t,v) v e sh
where
R -~ a(x:u)t
(3.57) gk(t,v) = Ja(x,u(x,t))(u-u)(x,t)V(—zzijﬁy)-Vde
Q .
and

. a(x,u)t N
CI(X, t) = (U'U){:(X, t) + (m ) (X, t) (u'u) (X, t)

Let p(x,t) € Sh which satisfies

h

(3.58) a (p,v) = g¥(t,v) vesS, te (0,T]
By Theorem 3.5, we have ,
(3.59) g-p) (£) £ CC'qhlg-pj (£)  t e [0,T]
L, H1
0

From (2.0), (3.57), and (3.58) with v = p we see that

L e A . rn m1
(8} 4 [ = H H

408 L < LV, Ll
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. a(x,u),
< j a(x,u(x,t))(u-u)v(—ziijﬁj)-Vpdx

(3.60) Q
a(x,u) -
< J/n lla(x, u)v('ETi"ET‘ uu-u”LZ(t)upuﬂl(t)
0
By the triangle inequality we have
N a(x,u)

(el < ] (U'U)H (t) * el

(3.61) 2 2
< Kn Jut” ”u-uHL (£) +'p 'L (t)

+ lla-pji_ (t)
L,

From (3.59) and (3.60) we see that

el (8) + Yigq- pﬂ (£) < WG, + CoC'Qm)lip" ()
Loy Ly ( .
+ C4C'Qh jqj] 1(t)
(3.62) ] Hy

a(x, u)

< (J/C, +%U®wy"nn%?§1ylwuh(m

+ CoC'Qhlia] _ (£)
Hy
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Now
~ a(x’u)t ~,
ta] (€)= fiCu-w)ef ((8) + H—;z—-—; (u-u) ||
X,u
H, H, Hy
a X, u
< jfCu-u) 1(t) +JT||v(—5§—351‘ ||u-u|| (t)

2

+ JZ R0 Hugh e 4 (e)
® H
0

Therefore from (3.61), (3.62), and (3.63) we see that

1B il ()= €y fjuFl (€) + CoCl ARl (u-D e  (E)
L, Ly Hy
(3.64)
+ 2Kn" Hju || iu-T) 1(6)]
Hy
where C. is a congtant which depends on K. n. 'u .l ,
1 a(x,u) Ele

Co: C': Q’ nJ‘ HV(W“”.

The proof of this lemma now follows from Lemmas 3.2 and 3.3

and (3.64).

Since for t € [0,T], we have bounds for Nuiﬁan(t)

and H(u-ﬁ)tuLz(t) we can now determine for v € (0,T] a

priori L,(Q) estimates for (U-8) (%, 7).

Theorem 3.6: Let u be the solution to (3.30), (3.32),
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and (3.33). Assume Condition A, (3.34), and assume
a(x,u(x,t)) € Cl(n) for t ¢ [0,T] and ut,a(x,u)x.,
(a(x,u) ) e L ([0 T], L (Q)) for 1 £ i < n. I;
addition, assume P( , ) is O-regular on HO(Q) where
P( , ) is defined by (3.52). 1If U, the Galerkin

approximation to u, satisfies (3.35) and (3.36) then
for r ¢ (0,T], |

*
jo-a)® (1) < WP + g v
L,(q) H®(Q) xL, (0, 7) un®
+ K fu ||2 + Ky ||u|| (1]
2V (@ a0, Y

* - Rk
where s = min(r,m), K4 = ZCgC'n 1Q% and K;, K,, and
Kg are positive constants which depend on 1, n, n, K,

*
M#, Cy> C*, C', Q, and ||¥aj_ . K, also depends on ju |l
a(x, u)

and l V(m) "

We now consider the boundary value problem (3.31)-

(3.33). We make several assumptions which will be referred

to as Condition B.

Condition B
n 2

z n
(1) 0 < Jm;gly < i,zj=1 a;;(x)858; < WCplle, & # OeR
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where A = (aij(x» is a symmetric matrix.

Also |bi(x,w)| <Cyp 1<ic<n, (x,w)enxR,

and 0 < Jn < |p(x,w)| < JEO

(x,w) € QxP

(3.64")
(2) f and bi’ 1 <i < n satisfy (2) in Condition

A, (3.34). p is Lipschitz continuous with
respect to its (n+l)st variable with Lipschitz
constant K, and pu(x,u(x,t)) exists for
(x,t) ¢ o x [0,T].

(3) Y satisfies (3) in Condition A, (3.34)..

(4) u e CZ(QX[O,T]) is a unique solution to

,u, € L, ([0, T],
2 t L\ﬁ 7 4 2

(5) by (x,u),
Condition A, (3.34).

£ i £ n satisfies (5) in

For convenience, we define

n
(3.65) a(w; q,v) = z a..(xX)p(x,w)q_ v, dx
’ EEWER U

1
q; v € Hqy(Q)

h

The Galerkin approximation U(:-,t) € S satisfies

for t ¢ [0,T],

Ll B 4
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(3.66) (Ut,v) = -a(U;U,v) + (£(x,U),v)

n
+ ( £ b,(x,U) Ux VY, t >0, ve Sh
i=1 *t i

and

(3.67) U(x,0) = Yo(x)

*
where ¢, € s and ]Y-YOH <cC hS}Y“ g 8 = min(r,m).
L H
2
The next theorem provides an a priori estimate
for JU-u’| (1) for v ¢ (0,T].
Ui, ()

Theorem 3.7: Let u be the solution to (3.31)-
3.33).

-~ % o

™

25

\ssume Condition B, (3.64'), and assume

p(x,u(x,t)) € Cl(Q) for t € [0,T] and u, p(x,u)
(p(x,u)t%{. € Lm([O,T]), Lm(Q)) for 1 £1i < n.

Further assume that P( , ) is O-regular on Hé(n) where

- a 1
P(w,v) = [ i§j=1 aij(x) wxjvxidx W,V € HO(Q)
Q

If U is the Galerkin approximation to u defined by (3.66)
and (3.67), then for T ¢ (0,T]
*
HU-qu (r) < hZS{Kluuuzs
L, (n) H™(Q) XL, (0, 7)

FGOYE + ) s (1)
B (q) B (Q) XL, (0, 1) 1% ()



48

* *
where s = min(r,m) and Ky and K, are positive constants
* *
which depend on v, n, K, n, M, CO’ cC, Q HVP(x,u)Hm,
p(x’u)t
and “V(————————)Hm.

and ”van . Ki also depends on llu
® p(x,u)

t”o

Proof: Let u(x,t) ¢ Sh for t € [0,T] which satisfies
(3.68)  a(u(x,t); (u-D)(x,t),v) =0 v e S
We easily see that

<5t: V) = <(H"u)tsv> + (f(x,u),v).

n
(3.69) + ( T b.(x,u)u_ ,v)
i=1 * *i

a(u; 4,v) veS, t>0

Subtracting (3.69) from (3.66) with (U-U) as a test

function, we obtain

2 ~J ~,

% 7§E(HU-G” ) = -a(U; U-u, U-u)
L
2

+ J P ai'(x)(P(x:u)'P(X,U))G;_(U-ﬁ)x.dx
n i,j=1 j J i

+ (f(x,0)-£f(x,u), U-u)
(3.70)

pou

+ 451 (bi(x,U)Ux{-bi(x,u)ux_, U-u)

1 LB i

+ ((u-d), U-T)
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We note that the term

2

-a(U; U-U, U-U) 2 -n)Uu-aj ,
H

0

and that the term

n
i j 2B s it -u d
£ RNt (x) (p(x,u)-p(x U))uxj (U-9), dx

|IMD

I U-u| | (U-u)_ |dx

< /€y Yvul, n K |
0 1

i

1
0

< f vy KHU-u"L ||U-d!
2
H
The remaining terms in (3.70) are bounded as in Theorem

3.4. Following the same analysis as in Theorem 3.4, wé

obtain for r ¢ (0,T],

U-T| (1) + nu-T)°
L,(Q)

2 Hy (0) XL €0, 1)
(3.71)
c] fu-aiy + Coiu-E)> (0
L,(0) XL, (0, 1) L, (2)
2
FCy D)
z\‘) LoV, T)
* * *

Here Cl’ CZ’ an 83 are positive constants which depend

d
* ngu'
on 7, n, n, K, M, Cy, and jivu . () xL [0,T]"
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Since P( , ) is O-regular on Hé(g), we deduce that

at(w,v) = a(u; w,v) v, veHé(Q)
. 1
is O-regular on HO(Q) for t € [0,T]. By Theorem 3.5

(3.72) Hu-u[ (t) Q C'h Huq

where C' is some constant independent of t for t e [0,T]
(C' does depend on n, n, CO’ and ||Vp(x,u)}_-) Upon

differentiating (3.68) with respect to t, we see that

~ p(x,u),
a(u; ((u-u), + —m (u-d)), v)
b ) p( )(—(ﬁ(xu)) (u-)v,, d
= X X,u u-u)v_ dx
0 i,j=1 1J P pix,d ]
P o
V € O
Following the proofs of Lemmas 3.3 and 3.4, we obtain
(3.73) H(u-ﬁ)tHL (t) < n° [K1 uu (t) + KznutHHS(t)]
2
where s = min(r,m),
2 -1.,.2
K2 = Con c'q,
and Kl is a positive ccnst nt which depends on K, n, C»

U. (L
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Proof of the theorem now follows from (3.71),

(3.72), and (3.73).

3.3 Some general estimates for nonlinear parabolic

problems with Neumann boundary conditions. In this

section we consider the boundary value problem

n
(3.80) u, = z l(aij(x)p(x,u)ux_)x_ + £(x,u)
i,j= j i

(x,t) € 0 x (0,T]

with initial and boundary conditions

(3.81) u(x,0) = ¥(x)
and
o . n . - - - - 3 - - — -
(3.82) . ;_ aiJ(x)p(x,u)Yjux =0 (X,t) € a3ax(V,T]
1,]= i
where y = (yl, Yos+o s yn) is the unit exterior normal
to 0. We make several assumptions which will be referred

to as Condition C.

Condition C

B, (3.64').
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(2) £ and p satisfy assumption (2) in Condition

B, (3.64").

(3.82")

(3) VY e Hr(Q) for some positive integer r.

(4) u e C%(q x [0,T]) is a unique solution to

(3.80)-(3.82), and u, u_ e L,([0,T], H"(Q)).

Let Sh denote a Sﬁ m(Q) space. The Galerkin
2

approximation U(-,t) € sP to u is defined by
(3.83) (Ut,v) = ~a(U;U,v) + (£(x, U),v) t >0, v e sh

(3.84) U(x,0) = Yo(x)

h

*
and HY-YO” <C hsan s = min(r,m) and

where ¥g € 8 "Ly

3
HS

a( ;3 , ) is defined by (3.65).

To obtain the error bounds for this problem we simply
modify the techniques developed in previocus sections. For

h

t € [0,T] define UW(-,t) € S by

(3.85)  a(uiu-%,v) + /7 < p(x,u) (u-3),vy =0 v e S

We now obtain L, error estimates for (U-u)(x,T)

for v € (0,T].
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Theerem 3.8: Let u be the solution to (3.80)-(3.82).
Assume Condition C, (3.82'), and assume p{-,u(-,t)) e cl(p)
for t € [0,T] and u, (p(x, u))x C (p(x,u) ) e L ([0 T],
L_(Q)). Further assume that P( , ) is O- regular on H (Q)

where

P(w,v) = I Z (x)w vx_dx + /N vadx
i,j= 1 J i Q

If U is the Galerkin approximation to u defined by (3.83) and
and (3.84) then for 7 ¢ (0,T]

2 2
U-uy () S WS
Ly(Q) H®(Q) XL, (0, 1)
2 2 2
FIGOY + T el oD
H®(q) H®(Q) XL, (0, 7) H® ()

- * * o (]
where s = min(r,m) and K1 and K, are positive constants

*
which depend on v, n, K, n, CO’ C, Q |Vp(x,u)}_, and

p(x,u),
jvdn_. K1 also depends on |ju || and ”V(-_fp\-f,u5)”

Dyemomd o TAar + (0 T 1Tat+ 11 ha Aaf

LOTA .

From (3.85) and (3.80), we have

+ (£(x,u),v) t e (O,T], ves
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Subtracting (3.86) from (3.83) and setting v = U-u,

we obtain

y S (u-g)? ) = -a(u;u-T, U-D)
L
2

1

+ [ %

! i,j=1aij(x>(P(X,u)-p(x,U))ﬁ'xj(U-E)X

+ (E(x,U0) - £(x,u), U-u)
+ ((u-ﬁ)t, U-a)
+ 47 (p(x,u) (@-u), U-T)

Using the same techniques as in Theorems 3.4 and 3.7,

we have for 1 ¢ (0,T]

2 2
hg-a + qlju-g
O T T oy, 0,
< ¢} jju-a12 whiw-a? (0
(3.87) Lz(Q) XLz(O: T) Lz(Q)

2

*
+ C -q) !
31D ‘Lzm) XLy (0, 7)

*

i 5 e W

I 5 f‘* r“*

(a1

on 7, n, K, Gy, and WVGHQ.

We now determine L, estimates of (u-) (x,t) and

(uaﬁ)t(x,t) for t € [0,T]. For t € [0,T] define
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at(W:V) = a(u(x’t); w,v) + '\/—'F\ (P(x:u)w:v>:

w, V € Hl(ﬂ)
and let € € Hl(n) which satisfies
(3.88) at(g,v) = (g,V) v € Hl(Q)
where g € LZ(Q). Substituting v/p(x,u(x,t)) for v,

v ¢ HY(Q), in (3.88) we obtain

P(E,v) = (g »V) v € HY()

where
oFex) = g(x) /p(x,u(x,t))

n
LN a;; (®)p(x, u(x,t))§x (1/p(x, u(x,t))
i,j=

Since g € Lz(n) and P( , ) is 0- regular on H (Q),

E € HZ(Q), at( , ) is O-regular on H (n) for t € [0,T], and

el 2 < C'lel,

where C' is a constant independent of t. From Theorem
3.5, we obtain the estimate (3.72). The Loy estimate

(3.73) for [(u-0).jl;, 1is obtained in the same manner &s

- t“L2
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described in Theorem 3.7 and Lemmas (3.3) and (3.4).
Proof of this theorem then follows from (3.72),

(3.73), and (3.87).

3.4. Estimates for some nonlinear parabolic problems

on rectangular parallelepipeds. We now consider the nonlinear

boundary value problems defined by (3.30), (3.32) and (3.33)
and (3.80) with (a;;(x)) = I, the identity matrix, (3.81),
and (3.82) where the region O is a rectangular parallelepiped
in R". Theorems 3.6 and 3.8 provide estimates for

”U-uuL (v), 7 € (0,T], where u is the solution to (3.30),
(3.32)% and (3.33) or to (3.80)-(3.82) and U is the
corresponding Galerkin approximation to u. Both theorems
require a given bilinear form to be 0O-regular on V where

V is either Hé(n) or Hl(ﬂ). In addition, the estimates in
Theorems (3.6) and (3.8) involve a constant qvﬁuw . In this
section we prove the above O-regularity assumptions are valid
on rectangular parallelepipeds. If Sh is the span of

the tensor products of piecewise Hermite polynomials of
degree 2m-1, m = 1, we show that HVSHw is bounded under
certain restrictions. L _ and L, eérror estimates for Galerkin

approximations and derivatives of

Fn Q)
[}
'—J
(4]
M
b
'—l
=
[\}]

<l
T
~
g
'-l
B
1
'-.I
Q

are also derived for this choice o
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n
Let B =i§1(ai’di)’ a; < di' We first prove that

P( , ) and A( , ) where

P(w,v) = [ Yw-vvdx W, Ve Hé(B)
B

and

AW, v) = [(T0-9v + wv)dx W, Vv ¢ u! (B)
B

are 0O-regular on Hé(B) and Hl(B) respectively.1

n
Theorem 3.9: Let B' = X (O,n). If w e Hé(B) satisfying
i=1
| vaevvax = | gvax
B' B'

where g ¢ LZ(B'), then w € HZ(B').

Proof: Let B" = % (-m,m). Extend p to be an odd
i=1

function over B'" and call this extension g. Since g ¢ LZ(B")

g has a_Fourier series expansion

1

The approach used in proving theé next two theorems was

suggested to the author by Rod Dunn and B.F. Jones, Jr.
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1 n/2 im.x
g(x) = ((3—) L G e
m m=(m; ,My, ...,m_)
1272 n
m#0
Define
n/2
2
o(x) = (=) £ G /|m|® ™%
m
m# 0
2 2
where |'m| = m% + m% + ... +m . By the Riesz-Fischer

theorem, o € L2(B"). Consider y and g as distributions
over B'. Since the Fourier series of a distribution can
be differentiated termwise (see [13]) the mth coefficient
of the Fourier series corresponding to the distribution
-0y equals Gm. Moreover, since two distributions having
the same Fourier series are equal (see [13]), we see that

~Am = g. Thus Um € LZ(B")’ A € LZ(B"), and «» € HZ(B").

If v e Hl(B"), then v has a Fourier series expansion

1 n/2
v(x) = (z7) TV.e

im.x

By Parseval's formula
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Since ¢ is the limit of an absolutely convergent series
of odd functions, we deduce that o is an odd function.
Let v* € CS(B') and extend v* to be an odd function over
B". Notice that ﬂm-vﬁk and gv© are even functions over

B". Thus

J Vm'VV*dX = gv*dx
B' B'

Since CS(B') is dense in H%(B'), the above equation holds
for every v¥e H%(B'). We conclude that ¢ = w and w € HZ(B').

n .
Theorem 3.10: Let B' =X 0,m). Lfwe H'(B'")
i=1

satisfying
J (vw-9v + wv)dx = | gvdx v € Hl(B‘)
B! B'

where g € LZ(B'), then w € HZ(B').

n
Proof: Let B" =X (-n,m). Extend g to be an even
i=1
function over B", and call this extension g. g has 2

Fourier series

Define & by
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2
s = Gy/(m]” + 1)

where lm; = m% + m% + ... + mi, and let ¢ be the inverse
Fourier transform of . Considering gpand g as distributions,
it is easy to verify that -i0p + ¢ = g. Thus ¢ € HZ(B").

By Parseval's formula

[ (vgr9v + gu)dx = | gvdx v e HY(B")
BH BH

% - %
Let v € Cl(B') and extend v to be an even function

*
over B'". We claim that v € Hl(B"). Define for 1 < j <n

j-1 n
Aj = ( X ("TT:TT)) X [O,TT] X ( X ("TT,TT))
i=1 i=j+1 :
and
i-1 n
By = CX (-n,m) x [-m,0] x (X (-m,m))
i=1 i=j+1

For Y € CS(B") we note that

-[ vkY, dx = J VtL Y(x)dx + | Vf’ y(x)dx
- B, 3
= | vi_Y(x)dx
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% *
Thus v, € LZ(B")’ 1<j<n, andv ¢ Hl(B"). Since
* . * * )
Vo'V + v and gv are even functions we obtain

% *
I (Vo9 + v )dx = I gv*dx
B.' Bl

, % -
This equation holds for v € Hl(B') since Cl(B') is
dense in Hl(B'). Thus ¢ = w and w ¢ HZ(B').

n
Obviously these theorems hold for B = (ai’di)' In

i=1
this section Lp = LP(B) and HP = HP(B).

Let &; denote a partition of [ai’di] with uniform mesh

h,. Define h = max {h,} and h = min {h,}. Let S® be the
1 igi<n * i<i<n %

span of the tensor products of piecewise Hermite polynomials
n

of degree 2m-1, m = 1, which are defined on X Ai and are in
i=1

-7\ A ] /N e\ ® 2% -~ s
/) OL Dy (2.00) wictn {J = D.

(93

V. Let u be defined by (3.

We now show that with restrictions on u, a(x,u), p(x,u),

PR |

P ey L L ad 2 dmmnn T T o AL e
ana i, “ Vu”L (B) xL [O, T] LD DUMLUCU LtuTpouuciitry UL
-] @

Ll
We first give several definitions;

Definition 3.2: A collection { of partitions

n
p= X p; of B, where p; is a partition of [ai’di]’ is

-
AT e

said to be quasi-uniform if and only if there exists a constant

€ such that p./

i/ &’

- -

. i<i, j<n where p, and p, denote the
? "k =k

IA
[T ]
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maximum and minimum interval lengths in Pl respectively,

(see [ 20]).

Definition 3.3: For k a pasitive integer, let

k *®(B) be the set of all functions g ¢ C (B) such
that Dk 1 g is absolutely continuous for 1 < i < n and
D¥gel (B), 1<i<n. (see [20]).

Definition 3.4: Let w be a function defined on
B x [0,T]. We say w ¢ L QO T}, K ’“(B)) if for t € [0,T]
w(x,t) € K*%(B) and if

Fy (£) = D), w(x,t) IL_c8)

then F,, € L ([0,T]) for 1 < 4 €£nand 0 < i < k.

L

The following theorem is proved by Schultz in [20].

Theorem 3.11: Let p X Py be a quasi-uniform partition
1-1
of B and let M be the span of the tensor products of

piecewise Hermite polynomials of degree 2m-1, m 2 1, which
1
are defined on p and are inV (V = HO(B) or V = Hl(B)). Then

k -, o
if w e K72 (R)NW,; there exists w_ ¢ M such that

’ o m
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for 1 £ s < min(k,2m) and

3 j

J - H S
| - < H 1
“DL(W w )” < C‘m P .1<siu “Diwl

e} -~}

for 2 < s < (k, 2m), 1 < j £ s-1, and 1 < 4 £ n. Here

L_=L_(B) and p denotes the maximum interval length of

P

. J - iy :
5 1<i<n. 1If wam ¢ C(B){ “DL(W-Wm)”L is to be

interpreted as the uniform norm of the interior of the

cells defined by the partition.

We now prove

Lemma 3.5: Let 0 = B and assume the hypotheses of
Theorem 3.6 or Theorem 3.8 with (aij(x)) = I, the identity
matrix. In addition, assume u ¢ LQ([O,T], Kq’”(ﬁ)),

2 £ q < 2m, and let u be defined by (3.37) or (3.85).

n
Then if X b, 1is quasi-uniform and
i=1
q = (n+2)/2,
"l P TR S B SN DU U TVNY- S SR Y
i vay) 15 pounded independentliy or tiie ..,
T /oyt ITn M1 4
L \W) " LV, L
o ®
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following (3.87))we have

2

ra-y, (8) =CoC'n

for t € [0,T] and 0 <

there exists for t ¢ [0,T] um(x,t) € Sh such that
(3.90) I au)y (8) < Tt J sup ||un|| _(t)
Loo( ) 1<i<n (B)
for 0<j <1, 1 <4=<n. Thus
q q
(3.90') fu-u !l (t) < C h*( n (d -a, )) sup |Dg ult  _(t)
"Ly i=1 1<i< _(B)
and
Ha=u_ii; {t) = C(t)hs
1 m! Lz
where s = min(r,2m,q) and
1.2 % s
C(t) = n C; C' Q S(B) + C ¢ n (d,-a, )) _sup iDiu ().
mo b =l <i<n 1 HL B)
& F Fod - ta =1 ~ ~ f‘h - s 4
Since ior € € (U, 1j, u-u, < =3 W< Can write
M -
(T-v M(x,£) = ¢ vy (t)v. (x) (x.t)eBx[0,T]
m M i

M
where {v,. (x)}1=1

s < min(2m,r).

forms a basis for Sh

64

From Lemma 3.2 (or proof of Theorem 3.8

12 s
Q'h -!‘u”Hs(t)

By Theorem 3.11

and is defined in
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Section 2.3. Let G, = (gkL) where

gy = J Vi)V, ()dx
B

Go is the tensor product of matrices G%, 1 £ j £ n, where

G% is the Gramian matrix corresponding to the piecewise
Hermite polynomials of degree 2m-1, m = 1, which are
defined on Aj and are in V. Here V is defined appro-
priately as H%(B) or Hl(B). The G% are positive definite
matrices and the minimum eigenvalue of G% is bounded below
by ¢ _h, where c is a cornistant independent of ‘n.j (see

J
for example [15]). Thus

{15 2 7 e S\ 2 - s N\ PRV Y
uﬁ-uanz(t) = (Gov(t), v{E))
which implies
2 2 n h\" 2s-n
(3.91) ()], = CUIA/CY (R b t e [0,T]

where s = min{r,q,2m). Now

4

@-u), = I i (7)) (X)) (x,8) € 8 x [0,T]
J 1= J
Notice if x ¢ B at most (2m) of the {v;(x)}_ are not
i i=1

identically zero. In addition l(vi(x))x | < C'm/'n.j where
3
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Therefore
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C 1is a constant independent of the hi’ 1 <i<n.

(3.92) |G, (6,00 < ¢ byt m) iy(e) |,

For t ¢ [0,T]

(x,t) ¢ B x [0,T]

4, (t) < ||(u-u) (t) + Il(u_-u)_ 1 +
: xj”Lm(B) [ xj”L@(B) "Xy L ()
-(n+2)/2
+ lju_ | (t) < cps- (ot + flu | (t)
31, (B) ETRE
where s = min(2m,r,q) = q. The above inequality follows

from (3.90), (3.91), and (3.92).

now follows.

From Lemma 3.5 and

we obtain the following

=I’

The proof of the lemma

Theorems 3.6, 3.8, 3.9, and 3.10,

result.

(3.34) (Condition

the identity matrix)
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(2) u, ¢ L_([0,T], L (B))

(3°)  a(-,u(-,t)) € CH(a) for ¢ ¢ [0,T] and
a(x,u)xi,(a(x,u)t)xi ¢ L_([0,T}, L_(B))

(or p(x,u) satisfies the same assumptions).

(4°) by is a partition of [a.,d.] with uniform

mesh hi’ 1<4i<n, and Sh, h = max h,, is
1<izn

the span of the tensor products of piecewise
Hermite polynomials of degree 2m-1, m = 1,

n

which are defined on X A, and are in Hé(B)
i=1

sl (B))-

1f the Galerkin approximation U to u is defined by

(3.35) and (3. 36) (or (3.83) and (3.84)), XlA is

quasi-uniform, and q = (nt+2)/2,then for T € (0,T]

2 % 281 ..
‘\U'u'\L @) (M = K4h L ‘ 1° (B) XL, (0, 7)

T i R
15 (8) 15 (B) XL, (0, 7)
2
|
+ :iu”gs‘lp\ (T) ]

*
where s = min(r,2m) and Kl is a constant which depends

| N )
L o o -
on 1, n, K, M, Cgs €5 @ m Ty wl®)s [V,

jull_» "pful,, 1< i<n, and

\\,uqu(B) wa[O, T]
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“v(a(x,u))”a and "v(a(x,u)t)"°° (or uv(p(x,u))u“ and

19(e(x,0) )Y ,-) Here || I, = || llp (syxt. [0,7]"

Corollary: Let u be the solution to (3.30), (3.32),
and (3.33) with B = i;:(1(0,1) with 1 < n £ 6. Assume
u, u, € C4(ﬁ x [0,T]), a(x,u) € CZ(B x [0,T]), bi(x,u) €
Cl(ﬁ x [0,T]), and £(x,u) € Cl(ﬁ x [0,T]). Also assume
(1) and (2) of Condition A hold. Let S" be the span of
the tensor products of the piecewise Hermite cubics defined
on ; A where & is a partition of [0,1] with uniform mesh h.

i=1
Let U be defined by (3.35) and (3.36). Then for 7 ¢ (0,T]

4
10-vlly, gy (M) = 0BT

Using Theorems 3.1l and 3.12 we can also obtain a

priori estimates of “D{XU'U)H' \(t) and ﬂDiﬂU-U)HL (B)(t)

/0
-‘-‘2 \y

for t ¢ [0,T].

Theorem 3.13: Assume the hypotheses of Theorem 3.12

n o ww
with 2 < q = r< 2m. Then if X 4; is quasi-uniform, U
i=1

is defined by (3.35) and (3.36) (or (3.83) and (3.84)),

9
I
7

3 (u-u () = K,
v Ly(B) :
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and

j s-(n+2j)/2
PLO-)ly, (5) (D) < Ky(nh (n+23)
for 7 ¢ [0,T], 1£4<n, and 0 £ j = min(m,s-1) where

s = min(r,Zm).Kl(T)and KZ(T) are constants which depend

*
on the same constants as given for K1 in Theorem 3.12 and

[l

lha|l ¥, and llujj .

. ) :
H" (B) XL, (0, 7) H' (B) XL, (0, 1) "y (B) H'(B)

e B 3 11 s .
Here if Dcp ¢ C(B), HDL(U u)HL&(B) is to be interpreted

as the uniform norm of the interior of the cells defined

n
by the partition X 4.
R |
i=1
. - - - L - " - = r D
Proof: By assumption u{x,t) € K 2By, t ¢ [0,T]

2
From Theorem 3.11, there exists um(x,t) € Sh, t ¢ [0,T], such

that (3.90) holds for g = r, 0 = j =< r-1, and 1 £ 4 < n.

From Theorem 3.12 and (3.90'), we obtain

Ueu_! (t) < Ki(e)h®, t e [0,T]
" m' 2
L,(B)

where K;(t) depends on the above constants listed for

K,(t) and Kz(t). Since U-u € Sh, we can write

M
(U'um) (%, t) = ]'_-E]_ Qi(t)Vi(X) (Xat)EEX[G:T}

M
where {vi(x)} is a basis for Sh and is defined in Section
i=1
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2.3. Thus
2
(3.92') “U-um“LZ(B)(t) = (Gya(t), a(t))

where GO is the Gramian matrix corresponding to the

basis {vi(x)}?;l. As in Lemma 3.5, (3.92') implies that

2
(3.93) la(e)], S Ky (t)n’ ="

* ‘
where K3(t) depends on the above listed constants. Now

for1<jsm

. 2
D3 (U-u,) I (B)(t) = (B, jo(t), a(t))

2
where the matrix BL ] is the tensor product of matrices
3

G%, G%,...,Gé’l, G;, Gg*l,... and Gg where G§ is the

Gramian matrix corresponding to the sth derivative

0 £ s <m, of the piecewise Hermite polynomials of degree
2m-1, m = 1, which are defined on & and are in V (V defined
appropriately as Hé(B) or Hl(B).) 1t is easy to verify that

G§ is a non-negative definite matrix and the eigenvalues of
G§ are bounded above by x_hi-zs, 0<s<m 1=<k=n.

Y %Mk 3
Thus
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' n
forl1<j<mand 1 < 4 <n. Since X &y is quasi-uniform,
i=1

we obtain from (3.93) and (3.94)
2 on g 2 (pos
(3.95) uni(u-um)”Lz(B)(t) < (X 8) Ki(t)h (r-3) ¢ ¢ [0,T]

1<j<m 1< 4¢<n. Estimates of uDi(U-u)” ( (t), now
L
2
follow from (3.95) and (3.90) with-q = r.

Now for 0 £ j <

), € T lag(0)][Ddv, G| (x, £)eBx[0,T]
i=1

M
Since at most only (2m)n of {vi(x)} are not identically
i=1

D
L N
% W
o o]

) <(‘.h-j, we e
s = Sy WO 5SS

(3.96)  [Dy(U-uy) (x, )] S (2m) a(e)]l Cph]

(x,t) ¢ B x [0,T]

Fy TN “J FYT oz N Fae N1 £ "_‘\n ';*"4- \%uj'ﬂ.r-nlz-j
(3.97) (D, (U-u j{x,t)] = (am) (K3{t))"¢'h

(x,£) ¢ B x {0, T}
1<4<n, 0<j<m. Estimates for ”Di(U-u)“ _(t) now

L (B)
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follow from (2.97) and (3.90).

3.5 Estimates for more general parabolic problems.

In this section we extend the results of Section 3.3

to include problems where the term u, is replaced by the
term w(x,u)t, which may be nonlinear. L2 estimates are also
determined for problems with inhomogeneous Dirichlet and

Neumann boundary conditions.

Consider the problem

n n
o(X,u),_ = z (a..x)p(x,u)u + % b.(x,u)u
t i,3=1 ij ? gj&i j=1 1 Xs

(3.100)
+ f(x,u) (x,t) € ax(0,T]

with initial and boundary conditions given by

(3.101) u(x,0) = (x) X enN
and
(3.102) u(x;t) =0 (x,t) € 3q x (0,T]

We make the following assumptions:
(1°) (1)~(3) of Condition B, (3.64').

(2°) P, the partial derivative
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of p with respect to its (n+1l)st variable, exists, is

continuous, and
n < @u(x,s) < C0 (x,8) ¢ Q xR

also exists and
Thu

Imuu(X,S)| <K (x,8) ¢ 9 xR

(3°) u e ¢2(a x [0,T]) is a unique solution to (3.100)-(3.102)

and u,u_ € LZ([O,T], H Q) n Hé(Q))

(4°) (5) of Condition B, (3.64')

(5°) u,., p(x,u)_ (p(x,u).), e L (0 x [0,T]),
t Xf t’'x o

i
1<i<n.
r6°Y DY Y ia N-reoular on H!.'(O\ where
\v 7 L S AV AL g ~ A (¥ Ralid
n 1
P(w,v) = I Z ai-(x)wx_vx.dx W, V € HO(Q)
i,j=1 73 J 1
Q
0 . I .
Let Sh be a Sh’“(Q) space. Let U € Sh be the Galerkin

k,m

n £ 11 Aafinad hvou
L S O s A L

-a(U;U,v) + (£(x,0),v)

P
S
~
hN
(o]
o’
ﬂ‘.<
~
]

£ 1NAN\ [
\Je iV i3 0
i=1(bi(x,U)Uxiy), t >

and
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(3.104) U,vy = (¥,V) t=0

for v € Sh where a( ;, ) is defined by (3.65)
We now modify Theorem 3.7

Theorem 3.14. Assume (1°)-(6°) in (3.102') hold.
Let U be defined by (3.103) and (3.104). Then for 7 € (0,T],
2

28 (%
U-ull < heS{K] lull
i HLZ 10 'HS(Q) XLZ(O, ’I')

2

o 2 2 2
+ Ky [y + Yull + |jull (r)]}

1% (0) H®(Q) XL, (0, 7) 1 (Q)

* % .
where s = min(r,m) and Kl and K2 are positive constants which
X

~ ~
depend on 7,n,K,7,M¥,8,,Q, "vpl{x,u)y , lvull ., WL | . and fu.fl .
© o]

’ 0’ .

2

KX also depends on uV(p(x,u)t)uw.

Proof: For t € [0,T] define H(x,t)eSh by (3.68).
From (3.100) and (3.68) we have t > 0

(mu(x,ﬁ)ﬁt,v> = (mu(x,ﬁjﬁ£ - ¢h(x,u)ut, vy - a(u; U,v) .

S .. .. - . )
(3.105) + (£(x,u),v) + .2-(bi(X,U)ux.,V)
Subtracting (3.105) from (3.103) with v=(U-U) we obtain

(a4 ~ 2 ey -
(o (%, Y, - g, CLDE, U-8) + iu-u|’; < -aU; v U-H #

~a(u;u,U-u) + ((c;,u(x,u)ut - mu(x,ﬁ)ﬁk), U,u) + G, + Gy
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where

(p]
il

(£(x,U0) - £(x,u),v)

and

Gy = (bi(x,U)UX. - bi(x,u)uX-, U-4 )

1 i i

I s =]

We note that

(g (xs0)uy = o, (%, DT, U-T)

gy (6, 0) iy (5, ), U-T)

+ (g (%, T) (u-T) ., U-T)
2 2

< (KHL)'u Y [tu-uw) o+ ST ]
tile l , I JLZ

~ ~ 2
+ Colu(u-) %+ o) )
Bounding the terms G,, G, and -a(U;3,U-0) + a(u;d,U-d) as
before we have

~ ~ I ~ 2
(cpu(x,U)Ut-«'pu(X,U)ut: U-u) + n,U-T) 1
H

0
2 2 2
< o) [u-B) + a1+ Cyfa-®)
L, Lo L,

where C; and C, are positive constants which depend on
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' S ~ *
ns CO’ K, ||vull_, M, n. C1 also depends on ”utﬂm. Using
the same technique as in [11], we note that

~ ~ d ~ d-uU ~
<mu(x,U)(U-u)t, U-u) = —¢ (f R(x,u,u-U)dx)-jjo ¢hu(x’u'“)ut“d“dx
Q 0

where

g
R(x,s, g) = J Cpu(xss"u.)H d}.t
0
Since

u-U 2
I£ Io 0 (Ko T-pfB pudy| < RITY !}U-ﬁ’IILZ

0
o

-2

=2

| (g (a0 =g e, ENE, , U-T) | < (D)),

we deduce that

%E( [ R(x,%,§-0)dx)
Q

<%(X:U)Ut - Cpu(isa)ﬁt: U'ﬁ>

G-U
+ I IO muu(x,u-“)ut uddx
Q

((py (x,0) =, (%, 1) )T, U-T)

"~
b4

< 2(K+1)”Gt“co“U-E”L2 g, (%, 00, - o, (x, DT, U-T)
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2 2 2
S QDTN + G JU-T o+ CfunTl o+ Cp(u-) ]
2 2

Integrating (3.107) with respect to t, we obtain for

r e (0,T]

£R(X,u(x,7),(E-U)(X,T))dx - g R(x,u(x,O)#ﬁlU)(x,O)dx

2
< (2(k+1) MUl o+ Cp) nU-GuL (L. (0, )
zﬂx » T

+ Clnu-ﬁu + Cyl|(u-t) |
LZ(Q)XLZ(OJT) Lz(Q)XLz(O T)
Noticé that
II R(x,u(x,0)(3-U) (x,0)dx]| < Cy 1U- ud (0)
o L.
and
N 2
I R(x,u(x, 1),(U-U) (x, r)dx = n||U-u|
L.
Q 2
Therefore
ngU-an (t) < (2(R+L) T+ Cy "U-uq
‘ Ls XL,{0, <)
YA 240, 7]
2
+.C, !lu~u + C ”U-u” (0)
14 'IL,.(meco,T) 04 g

“

+ G, (u-
2/t u)th 5 () XL, (0, )
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By Gronwall's lemma, we obtain inequality (3.71). The

* % *
constants Cl, C2, and C3 also depend on !lu
Proof of theorem follows by using the same arguments

following (3.71) in Theorem 3.7.

The estimate of WU-u“L derived in Theorem 3.14
2
involves a constant ”Gtﬂm. We now give an example

where ﬂﬁtnm is bounded independently of h. Assume
n

q=B= X (a,,d;) with a.<d., 1 <i <n. Let A, be
i=1 1 1 1 i 1

a partition of [ai’di] with uniform mesh h,, 1 <£1i<n, and

let Sh, h = max h., be the span of the tensor products of
1<i<n

piecewise Hermite polynomials of degree 2m-1, m = 1,

p;- IE uee L (10,7, KP7(B))

n
which are defined on X
i=1

where min(1l,n/2) < q < 2m, then g

e is bounded indepen-

dently of h_, 1 <i <n. For proof we use an argument
similar to the one given in Lemma 3.5. Replace u and u

by u, and Et respectively in proof of Lemma 3.5 and

note that

M n
| £ vy (0)v; ()] < Cp(Zm) v,

i=1

where

We now briefly discuss the inhomogeneous Dirichlet
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problem. Consider the boundary value problem defined

by (3.100), (3.101), and
(3.110) u(x,t) = g(x,t) (x,t) e 20 x (0,T]

We assume (1°)-(6°), (3.102'), with Hl(Q) replacing
Hé(ﬂ) in (1°) and (3°) and u being defined as the unique

solution of (3.100), (3.101), and (3.110) in (3°). Let

Sh be a SE m(Q) srace. We further assume that for

t e [0,T] g(x,t) € s? and that if w ¢ H'(Q) there exists

h

a wk(x,t) € S such that (w-w*)(x,t) € Hé(Q) and

(3:111)  ju-wkn 5 < Q%S|

'IT]- -
70

where s = min(r,m) and Q% is a constant independent of w.
. 2 .
In the case where o = B, a rectangle in R, and sM is the

span of the tensor products of piecewise Hermite polynomials
n
of degree 2m-1, m = 1, defined on a partition p = X &, of
, i=1
B, Birkhoff, et al [6] show that if u is sufficiently

continuous

‘ * | Zm-1, -
g 1 (8) < Q@ BT T o (6,
0

where um(x,t) denotes the Hermite interpolate of u{x,t)

on Sh and h is the maximum interval length of A, 1,2.
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We define the Galerkin approximation to u, U, by

M
U(x,t) = g(x,t) + £ c.(t)v,(x) (x,t)e(x[0,T]
i=1 * 0 *

where U satisfies (3.103) and (3.104) for v ¢ S nHO(Q)

M
Here {vi(x)} is a linearly independent set which spans
i=

S nHO(n)

For t € [0,T] define G(x,t)esh by
M

U(x,t) = g(x,t) + = d (v)v, (%) (x,£) € Q x [0,T]
'_L_

where

a(u;(u-ﬁ)(x,t);v) = 0 v e gt (Q)

From Theorem 3.5 and (3.111) we have

W) () < cregent

h inf ”u-g-vd
L 1
2

GeShﬂHé(Q) Hy

< Q*c'cgqn' hsuuHHS(t)

where s = min(m,r). Following the proofs of Lemmas 3.3 and

3.4 we obtain the 1, estimate of (u-ﬁ')t given by (3.73).

h

We remark that (U-u)(x,t) ¢ S nHé(Q) for t € (0,T].
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Using the same argument as in the treatment of the homogeneous

(7

Dirichlet problem we now obtain the same estimates of “U-unz
L
2

as given in Theorem 3.14 and in Theorem 3.7 if w(x,u) = u.

The analysis given in Section 3.3, where we assumed
no flux, also applies to problems with non-zero flux.

Consider the parabolic problem defined by

n
(3.112) cp(x,u)t = pX (aij(x)p(x,u)ux_)x. + f(x,u)
i,j=1 j 1

(x,t) e a x (0,T]

with initial and boundary conditions

(3.113) . u(x,0) = y(x)
and
n
(3.114) i’§=1 aij(X)p(x,u)Yjuxi = g(x,t)

where y = (yl, yz,...,yn) is the unit exterior normal to Q.

We assume Condition C, (3.82') (u is now a solution to (3.112)-

(3.114), and (1°) and (5°) in (3.102'). We also assume P(C, )

1. . 5
is O-regular on H (Q) where
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aij(x)wxjvxidx +J/m [ wvdx
Q

Let Sh be a SE m(Q) space. Let U( ,t)eSh be the Galerkin

approximation to u defined by

(cp(X,U)t,V> = -a(U; U,v) + (£(x,0),v)

» h
+ g(x,t)v do t >0, ves
Q2
h
U,v) = (¥,V) t=0, vesS
e Tt 1 __2 o £ T1I\ Tuer ~» ~r Qh and ciithtract+i £
MULTCLPLYINEG (J.L1e) OF V, V & 0 , <«ud subtracting Trrom

for problems with no flux

can be applied to problems with non-zero flux. Thus, estimates

2
of U-u; (1), T € (0,T] are given in Theorem 3.8. The
L2
* % ~ .
constants K; and K, also depend on jlu i _ if o(x,u) # u.
(If w(x,u) # u Theorem 3.8 is modified in the same way as

described for the homogeneous Dirichlet problem in Theorem (3.14).)



83

§4. A Priori L, Error Estimates for Several Discrete

Time Galerkin Procedures

4.1: Several discrete time Galerkin procedures.

In this chapter we will consider several procedures formulated
in [9] for approximating the solution of (3.31)-(3.33) in
which the variable t will be discretized.

Let ot = T/N where N is a positive integer and let

tj = jot. We use the following notation:

g5 —g(x,tj) 0<j<N
= L(1+o) + 2(1-8)g,, 0 <3 < N-1
81,0 2 LRSI
where 6 ¢ [0,1]. a(-3-,+) is defined by (3.65) and S°
will denote a SP’O(O\ space
Kk,m" 5

Consider the following discrete Galerkin procedure:

XN h e
Let 1Ujjj=0 € S satisfying

U.,,-U.,v
@Jii__l’ y + a(U.
At J’

e; Uj, Q’V)

n
(4'2) = (& bi(X,U. ) (U, sV
i=1

j,® Jse)xi

A\ "4
~
~s
<
m
(i
v
(e

and
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(4.3) - (Uo,v> = (¢,v) veS

where 6 ¢ [0,1]. If 8 = 0, (4.2) yields the so-called Crank
Nicolson Galerkin approximation; for 8 =1 (4.2) is a
backward difference Galérkin approximation. We remark

that (4.2) and (4.3) have solutions (possibly nonurique)

if At is sufficiently small (see Lemma 7.1 in [91).

The solution to (4.2) and (4.3) requires the solution
of a system of nonlinear algebraic equations at each time
level tj' A scheme which requires the solution of two
linear algebraic systems at each time step is the predictor-

corrector-Galerkin Method

17 "‘l‘e

(Wj+TUjJV> + a(”j; Wj:“”)
At
n
= (E(,U),V) + (B by UMD, V),
4.4) i=1
h
j =20, vesS
- 8.
(Uj+l UjJV> + a(wj’ Uj,e,V)
At

(%13) 5 n 8
j =20, ve Sh

and
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(4°6) <U0:V> = <¢:V) v €S
where 8 ¢ [0,1] and
W;’ = %—(He)wj_*_l + %(1-6)UJ.

. h
Wltth+1 € S.

In Sections 4.2 and 4.3 we obtain estimates of

1 (U-u) for both (4.2)-(4.3) and (4.4)-(4.6). We
L, (Q)

show that if Condition B is assumed and additional restrictions

are made on u and p(x,u) then

_ s . ..k

~Ta 7’ AN b
= uvin T (aL) |

7~

H U_u)NHLz(Q)
where s = min(r,m). For 8 € (0,1], k = 1 and for 6 = O,
k=2-

The analysis given in this chapter can easily be extended
to problems with inhomogeneous boundary conditions in the
span of the chosen basis functions or with Neumann boundary
conditions (The proof given of Theorem 4.4 holds only for

Dirichlet boundary conditions). The modifications in the
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arguments presented here which are necessary to treat
these extensions so closely resemble those used in
extending the homogeneous Dirichlet boundary conditions for the

continuous time Galerkin procedure that they will not

be repeated.
In this chapter we will use C as a generic constant.
Also H x Lg = H(Q) X LS[O,T], S = 2,0 where H = Hé, Hs, or

Ls’ s a positive integer.

4.2. Estimates for a family of generalized discrete

Galerkin procedures. In this section we determine L2 error

estimates for the Galerkin procedures defined by (4.2) and
(4.3). We assume Condition B, p(°:,u(+,°)) € Cz(nx[O,T])
and (uxi)tt e C(a x [0,T]) for 1 £ i < n.

h

M
Let S, a S}}’?(n) space, be the span {v,(x)}._,, a
Nyl - - -

3

linearly independent set where D Lvi(x) € Lw(ﬁ) s, 1S1<M,
1< t<n. For te [0,T], define T(x,t) ¢ S” by (3.68).

Now

_ M
T(x,t) = yi(t)vi(x) .

T
— &

e

From Condition B and the abuve assumptions made on p and u, we

)
~nar LU g Y
(& LO, T} ’ 1=i=sM. ALiUO utt and u

1 <1< n, are bounded on Q x [0,T] (not necessarily inde-
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pendently of h). We note that for t =‘tB g J = 0,

~ ~ ~ h
(U, 1 1-U;,V) = (ut(x,ti’e }+pj’e,v> vesS
At
h Hp . < atia,_ Y . .68 d (3.31
where J,QHLZ dutthzxL From (3 ) and ( ) we

h

see that for t = t, 0<j<N<Land veS§S

(uj+l-uj,v) = <ut(x’tj,6) + pj,e’v>
Bt ,
—aluy gt8;, 68,0+ 0y,
- @ (x,t, ),V
t 3,8

+ (£(x,u, 8 + gj,e)’v>

J.
n
+ ¢ 9 b.(x.u., +£. Y(u, +E. ) _ .v
y=1 1 Js8 “J,9 Js8 "J,0T Xy

Here (&, .|, = otlug}) and |a. < Atlu ! -
| 3,c3|LZ ] elyxL, I ’e”H(l) I tlH(l)x )

we obtain
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L r a 2 ! |2
'Z'A-;Ill(u'u)j+1"1‘2 = ||(U'6)J|IL2]

S (U-R) 4 4y ~(U-B), (U-T)y o)

At

= -a(UJ,e;Uj,e’ (U-G)j,e>+ (f(x)Uj,e)J(U«G")J’e)
+a(uy o8y g5ty ghay o, (U-0), o)

+ <ut(x’tj,e) - at(x’tj,e) - pj,e’(U-G)j,6>

- (f(xluj,e + gj’e)’ (U-u)J,e> + G].

where

N ‘
Gl = 3 <bi(x’UJ,9)(UJ,e)xi-bi(x’uj,e+;J,e)(uj,e+gj,9)xi’(u-u)j,e>

i=1

Estimating terms as before, we have
L[)u-8) : (u-v) : ] (U-v) ‘2
a—— U-u ! =1 (U=1),| -+ n U=-u
2at ” J+1||LZ || J"Lz “ J’enl 1

< -a(Uy, o3y U=y, ) + aCuy, g¥8y, 65T} gty 00 (U905, )

+ Kij <U'u)3 ,07%3, e!ILZ;l ("’i'ﬁjj s eﬁ]_,z}

+ |6, |

v "Ll
’ 2

+ u(u-ﬁ)o—”!’ (ta o) ”(U'{Da a“
L I A J

+ | pj,G"Lz :‘(U-u)J,e:le
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We note that

-a(Uy o385 g (U-0)5 o) +aluy g+ & g 3y g+ oy (U0 o)
= a(uj,e + gJ e; a'j,B’ (U-U)j,e)
"B A Py )-p(x,u, ;j e)l(uJ o'z, (U )
q i,k=1
< Co ey, gl | 0Dy, oll 4
H Hy
0o 3/2 ~
A T D T A N (CE N
2 HO
2 2
< Cljay gl g + N, - & ol 1+
-t P ﬂo -t v - - Lz
2
n/4 (-8, gl
Ho

1t

where C is a constant which depends on CO’ ‘Vu“ - s K and
n. This last inequaltiy follows from the inequality

ab < %[c—:a2 + (1/e)b2)with € = n/a

. [ (b.(x.U, a)((U-u;ﬁ Yoo, (U-U), )
r s il £ J v

L
CD
"
La
-
(3]

YL W), D
J,-S xl s B
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Using assumptions made on the bi(Condition B) and integrating

the third term by parts, we obtain
l6 | = Cyvn || (U- u)J 9” 1 q(U-ﬁ)j’eHL
H, .

+ Kn!'Vi| H(U-ﬁ) \(U-u), -8, .

e”L 1,8 7350,

2
+ ey g+ gy ellLZ[COJE 1(U-a), 9”1{(1)

+ M¥n ||(U- u)J BV'L ]

Applying the inequality ab =< %(eaz + (1/e)b2ﬁwith e = n/4

if ”(U-u)J e| is a factor and € = 1 otherwise, we see
3 Hn
that
2 2
< - | - -
|G].I = n/4|i(U mj,enlﬁl + C[“(U u)j,e €J,ellL
0
+ (u-u), HZ + &, Wz + | (U-0), qz ]
( j» L2 J:e’Lz J,90 L

.
where C is a constant which depends on n, K, M’, n, CO’

and *qu . A little manipulation yields
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L [v(u-3) ? |(“‘>21 /2 (U-T), ?
el (U-0), 1 - [|(U-u + n/2'(U-u '
Al 3+, L, 3,6yl
2 2 o2 2
< C[H(U"u)j: +' (U~ u) +1‘l + | (u'u)j H .l (u- u)_]+1|
L L L L

2 2 2 2

(4.11) ) )
+ u<u-u>tuL2<tj,e> * ey, gl

2 2]
+ g, + o, !
U§J’9HL2 laj

. a e .. . ; e - . -
where C is a constant which depends on n, n, K, M, CO’ and

WVﬁH,- Multiplying (4.11) by 24t and then summing for j = 0,1,..N-1

. we obtain S . _.
L2 N-1 2
Y41 AP NT L A < NlTT—11) 1
“\U—U}Nd ' Ve : ”\u u/j,el
N 2 - P, 2 bl
S MC { = H(U-u) [ N Y
N-1 2 2
+ = [“(u-ﬁ') || (t; o) + llas Al \
2 3,8 3,0 Lol
= HO 2

+ || J etl ]} + QI(U'~)0|

II‘Q

If at is sufficiently small we obtain by Gronwall's lemma

Lo

[16]
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2 N-1 2
HoDyl + ez 40Dy g

Hy

- —

~n 12 N 2
< C{g(u-u)ouL + At [Jzo u(u-ﬁ)JuL

2 2
R 2
jEO ('| (u-u t"LZ(tJ ’ en + "aj ) 0" 1

Hy
2 2
* 1oy, ol *+ 18yl D)

where C is a constant which depends on T, n, K, n, CO’

M*, and ||vu} .

We now require bounds for [lu-i|| (t) and “(u;ﬁ)tni (t),
L
2 2

t ¢ [0,T),and for la, Nl > W& Il » and |lp, o}l 5 0 <3 < N-1.
B I 1 "J’V"L E R
H, 2 2
We now further assume that u,, (p(x,u))x s (p(x,u)t)x €

Lw(oxIO,T]) and that P( , ) is O-regular on Hz{Q) where

n 1
4.13') P(w,v) = T a, (xX)w, v, dx w, veH;(Q)
( ‘ gi»J o & *3 0

=1 Xy

Estimates for 3u-EuL2(t) and g(u-ﬂbtan(t), ¢ ¢ (0,71,

are derived in Theorem 3.7 and are given by (3.72) and

(3.73) respectively.

Since u, ¢ L“(n x [0,T]) we find that
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(4.13) ;|gj’e‘|gL < p(@)at jju
2

where () denotes the measure of Q. To estimate “uj 6“ 1
3
HO

we require the following lemma.

Lemma 4.1: If u, u_ € Lw([O,T], Hl(Q)) then

t

-1\ -
(4.14) o, < oat{(HChn "Q)ilu, !
™3, e”Hé 0 Q 'I t 'Hl X1,

+ C3/2( -1)2QK' }
n u! .
0 ' llHIXL

-]

Proof: Using an argument similar to the one given

in Lemma 3.3, we have

(4.15) (D)0 < Cotal v, | ., ¥
HOXLoo H™ XL

=}

WG Klugly 0y ]

Thus

~ -1
“ut“Héme < (1 +Cym Q)Hut"Hle

x©

3/2, -1,2.
+ Qg “(a™h) Riuglalel 1

(e ]
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Since for 0 < j < N-1 and 6 ¢ [0,1]

log ol 5 8¢ el
Hy HyXL

we obtain (4.14)

A bound for "p is derived in

Lemma 4.2: If u

= u s, 1 £1S<n, u, u
Xjer  tHRy

t’ Vet €

L_(lo,T], nl(qa)) and p(x,u) € L _([0,T], L _(Q)), then for

0 <j<N-1and s € [0,1]

(4.16) Hpj < Catliu) 4 + a4 + flu,

]
L, alxL HixL tlul xL_
© ") - -]

ol

where C is a constant which depends on n, K, n, Q, ”ut”w’

(p(x,u) iy and Cg.

Proof: Differentiating (3.68) twice with respect to

t, we see that for v € Sh

a(u (u U) t:V)+l 1= {'E j_j (X)P(x u)t((u-u)t) V dx

\ .
) . e
n

+ { x)p(x,u)  (u-i), v, dx = 0
,j=1 é 25y (PG (8 Xy *y
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h

For t € [O,T] define u*(x,t) € S by
(4.18) a(u; utt-u*, v) =0 Vv € Sh
By Theorem 3.5,
(4.19)  fu,  -u¥ <c nlq u,,!
y I tt il 1 = o'ﬂ =t
Home H XL

From (4.17) and (4.18) we deduce that

jox-T <n"Inl2 JCy Kiju, || (u-T) |

HOXLcn Home

+ p(x,u) | VCoilu-u . ]
Hy*L,,

Since for v e Hy(q), 19y, < cggqul we have from (4.19)

0
and (4.20)
) < cEeo )
L2 XLoo H‘]‘- XL, .
< Cljj(u-w) | + |ju~U) . + fjug ]
HAxL H, XL H™xL
v @ v -] w
where C is a constant which depends on n, CQ, n, K, CO’
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“ut“w, Q, and "p(x,u)ttua. Thus

(4.21)
" (u-u) ttHszLm < C[||Ut|IH1 @ + !|“||H1xLcn + !I“u;"H1 wa]

where C depends on the above constants. Since for

0 <j <N-1and 6 ¢ [0,1]

i pj"’“LZ s ot ”utt”LZXLc

we now obtain (4.16) from (4.21). We now summarize the
above results

Theorem 4.1: Assume

(1°) Condition B, (3.64')

(2°) Yy e c(ax[0,T]) and

u =u R 1<1i<n
xitt ttxi .
(30) u’. ut’ utt € Lm( [OJT]’ H (Q))
(4°) p(x,u) € C2(ax[0,T]) and
p(x,u)xi, P(x,u)txi ,» p(x,u) L (ax[0,T])

(5°) P( , ) defined by (4.13') is O-regular

on Hk(ﬂ)

Let U., 0 < § < N,be defined by (4.2) and (4.3) for o e [0,1].

Then if At is sufficiently small, we have
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| (U-w)ip < Cg C'n tan® ol s
N 1/2
+ Ch%({[ = at|u 1%
j=0 ] Hs
1/2

J=

}

(4.22)
N-1 2 2
At("u“Hs(tj,e) + HutHHS(tJ’ NI

+ [
j=0

+ Cat

Here C and C are positive constants

= min(m,r).
Tor @ M, o, C

1Rv;

where s
ue K: Co: i

which depend on T, n,
”Vp(x’u)”, and HV(P(X’u)t)“u' C also depends on (22)

» lla > Jlu , and
tnnle | ttnﬂlem

(measure of Q), jul|
H™XL

!!P(X,U) tt” a:.
We now consider the Crank-Nicolson-Galerkin procedure,
Under additional assumptions

that is, (4.2) with 6 = 0.
on the continuity of u and p(x,u) we obtain 4 (At)z term

in place of at in (4.22).

Thanvam A 2 Aceiimea Fhe hunnthoasaese 19V-75%
e A L W de e b -7 & &= -5 Wwh bWF Whbihih S e & S - tlv b W) e WP \A. , \-I
Theorem 4.1. Further assume
(6°) u i € C(axi0,T]) and
“itt
1<1i<n
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U °) ug, € L C[0,T], HN (@)

(8°) p(x,u)ttt € Lm(Q x [0,T])

Let Uj, 0 < j < N,be defined by (4.2) and (4.3) with ¢ = 0.

Then if At is sufficiently small

|-y, < Cg c'n'lqzhsnuNuHs F E(ot)?

(4.23) + ch®{[ I; At(:!u”zs(t. ) + Elutilzs(t~ e))]%
. 3=0 oo g J-
-.N 2 %
+ 0 aeC ) 1)
j=0 : HS 4
where 8 = min(m,r). C and‘ﬁ are positive constants which

depend on the same constants given in Theorem 4.1. € also

depends on ”ut”ule and {p(x,u) .M -

®©

Proof: We note that for 0 < j < N-1
Na, ol 1 < (At)znﬁ I s
173,0 Mgl - tt HéXL

(4.24) s (a2

I 3,0°L, utt”szLco ’

2~
leg,ollL, = (48 Meeeln,x

From (4.21) we have for 0 £ j < N-1
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2
(4.25) a. ol 1 S C(AE) [lu + llu + lu_ | ]
35 O'lH(l) “Hle tnul xL te ‘Hl XL

[- <] @ o«

where C is a constant which depends on n, K, n, CO’ “ut““, Q,
and “p(x,u)ttﬂm. Differentiating (3.68) three times with
respect to t and using an argument similar to the one given

in Lemma 4.2, we see that

alu
3 i

I ], 0<3<N-1
H XL

@

3
, 2
(4:26) oy olly, < €GO E |

where C depends on the above listed constants and !p(x,u), .
--}

The proof of the theorem now follows.

4.3 Estimates fér a family of predictor-corrector-

Galerkin procedures. In this section we obtain L, estimates

2
for the predictor-corrector-Galerkin procedures defined by

(4.4)-(4.6). We prove

Theorem 4.3. Assume that hypotheses (1°)-(5°) of
Theorem 4.1 hold. Let U,, 0 £ j < N,be defined by (4.4)-

(4.6) with 8 ¢ [0,1]. Then if At is sufficiently small

we have inequality (4.22).

Proof: The proof of this theorem proceeds in two
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parts. First for t = tj 8’ 0<j<N-1, and v ¢ Sh

. ,,-U.
+1 ~
(—J-Kf_—l’ vy = (ut(x,tj,e) + pj’e,v)

- .+ s U, + 0. s
aluy + 8y o5 Uy g+ oy V)

_(ut(x,t.’e),v) + (f(x,uj+sj’e),v>

J
n
where
1oy, ol S BTy wp o+ loy gt g S otfuy ,
R PR Lo A s J “RyrL,
N85 ail < otfju || , and |lg. I < Atiu b s, 0<j<N-1.
l J,GILZ H t szL 5 0 L2 ll tlleme

Note that (4.30) differs from (4.8) in that we are expanding

ulx, t. G) in a truncated Taylor series about t., that is
] J

L

u(x,t.

J’e) = u.j + Bj,e’ in the terms p(x,u(x,t)), bi(x,u(x,t)),

and f(x,u(x,t)) where t = tj 5

j,6
wd _ g 0 < 3 < N=-1. we cheair
'3 s PR MO
2 2 - -(U-
1 (M -8), .. - u-E)y 1 1S ((W ﬁ)3+1 (U ﬁ)1+1 v )
ZL\E it J+| 0|L2 1 3 IlLZ ac 1, )
= -a(U,; W, v. ) +au.+ s V. )
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+ ((u-u)t(x,tj’e) - pj’e,\fj’e) + Gy + Gy

where
G1 = (f(x,Uj) - f(x,uj + ﬁj,e)’ Vj,e>

and
- ;

G, =
2 i=1 i

A little manipulation yields

L oo 2 ~ 2
L, L, ? 1
Hy
o ' 2 2
| Ly Ly B2

+ G1 + G, + G3

where
= -a(u.:5. . + . 3. 1%
€3 (UJ’uJ,G’ VJ,e) a(uJ + 33,6’ uj,e+°j,e’vj,e)

Using the triangle inequality and the inequality
= 1/8at if "p. .|, 1is a factor
s YL

o 7

ab < %(eaz +(1/éb2) with ¢

and ¢ = 1 otherwise, we obtain
I~ i — TFIt ey Y 1
el = Rlb=d) 5 = pj,gan
" '2 1 !2 2
K[ij,edL +”(U“a)jdL + ”(u°ﬁ)j”L2]
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2 2 1 2
+ 4K-ot :lBJ , e“L * TEa !\Vj , e“L
2 2
Now
n
GZ = 151[ (bi(x’Uj) (VJ s e)xi, VJ s 9>
- (bi(x,U(x, tj s 9) ((u-u)J R e + gj R e)xi’ VJ R e)]
Integration by parts yields
(bi(x:u(x: t_‘], 9')((“‘“):1’ 6 + gj,e)xi’ J,9>
= -<(bi(x,u(x,tj,e) J,e) s (u-;)J,'e + gj’e>

Hence

. -~ 1 i
|G2| = COJH !iVJ, oll 1 “vj, e"L + nKﬂvu“m“(U'u)j'aj’e:ILZilVJ,e;ILZ
: HO 2
~ *
+ il (u-u)j,e + %y, e“Lz[M n||VJ, 9“1,2 + C()JH "VJ, 9“1-11]
0

& L

< Cof ¥y gll | 1V ol + SR IV ol [i3y gl
O < <

+ Dyl + D]

# .
* gV gl + Ol 1Yy, o121 @Dy, 0 + ol
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Using the inequality ab < %[ea2 +(1/éb2] with € = 1/8at
if Hﬁj,GHLz is a factor, € = n/4 if ij,eHHl is a factor,

and € = 1 otherwise, we obtain
2 1 2
lc,| = /Ay Lt (C + TBZE")“Vj,eHL
HO 2

1

2

+ lmszqunz ses ellz

) ~ 2 e 2 2
+FCOUD 7+ @D+ gy ]

2 2 L,
+ 1 (u-u). ”2 ]
J s 6 112

where C and C are positive constants which depend on C,,

n, n, K, M‘, and Qvﬁnm- We next bound G3. Now

”
P4

PT ., (x)( x,U.)-p(x,u. +3. (u, (v dx
3 4 1 er ik ) (p( J) p( 3 83’9)) J’G)Xk ] s

(4.32)
+auy + By g3 o g0 Vi)
Thus
.—\'2 L~ . ‘
1651 < &Gy 0¥/ el 1(U-0) =8y ot Vs ol g
S22 L I3 H
2 0
+ Cnesd-; r\l\ ”V, .H
v J,U 1] J,U
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2 2 2
< ClU-B) 1 + sy ol + @Dy
i \ ,e
J LZ J L2 J L2
2
+ log gl ]+ n/4 5, ell
Ho Ho

where C is a constant defined as before. Substituting

the bounds for Gy Gy, and Gg into (4.31) we obtain

1 ~ |2 i g ‘2 ! ‘2
—Z_KE[H(W-U)J"‘H-%IL - (U-E) ;[L 1+ n/21Vy gl L
. 9 2 H
0

< %[ (u- U)t“Lz(tj’e) + |p ] + (C+1/8at) lV

j’e ||

L, Ly
(4.33")
+ C[(l+At)JBj’6HL + ng,euL + H(u-u)jnL + H(u-u)j+1HL
2 2 2 2
..2 -
+ Yoy gl ]
Hy

where C is defined as before. Noting that

02 ~ 2
lvj,BﬂL = Z[N(W'u)j+1HL i (u- u)Jd
2 2 2

2
and replacing an e“ by this bound, we see that
> L
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2

, 2
j+]_iIL |

< Cu(u-ﬁ).}
2 IL,

n(wiﬁ) )--

~ 2
| -
+ catf)(u u)tdLr(tj,G

2 2 2
+ ey o+ (ae)lg. AT+ 118 Sl
j,>0 '"3,0 56
L, L, J L,
2

2 2
+ Haj’eHHl + H(u-u)juL
0

2 7L,

where C is a constant defined as before.

We now use (4.8) and (4.5) and proceed exactly as
in Theorem 4.1. Notice that (4.5) differs from (4.2) in that the

functions p(x,UJ,e), f(x,UJ’e), and bi(x,UJ’e), 1<i<n, are

replaced by p(x,W?), f(x,Wj), and bi(x,Wj), 1<i<n. Also note

that . : -

“Wj - uj,e-gj,ean < H(W-u)j+luL2 + ”(u-u)j+1\\L2
+ W(U-W). . 4 Y(u-9). |,
i J '1_,2 " J s

and that a bound for W(W-u)_.,.'. is given by (4.33). Thus
j+ri "Laz

the only modifications in the proof of Theorem 4.1 are

in replacing }(U-u)j’e-gj’eHLz by ﬁwﬁ-ﬁj,e-gj,e”Lz’ adding

2 . ) , oN-1 2
atWg. .l to the right hand side of (4.11') and CAt™ £ lp
Jsur

I
! i a4
L2 3=0" 4"

L.
._n:
to the right hand sides of (4.11') and (4.12)

Proof of Theorem 4.3 is completed.
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We now obtain estimates for the predictor-corrector
version of the Crank-Nicolson Galerkin procedure, that

is (4.4) and (4.5) with 6 = 0.

Theorem 4.4. Assume the hypotheses of Theorem 4.2.
%
Further assume that |(aij(x))x | <M, 1<£i, j £<n, 1< ksn.
k

Let U;, 0 < j < N,be defined by (4.4)-(4.6) with 8 = 0.
Then if At is sufficiently small, we have inequality (4.23)

| ’
o

The constants C and C also depend on y(Q) and “G; o !
i

1<i, k < n.

Proof: From (4.24)-(4.26) we obtain O((At)z) estimates

for Haj;OH ﬂgjionl

_and fp, 4 , 0=<j =<N-1. We find
=2 - 7 L

1
HO 2

that
'v !l %
185,00, S stuw(@ " Ju
= P
Theorem 4.3 now yields the estimate
1m0y + o(ae?/?);
L
2

the estimate 0(h°) + 0((At)2) is not obtained since

is only 0(At). We modify Theorem 4.3.

Ly A PELU) PG I, ) (3 o)y dx
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+ a(uj + BJ,O; G'J,O) Vj,o)

Now uj + pj 0= u(x, (3 + %)at). Performing integration by
3 .

parts, we obtain

a4 (%) np(x,ujﬂ-sj,0>-p(x,uj>](EJ.J,%)xk(vj,0>x]_L dx

n
= - = la; () (px,ux, (G+y)er)) - p(x,uj))(35+%)xk]xivj’odx

< CAot |V qz < 4c? (ot)> + iy,
< i j’O‘Lz = T6At j’OiL

%
where C is a constant which depends on n, M, .(Q), Hutﬂm,

Hv(p(x,u)gnm, and “Ggixjum, 1<1i, j £ n. Bounding the
first and third terms of G3 as before, we have

3] < &/, 21l 0wy IV ol
0

+ 402(At)3 + —s v HZ
164t 3,04L,
+ C g, 0 ogwo
Ull"J,Utl 1 " J’UH 1
fo 0

3
oot s ol ]
NER
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2 2

1
+ T85E HVj,oHL + n/4 ﬂVj,oH 1
2 Hy

. * ~
where C is a constant which depends on n, M, ,(Q), 'u || , v .
- : 4”0 ©

K, Cps M5 U i 1v(p(x,u) )| _, and uﬁ;.x'uw ,1<14i, 3 <n.
i)

Substituting the bounds for Gy and G,y given in Theorem 4.3

and the above bound for G3 into (4.31) we obtain

2 2 2

1 " ~ 1 ~ !
Z5el (W-u>j+1HL2 - {|(U-w), HL1;_+ n/ZIIVj,oJH(l)
2 2

2
< %[(u-mt”Lz(tj,O) + '.'.pj,ouLzl + (O+ o) V3,00

’ 2
+Clats, 1% + 0E. o1+ (at)3 # e,
3,0 23,0t 3,0
LZ Lgy H1
0
~ 2 ~ 2
+ (u-u) T+ N(u-w) ]
1 J 1] 1 +1
LZ J L2
where C is defined as before. We now use the same
!
argument given in Theorem 4.3 following (4.33).
The resulis derived in Theorem 4.4 involve constants
”G%ixk”“’ 1<1i, k <n. Using an argument similar to the
one given in Lemma 3.5, one can show that |4 s 1 =1,

k < n is bounded independently of h if q = BF.R (ai,dj), Sh

i=1
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is the span of the tensor products of piecewise Hermite
polynomials of degree 2m-1, m = 2, defined on a partition

p of B, and u ¢ Lw([O,T], Kq(ﬁ)) with n/2 + 2 < q £ 2m.



[1]

[2]

[3]

[4]

(5]

(6]

[71]

[8]
[9]

References

S. Agmon, Lectures on Elliptic Boundary Value Problems,

Van Nostrand, Princeton, 1965.

J. P. Aubin, "Behavior of the error of the approximate
solutions of boundary value problems for linear elliptic
operators by Galerkin's and finite difference methods",

Annali della Scuola Normale Superiore_g} Pisa 2, 599-637,

(1967).

R. Bellman, Stability Theory of Differential Equations,

McGraw Hill, New York 1952,

L. Bers, F. John, and M. Schechter, Partial Differential

Equations, Interscience, New York, 1966.

J. H. Bramble and A. H. Schatz, "Raleigh-Ritz-Galerkin
methods for Dirichlet's problem using subspaces without
bOundafy conditions'" to appear.

G. Birkhoff, M. H. Schultz, and R. S. Varga, "Piecewise

Hermite internolation

in one or two var
applications to partial differential equations', Num.
Math. 11, 232-256, (1968).

P. G. Ciarlet, M. H. Schultz, and R. S. Varga, 'Numerical
Methods of high-order aécuracy for non-linear boundary
value problems'", Num. Math. 9, 394-430, (1967).

J. Dendy, Ph.D. Thesis, Rice University, 1971.

J. Douglas, Jr. and T. Dupont, "Galerkin methods for

T h .\ SR, A 1 [ X~ W
g e NuuueL. Alldi. /, J2/0-040,

(1970).



[L0] J. Douglas, Jr. and T. Dupont, ''The numerical
solution of waterflooding problems in petroleum

engineering'", Studies in Numerical Analysis,

vel. 2, SIAM, Philadelphia, 53-63, (1970).

[11] J. Douglas and T. Dupont, '"Galerkin Methods for
Parabolic Problems II" to appear.

[12] T. Dupont (private communication).

[13] R. E. Edwards, Fourier Series, Holdt, Rinehart, and
Winston, Dallas, 1967.

[14] G. Fex and G. Strang, '"A Fourier analysis of the finite
element variational method", to appear

[15] C. Gardner, '"Rounding errors in the solution of the
one dimensional heat equation using a Galerkin technique',
M.A. thesis, Rice University, 1970.

[16] M. Lees, "A priori estimates for the solution of a
difference approximation to parabolic differential

quationg" Duke Math T., Vol. 27,

no. 3, 297-312, (1960).
[17] J. Nitsche, "Ein Kriteruim fur die quasi-optimilital
des Ritzschen verfahrend“,‘ggggg,_Mggg, 11, 346-348 (1968).
[18] H. S. Price and R. S. Varga, "Error bounds for semi-
discrete Galerkin approximations of parabolic problems
with applications to petrolum reservoir mechanics',

Numerical Solution of Field Problems in Continuum Physics,

Amer. Society, Providence, 74-95, (1970).



[19] M. H. Schultz and R. S. Varga, "L-Splines", Numer.
Math. 10 345-369, (1967),

[20] M. H. Schultz, "L® Multivariate Approximation theory",
_SIAM J. Numer. Anal. 6, 161-183, (1969).

[21] M. H. Schultz, "Approximation theory of multivariate

spline functions in Sobolev spaces', SIAM J. Numer.

Anal. 6, 570-582, 1969.






