
A PRIORI OPTIMIZATION

DIMITRIS J. BERTSIMAS

Massachtisells Institute of Technology, Cambridge. Massachusetts

PATRICK JAILLET
Ecole Nationale des Ponis et Chaussees. Noisy Le Grand, France

AMEDEO R. ODONI
Massachusetts Institute of Technology. Cambridge. Massachusetts

(Received November 1988; revision received August 1989: accepted September 1989)

Consider a complete graph G = (K, E) in which each node is present with probability p,. We are interested in solving
combinatorial optimization problems on subsets of nodes which are present with a certain probability. We introduce the
idea of a priori optimization as a strategy competitive to the strategy of reoptimization, under which the combinatorial
optimization problem is solved optimally for every instance. We consider four problems: the traveling salesman problem
(TSP), the minimum spanning tree, vehicle routing, and traveling salesman facility location. We discuss the applicability
of a priori optimization strategies in several areas and show that if the nodes are randomly distributed in the plane the a
priori and reoptimization strategies are very close in terms of performance. We characterize the complexity of a priori
optimization and address the question of approximating the optimal a priori solutions with polynomial time heuristics
with provable worst-case guarantees. Finally, we use the TSP as an example to find practical solutions based on ideas of
local optimality.

This paper is concerned with a specific family of
combinatorial optitnization problems whose

common characteristic is the explicit inclusion of
probabilistic elements in the problem defmitions, as
we will explain. For this reason, we shall refer to them
as probabilistic combinatorial optimization problems
(PCOPs).

There are several motivations for investigating the
effect of including probabilistic elements in combi-
natorial optimization problems. Among them, two
are of particular importance. The first is the desire to
define and analyze models which are more appropriate
for those real-world problems in which randomness is
not only present, but a major concern. There is a
plethora of important and interesting applications of
PCOPs. especially in the context of strategic planning
for collection and distribution services, communica-
tion and transportation systems, job scheduling,
organizational structures, etc. For such applications,
the probabilistic nature of the models makes them
particularly attractive as mathematical abstractions of
real-world systems.

The second motivation is an interest in investigating
the robustness, with respect to optimality, of optimal

solutions to deterministic problems, when the
instances for which these problems have been solved
are modified. In our case, we confine the investigation
to problems on graphs and the perturbation of a
problem's instance is simulated by the presence or
absence of subsets of the graph's set of nodes.

We next discuss the central theme of this paper,
namely the idea of a priori optimization. In many
applications, one finds that, after solving a given
instance of a combinatorial optimization problem, it
becomes necessary to repeatedly solve many other
instances of the same problem. These other instances
are usually variations of the instance solved originally.
Yet, they may be sufficiently different from that orig-
inal instance to necessitate a reconsideration of the
entire problem on the part of the analyst.

The most obvious approach to deal with such cases
is to attempt to optimally solve (or near-optimally
with a good heuristic) every potential instance of the
original problem. Throughout the paper, we call this
approach the reoptimization strategy and denote it
with the Greek letter S. This approach, however,
suffers from several disadvantages. For example, if the
combinatorial optimization problem considered is
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NP-hard, one might have to solve exponentially many
instances of a hard problem. Moreover, in many
applications it is necessary to find a solution to each
new instance quickly, but one might not have the
required computing or other resources for doing so.

We propose to investigate a different strategy.
Rather than reoptimizing every potential instance, we
wish to find an a priori solution to the original prob-
lem and then update in a simple way this a priori
solution to answer each particular instance or varia-
tion. Clearly, the natural questions to ask are: What
is the measure of effectiveness of such an a priori
solution? And, how does one update the a priori
solution for each problem instance?

The above discussion is general, in the sense that it
applies to any combinatorial optimization problem.
In order to address these questions concretely, we
restrict our attention to a class of network problems.
Consider then a complete graph G = (V, E) on n

nodes on which an optimization problem is defined,
for example, the traveling salesman problem. If every
possible subset of the node set V may or may not be
present on any given instance of the optimization
problem, for example, on any given day, the traveling
salesman may have to visit only a subset S of the
nodes in K, then there are 2" possible instances of the
problem—all the possible subsets of V. Suppose that
instance 5" has a probability p(S) of occurring. Given
a method V for upKiating an a priori solution / to the
full-scale optimization problem on the original graph
G, U will then produce for problem instance 5, a
feasible solution t,{S) with value (cost) LfiS). (In the
case of the TSP, triS) would be a tour through the
subset 5" of nodes and L,iS) the length of that tour.)
Then, given that we have already selected the updating
method U, the natural choice for the a priori solution
/ i s to select/to minimize the expected cost

the expected cost E[S], over all problem instances of
the reoptimization strategy

p{S)Lr{S) (1)

with the summation over all subsets of V. In other
words, we would like to minimize the weighted aver-

age over all problem instances of the values L/iS)

obtained by applying the updating method U to the a
priori solution/

This choice of a measure of effectiveness for the a
priori solution / t h a t we seek, namely the expected
cost (1), gives a reasonable answer to our first question.
But what properties should the updating method U

have? The most desirable property of U would be for
LjiS) to be close to the value of the optimal solution
^ P T ( 5 ' ) for every instance S. A less restrictive and
more global property is to require E[L/ ] to be close to

E [ 2 ] = (2)

In addition, V must be able to update efficiently the
solution from one problem instance to the next.

In the following definitions of the updating methods
U, the choices of U may initially seem arbitrary. But
these choices will turn out to be natural ones. First,
for every choice of U that we are proposing, the
updating of the solution to a particular instance 5 can
be done very easily. Moreover, these updating meth-
ods are well suited for applications. And finally, we
prove in Section 2 that our a priori optimization
strategies coupled with our particular choices of U are
asymptotically very close (we conjecture equivalent)
in terms of performance to the reoptimization strate-
gies under reasonable probabilistic assumptions.

After this general discussion of the rationale behind
the definitions, which follow, we informally describe
the problems that we consider.

The Probabilistic Traveling Salesman Problem

The probabilistic traveling salesman problem (PTSP)
is probably the must fundamental stochastic routing
problem that can be defined. It is essentially a traveling
salesman problem {TSP), in which the number of
points to be visited in each problem is a random
variable.

Consider a problem of routing through a set of //
known points. On any given instance of the problem
only a subset S that consists of\S\ = k out of n points
(0 ^ k ^ n) must be visited. Suppose that the proba-
bility that instance S occurs is p{S). As mentioned
before, ideally we might like to reoptimize the tour
for every instance, but, in many cases, we may not
have the resources to do so, or even if we had them,
reoptimization might turn out to be too time consum-
ing. Instead, we wish to find a priori a tour through
all n points. On any given instance of the problem,
the k points present will then be visited in the same
order as they appear in the a priori tour (see Figure 1
for an illustration). The problem of finding such an a
priori tour, which is of minimum length in the
expected value sense, is defined as the PTSP. The
updating method U for the PTSP is therefore to visit
the points on every problem instance in the same
order as in the a priori tour, i.e., we simply skip those
points that are not present in that problem instance.

The expectation is computed over all possible
instances of the problem, i.e., over all subsets of the
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lori tour

4 ,9 , and 10 need not be visited.

Figure 1. The PTSP methodology.

vertex set V= 11, 2 , . . . , «I. That is, given an a priori
tour T, if the problem instance S{Q V) will occur with
probability p{S) and will require covering a total
distance L,{S) to visit the subset S of customers, that
problem instance will receive a weight oi p{S)L,{S)

in the computation of the expected length. If we
denote the length of the tour T by Lj (a random
variable), then our problem is to fmd an a priori tour
Tp through all n potential customers, which minimizes
the quantity

p{S)LAS) (3)
.SCI'

with the summation over all subsets of V.

The Probabilistic Minimum Spanning Tree

Problem

The probabilistic minimum spanning tree (PMST)
problem is a natural extension of the classical mini-
mum spanning tree problem. Given a set of « nodes
on a network, a subset S of the n nodes is present on
any particular instance of the problem with probabil-
ity piS), We wish to find a priori a spanning tree
through the n nodes which is used as follows: On any
given instance of the problem, the a priori tree is
retraced deleting only the nodes that are not present,
provided the deletion of those nodes does not discon-
nect the tree. In this way, there would be nodes which
will not be present but are still included in the tree.
Thus, the updating method U is to include all nodes
in the instance S and also those nodes in V — S which
are necessary to prevent the resulting tree from becom-
ing disconnected. An example of the PMST can be
found in Figure 2. Note that the problem has some
Steinerish properties. This can be illustrated in the
figure, where node 2 is kept on the tree to preserve
connectedness. The problem of finding an a priori
spanning tree of minimum expected length over all
possible problem instances is the PMST problem.

The Probabilistic Vehicle Routing Problem

Consider a standard VRP but with demands which
are probabilistic in nature rather than deterministic.
The problem is then to determine a fixed set of routes
of minimal expected total length, which corresponds
to the expected total length of the fixed set of routes
plus the expected value of extra travel distance that
might be required. The extra distance will be due to
the possibility that demand on one or more routes
may occasionally exceed the capacity of a vehicle and
force it to go back to the depot before continuing on
its route.

The following two solution-updating methods can
be defined. Under method a the vehicle visits all the
points in the same fixed order as under the a priori
tour, but serves only customers that require service
during that particular problem instance. The total
expected distance traveled corresponds to the fixed
length of the a priori tour plus the expected value of
the additional distance that must be covered whenever
the demand on the route exceeds vehicle capacity.
Method h is defined similar to a with the sole differ-
ence that customers with no demand on a particular
instance of the vehicle tour are simply skipped. An
example of the PVRP under both methods can be
seen in Figure 3.

The Traveling Salesman Facility Location Problem

We are given a set of n nodes (customer locations) on
a network. Each day a subset S of customers makes a
request for service with probability p{S). By a specific
time of each day. a service unit receives the list of calls
for that day and starts a traveling salesman tour using
the underlying network that visits all the customer
locations in the list. The objective is to find an optimal
location / for the service unit, so that the expected
distance traveled

E[2TSFUP(/)] = U /)

A priori tree
The resulting tree when the

nodes 2,7,9 need not be

visited.

Figure 2. The PMST methodology.
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( i) Anopnor i route through 6 customers (each with

Q demand of zero or one unit) by a vehic le of

copacity 2

doss A Class B

(ii) The two strategies when only the second, third

and f i f th customers hove a non-zero demand.

Figure 3. The PVRP methodology.

is minimized. This problem is called the traveling
salesman facility location problem (TSFLP).

The difficulty of having to compute the optimal
tour for every instance can be overcome by using an
a priori tour T^ and then follow the PTSP approach
described before, i.e., skip customer locations with no
demand. The problem is then to find a node ip and
an a priori tour Tp to minimize the expected distance
traveled using the PTSP approach, i.e., to minimize

(4)
SQV

The problem of finding simultaneously an optimal
location ip and an optimum a priori tour Tp is called
the probabilistic traveling salesman facility location
problem (PTSFLP).

Throughout the paper the emphasis is on concepts
and results rather than detailed derivations. To keep
the length of the presentation within reasonable limits,
all but the most important theorem proofs are
sketchily outlined, with appropriate references given
for interested readers. In Section 1, we review briefiy
the related research and outline potential areas of
application for the idea of a priori optimization. In
Section 2, we prove that the a priori strategies we are
proposing are asymptotically close to the reoptimiza-
tion strategies for all the problems we have defined.
This gives an indication of the importance of the a
priori optimization idea. In Section 3, we address the
complexity of finding the best a priori solutions for all
PCOPs we have defined. In Section 4, we examine
the question of finding good approximations from a

theoretical point of view, and in Section 5 we use the
PTSP as an example to illustrate how to find good
practical approximations. The final section contains
some concluding remarks.

1. LITERATURE REVIEW AND APPLICATIONS

During the last decade, combinatorial optimization
undoubtedly has been one of the fastest growing and
most exciting areas in mathematical programming.
The related scientific literature has been expanding at
a rapid pace. Examples of particular relevance to this
paper are the three excellent review volumes: on the
traveling salesman problem (Lawler et al. 1985), on
routing and scheduling (Bodin et al. 1983), and on
vehicle routing (Golden and Assad 1988); each offers
several hundreds of references.

Research at the interface between probability theory
and combinatorial optimization spans a period of over
30 years and in recent years has been at the center of
much activity. The dominant trends of this interplay
that are relevant to this paper can be summarized as
follows.

Probabilistic analysis of combinatorial optimization
problems in the Euclidean plane. Research in this area
was initiated by the pioneering paper of Beardwood,
Halton and Hammersley (1959). After a period of
more than 15 years and motivated by the significant
advances in theoretical computer science. Karp (1977)
used their main result to propose a partitioning heu-
ristic, which constitutes an t-approximation algorithm
for the TSP in the Euclidean plane.

In the last decade, the asymptotic properties of
many combinatorial optimization problems in the
Euclidean plane have been investigated. The most
general analysis in this direction is due to Steele
(1981), who developed the theory of Subadditive
Euclidean functional to obtain very sharp limit theo-
rems for a broad class of combinatorial optimization
problems.

Probabilistic analysis on problems with random

lengths. In the last decade there have been numerous
papers dealing with the behavior of combinatorial
optimization problems when the costs involved are
taken from a probability distribution. Interest in this
area intensified after the pioneering paper of Karp
(1979) on the TSP and the attempts to explain prob-
abilistically the success of the simplex method for
linear programming. Of particular relevance to this
paper are the papers on the minimum spanning tree
problem by Frieze (1985) and Steele (1987).



A Priori Optimization / 1023

Probabilistic combinatorial optimization problems. In
contrast to their deterministic counterparts., the
professional literature on PCOPs is sparse. Jaillet
(1985. 1988) introduced the PTSP, examined some of
its combinatorial properties and proved asymptotic
theorems in the plane. A summary of these results as
well as a discussion on the applications of the PTSP
and the PVRP are contained in Jaillet and Odoni
(1988). Bertsimas (1988) introduced the framework of
a priori optimization and studied the problems con-
sidered in this paper.

Except for an isolated result in the 1970s (Tillman
1969). VRPs with stochastic elements in their defini-
tions have received attention only recently. Stewart
and Golden (1983), Dror and Trudeau (1986).
Laporte and Louveau (1987) and Laporte. Louveau
and Mercure (1987) use techniques from stochastic
programming to solve optimally small problems and
find bounds for them. The definitions of these prob-
lems are different from the ones we consider in this
paper.

The traveling salesman facility location problem has
been considered by Burness and White (1976), where
heuristic approaches are proposed. In a series of
papers, Berman and Simchi-Levi (1986, 1988a, b) and
Simchi-Levi and Berman (1988) solved the problem
on a tree network and proposed a heuristic of relative
worst error V2 for the general network case as well as
for the Euclidean and the rectilinear metric. Bertsimas
(1989) improved on their results by proving that the
relative worst error is '/>( 1 — p), where /; is the coverage
probability.

To our knowledge, the PMST problem has never
been examined before in the literature despite its
intrinsic interest and applicability.

A final remark has to do with the relationship
between network reliability theory and the class of
PCOPs we are considering. In network reliability the-
ory the nodes are usually assumed to be reliable and
the types of questions addressed are about the exist-
ence of paths among pairs of nodes. In the class of
PCOPs, the types of questions that we address as well
as the motivation for their definition are different.

As noted earlier, PCOPs could prove useful in many
application contexts in which the explicit considera-
tion of randomness is essential. For instance, the PTSP
arises in practice whenever a company, on any given
day, is faced with the problem of collections (deliver-
ies) from (to) a random subset of some known global
set of customers in an area and does not wish to, or,
simply, cannot redesign the tours from scratch every
day. Examples in this category include a "hot meals"

delivery system described by Bartholdi et al. (1983),
routing of forklifts in a cargo terminal or in a ware-
house and, interestingly, the daily delivery of mail to
homes and businesses by postal carriers everywhere.
In fact, it was this last application that led to the initial
formulation of the PTSP by the third author. Jaillet
and Odoni (1988) describe in considerable detail an
application in a strategic planning context in which a
package distribution company has decided to begin
service in a particular area. After carrying out a market
survey and identifying a set of potential major cus-
tomers who, during any single time period, have a
significant probability of requiring a visit, the com-
pany wishes to estimate the resources necessary to
serve these customers. The PTSP then provides a
mode! for computing approximately the expected
amount of travel that will be required per time
period and, by implication, the number of vehicles,
drivers, etc.

In a nonrouting context, PTSP models also can be
of interest in many situations in which an ordering of
entities of any type has to be found and that sequence
has to be preserved even when some of the entities
may be absent. One such example can be given from
the area of job-shop scheduling: Consider the problem
of loading n jobs on a machine at which a changeover
cost is incurred whenever a new job is loaded. With
any given ordering of the n jobs on the machine, we
can then associate a total changeover cost. Any given
ordering of the «jobs may also impose specific long-
term requirements on the job shop, such as a set of
tasks to be performed before and after the processing
of the jobs on the machine. These requirements may
often be difficult to modify on a daily basis so that, if
on a given day some jobs need not be processed, the
relative ordering previously specified for the remain-
ing jobs is nonetheless left unmodified. The PTSP is
again relevant to analyze such situations.

PVRPs are constrained cases of PTSPs and thus
arise in the same collection and distribution contexts
as PTSPs. whenever the vehicle capacity Q becomes a
practically significant issue. The capacity Q may be
expressed in terms of a maximum allowable vehicle
load, maximum number of stops, maximum distance
per tour or some other physical or statutory limitation.
For instance, in the case of the delivery of cash by a
bank to a set of automatic teller machines spatially
distributed throughout a city, Q might be the upper
bound on the amount of money that a vehicle might
carry for safety reasons. The uncertainty in this prob-
lem is due to the fact that each machine may or may
not require a visit during any given time period.
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depending on the amount of money it dispenses.
Similar applications of the PVRP can be found in
most problems that combine inventory and routing
considerations.

Probabilistic traveling salesman location problems
arise similarly in the complex but very common con-
text in which facility location, routing and. possibly,
inventory-related decisions must be made simultane-
ously. Note the difference between these problems and
the classical median (or minisum) and center {or min-

imax) problems in facility location theory. In the case
of (P)TSFLPs, once a facility is located, demands are
visited through tours; therefore, the facility location
problem must be central relative to the ensemble of
the demand points, as ordered by the, yet unknown,
tour through all of them. By contrast, in the classical
problems the facility (or facilities) must be located by
considering distances to individual demand points,
thus making the problem more tractable.

Examples of applications of the PMST are less
obvious, but important nonetheless. The problem
arises in many cases where a set of points must be
connected through an underlying tree structure, with
only portions of that structure activated with each
problem instance. For example, in a communications
context the active demand points would be centers
that seek to communicate with each other on each
problem instance and the activated portion of the
underlying communications network would be the
minimum tree necessary to establish communications
between every possible pair of active demand points.
Similar examples can be drawn from transportation
and circuit design.

A more unusual application of the PMST problem
is in the area of organizational structures. For instance,
a rather intriguing paradigm might be the following:
Suppose the n points that we wish to interconnect
represent our agents or spies in a foreign country.
They will undertake in the future a series of missions,
each mission involving a different subset of agents. A
mission, in our context, is an instance of the problem.
We are looking for an a priori organizational structure
in which, for obvious reasons, each agent will know
only the people immediately above or below him/her
in the structure; this implies a spanning tree-like struc-
ture. The probability p, associated with point / is the
a priori probability that agent / will have to participate
in any random mission undertaken by the network.
For any given mission, only that part of the organi-
zation that is necessary to interconnect all the agents
participating in that particular mission is activated.
The distance between points / and j is interpreted as

the cost or risk of exposure incurred when agents /
and j must communicate or work with each other.
Given pt fox i = \,1, ..., n and the distance matrix
for all possible pairs (/,7), the PMST gives the orga-
nizational structure which, in the expected value
sense, minimizes the risk of exposure of the network
on a random mission.

2. ASYMPTOTIC COMPARISON OF

REOPTIMIZATION AND A PRIORI

OPTIMIZATION

In this section, we characterize the asymptotic behav-
ior of the reoptimization and the a priori strategies for
the four problems we defined in the Introduction, if
the locations of the points are uniformly and inde-
pendently disributed in the Euclidean plane. This
comparison is important in order to assess the promise
and potential usefulness of the a priori strategies.

Let X'"' = (X,, . . . , X^) be n points uniformly and
independently distributed in the unit square. Let
LTSP, i-MST, LgxEiNER and L"wRP be the length of the
TSP. MST, STEINER tree and the VRP (the depot
being the point (0, 0) and the vehicle capacity being
Q) defined on -^'"', respectively.

Let E[2W], E[S"MST], EIS^TKINER], E [ 2 W ] ,

E[2'fsFLp(/)] be the expectation of the TSP, MST,
STEINER tree, VRP and TSFLP solutions obtained
under the reoptimization strategies defined on A""".
Note that for the case of the TSFLP the expectation
depends on the node / selected as the server's location
node.

Let E[Z.pTsp], E[LPMST]- E[LpvRPu], E[LPVRP/.],

E[Z,PTSFLp(O] be the expectation of the a priori strate-
gies, i.e., the expected length of the optimal a priori
solution to the PTSP, PMST and PVRP under updat-
ing methods a and b, and PTSFLP defined on X^"\

It is well known that we can sharply characterize
the solutions to the deterministic problems.

Theorem 1. With probability 1 there are constants

(Steele 1981) /3TSP, J3MST, J3STEINER, such that

hm ——

hm = I0MST

— ^STEINER-
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For the VRP (Haimovilch and Rinnooy Kan 1985)

hm ^— ' = 2E[r] i

where E(r) is the expected radial distance from the

depot to a point in X^"\

We now characterize the expectation of the reoptim-
ization strategy for each problem assuming that each
of the n points is present with the same constant
probability p, which is called the coverage probability.

In the following theorem, the expectation is taken
over all possible 2" instances of the problem and the
probability 1 statement refers to the random locations
of the points.

Theorem 2. (Jaillet 1985. Bertsimas 1988). With

probability 1

hm a r

nr^m^

lim "z = REINER vp

lim , for any i

where E(r) is the expected radial distance.

Proof. The main idea in the proof is that the princi-
pal contribution to E[ £"] comes from the sets 5" with
l^"! e [inp(l + t)i. [np(\ + 01]. The reason is that
the number of points present is given by a binomial
distribution with parameters n, p, and hence, the
probability mass function is concentrated within ( of
np. In this range of | 5" | we can apply Theorem 1 to
obtain Theorem 2. We illustrate the idea with respect
to the TSP reoptimization strategy in Appendix A.

Intuitively Theory 2 means that solutions under the
reoptimization strategy behave asymptotically simi-

larly to those of the corresponding combinatorial op-
timization problems, but on np rather than n points.
The asymptotic behavior of the VRP reoptimization
strategy suggests that the strategy behaves like the TSP
reoptimization strategy if the capacity Q is large, a
property that is quite intuitive. If the capacity Q is
small, the vehicle has to make many trips back to the
depot, so that the radial collection term (2E[r]np/Q,,)

rather than the routing component dominates. For
the TSFLP reoptimization strategy we observe that
asymptotically the location component of the problem
is unimportant, because the same asymptotic behavior
is observed irrespective of the location decision /.

We next characterize asymptotically the a priori
optimization strategies.

Theorem 3. (JaiUet
probability 1

Hm

hm

1985, Bertsimas 1988). With

V«

lim

lim = 2E[r]p

vn

for any i

where E(r) is the expected radial distance.

Sketch of the Proof. We first prove that the PTSP
and the PMST belong to the class of subadditive
Euclidean functionals whose asymptotic behavior has
been characterized by Steele (1981). Their value is
almost surely asymptotic to c Vn, where c depends on
the functional.

For the PVRP and the PTSFLP we fmd tight upper
and lower bounds from which we can characterize the
asymptotic behavior. For the PVRP under method a,
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for example, we prove that

E[/-pVRPo]

«Ln
n Q

np\

where (/(O, /) denotes the distance between the depot
and node /.

In order to illustrate the techniques we are using,
we present in detail the argument for the PTSP in
Appendix B.

Comparing Theorems 2 and 3 we can observe that
the a priori and reoptimization strategies have very
close asymptotic performance almost surely. The re-
sult may be considered surprising in view of the fact
that a priori strategies require the computation of only
one solution and are easily updated, while reoptimi-
zation strategies require the computation of an opti-
mal solution for every problem instance. Yet, a priori
strategies behave asymptotically equally well on aver-
age with reoptimization strategies on Euclidean prob-
lems. In addition, we conjecture that a priori and
reoptimization strategies have exactly the same
asymptotic performance almost surely, i.e.,

3. THE COMPLEXITY OF A PRIORI

OPTIMIZATION

In the previous section, we showed that in terms of
performance a priori strategies are attractive com-
pared with reoptimization strategies. In this section,
we address the question of how difficult it is to find
the optimal a priori solutions from a computational
complexity perspective.

We first introduce the decision version of a PCOP.
Given a complete graph G = (V, E), \ V\ = n, a cost
d:E—*R,a vector (p, Pn) of the probabilities of
the presence of the vertices and a bound B, does there
exist a structure/(a tour, a tree, a route, a tour and a
vertex for the PTSP, PMST, PVRP and PTSFLP.
respectively) such that

E[L,] ^ Bl

We can then characterize the complexity of a priori
strategies as follows.

Theorem 4. (Bertsimas 1988). The decision version

of all Jour PCOPs is NP-complete.

Sketch of the Proof. For the cases of the PTSP, PVRP
and PTSFLP we only need to show membership in
NP because, as noted earlier, these three problems are
generalizations of well known NP-complete problems.
Membership in NP is seen to hold, because given a
solution/we can compute E[Lf] in O(n^). For ex-
ample, for the PTSP if the tour is T- = (1, 2 , n, 1)

then by looking at the probability of every link present
we can derive {Jaillet 1988) the expression

n J-\

, i)PiP,

n
k =/+ 1

n(1 - (5)

The case of the PMST is more difficult because the
PMST problem is not a generalization of an NP-
complete problem, since the MST is solved by a greedy
algorithm in O(rt'). Membership in NP holds because
of the following closed form expression for the
expected length E[Lr] of a given a priori tree T

(Bertsimas 1990)

E[Z.r]= I c{e)\\ - n (1 - A )

- n
where AT.., K — A"̂  are the subsets of nodes contained
in the two subtrees obtained from 7" by removing the
edge e from T.

We have proved the completeness of the PMST by
a reduction from the problem EXACT COVER BY
3-SETS, which is NP-complete (see Garey and
Johnson 1979). For details see Bertsimas (1988).

Thus, although we can efficiently compute the ex-
pected length of any given a priori solution to a PCOP,
it is still NP-hard to fmd an optimal a priori solution.

4. THEORETICAL APPROXIMATIONS TO

OPTIMAL A PRIORI SOLUTIONS

In the previous section, we found that it is still NP-
hard to obtain optimal a priori solutions to the PCOPs.
In this section, we address the question of approxi-
mating the optimal a priori solutions with polynomial
time heuristics, whose worst case behavior we can
characterize.
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The first natural question to address is how heuristic
approaches to the deterministic problem perform
when applied to the corresponding probabilistic prob-
lem. For example, what is the performance of the well
known Christofides heuristic for the TSP (see Larson
and Odoni 1981) if it is applied to the PTSP? In order
to find useful bounds for the routing problems (PTSP,
PVRP) we assume that the triangle inequality holds.
We can then prove the following theorem.

Theorems. (Bertsimas 1988). Let L^ be the length of

the optima! solution lo the deterministic TSP, MST or

VRP and let Lu be the length of a heuristic solution to

the same problem. Let p be the coverage probability

and E[Z,p] the expected length of the optimum a priori

solution to the corresponding PCOP. If the heuristic

has the property that

then

Sketch of the Proof. In all cases, we show that
E[L/̂ ] ^ L,. Here we use the triangle inequality in the
case of the two routing problems. Also, E[L,,] ̂  pLp.

Combining these inequalities the result follows. For
the details see Bertsimas (1988).

Theorem 5 suggests that if the coverage probability
is large, the constant guarantee heuristics for the de-
terministic problem still behave well for the corre-
sponding probabilistic problem. But if p —» 0 the
bound is not informative and indeed one can fmd
examples with p —* 0, np ^ 'xi for which ( E [ L D ] /

E[Z.;,]) —* 00, that is, even if f = 1, the optimal
deterministic solution is an arbitrarily bad approxi-
mation to the optimal a priori solution. As an indi-
cation of the rate at which the ratio (E[Z.D]/E[LP])

tends to infmity, we can prove the following theorem.

Theorem 6. (Bertsimas 1988). For the PTSP with

triangle inequality

We next investigate the existence of constant
guarantee heuristics for the routing problems we are
considering. We restrict our attention to Euclidean
problems and examine the spacefilling curve heuristic,
first introduced by Kakutani (see The Collected Work

ofS. Kakutani, Vol II. p. 444, 1966) and proposed by
Platzman and Bartholdi (1983) for the Euclidean TSP.
The spacefilling curve heuristic can be described as
follows:

1. Given the n coordinates (Xi, v,) of the points in the
plane compute the number/(xj, >',) for each point.
The function f:R^ -^ R is called the Sierpinski
curve (for details on the computation of/(x, y),
see Bartholdi and Platzman 1982).

2. Sort the numbers/(;c,, y,) and visit the correspond-
ing initial points (x,, y,) in that order, producing a
tour TsF-

The key property of the spacefilling curve heuristic
that makes its analysis for the PTSP possible is the
following: Consider an instance S of the problem.
Suppose that the spacefilling curve heuristic produces
a tour TSF(5) if we run the heuristic on the instance
S. Consider the tour TSF produced by the heuristic on
the original instance of the problem, i.e., when ail
points are present. What is the tour that the PTSP
strategy would produce in instance S if the a priori
tour is TsF?

The answer is precisely TSF(5'), because sorting has
the property of preserving the order in which the
points in S will be visited by the spacefilling curve,
which is exactly the property of the PTSP strategy as
well. Based on this critical observation we can then
analyze the spacefilling curve heuristic.

Theorem 7. (Bertsimas 1988). For the Euclidean

PTSP and PVRP under method b the spaceftUing curve

heuristic produces a tour TSF yvith the property

^ = O(Iog n).

(6)

E[ 2
^ = Q + O(log n).

Sketch of the Proof. In Platzman and Bartholdi it is
proven that the length of the spacefilling curve heuris-
tic satisfies

— ^ = O(log«).

Consider an instance S of the problem. If the space-
filling curve heuristic is applied to the instance S, it
will similarly produce a tour TSAS) with length
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But since TSFC^") is the tour produced by the PTSP

strategy at instance S then

= O(logn).

Note that this resuU does not depend on the probabil-
ities of points being present. It holds even if there are
dependencies on the presence of the points. Observe
also that the spacefilling curve heuristic ignores the
probabilistic nature of the problem but surprisingly
produces a tour which is globally, in every instance,
close to the optimal. A similar argument holds for the
PVRP under method b.

As a corollary to Theorem 7 we can compare the
PTSP and the reoptimization strategies from a worst
case perspective. For the Euclidean PTSP, since
E[L. 1 ^ E[L.J

= O(log rt).

Platzman and Bartholdi conjecture that the spacefill-
ing curve heuristic is a constant-guarantee heuristic.
Unfortunately, Bertsimas and Grigni (1989) refute
the conjecture by exhibiting an example in which the
O(log n) bound is tight.

For the PTSFLP for which node / needs a visit
with probability p, we consider the following location
heuristic.

Spacefilling Curve Location Heuristic

1. Given the coordinates the locations of the cus-
tomers use the spacefilling curve heuristic to find
the a priori tour TSF-

2. Compute hii, TSF) with a vector of probabilities
( p , , . . . , P i - , , l , p , ^ i ;?„) for every node/.

3. Select the point /SF that minimizes h(i. TSF). Loca-
tion /SI and the tour TSF are the proposed solutions
to the PTSFLP.

Using similar techniques with Theorem 7 we can
analyze the worst case error of the heuristic.

Theorem 8. (Bertsimas 1989). Ifp, = n(l/log n)for
all /. ihen

= O(log n)

where i* is the optimal location for the TSFLP.

(7)

The final question concerns the heuristic's running
time. Step 1 can be performed in O(« log n). A
straightforward implementation of Step 2 can be p>er-
formed in 0{n^\ since we can calculate h{i, TSF) for
each / in O(n^) from (5) (it is the expected length of
the a priori tour TSF)- By noticing that the only differ-
ence between calculating /i(;. TSF) and h{i + 1, TSF) is
due to the corresponding probability vectors, which
differ solely in the /th and (/ + 1 )th position, we can
calculate/i(/-I- 1, TSF in O(rt) given h{i, TSF). since only
the contribution of O(«) distances is different in the
two expectations, namely the contributions of the
edges dii,j), d{i + 1,7) for; = 1, . . . , « . Thus, we
can compute h{\, TSF) in O(rt^), and then compute
h{i + 1, 7-SF) from h{i, TSF) in O{n). The total com-
putation takes 0(« ' ) time. Step 3 clearly takes O(rt)
time. As a result, the overall heuristic can be imple-
mented in O(«') time.

For the PVRP under updating method a, Bertsimas
(1988) proposes an 0{n^) heuristic which produces
a route with expected length V; from the optimal
solution.

5. PRACTICAL APPROXIMATIONS TO OPTIMAL

A PRIORI SOLUTIONS

In this section, we briefly discuss some of our experi-
ence in trying to find useful heuristic solutions to
PCOPs using the a priori optimization approach. We
use the Euclidean PTSP as an example, since we have
sharply characterized its asymptotic behavior, so we
know that the expected length of tbe optimal solution
would be close to ISTSP ' • ^ for random problems. This
can be used as a benchmark to compare the perform-
ance of various heuristics.

In our numerical experiments we obtained near-
optimal solutions to Euclidean PTSPs by means of
two different types of heuristics. The first is the
spacefilling curve heuristic, while the second is based
on seeking local optimality. Our implementation of
the spacefilling curve heuristic uses heapsort for the
sorting part of the procedure, and thus requires only
O(n log n) time to find a nearly optimal tour TSF.
Interestingly, this is even faster than the computation
of the expected length of that tour, E[Z,,^], which
requires O(rt^) time. Since the computed tour TSF is
independent of the probabilities p,, the spacefilling
curve heuristic can be used when these probabilities
are not all the same, or even when they are not
accurately known.

For problems involving equal probabilities p, = p,

and not more than a few hundred nodes, we have had



A Priori Optimization / 1029

considerable success with two separate iterative im-
provement algorithms based on the idea of local op-
timality. Given a tour r and a set S{T) of tours which
are minor modifications of T, the tour T is said to be
locally optimal if

min (8)

The iterative improvement algorithm works by choos-
ing an initial tour TO, then testing to see if TO is locally
optimal. If a better tour TI is found, it then replaces
To and is itself tested. Since there are only a finite
number of possible tours, this procedure must even-
tually converge to a locally optimal tour r^—which,
it is hoped, will be a nearly optimal solution to the
problem.

Lin (1965) used an iterative improvement algorithm
for the TSP based on what he called the X-opt local
neighborhood. For a given tour T that consists of n

links between nodes, the neighborhood S>,{T) consists
of those tours that differ from T by no more than X
links. For X = 2, this is the set of tours that can be
obtained by reversing a section of r; for A = 3, it is
the set of tours obtained by removing a section of T
and inserting it, with or without a reversal, at another
place in the tour. We have implemented both the 2-
opt and 3-opt TSP algorithms, since, when p is greater
than about 0.5, the TSP solutions provide useful start-
ing points for our more general PTSP routines.

Unlike the TSP case, the expected length £[/-,] in
the PTSP sense depends on all (n^ - n)/! independent
elements of the distance matrix. We cannot, therefore.,
speak of some links leaving and others entering the
tour; rather, it is only the weight given to each of the
<i{i,j) by (5) which changes. We can still use Lin's A-
opt neighborhoods, but the computation of the
changes in expected length becomes considerably
more complicated. It takes O(rt^) time to calculate the
change i n expected length from T to an arbitrary tour
in ^2(7), so it would seem, at first, that testing for
even 2-p-optimality (referred to heretofore as "2-/?-
opt") would take OiH"*) time. We can, however, reduce
this to 0(« ' ) if we examine the tours in the proper
sequence and maintain certain auxiliary arrays of
information as the computation proceeds.

Another neighborhood that we tried consists of
moving a single node to another point in the tour,
rather than reversing an entire section. The corre-
sponding neighborhood, which we call the 1-shift
neighborhood, has roughly twice as many members
as ^2, it is a subset of Si, and yields much better
results than 52 in our experiments.

A summary of the behavior of each of the heuristics

is shown in Figure 4. The spacefilling curve solutions
were used as starting positions for the 2-p-opt and 1-
shift algorithms; this greatly reduces the amount of
work required and does not affect the results for small
p. When p is large, however, the effect on the 2-p-oxit

results is somewhat detrimental. The 2-opt and 3-opt
TSP algorithms were started from random positions—
note that near p = \, 2-opt gives significantly better
results than 2-/j-opt because of the different starting
positions. The more powerful 3-opt and 1-shift algo-
rithms do not seem to suffer from this effect: 3-opt
gives excellent results for large p regardless of the
starting position, and for small p the 1-shift solutions
are usually optimal. (This conclusion is based on the
fact that the algorithm always converges to the same
tour regardless of the starting position.) The best gen-
eral approach seems to be to first use the spacefilling
curve algorithm, followed by 3-opt if;? is fairly large,
and then finish by applying 1-shift. The threshold
point below which 3-opt ceases to be helpful is uncer-
tain and probably depends strongly on the specifics of
the problem. For problems with more than a few
hundred nodes both the running time and the memory
required for the distance matrix and the auxiliary
matrices begin to be excessive. At that point we were

0 0 , 1 0 . 3 0 . 1 0 . 4 0 , 5 O.« 0 . 7 O.S 0 . 9 1

P r o b a b i l i t y

Figure 4. A summary of results for several PTSP heu-
ristics on 100-node problems scaled by
Vnp. Solutions obtained via the 2-opt and
3-opt TSP algorithms (dashed lines) are
shown for comparison. The horizontal line
shows the value of ^TSP ^ 0.765. The
heuristics are: 1) random tour, 2) angular
sorting, 3) spacefiUing curve, 4) 2-/^•opt,
and 5) 1-shift.
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forced to switch to heuristics like the spacefilling curve
algorithm, which do not require O(rt*) memory.

In the calculations for Figure 4 results from 10
separate lOO-node problems were averaged to mini-
mize the effects of statistical fluctuations. The loca-
tions of the nodes for each problem were chosen from
a uniform distribution in the unit square, and the
expected lengths B[Lr] were scaled by -/np. The
asymptotic results of Section 2 would then lead us to
expect that data from optimal tours would follow a
horizontal line on the plot. Our heuristics confirm this
behavior except when p is small. The reason is that if
p is small, 100 points are not enough for the expected
length of the optimal PTSP to reach its asymptotic
value.

6. SOME CONCLUDING REMARKS

This paper has introduced the idea of a priori opti-
mization, an approach which may be competitive,
especially in many practical contexts, with the strategy
of reoptimization. under which every possible instance
of the problem is solved to optimality. A priori opti-
mization strategies were applied to four problems; the
TSP. the VRP. the MST and the TSFLP. In all cases,
the a priori strategies have potential areas of applica-
tion in such fields as communications, transportation,
routing, VLSI design, scheduling, strategic and orga-
nizational planning.

It was shown that for all problems defined here a
priori and reoptimization strategies have on average
very close asymptotic behavior, a property that further
underscores the importance of studying a priori strat-
egies. We then characterized the complexity of the
two types of strategies and proposed heuristics for the
PCOPs.

Further generalizations of these ideas include sto-
chastic demands which are not only binary (demand
of one unit with a certain probability), but can be any
random variable. This generalization is especially im-
portant in the case of the vehicle routing problem.
Another important extension is the inclusion of a
dynamic component in the problems, i.e.., demands
are generated over time according to a stochastic
process. In this case queueing phenomena arise which
are interesting in themselves. A step in this direction
is taken in Bertsimas and van Ryzin (1990), in which
the authors analyze a dynamic version of the traveling
repairman problem.

The paper has attempted to indicate the wide range
of questions that can be addressed with respect to the
idea of a priori optimization, the novel and interesting
aspects introduced by it, and finally, the excellent

potential for deriving new results and solution proce-
dures and for applying them to important contexts.

APPENDIX A

Proof of Theorem 2 for the PTSP

Let Ĥ  be the number of nodes present and

where L^^i

S. Then
S) is the length of the TSP on the set

= S Vx\W=k\K.
k-O

Fix f > 0. Then

Lnp(l+.)J

- I - S VT\W=k\hk.

Since LTSP(A''"*; S) < c •Jr\ S \ for some constant c,

then hk ̂  cVn. As a result

Lnp(l-OJ-l n

I Prt Ŵ  = k\h, + S
k-O fc-tnp<l+.)l+

^ C^VTWW - np\ > np(\.

From the Chemoff bound we have

Prt Ŵ  = k\h.

:^| =25" ,

0 < 5 < I.

The contribution of the first two terms is then

Lnp(l-.)J-1 "

< 2cy/nd", 5 < I.

For lnp(l - ()J =5 A: ̂  ^npil + e)! we apply Theo-
rem 1 and obtain that with probability 1 for any



f> 0,5 k,\ for any S, with

I .SI = A' ̂  '̂, - e ^ _!^p_
"'; S)

=» —(
\k

In addition

fnp(l+O1
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2. /(A'"") is monotone, because clearly

3. Clearly/(A''"') has finite variance

4. /(A'"") is subadditive, i.e., if G ^ ' = 1 f»' is a
partition of the unit square in m ' subsquares then

- np - 26".

Therefore

from which

- 0

Combining the above bounds, we find that almost
surely for any ( > 0, for any n ^

) + crm.

It is not clear that the subadditivity property holds for
the PTSP. We will next concentrate on proving this
property. Consider the following algorithm.

Step 1. For every nonempty subsquare Qi construct
the optimal PTSP tour T, for the points X"" n rQi.

Step 2. Select arbitrarily a point from vV'"' n rQj in
each nonempty subsquare and call it a representative.
Consider the representatives as points always present
{black points).

Step 3. Construct a TSP tour T* among the repre-
sentatives.

Step 4. The PTSP tours r, and the T * create a closed
walk T, which connects all the points A"'"'.

The expected length of the tour r is

rQ.) + L..

Since e can be arbitrarily small we let« - • 0, and thus
we prove the theorem.

APPENDIX B

Proof of Theorem 3 for the PTSP

Let Tp be the optimum PTSP tour. Clearly E[Z.PT.SP] =
E[L"^]. We will first prove that with probability I
lim,,_» E[L','^(.Y"")]/Vn exists. In order to do this we
check whether the functional

is a subadditive monotone Euclidean functional
{Steele 1981).

I. /(A''"') is Euclidean, because clearly it is invariant
under translation, that is

and it is linear

where yi(A''"* n rQ,) is the expected length of the tour
T, in which one point, the representative, is always
present (it is a black node) and all the others have a
probability;? of being present. If we turn a black node
into a white node (a node which has a probability p

of being present), the expected length of the closed
walk clearly decreases and so it does if we also trans-
form the closed walk into a tour. The resulting tour
has an expected length not smaller than E[L,^\, since
by definition T̂ , is the optimal PTSP. Then

It is well known (Larson and Odoni) that

= brm

that is, the optimal TSP tour among / points in an
area A is less than bJlA for some constant b. In our
case I '^ m^ and A = r^. The question now is to relate
fiiX^"'' n rQi) with /(A"'"' n rQ,). or equivalently,
E[Lr,] with E[Z,,J a node is black]. Without loss of
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generality, assume that the optimal PTSP through the
points A'*"' n rQ, is (xi, jiC2, . . . , Xk,, JCi) where k, =

I A''"' r\ rQ,\. If we consider ,V| to be the black node,

then it is easy to prove that/iCAT'"' n rQ^) ^ / (A""" n

rQ.) + 2(1 - /7)max,<;«t, \X\ - Xj\. Since

we finally get

"" n rQ,) + 2(1 -

Therefore, we can conclude that

"" n + (̂  +

which means that the PTSP is subadditive.
Monotone subadditive Euclidean functional are

almost surely asymptotic to ^•Jn. In our case, there
exists a constant ,8TSP(P) such that with probability 1

lim

Furthermore, the following bounds on /3TSP(P) can be
established (see Jaillet 1985)

TSP, 0.92Vp]

i.e.. &j%p{p) = Q(yfp). For details about the other
problems see Bertsimas (1988).
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