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Abstract We carry out a priori tests of linear and nonlinear eddy viscosity models using direct numerical
simulation (DNS) data of square duct flow up to friction Reynolds number Reτ = 1055. We focus on the ability
of eddy viscosity models to reproduce the anisotropic Reynolds stress tensor components ai j responsible for
turbulent secondary flows, namely the normal stress a22 and the secondary shear stress a23. A priori tests
on constitutive relations for ai j are performed using the tensor polynomial expansion of Pope (J Fluid Mech
72:331–340, 1975), whereby one tensor base corresponds to the linear eddy viscosity hypothesis and five
bases return exact representation of ai j . We show that the bases subset has an important effect on the accuracy
of the stresses and the best results are obtained when using tensor bases which contain both the strain rate
and the rotation rate. Models performance is quantified using the mean correlation coefficient with respect to
DNS data C̃i j , which shows that the linear eddy viscosity hypothesis always returns very accurate values of
the primary shear stress a12 (C̃12 > 0.99), whereas two bases are sufficient to achieve good accuracy of the
normal stress and secondary shear stress (C̃22 = 0.911, C̃23 = 0.743). Unfortunately, RANS models rely on
additional assumptions and a priori analysis carried out on popular models, including k–ε and v2– f , reveals
that none of them achieves ideal accuracy. The only model based on Pope’s expansion which approaches ideal
performance is the quadratic correction of Spalart (Int J Heat Fluid Flow 21:252–263, 2000), which has similar
accuracy to models using four or more tensor bases. Nevertheless, the best results are obtained when using
the linear correction to the v2– f model developed by Pecnik and Iaccarino (AIAA Paper 2008-3852, 2008),
although this is not built on the canonical tensor polynomial as the other models.

Keywords Eddy viscosity models · RANS · Square duct flow

1 Introduction

The numerical solution of Reynolds-averaged Navier–Stokes (RANS) equations is a standard approach to
evaluate flows of industrial interest. Two methodologies for RANS closure are available in the literature,
namely eddy viscosity transport models and Reynolds stress transport models. The former stem from the
analogy between Reynolds stresses and viscous stresses and are often referred to as first-order closures,
whereas the latter require the solution of transport equations for each component of the Reynolds stress tensor
and are therefore second-order closures.

Eddy viscosity models are undoubtedly more popular in industry than Reynolds stress transport models,
as they are easier to implement in existing flow solvers and they require less computational effort [37]. In their
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simplest form, eddy viscosity or explicit algebraic stress models (EASMs) rely on the assumption that the

anisotropic stress tensor ai j ≡ τi j − 2/3kδi j (where τi j ≡ u′
i u

′
j is the Reynolds stress tensor and k ≡ 1/2τi i

the turbulent kinetic energy) is linearly proportional to the local mean rate-of-strain:

ãi j = −2νt Si j , (1)

where νt is the eddy viscosity, Si j is the mean rate-of-strain:

Si j = 1

2

(
∂ui

∂x j

+ ∂u j

∂xi

− 2

3

∂uk

∂xk

δi j

)
, (2)

and ui are the components of the velocity vector. The overline symbol is used to indicate ensemble averages,
the prime symbol indicates turbulent fluctuations and xi are the spatial coordinates in the three directions
i = 1, 2, 3. Variables with tilde indicate modelled quantities in which the only modelling assumption is the
constitutive relation (e.g. the anisotropic Reynolds stress tensor ãi j , modelled with the linear eddy viscosity
hypothesis in Eq. (1)). Despite their popularity, linear eddy viscosity models are inaccurate in predicting
flows with large anisotropies and inequalities of the normal stresses [23]. A notable case in which linear eddy
viscosity models fail to reproduce the correct flow physics is represented by turbulent secondary flows, as
occurring in ducts of non-circular cross section [24], with the simplest prototype represented by the turbulent
square duct flow [21]. The flow mechanism generating these secondary flows can be traced back to nonzero
mean streamwise vorticity ωx [7,36], which is related to the cross-stream velocity components through the
stream function ψ :

∇2ψ = −ωx , v = −∂ψ

∂z
, w = ∂ψ

∂y
. (3)

The analysis of the mean streamwise vorticity equation,

v
∂ωx

∂y
+ w

∂ωx

∂z
=
(

∂2

∂y2
− ∂2

∂z2

)(
−v′w′

)

+ ∂2

∂y∂z

(
v′2 − w′2

)
+ ν

(
∂2ωx

∂y2
+ ∂2ωx

∂z2

)
,

(4)

shows that the only sources of ωx are the derivatives of the secondary shear stress v′w′ and the anisotropy
of the normal stresses v′ and w′ and they both have the same order of magnitude [21]. The linear eddy
viscosity hypothesis τi j = 2/3kδi j − 2νt Si j inevitably returns τ23 = 0 and τ22 = τ33 = 2/3k, leaving a
homogeneous equation for ωx , with homogeneous boundary conditions; therefore, the only possible solution
is ωx = 0. Hence, the linear eddy viscosity (1) cannot predict secondary flows [37]. These limitations of
the linear eddy viscosity hypothesis led [22] to derive a more general form for the constitutive relation (1), in
which the anisotropic stress tensor of a three-dimensional flow is exactly represented as a nonlinear polynomial
expansion of ten independent tensor bases and ten coefficients.

Moreover, Pope [22] provided analytical expressions for the tensor polynomial coefficients in the case
of two-dimensional mean flow (two mean velocity components), for which exact representation of ai j only
requires three tensor bases. Using the same set of integrity bases, Gatski and Speziale [8] found the ana-
lytical expressions of the ten tensor polynomial coefficients for a general three-dimensional flow. Different
authors [9,12] showed that, except for some degenerate cases, five tensor bases are sufficient to represent
the anisotropic stress tensor, as ai j is traceless and symmetric; therefore, it has only five independent com-
ponents. Additional bases are only necessary if Si j has multiple eigenvalues (i.e. axisymmetric strain) or if
the vorticity vector is aligned with one of the principal directions of strain [12]. After these seminal studies,
many nonlinear RANS models have been proposed, the most common being quadratic [17,19,27,31,32,37]
and cubic models [2]. Nonlinear eddy viscosity models have been successfully used to reproduce turbulent
secondary flows in different geometries such as non-circular ducts [13,32,33], wing–body junction [3,28,41],
turbine–hub flow [38], and to recreate the spanwise rollers in Couette flow [34].

Nevertheless, only few studies used DNS data to assess the accuracy of eddy viscosity models for predicting
turbulent secondary flows. Mompean et al. [16] carried out a priori tests of nonlinear k–ε models using direct
numerical simulation (DNS) data at friction Reynolds number, Reτ = uτ h/ν ≈ 150 (where uτ = √

τw/ρ is
the mean friction velocity, τw the mean wall shear stress, h the duct half side, ν and ρ the kinematic viscosity
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and density of the fluid, respectively). Mompean [15] also carried out additional tests on the nonlinear model
proposed by Speziale [37] showing that it underpredicts the intensity of the secondary flows. Rice et al. [25]
carried out particle image velocimetry of the flow along supersonic streamwise corners and reported good
agreement with RANS simulations using the quadratic correction of Spalart [32].

In this study, we aim at assessing the accuracy of popular RANS models using the square duct flow as
benchmark. The accuracy of RANS models can be quantified using two tools, namely a priori and a posteriori
tests, both with advantages and disadvantages. In a priori tests, modelled quantities such as eddy viscosity,
Reynolds stresses and model coefficients are compared to reference high-fidelity data, without advancing the
RANS equations or additional transport equations. The main drawback of this approach is that it only provides
information on the accuracy of the modelled Reynolds stresses and not on the mean flow, which is the final goal
of RANS. An advantage of this approach is that it gives us information on the model accuracy in the best-case
scenario. Hence, if a priori tests show inaccurate prediction of the Reynolds stress tensor, solving additional
transport equations can only worsen the results. On the other hand, a posteriori tests have the advantage of
providing mean flow data, but solving the equations we introduce the effect of the numerical scheme. Hence,
to carry out fully consistent a posteriori tests one should use the same solver and the same mesh to generate
reference high-fidelity data and RANS results. In this study, we limit ourself to a priori tests; therefore, we are
unable to inspect the mean flow velocity but we can only assess the accuracy of modelling assumptions on the
Reynolds stress tensor.

We carry out a priori tests using recent DNS data of square duct flow at friction Reynolds number Reτ =
150–1055 [14,21], thus extending the Reynolds number range of previous studies. We show that results become
independent from Reynolds number as Reτ increases and therefore we mainly focus on the highest Reynolds
number data. We carry out two types of a priori tests, the first on nonlinear constitutive relations for the
anisotropic stress tensor ai j to determine the maximum accuracy that one should expect for a given number of
tensor bases, and the second on popular nonlinear RANS models to determine the validity of their assumptions
and whether they approach the maximum accuracy.

2 A priori tests of constitutive relations

Pope [22] generalized the concept of linear eddy viscosity (1) modelling the anisotropic stress tensor as a
polynomial expansion of tensor bases. The Cayley–Hamilton theorem guarantees that a finite number of bases
are sufficient to recover exact representation of the stress tensor and a can be expressed as a polynomial of S
and � [12,35]:

ã =
N∑

n=1

G(n)T(n), N = 1, . . . , Nmax, Nmax = 10, (5)

where the coefficients G(n) are scalar functions and T(n) is a set of ten independent bases:

T(1) = S

T(2) = S� − �S

T(3) = S2 − 1

3

{
S2} I

T(4) = �
2 − 1

3

{
�

2} I

T(5) = �S2 − S2
�

T(6) = �
2S + S�

2 − 2

3

{
S�

2} I

T(7) = �S�
2 − �

2S�

T(8) = S�S2 − S2
�S

T(9) = �
2S2 + S2

�
2 − 2

3

{
S2W2} I

T(10) = �S2
�

2 − �
2S2

�,

(6)
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where S is the mean rate-of-strain tensor (2) and � the mean rate-of-rotation tensor:

Ωi j = 1

2

(
∂ui

∂x j

− ∂u j

∂xi

)
. (7)

Ai j indicates the matrix associated with the tensor A and the notation AB = Aik Bk j is used for tensor
multiplication, whereas {AB} = Aik Bki indicates the trace operation.

An exact representation of the anisotropic stress tensor (̃a = a) can be recovered for N = 5, apart
from the degenerate cases of axisymmetric flow and vorticity vector aligned with an eigenvector of S, for
which additional bases are required. Truncated versions of the tensor polynomial (5) constitute the theoretical
framework for the development of nonlinear eddy viscosity models [2,32], machine learning algorithms for
the optimization of EASMs [10,39] and uncertainty quantification of EASMs [4,40].

In order to carry out a priori tests on the constitutive relation (5), we compute the coefficients G(n), using
the anisotropic stress tensor from DNS data of square duct flow [21]. G(n) can be obtained by multiplying
equation (5) by the basis T (m) and taking the trace operation [9], thus obtaining a linear system of N equations
for the unknown coefficients G(n):

{
aT(m)

}
=

N∑

n=1

G(n)
{

T(n)T(m)
}

, m = 1, . . . , N . (8)

For N = 1, this approach leads to the classical definition of linear eddy viscosity:

νt = −G(1)

2
= − {aS}

2 {SS} . (9)

In the more general case, we solve Eq. (8) to find the coefficients G(n) for different 1 ≤ N ≤ 5 and then
evaluate the modelled anisotropic stress tensor ã from (5). By solving the algebraic system (8), we let the
coefficients G(n) vary in space to approximate the “exact” anisotropic stress tensor from DNS a. Hence, the
coefficients G(n) are the ones that bring the most accurate representation of the anisotropic stress tensor (5),
for a given number of bases.

This kind of analysis was proposed by Jongen and Gatski [9], who used experimental data to assess the
validity of the eddy viscosity hypothesis. Schmitt [29,30] also carried out the same analysis for linear and
nonlinear constitutive relations highlighting the limitations of the eddy viscosity hypothesis. Nevertheless, this
approach has never been applied systematically for different truncations of Pope’s polynomial expansion. In
the following analysis, only three components of the Reynolds stress tensor are reported, namely a12, a22 and
a23, as in square duct flow a12(y, z) = −a13(z, y), a22(y, z) = a33(z, y) (where y and z are the cross-stream
coordinates) and a11 does not appear in Eq. (3) (i.e. it does not influence the secondary flows). In the following,
we use the term primary shear stress to denote a12, as it appears in the mean streamwise momentum equation
and it directly influences the skin friction coefficient, whereas we use secondary shear stress for a23, as it
appears in the cross-stream mean momentum equation.

Moreover, we only report in detail the anisotropic stresses for selected N , corresponding to popular choices
for the development of eddy viscosity models. In particular, N = 1 corresponds to the linear eddy viscosity
hypothesis, N = 2 the nonlinear correction proposed by Spalart [32], N = 4 has been used to develop
quadratic eddy viscosity models, and for N = 5 we recover the exact representation ã = a. Note that the exact
representation can only be recovered when the ideal coefficients obtained from (8) are used; therefore, using
five bases alone, with arbitrary coefficients, is not sufficient to recover ã = a.

Figure 1 shows the scatter plots of the modelled anisotropic stress tensor components, ã12, ã22, ã23 as
a function of the ones from DNS a12, a22, a23 at Reτ = 1055, normalized with the friction velocity from
DNS (a+ = a/uτ ). Figure 1a–c shows that the linear eddy viscosity hypothesis (N = 1) returns accurate
representation of ã12, the stress component directly affecting the streamwise velocity. The success of the linear
eddy viscosity hypothesis in predicting the primary shear stress can be traced back to the strong similarity
between square duct and canonical wall-bounded flows, namely to the fact that this flow can be seen as
superposition of four concurrent walls [21]. If we assume that S12 and S13 are the most relevant components
of Si j , the eddy viscosity (9) becomes

νt ≈ − u′v′∂u/∂y + u′w′∂u/∂z

2
[
(∂u/∂y)2 + (∂u/∂z)2

] , (10)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1 Scatter plot of the modelled anisotropic Reynolds stresses ã+
12, ã+

22 and ã+
23 from Eq. (5) as a function of the DNS ones

a+
12, a+

22 and a+
23 at Reτ = 1055, for increasing number of tensor bases: N = 1 (a–c); N = 2 (d–f); N = 4 (g–i); N = 5 (j–l).

Every 64th point is plotted. The dashed line indicates the axes bisector

which reduces to −u′v′/(2∂u/∂y) of canonical wall-bounded flows, away from the side wall. On the other
hand, ã22 ≈ 0 and ã23 are uncorrelated with respect to reference data, in agreement with the fact that the linear
eddy viscosity hypothesis cannot predict the occurrence of secondary flows (Fig. 1b, c).

Figure 1d–f shows that using N = 2 improves the prediction of both the normal stress and secondary shear
stress. Nevertheless, ã22 is consistently overpredicted, as well as the most intense values of ã23. For N = 4,
exact representation of ã22 is recovered, together with a very good prediction of ã23 (Fig. 1g–i). As predicted
from theory, five bases allow us to recover the stresses from DNS (̃a ≡ a, Fig. 1j–l).

The scatter plots allow us to easily compare the modelled stresses to DNS data, but they do not provide
information on the spatial distribution of the stress components and therefore it is not possible to understand
how the error is spatially distributed. For this reason, we also report ã12, ã22, ã23 at Reτ = 1055 in a duct
quadrant, for N = 1, 2, 4 (Fig. 2a–i) compared to N = 5 (DNS data) a12, a22 and a23, (Fig. 2j–l). The spatial
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 Modelled anisotropic Reynolds stresses ã+
12, ã+

22 and ã+
23 at Reτ = 1055 from Eq. (5) for increasing number of tensor

bases: N = 1 (a–c); N = 2 (d–f); N = 4 (g–i); N = 5 (DNS) (j–l). Dashed contour lines indicate negative values

distribution of the primary shear stress ã12 is well predicted by the linear model, and only minor differences
are observed between the linear and nonlinear constitutive relations. As observed from the scatter plots, the
linear eddy viscosity hypothesis returns ã22 ≈ 0 (Fig. 2b). The spatial distribution of ã23 (Fig. 2c) is similar to
DNS only in the core region of the duct, where a large patch of negative stress approximately matches DNS
values, whereas an incorrect stress sign is predicted towards the walls, where the flow is more anisotropic.
Using N = 2 leads to slightly less accurate ã12 with a small tail close to the side wall, which is absent in the
linear case and in DNS (Fig. 2d).

A significant improvement in the prediction of both ã22 and ã23 is observed for N = 2. We find that the
largest error in ã22 is localized towards the side wall, where the sharp variation of ã22 is not captured (Fig. 2e).
The spatial organization of the secondary shear stress also improves compared to the linear model, but the
values of ã23 are larger than DNS (Fig. 2f). Similarly to the linear case, the sign and intensity of ã23 are correct
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Table 1 Correlation coefficient C̃i j (11) between anisotropic stress tensor of DNS ai j and modelled anisotropic stress tensor ãi j

(Eq. (5)) at friction Reynolds number Reτ = 1055, for different numbers of tensor bases N

N = 1 N = 2 N = 4 N = 5

C̃12 0.998 0.997 1.000 1.000
C̃22 − 0.044 0.911 1.000 1.000
C̃23 0.313 0.743 0.742 1.000

in the duct core, where the flow is more isotropic, whereas the error with respect to DNS becomes larger close
to the corner and the walls, where very high stress values are predicted. Using four tensor bases allows us to
obtain a spatial distribution of ã22 which is undistinguishable from DNS data, whereas differences are still
observed for ã23, although the main stress topology is captured (Fig. 2h, i). Also in this case the greatest error
on ã23 is localized in proximity of the corner and at the walls, where the stress is overpredicted.

In order to quantify the error with respect to DNS, we also define the averaged correlation coefficient
between ai j and ãi j :

C̃i j = 〈ai j ãi j 〉 − 〈ai j 〉〈̃ai j 〉[(
〈a2

i j 〉 − 〈ai j 〉2
) (

〈̃a2
i j 〉 − 〈̃ai j 〉2

)]1/2
, (11)

where the angle brackets denote average over the duct cross section:

〈 f 〉 = 1

4h

∫ h

−h

∫ h

−h

f dydz. (12)

By construction, C̃ ∈ [−1, 1], where C̃ = 1 indicates the perfect correlation C̃ = −1 the negative correlation.
In Table 1 and Fig. 3a, we report the mean correlation coefficient C̃i j at Reτ = 1055 for increasing number

of tensor bases. As first gauged from qualitative inspection of the scatter plots and mean flow fields, we find
that correlation with respect to DNS increases with N . The primary shear stress has a correlation coefficient
C̃12 ≈ 1 already for N = 1; therefore, the linear eddy viscosity hypothesis can accurately predict ã12, whereas
ã22 and ã23 are essentially uncorrelated with respect to DNS. For N = 2, we find a good correlation for the
normal stress component C̃22 ≈ 0.9 and relatively good also for C̃23 ≈ 0.74. On the other hand, passing from
N = 2 to N = 4 leads to perfect correlation on the normal stress C̃22 = 1, but it does not increase the accuracy
on ã23.

Figure 3b, c shows C̃i j as a function of the friction Reynolds number Reτ = [150, 227, 519, 1055] for
fixed number of bases N = 2 and N = 4, respectively. We observe a minor Reynolds number effect, which
tends to saturate for increasing Reynolds number, suggesting that Reynolds number independence is achieved
for Reτ � 500.

The analysis has been carried out using sets of tensor bases ordered as they appear in the polynomial
expansion (5). This is motivated by the fact that nonlinear models are typically built following this approach,
but for a given number of tensor bases different combinations are possible and results can be affected by
the choice of the subset. For this reason, we explore also this possibility and in Table 2 we report the mean
correlation coefficient C̃i j for all possible subsets with N = 2, 3, 4. The subsets are limited to the first five
bases, as only using these ones it is possible recover exact representation of the anisotropic stress tensor (i.e.
using T (1), T (2), T (3), T (4), T (5), ã = a, whereas using T (1), T (2), T (3), T (4), T (6), ã �= a).

Table 2 shows that ã12 is barely affected by the choice of the subset, whereas the accuracy on ã22 and ã23
can have a large variation. The best subset for a given number of bases is highlighted in boldface, showing that
T (2) and T (5) are essential to describe both ã22 and ã23, whereas bases T (3) and T (4) alone do not bring any
improvement with respect to the linear case. The reason for this is that T (2) and T (5) have the same structure
and contain both S and �, contributing more to the flow anisotropy.

Moreover, in Fig. 4 we report the coefficient G(1) in a duct quadrant, for different truncations of Pope’s
polynomial expansion. Ideally, for a smooth flow, the tensor bases are smooth functions and so are the coef-
ficients. Nevertheless, increasing N can give rise to sharp spatial variations of T (n). This causes system (8)
to be ill-conditioned and difficult to solve numerically, a problem which we overcome using a truncated sin-
gular value decomposition to invert the system matrix. The figure shows that for N > 2, G(1) exhibits sharp
spatial variations, and a similar result holds for the other coefficients (not shown). More aggressive matrix
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Table 2 Correlation coefficient C̃i j (11) between anisotropic stress tensor of DNS ai j and modelled anisotropic stress tensor ãi j

(Eq. (5)) at friction Reynolds number Reτ = 1055, for different combinations of tensor bases. The optimal subset for each N is
highlighted in boldface

N T (n) C̃12 C̃22 C̃23

2 1,2 0.997 0.911 0.743
1,3 0.997 − 0.307 − 0.397
1,4 0.998 − 0.307 − 0.411
1,5 0.998 0.886 − 0.191

3 1,2,3 0.994 1.000 0.698
1,2,4 0.993 0.999 0.682
1,2,5 0.997 0.910 0.871
1,3,4 0.996 − 0.306 − 0.396
1,3,5 0.997 0.919 − 0.328
1,4,5 0.996 0.921 − 0.330

4 1,2,3,4 1.000 1.000 0.742
1,2,3,5 0.994 1.000 0.938
1,2,4,5 0.993 1.000 0.930
1,3,4,5 0.999 0.919 − 0.328

(a) (b) (c) (d)

Fig. 4 First coefficient of the polynomial expansion −G(1)/2/ν for different numbers of bases, a N = 1 (linear eddy viscosity),
b N = 2, c N = 4, d N = 5, at Reτ = 1055

regularization techniques are possible and lead to smoother coefficients, but in this case we do not recover the
exact representation of ai j for N = 5. We recall that even though coefficients G(n) are spiky, ãi j is always
smooth (Fig. 2). The analysis reveals that, even for a smooth flow solution as incompressible duct flow, the
exact coefficients can exhibit unphysical spatial variations and therefore modelling, or even using, the exact
coefficients G(n) for N > 2 might be impossible or at least very difficult in practical calculations.

3 A priori tests of RANS models

The idea of generalized eddy viscosity hypothesis of Pope [22] has inspired several nonlinear eddy viscosity
models using truncated forms of the tensor polynomial (5). Nevertheless, eddy viscosity models inevitably rely
on additional assumptions to represent the coefficients G(n) needed by the polynomial expansion and therefore
they can only approach the accuracy of the nonlinear constitutive relations using the same number of tensor
bases. In reality, it is not possible to tune the coefficients G(n) to achieve the maximum accuracy for all variety
of flows, and therefore some models try to account for this by using more than five bases. We carry out a priori
analysis on different turbulence models and compare their accuracy to the one of the constitutive relations using
exact coefficients G(n). First, we focus on the popular k–ε turbulence model [11] and then on nonlinear [32]
and linear [20] corrections specifically developed to improve the prediction of turbulent secondary flows. In
the following, we denote the anisotropic stress tensor of the RANS models with a hat symbol âi j to distinguish
it from ãi j , obtained using the exact coefficients G(n). We also introduce the correlation coefficient between
âi j and DNS data ai j :
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Table 3 Correlation coefficient Ĉi j (13) between anisotropic stress tensor of DNS ai j and anisotropic stress tensor of RANS
models âi j at friction Reynolds number Reτ = 1055, for different RANS models: linear k–ε [11], nonlinear k–ε [19, NY], [27,
RB], [31, SZL], [2, CLS], quadratic constitutive relation [32, QCR], v2 − f [6] and linear correction to v2 − f [20, PI]

k–ǫ NY RB SZL CLS QCR v2– f PI

Ĉ12 0.988 0.987 0.985 0.987 0.994 0.997 0.997 0.988
Ĉ22 − 0.041 0.696 − 0.689 − 0.116 0.643 0.635 − 0.059 0.984
Ĉ23 0.149 0.616 − 0.505 0.297 0.532 0.691 0.244 0.844

Fig. 5 Correlation coefficient Ĉi j (13) between anisotropic stress of RANS models âi j and DNS ai j , as a function of the correlation
coefficient C̃i j (11), for corresponding number of tensor bases (e.g. Ĉi j of the linear k–ε model as a function of C̃i j for N = 1).
Data at friction Reynolds number Reτ = 1055 different RANS models are reported: linear k − ε [11], nonlinear k − ε [19,
NY], [27, RB], [31, SZL], [2, CLS], quadratic costitutive relation [32, QCR], linear v2 − f [6] and linear correction to v2 − f

[20, PI]. The models of Craft et al. [2, CLS] and Pecnik and Iaccarino [20, PI] are reported as a function C̃i j = 1. Ĉ12 (open
symbols), Ĉ22 (filled symbols) and Ĉ23 (half-filled symbols). The axes bisector (dashed blue line) represents the ideal mean
accuracy (Ĉi j = C̃i j ) RANS models can achieve, depending on the constitutive relation they use (colour figure online)

Ĉi j = 〈ai j âi j 〉 − 〈ai j 〉〈âi j 〉[(
〈a2

i j 〉 − 〈ai j 〉2
) (

〈â2
i j 〉 − 〈âi j 〉2

)]1/2
, (13)

where the angle brackets denote averaging over the duct cross section (12). For each RANS model, we report
the correlation coefficient with respect to DNS Ĉi j , Table 3. The value of Ĉi j allows us to assess how the model
performs with respect to DNS data, but this is an unfair comparison as RANS models are not supposed to
match DNS data and can at most reach the ideal accuracy of the constitutive relation they are built on. Hence,
in Fig. 5 we report Ĉi j as a function of C̃i j , with the same number of tensor bases (e.g. Ĉi j of the linear k–ε

model as a function of C̃i j for N = 1); therefore, the axes bisector represents the maximum mean accuracy.



A priori tests of eddy viscosity models in square duct flow

Table 4 Coefficients for different nonlinear k–ε turbulence models, Nisizima and Yoshizawa [19, NY], Rubinstein and Barton [27,
RB], Shih et al. [31, SZL] and Craft et al. [2, CLS] for the constitutive relation (15). Additional quantities required by the model

of Shih et al. [31] and Craft et al. [2] are Ŝ = k/ε
√

2Si j Si j , Ω̂ = k/ε
√

2Ωi j Ωi j and B = exp
[
−0.36/ exp

(
−0.75 max

(
Ŝ, Ω̂

))]
.

Note that NY and RB originally proposed cμ = 0.09 and cμ = 0.0845, respectively

Model cμ c1 c2 c3 c4 c5 c6 c7

Nisizima and Yoshizawa [19, NY] 0.075 0.045 −0.19 0.26 0 0 0 0
Rubinstein and Barton [27, RB] 0.075 0.035 0.17 −0.14 0 0 0 0

Shih et al. [31, SZL] 2/3

1.25+Ŝ+0.9Ω̂

0.95/cμ

1000+ŝ3
0.1875/cμ

1000+Ŝ3

1.2/cμ

1000+Ŝ3
0 0 0 0

Craft et al. [2, CLS] 0.3(1−B)

1+0.35
[
max

(
Ŝ,Ω

)]1.5 0.025 −0.025 0.087 −1.25c2
μ 0 −0.625c2

μ 0.625c2
μ

3.1 k–ε model

The k–ε turbulence model [11] is a two-equation model, requiring transport equations for the turbulent kinetic

energy k and for the dissipation rate ε = 2νS′
i j S′

i j (where S′
i j is the fluctuating rate-of-strain tensor). The

class of k–ε models became very popular over the years, and it is among the most common choices in many
commercial fluid dynamics solvers [23]. Besides the transport equations for k and ε, the model requires the
specification of the eddy viscosity, which is defined using the assumption:

ν̂t = cμ fd

k2

ε
, (14)

where cμ is a constant and fd a damping function to avoid high values of eddy viscosity close to the wall.
With this assumption, a generalized constitutive relation for the k–ε model can be derived based on the tensor
polynomial expansion (5) [2]:

â = −2̂νt S + 4c1ν̂t

k

ε
(SΩ − SΩ)

+ 4c2ν̂t

k

ε

(
S2 − 1

3
{S} I

)

+ 4c3ν̂t

k

ε

(
Ω

2 − 1

3
{Ω} I

)

+ 8c4ν̂t

k2

ε2

(
ΩS2 − S2

Ω
)

+ 8c5ν̂t

k2

ε2

(
Ω

2S + SΩ
2 − 2

3

{
SΩ

2} I

)

+ 8c6ν̂t

k2

ε2
S
{
S2}+ 8c7ν̂t

k2

ε2
S
{
Ω

2} , (15)

where c1–c7 are the model coefficients (Table 4).
Equation (15) uses eight tensor bases to approximate â, whereas in Sect. 2 we showed that five bases allow

us to recover the exact anisotropic stress tensor. The reason for using N > 5 is that the exact representation can
only be recovered using the exact coefficients G(n), which are not available in general. The spirit behind using
additional tensor bases is that increasing the degrees of freedom could partially account for the lower accuracy
on the coefficients G(n), here modelled as functions of ν̂t , k and ε, simply based on a dimensional argument.
Several k–ε models based on Eq. (15) are available in the literature, the most common being quadratic models
using four tensor bases [19,27,31] and a cubic model with eight tensor bases proposed by Craft et al. [2].

Together with the transport equations for k and ε, the definition of the eddy viscosity (14) is one of the main
assumptions of k–ε models; therefore, we analyse the validity of Eq. (14) by reporting the ratio νt/(cμk2/ε)

with cμ = 0.075 (Fig. 6a). This quantity allows us to assess the trend of the modelled eddy viscosity close to
the wall and to define a suitable damping function fd . The eddy viscosity νt is evaluated from DNS data using
the linear assumption (9), k and ε are the turbulent kinetic energy and dissipation of DNS, and no additional
transport equations are solved. Profiles are plotted as a function of the viscous scaled wall-normal coordinate
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(a)

(b)

Fig. 6 a νt/(cμk2/ε), as a function of the wall-normal coordinate y+ up to the corner bisector (as in inset), at all spanwise locations
z for square duct flow at Reτ = 1055 [21, solid gray], for plane channel flow at Reτ = 1000 [1, red dashed], Eq. (16) [26, blue
dotted] and Eq. (17) [18, green]. b Scatter plot of the modelled eddy viscosity ν̂t/ν (14) as a function of the linear eddy viscosity
from DNS νt/ν (9), with fd from Eq. (16) and cμ = 0.075. Every 32nd point is plotted. The dashed line in b indicates the axes
bisector (colour figure online)

(a) (b)

Fig. 7 Linear eddy viscosity νt/ν (9) from DNS (a) and from k–ε model (14) (b), in a duct quadrant at friction Reynolds number
Reτ = 1055
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y+ = y/δv (where δv = ν/uτ is the viscous length scale), for all spanwise locations z, up to the corner
bisector (inset in Fig. 6a). Duct flow data are compared to channel flow DNS data at Reτ = 1000 [1], also
with cμ = 0.075. Figure 6a shows that the ratio νt/(cμk2/ε) for square duct is similar to channel flow, when
duct flow data are reported up to the corner bisector. This result is consistent with Pirozzoli et al. [21], who
showed that duct flow statistics are in good agreement with canonical wall-bounded flows when profiles are
reported in this fashion. For this reason, we modify the damping function proposed by Rodi and Mansour [26]
for plane channel flow, substituting the wall-normal distance y (in their formulation) with the distance from
the closest wall d:

fd = 1 − e(−0.0002d+−0.00065d+2). (16)

Nisizima [18] and Mompean et al. [16] proposed a different damping function for square duct flow to account
for the corner:

fd =
[
1 − e(−0.08y+)

] [
1 − e(−0.08z+)

]
. (17)

Figure 6a shows that the damping function in Eq. (16) follows the same trend of DNS data, whereas (17) is
largely different close to the wall, at all spanwise locations. For this reason in the following analysis, we use
the damping function (16). Moreover, we use cμ = 0.075, different from the value proposed by Nisizima and
Yoshizawa [19, cμ = 0.09] and by Rubinstein and Barton [27, cμ = 0.0845]. This smaller value is the same
as the one reported by Rodi and Mansour [26] for low-Reynolds number boundary layer.

The accuracy of Eq. (14) is further assessed by reporting in Fig. 6b the scatter plot of the modelled eddy
viscosity ν̂t as a function of νt , the linear eddy viscosity from DNS (Eq. (9)). The agreement is generally
satisfactory, although there are regions in which ν̂t is underpredicted or overpredicted with respect to DNS.
These regions correspond to the corner bisector, the duct centre and the wall bisector (z/h ≈ 0) (Fig. 7). Along
the corner bisector and at the duct centre, ν̂t is underpredicted with respect to DNS and the modelled eddy
viscosity does not predict the bulging of the isolines towards the corner. Along the wall bisector, the k–ε model
predicts slightly larger values of ν̂t with respect to DNS, but the spatial distribution is captured. The limited
accuracy along the corner bisector can be traced back to the fact that Eq. (14) has been designed for canonical
wall-bounded flows (i.e. a single wall), whereas in this region the flow experiences the simultaneous influence
of two walls. On the other hand, the k–ε model is more accurate along the wall bisector where the influence
of the side wall is minor and the flow is more similar to canonical wall-bounded flows.

We also investigate the accuracy of different nonlinear k–ε models in Table 4 using the generalized consti-
tutive relation (15). Figure 8 shows the scatter plot of the modelled Reynolds stresses as a function of the DNS
ones for several k–ε models. The shear stress â12 predicted by the linear k–ε model (Fig. 8a) follows DNS data
with good accuracy, although larger deviations are observed compared to maximum accuracy achieved by the
linear eddy viscosity hypothesis (Fig. 1a). This can be attributed to the limited validity of Eq. (14) or to the
form of the damping function (16). Between these two possible causes, we slightly favour the former as the
damping function (16) seems rather accurate (Fig. 6a). On the other hand, the normal stress â22 and secondary
shear stress â23 (Fig. 8b, c) are largely different from DNS, consistent with the fact that linear models cannot
predict secondary flows.

All nonlinear k–ε models return a rather accurate prediction of â12, without substantial improvement with
respect the linear model (Fig. 8d, g, l, o). As for the prediction of â22 and â23, we find large differences
depending on the model. The quadratic model of Nisizima and Yoshizawa [19] (Fig. 8d–f) improves the
prediction of both â22 and â23, but the agreement with DNS data is much lower compared to the ideal case
with four tensor bases (Fig. 1h, i) and more similar to the maximum accuracy achieved with two bases (Fig. 1e,
f). On the other hand, the models of Rubinstein and Barton [27] (Fig. 8h, i) and Shih et al. [31] (Fig. 8m, n)
do not improve the accuracy of the normal stress â22 and the secondary shear stress â23, despite the fact that
they are built on four tensor bases, as the one by Nisizima and Yoshizawa [19]. Both the models of Shih et
al. [31] and Rubinstein and Barton [27] return â22 ≈ 0 everywhere, whereas â23 is similar to the linear model
for Shih et al. [31] and negatively correlated with DNS data for Rubinstein and Barton [27]. The cubic model
of Craft et al. [2] (Fig. 8p, q) only leads to minor improvement on â22 and â23.

A more quantitative insight can be gauged from Fig. 5, which allows us to compare the correlation coefficient
of the models Ĉi j with respect to the ideal one C̃i j . The figure shows that both the linear and nonlinear k–ε

models accurately predict â12, with a correlation coefficient Ĉ12 � 0.98. Instead, very different performance
between the models is visible for the normal and secondary shear stress components. The stresses predicted
by the models of Rubinstein and Barton [27] and Shih et al. [31] are poorly correlated or even negatively
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 8 Scatter plot of the anisotropic Reynolds stresses â+
12, â+

22 and â+
23 for different k–ε models as a function of DNS ones a+

12,
a+

22 and a+
23. Linear model (a–c), Nisizima and Yoshizawa [19, NY] (d–f), Rubinstein and Barton [27, RB] (g–i), Shih et al. [31,

SZL] (j–l) and Craft et al. [2, CLS] (m–o). Every 64th point is plotted. The dashed line indicates the axes bisector
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(a) (c)(b)

Fig. 9 Scatter plot (circles) of G(n)/(4νt k/ε) as a function of the distance from the closest wall d/h, compared to the model
coefficients of Nisizima and Yoshizawa [19] (blue dashed), Rubinstein and Barton [27] (red dash-dotted), Shih et al. [31] (squares),
Craft et al. [2] (green solid). Every 256th point is plotted for data at friction Reynolds number Reτ = 1055. a G(2)/(4νt k/ε) and
c1, b G(3)/(4νt k/ε) and c2, c G(4)/(4νt k/ε) and c3 (colour figure online)

correlated with DNS data, Ĉ22 ≈ −0.7, Ĉ23 ≈ −0.5 and Ĉ22 ≈ −0.1, Ĉ23 ≈ 0.3, respectively (Table 3),
and far from the axes bisector. A slightly higher correlation is achieved by the cubic model of Craft et al. [2]
using eight tensor bases, Ĉ22 ≈ 0.6, Ĉ23 ≈ 0.5, but we find the highest correlation with respect to DNS for
the model of Nisizima and Yoshizawa [19], Ĉ22 ≈ 0.7 Ĉ23 ≈ 0.6 which is also the closest to the maximum
mean accuracy with four tensor bases.

Figure 5 shows that the accuracy of Reynolds stresses does not only depend on the number of tensor bases
in the constitutive relation (15), but is also largely affected by the model coefficients, which show a large
variation between different authors (Table 4). The analysis also shows that using a number of tensor bases
larger than five does not necessarily lead to an improved accuracy. Although a larger number of coefficients
increases the “tuning power” of the tensor polynomial, Eq. (15) still relies on the assumption that the coefficients
G(n) ∝ νt k/ε. In order to verify this assumption, we report G(n)/(4νt k/ε) for n = 2, 3, 4 as a function of the
distance from the closest wall d .

Figure 9 shows that the hypothesis of proportionality between G(n) and νt k/ε is partially valid for G(3),
whereas it fails for G(2) and G(4). The model of Shih et al. [31] uses nonuniform coefficients c1, c2, c3, but their
spatial variation is limited, and it does not follow the large nonuniformities of G(n)/(4νt k/ε) and therefore
does not result in improved performance with respect to the constant coefficients models. We also note that
the model of Nisizima and Yoshizawa [19] is the only one with a value of c2 approximately matching DNS
data, thus explaining the improved accuracy of this model with respect to the other k–ε variants. We recall
that the proportionality G(3) ∝ νt k/ε should not lead turbulence modellers to develop constitutive relations
using T (1) and T (3) only, as the analysis carried out using exact coefficients shows that a good subset of bases
always contains T (2) and T (5) (Table 2).

The anisotropic Reynolds stresses in a duct quadrant are also reported in Fig. 10, for the linear k–ε model
and the nonlinear model of Nisizima and Yoshizawa [19]. This model improves the spatial distribution of â22
and â23, but these stresses are far from the ones obtained using four tensor bases and exact coefficients (Fig. 2h,
i). The spatial organization of â22 and â23 obtained with the model of Nisizima and Yoshizawa [19] is much
closer to the ideal distributions for N = 2 (Fig. 2e, f), as the spatial nonuniformity of ã22 close to the side wall
is not captured and values of â23 are consistently overpredicted towards the walls.

3.2 Quadratic constitutive relation

Spalart [32] proposed a quadratic constitutive relation (QCR) to correct linear eddy viscosity models and
showed that it improves the prediction of turbulence secondary flows for ducts of complex cross section [33].
The idea is to add to the linear stress a nonlinear correction based on the basis T(2) in (6):

âi j = −2νt Si j + 4c1νt

(
Oik S jk + O jk Sik

)
, (18)
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Anisotropic Reynolds stresses â+
12, â+

22 and â+
23 in a duct quadrant for the linear k–ε model (a–c) and for the nonlinear

k–ε model of Nisizima and Yoshizawa [19] (d–f) at friction Reynolds number Reτ = 1055

(a) (b) (c)

Fig. 11 Scatter plot of the anisotropic Reynolds stresses of Spalart [32], a â+
12, b â+

22 and c â+
23 from Eq. (18), as a function of the

DNS ones a+
12, a+

22 and a+
23 at friction Reynolds number Reτ = 1055. Every 64th point is plotted. The dashed line indicates the

axes bisector

where c1 = 0.3 and Oik is the normalized mean rate of rotation:

Oik = Ωik√
∂Um

∂xn

∂Um

∂xn

. (19)

Figure 11 shows the scatter plot of the anisotropic stress from Eq. (18) as a function of the DNS stresses. The
primary shear stress â12 is in good agreement with DNS results, whereas we observe only a minor improvement
in the normal stress â22 compared to the linear model (Fig. 1b). The secondary shear stress â23 is in good
agreement with the theoretical prediction obtained using the exact coefficients G(n) and two tensor bases
(Fig. 1f).

Figure 5 shows that correlation coefficients Ĉ12 = 0.997 is the same as the ideal one with two bases and
Ĉ23 = 0.691 is also close to the maximum accuracy. Instead, for the normal stress component the QCR has
a mean correlation coefficient Ĉ22 ≈ 0.6, which is lower than the ideal correlation with two tensor bases
C̃22 ≈ 0.9, Table 3. Additional information on the spatial distribution of these modelled stresses can be
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Fig. 12 Anisotropic Reynolds stresses a â+
12, b â+

22 and c â23 in a duct quadrant, for the quadratic correction of Spalart [32]
(Eq. (18)). Dashed contour lines indicate the negative values

gained from Fig. 12. The nonlinear correction slightly improves the distribution â22 over the linear case, but
its intensity remains everywhere underpredicted with respect to DNS. The secondary shear stress â23 has a
spatial organization which is in very good agreement with the one obtained using the exact model coefficients
G(n) and two tensor bases (Fig. 2f).

The analysis shows that the model proposed by Spalart [32] brings a rather accurate prediction of all stress
components, in line with maximum accuracy achievable with two tensor bases, although prediction of â22
could be improved. The model also reveals to be more accurate than most k–ε models using four bases.

3.3 v2– f model

The v2– f model was originally developed by Durbin [5] as an improvement to the classical k–ε model for
flows with large inhomogeneities. The model requires transport equations for the turbulent kinetic energy k,

for the dissipation rate ε and for v
′2, namely the normal stress with respect to the closest wall. Even though the

model requires a transport equation for the Reynolds stress component v
′2, it is typically considered an eddy

viscosity models, with eddy viscosity

ν̂T = cv
μv

′2T, (20)

where T ,

T = max

[
k

ε
, cT

(ν

ε

)0.5
]
, (21)

and cv
μ = 0.2 and cT = 6 are model constants.

Pecnik and Iaccarino [20] proposed a variation of the linear v2– f model to take into account the anisotropy
of the normal stresses in (4). The idea is to modify the linear eddy viscosity hypothesis introducing a non-
isotropic contribution Ni j , without relying on additional nonlinear terms,

âi j = −2̂νT Si j + k Ni j , (22)

and Ni j must be traceless,

Ni j =
(

1 − 3

2

v
′2

k

)(
δi j

3
− ni n j

)

+
(

2 − fd

2 + fd

− 1

2

v
′2

k

)
(
2ti t j + ni n j − δi j

)
, (23)

where

t = n × ω

|n × ω| , (24)
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(a) (b) (c)

Fig. 13 a Scatter plot of ν̂t/ν, the eddy viscosity of the v2– f model, Eq. (20) as a function of the linear eddy viscosity from DNS
νt/ν (Eq. (9)) at friction Reynolds number Reτ = 1055. Every 32nd point is plotted. The dashed line indicates the axes bisector.
b Eddy viscosity νt/ν from DNS in a duct quadrant and c modelled eddy viscosity ν̂t/ν from the v2– f model

and ω is the vorticity vector. The direction of anisotropy of the normal Reynolds stresses ni is

ni = 1

|∇φ|
∂φ

∂xi

(25)

and φ is the solution of the Poisson problem ∇2φ = −1, with homogeneous boundary conditions. Moreover,
the damping function fd in Eq. (23) is

fd = min

⎧
⎨
⎩max

⎡
⎣
(

3

2

v
′2

k

)1/2

, 0.3

⎤
⎦ , 1

⎫
⎬
⎭ . (26)

Note that this correction is referred to as “linear” by its authors, as Eq. (22) is linear with respect to Si j .
Nevertheless, the accuracy of this correction cannot be compared to the maximum accuracy of the linear eddy
viscosity hypothesis in Fig. 1a–c, as Eq. (22) is not based on the tensor polynomial (5). The constitutive
relation (22) does not strictly belong to the same class of models addressed in the rest of the manuscript, but
it has specifically been developed for duct flow and therefore assessing its accuracy can be instructive.

We first assess the accuracy of the eddy viscosity hypothesis (20) by reporting in Fig. 13a the scatter
plot of ν̂t as a function of νt , the linear eddy viscosity evaluated from DNS (Eq. (9)). The eddy viscosity of
the v2– f model is more accurate than the one of the k–ε model, and it follows very well DNS data. Minor
differences with DNS are only visible along the corner bisector (Fig. 13b, c), where the effect of secondary
flows is stronger.

Despite this minor discrepancy, the primary shear stress â12 matches DNS data almost exactly, whereas â22
and â23 show large scatter with respect to DNS data (Fig. 14). Large improvement in the prediction of these
stress components is achieved with the linear correction of Pecnik and Iaccarino [20], which returns almost
exact predictions of â22 and a more accurate distribution of â23.

Figure 5 confirms the qualitative impression gauged from the scatter plots. The correlation with DNS data
is excellent, Ĉi j > 0.8; nevertheless, we observe that the linear v2– f model is slightly more accurate in
predicting the primary shear stress. (Ĉ12 = 0.997 for the linear v2– f and Ĉ12 = 0.988 for the correction.)

Visualization of the stresses in the duct quadrant confirms that this linear correction predicts spatial distri-
butions very similar to the DNS ones (Fig. 15). The model is the only one here tested which is able to predict
the spatial nonuniformity of â22 towards the side wall (Fig. 15b) and to correctly predict the sign and intensity
of â23 in the whole field.

The success of this model can be traced back to the ability of explicitly accounting for directions of
anisotropy in the flow. The model has been first designed using the plane channel flow prototype, in which the

term v
′2/k accounts for the anisotropy in the wall-normal direction, together with the vector ni , which is just

[0, 1, 0] for plane channel flow. Extension to multiple walls is rather trivial for the term v
′2/k, as v becomes

the normal velocity component with respect to the closest wall, whereas evaluating ni requires solution of a
Poisson problem.

The model is the most accurate among the ones here tested; nevertheless, the correction has only been
applied to simple geometries such as square and rectangular duct; therefore, its applicability to more complex
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Scatter plot of the anisotropic Reynolds stresses â+
12, â+

22 and â+
23 from v2– f model (a–c) and with the linear correction (22)

of Pecnik and Iaccarino [20, PI] (d–f), as a function of the DNS ones a+
12, a+

22 and a+
23 at friction Reynolds number Reτ = 1055.

Every 64th point is plotted. The dashed line indicates the axes bisector

(a) (b) (c)

(d) (e) (f)

Fig. 15 Anisotropic Reynolds stresses â+
12, â+

22 and â23 in a duct quadrant for the v2– f model (a–c) and for the linear correc-
tion (22) Pecnik and Iaccarino [20, PI] at friction Reynolds number Reτ = 1055

flows should be tested. Moreover, the method requires the computation of the directions of anisotropy ni

through the solution a Poisson problem, which needs to be solved as a preprocessing step.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 16 Correlation coefficient Ĉi j between anisotropic stress of RANS models âi j and DNS ai j , as a function of the friction
Reynolds number Reτ = [150, 227, 519, 1055] for different RANS models, a linear k–ε Launder and Spalding [11], b Nisizima
and Yoshizawa [19, NY], c Rubinstein and Barton [27, RB], d Shih et al. [31, SZL], e Craft et al. [2, CLS], f Spalart [32, QCR],
g linear v2– f Durbin [6] and h linear v2– f Pecnik and Iaccarino [20, PI]

3.4 Effect of the Reynolds number

We also consider the effect of Reynolds number on the correlation coefficient Ĉi j , for different RANS models
(Fig. 16). Contrarily to what observed for the exact constitutive relation in Fig. 3b, c, we find a more prominent
Reynolds number dependence for some RANS models. The correlation coefficient of the shear stress component
Ĉ12 is practically independent from Reynolds number for all models. On the other hand, an important Reynolds
number effect is observed on Ĉ22 and Ĉ23 for the model of Rubinstein and Barton [27], for which the anisotropic
stresses decorrelate from DNS as Reynolds number increases (Fig. 16c). This is probably an indication that the
model coefficients have been tuned on low Reynolds number data. We also find a milder effect of the Reynolds
number on Ĉ22 and Ĉ23 for the models of Craft et al. [2] and Spalart [32], but in these cases the correlation
coefficients tend to become independent from Reτ , as Reynolds number increases.

4 Conclusions

We use DNS data of square duct flow up to friction Reynolds number Reτ = 1055 from Pirozzoli et al. [21]
to carry out a priori tests of algebraic Reynolds stress models and assess their ability to predict turbulent
secondary flows. We perform a priori analysis of constitutive relations for eddy viscosity models which gives
us useful information on the maximum accuracy achievable for a given set of tensor bases.
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According to this analysis, the linear eddy viscosity hypothesis brings accurate prediction of the shear stress
component ã12, with a mean correlation coefficient with respect to DNS C̃12 = 0.998, whereas the normal and
secondary shear components are essentially decorrelated from reference data, C̃22 = −0.044 C̃23 = 0.313.
Moreover, we test all possible nonlinear bases combinations and show that optimal subsets always include
T (2) and T (5), in addition to the linear term T (1). Two tensor bases bring a fairly accurate representation
of the normal and secondary shear stresses, C̃22 = 0.911, C̃23 = 0.743. With three bases (C̃22 = 0.910,
C̃23 = 0.871) and four bases (C̃22 = 1.000, C̃23 = 0.938), we achieve exact or almost exact representation of
the normal stress and secondary shear stress.

Unfortunately, RANS models rely on additional assumptions on the coefficients G(n), leading to a reduced
accuracy compared to the one achieved with exact coefficients. The analysis of popular k–ε models shows
that only few of them are able to improve the prediction of â22 and â23 compared to the linear model, namely
the model of Craft et al. [2] (Ĉ22 = 0.643, Ĉ23 = 0.532) and of Nisizima and Yoshizawa [19] (Ĉ22 = 0.696,
Ĉ23 = 0.616).

Moreover, we assess the performance of the nonlinear correction of Spalart [32], based on two tensor bases.
Interestingly, we find that the model is as accurate (Ĉ22 = 0.635, Ĉ23 = 0.691) as the one by Nisizima and
Yoshizawa [19] using four tensor bases, but the QCR is closer to its maximum accuracy. A priori analysis of
nonlinear models based on Pope’s polynomial expansion shows that using three or four tensor bases could
potentially lead to very accurate prediction of the turbulent stresses, but this is difficult to achieve in practice
as the gain in tuning power is partially spoiled by the uncertainty on the additional model coefficients. Hence,
using a quadratic constitutive relation as the one proposed by Spalart [32] leads de facto to the same accuracy
of higher-order models.

We also carry out a priori analysis of the v2– f model, originally developed to overcome some of the

limitations of the k–ε model. The assumption ν̂t = cv
μv

′2T is more accurate than the one used by the k–ε

model, and it returns a slightly better prediction of the primary shear stress (Ĉ12 = 0.997 versus Ĉ12 = 0.988
for k–ε).

Particularly interesting is the linear correction of Pecnik and Iaccarino [20] to the v2– f model, as it shows
that representation of the normal stress and secondary shear stress does not necessarily require nonlinear
constitutive relations. The model is the most accurate in predicting the normal and secondary shear stress
(Ĉ22 = 0.984 and Ĉ23 = 0.844), but the correction does not use Pope’s theoretical framework and therefore
direct comparison with other nonlinear models is not possible.

DNS data and exact coefficients from Pope’s polynomial expansion are available at http://doi.org/10.4121/
uuid:3226d808-f354-47b1-b6f8-3a8048215193.
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