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Introduction

� Interconnect Prediction
• breaks repetitive design convergence 

loop
• helps in performing early feasibility 

studies

� A-Priori Prediction
• is done before placement stage
• is used to provide congestion map, 

wirelength metrics
• can be used for architecture evaluation



Scope of This Work

� A-Priori wirelength and interconnect 
prediction for island-style FPGAs

� Bounding box prediction for all wires
• Identifying important circuit characteristics 

which constrain placement
• Assumes that wirelength is minimized during 

placement

� Routing demand estimation
• Channel Width calculation

� No prior characterization of 
placement/router



Prior Work

� Rent’s Rule [TVLSI 2000, Bakoglu]

• Interconnect prediction builds models for architecture, circuit and 
placement

• Can calculate average/total wirelength, congestion etc.

� Sechen [ICCAD 87]

• Average wirelength of optimized placements 

• For all possible bounding boxes, enumerate all possible positions 
for sources and sinks to calculate average wirelength of the whole 
netlist

� Hamada et al. [DAC 92]

• Break down nets into cliques and perform neighborhood analysis 
on them

• Placement is considered a stochastic process

• Wirelength distribution is calculated

� Bodapati et al. [SLIP 00]

• Bounding box estimates using structural analysis
• Needs calibration of placement/router



Motivation

� Average wirelength is not sufficient
• Rent’s rule, Sechen and Hamada et al. 

report only these figures

� Individual wirelength is useful
• Logic synthesis, floorplanners

� Congestion metrics should be 
quantifiable
• Very important for FPGAs
• Channel Width requirements for routers

• To avoid the chicken and egg problem
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Definitions [CIRC - TCAD 98, TVLSI 02]

� Combinational level           

of a node is :

�

( )c x

( ) max( ( ’) | ’ ( ))  1c x c x x fanin x= ∈ +

max( ( ))cmax c x=

A

B

C

D

E

F

G

1

2

2

3

3

4

5

� Sequential level           

of a node is :

�
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� Shape : A vector
•

• For sequential circuits, the combinational shape vector in 
each level are concatenated back to back

0[ ]  ;  = number of nodes in level cmax iShape i c c c i= L

Shape[]={1,2,2,1,1}
Shape[]={1,2,1}{2,1}
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� Reconvergence

• Has multiple paths from      
to 

• is the origin of 
reconvergence

• is the destination of 
reconvergence

• Always contained within 
one sequential level

� Number of reconvergences

� Length of reconvergence
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Wirelength Estimation

� Wirelength of a circuit depends on
• Structural properties of the circuit
• Placement of the circuit

� Nets from Input pads usually feed more 
nodes than the other nodes
• Hence, classify the nets as logic nets and IO-

nets and treat them separately

� Wirelength of an individual net N will 
depend on
• Number of terminals – tN

• Interaction with other nets



Phase 1 - Minimum Span for Logic Nets

� Assume a net N is tightly placed. Wirelength is 
optimal when
• Source is placed in the center
• All sinks are tightly packed around the source

� Minimum span L is entirely dependent only on tN
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Phase 1 - Minimum Span for IO-Nets

� Input pads are placed along the periphery

� IO-Nets have many sinks usually, and the location of 
the Input pads cannot be guessed

� Assume the Input pad is in the corner of the FPGA
• Worst-case calculation of wirelength

� Tight placement of sinks around the pad

2 3 4 NL t+ + + + ≥L
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Phase 2 – Dilation of Nets

� Tight placement is always not possible
• Push and Pull from other nets are ignored

� Net N has no incident reconvergences => no dilation

� N has incident reconvergences => other nets pull the cells away => 
dilation

� Net dilation is based on reconvergences on its immediate 
neighborhood : source, sinks, fanin

� For any node that is an origin of any reconveregnce Rx*
, let the out-

weight be

the average length of all out-bound reconvergences

� For all node that is a destination of any reconvergence R
*y

, let the in-
weight be                    

the average length of all in-bound reconvergences
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Dilation Factor

� Raw weight of a node     is 

� Flip-Flops have many incident reconvergences, 

hence an adjustment w.r.to LUT-size  

� Dilation on a net N with vN as its source is

� Similar to flip-flops, IO-Nets have large weights, 

hence an empirical value for IO-Nets
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Phase 3 – Uniform Distribution

� Let p be the position in which Shape 

vector has the maximum value

� The nodes in this level are so many in 

number that they are expected to be 

uniformly distributed in the layout

• The nodes in this level are not 
connected to each other

• They are however strongly connected to 
the other nodes

� If a node has more than one such cell, the 

net will dilate more



Spread Due To Uniform Distribution

� SP = Set of nodes in the peak level

� = Minimum required FPGA size

� Construct a hypothetical grid which has only one 
cell from SP

� The hypothetical grid size is related to the FPGA 
dimension as 

� If a net N has some nodes in SP then the span 
must respect the uniform distribution assumption

� The uniformity factor is calculated as 

N

| ( ) |NU SP fanout v G= ∩ ⋅

G
SP

= N



Bounding Box Span of a Net
� The bounding box span of the net N depends 

on
• L    – the minimum span of the net
• – the dilation of the net due to reconvergences
• – the uniformity factor

� The horizontal span of the net N is

� The vertical span of the net is same as HSpan

� The total span of the net is
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Results for Wirelength Estimation
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Error in Span Vs Number of Nets
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Routing Demand Estimation

� We use RISA to calculate number of 

routing elements needed
• An empirical technique based on wirelength of 

nets with various terminal sizes
• The routing demand is based on two factors

• - an empirical factor dependent on tN

• Bounding Box Sizes

� The actual routing demand for a net N is 

calculated as

q

1 1
;

( ) ( )
N N
h vD q D q

HSpan N VSpan N
= × = ×



Definitions

� = Number of Logic Blocks 

� = Number of I/O blocks

� If the circuit is placed in the smallest 

possible device, its width (also height) is 

given as

� = Total Number of Routing Elements 

Needed

max( 4, )nIO=N= C

C

nIO

  N N
h v

N

TD D D= +∑

TD



Channel Width Estimation for
Pad Unconstrained Circuits

� Pad-Unconstrained Circuits
•
• TD routing elements are uniformly distributed 

across the device
• Channel width W is calculated as

=N= C

TD TD
W = =

×C N N

N=



Channel Width Estimation for
Pad Constrained Circuits

� Pad-Constrained Circuits
•
• Assume that all the logic blocks are placed in 

the center – consistent with modern placers
• However, TD routing elements should be 

distributed across the whole device
• Channel width W is calculated as

4nIO=N=

TD TD
W = × =

×
C

C N C N

N=C=



Experimentation - Other Methods Compared

� RISA [ICCAD 94, DAC 2002]

• Post-placement technique
• Add up demands for different sites in 

the layout and find the maximum 
channel width

� Yang et al. [ISPD 2001]

• Rentian Method
• Extended for FPGAs in [8]
• Recursive partitioning of circuit and 

layout
• Worst-case congestion analysis on the 

boundaries



Results for Channel Width Estimation
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Summary

� Identified some important circuit characteristics which 

dictate placement

• Push and Pull from reconvergences stretch wires
• Reconvergences capture more than the local 

neighborhood of cells
• 30% more accuracy with reconvergences factored 

in

� Bounding box prediction is accurate within 11.6% of 

post-placement lengths

� Channel widths are predicted within 6% of post-route 

results





Illustration of Bounding Box Calculation

Phase 1

Sinks are tightly 
placed around the 

source node

Phase 2

Node A has high 
reconvergence
weight. Pulled 

away from the net
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level and hence 
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Overview of Our Methodology

Reconvergence
Analysis

� Perform reconvergence analysis within different 
sequential levels

� Assign weights to nodes based on 
reconvergences

Bounding Box 
Estimation

For every net

� Calculate the minimum possible bounding box

� Find dilation factor using reconvergence weights

� Uniformly distribute peak nodes

� Calculate the actual span using these 3 factors 

Track Width 
Estimation

� Calculate the number of routing elements 
required using RISA for every net

� Calculate the total number of routing elements

� Distribute this routing demand evenly in the 
layout to obtain maximum channel width


