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,e popularity of more powerful and smarter digital devices has improved the quality of life and poses new challenges to the
privacy protection of personal information. In this paper, we propose a biometric recognition system with visual cryptography,
which preserves the privacy of biometric features by storing biometric features in separate databases. Visual cryptography
combines perfect ciphers and secret sharing in cryptography with images, thus eliminating the complex operations in existing
privacy-preserving schemes based on cryptography or watermarking. Since shares do not reveal any feature about biometric
information, we can efficiently transmit sensitive information among sensors and smart devices in plain. To abate the influence of
noise in visual cryptography, we leverage the generalization ability of transfer learning to train a visual cryptography-based
recognition network. Experimental results show that our proposed method keeps the high accuracy of the feature recognition
system when providing security.

1. Introduction

With the help of smartphones equipped with rich sensors
and high-bandwidth 5G networks and beyond [1], now we
can share information at any time and any place [2]. Face
images have been the most widely used perceptual infor-
mation transmitted on the Internet [3, 4]. With people
paying more attention to the privacy of personal informa-
tion, it has been a major concern for ensuring privacy in
these crucial services provided on public networks [5].
Traditional cryptography methods based on a password or
ID card have shortcomings including easy to forge, easy to
forget, and computation complexity, which prevents them
from widespread applications [6].

Visual cryptography (VC) [7, 8] (also known as k-out-of-
n VC) is a secret-sharing method aiming at images. It splits a
secret image into n shares. ,e threshold characteristic
makes it impossible to restore the secret image unless
stacking k, (k< n) or more shares together. ,e human
visual system (HVS) can recover secret information by
simply printing shares on transparencies and stacking them,

without any digital device. VC provides a simple and ef-
fective method for the distributed storage of feature data,
where there is no need to maintain keys in encryption.,ese
features of VC are particularly suitable for scenarios in a
limited-computing and untrusted networking environment.
VC eliminates the complex computation required by tra-
ditional watermarking or cryptography. However, recovery
images from a VC scheme (VCS) have poor quality and
expanding size [9].

In this paper, we propose a novel VC-based privacy-
preserving method during biometric recognition [10]. ,is
paper first constructs a VCS to avoid noise-like and
expanding shares. ,en, we distribute and store images with
VCS. Last, we use the transfer learning method [11] to learn
features from separated databases. Our contributions of this
paper are as follows:

(1) We construct a meaning VCS, where HVS can print
shares on transparencies and recover secret images

(2) We propose a secure storage method for biometric
features by the secret sharing of images

Hindawi
Advances in Multimedia
Volume 2022, Article ID 1057114, 7 pages
https://doi.org/10.1155/2022/1057114

mailto:zhang.denghui@foxmail.com
https://orcid.org/0000-0001-6366-5497
https://orcid.org/0000-0002-8452-5925
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1057114


(3) We keep the recognition performance of images
recovered from VC with the strong generalization of
transfer learning

,e structure of the rest of the paper is as follows. Section
2 provides helpful background on feature recognition and
improved VCSs. Section 3 describes our privacy-preserving
recognition model. Section 4 evaluates the performance of
our approach on two classic datasets. Finally, we summarize
our contributions in Section 5.

2. Related Work

2.1. Feature Recognition. ,e past decades have witnessed
the explosion of advances in feature recognition [12]. By
collecting massive samples with big data technologies, deep
neural networks (DNN) [13, 14] can use an artificial neural
network to directly give inference results.

Metric learning [15] is an emerging feature recognition
method that can verify whether two embedding samples
belong to the same identity or not. Authors [16] use a DNN
to transform a face image into a vector and then calculate
and compare the Euclidean distance between two vectors.
Directly using Euclidean distance is equivalent to consid-
ering the only intraclass distance. However, sometimes the
intraclass distance may be larger than the interclass distance.
To address the shortcomings of Euclidean distance, FaceNet
[17] used a triplet-based loss function to embed face images.
Minimizing the triplet loss function is both minimizing the
distance of similar samples and maximizing the distance of
nonsimilar samples at the same time.

To train amodel enhancing the discrimination of learned
features, Wen et al. [18] join supervision of center loss and
softmax cross-entropy loss as the loss function of neural
networks, thus significantly accelerating the convergence of
training models.

2.2. Visual Cryptography. VC is a (k, n) threshold scheme for
images. ,e simple decryption makes VC surpass other
cryptographic schemes based on cryptography or watermark
[19]. VC expands the application scenarios of secret sharing. It
has been an emerging research field in the field of image
cryptography since born in 1995 [9, 20, 21]. ,e conditional
VCS encrypts a secret image into shares pixel-by-pixel, hence
resulting in pixel expansion. It can eliminate pixel expansion
by mapping a block in the secret image into an equal-sized
block at the corresponding position of shares. ,rough
vertical arrangements and elaborately processing the corre-
spondence between the secret block and share blocks, we can
keep the size and obtain a higher contrast than previous
schemes. Another scheme keeping the size of recovery images
is the probabilistic VCS which firstly randomly selects a
column from a basis matrix and then distributes each pixel in
the column to the corresponding position of shares.

,e EVCS is also known as friendly VCS[22], which
issues the management difficulty caused by noise-like shares
in VCS. Ateni [23] proposed a general technique to im-
plement EVCS for any access structure by hypergraph
coloring. Due to the pixel-by-pixel encryption mechanism,

restored images remain the problem of pixel expansion. Lee
[24] proposed a novel algorithm of general access structures
to cope with the pixel expansion problem. Instead of the
traditional VC-based approach, this scheme first constructed
meaningless shares using an optimization technique and
then solved it by a simulated-annealing algorithm. ,en, the
method generates meaningful shares by adding cover images
into shares with a stamping algorithm. No computational
devices are needed for decryption in this scheme. However,
it is only appliable to black-and-white images and needs a lot
of time to generate shares.

To address the risk of leakage in biometric features, Jinu
[25] proposed a multifactor authentication scheme based on
VC and Siamese networks. However, the VCS adopted needs
a key to encrypt, which destroys the printable characteristic
of VC. Ross [26] preserved the privacy of face template data
through a trusted third party and EVCS. In this scheme,
shares for decoupling secret face data come from a group of
general face images. To improve the quality of restored
images, it may use up to 100 shares to encrypt a face image.
How to transmit these shares will be a large challenge.
Requiring huge storage blocks its application in many
scenarios. ,e accuracy of face recognition decreases be-
cause of the interference of VC or EVC in these schemes.

3. A Privacy-Preserving Biometric Recognition
System with Visual Cryptography

Combining feature identification and cryptography can
effectively build a secure feature recognition system. In this
section, we first present our novel EVCS to address the pixel
expansion and vulnerability of noise-like shares, and then we
use the proposed scheme to securely distribute face images
in separate databases. In the end, to keep the accuracy of face
recognition, we leverage the transfer learning method to
mitigate the quality degradation of recovery images.

3.1. Expansion-Free EVCS. In the traditional pixel-by-pixel
encryption of VC, there is a corresponding matrix collection
C0 and C1, for a white (w) or black (b) pixel in a secret
image. ,e matrix in C0 or C1 consists of n × m Boolean
values. When encrypting, we randomly select a matrix from
C0 or C1 and assign n rows of pixels of the matrix to the
corresponding n shares. Each row contains m subpixels
which are reinterpreted as recovery w or b pixel.

When superimposing enough shares, the secret pixel
becomes visible. ,e gray-level of a subpixel is proportional
to the Hamming weight (H(V)), which denotes the number
of black pixels in a combined vector V from basis matrices S0

and S1. ,e HVS interprets the recovery pixels as black if
H(V)≥ d and as white if H(V)< d − am, where a (contrast)
is the difference of H(V) between the white pixel and black
pixel in the recovery image and m is the pixel expansion.,e
a and m are two important parameters that govern the
quality of reconstructed images. For a VCS, we would like a

to be as large as possible, and m as small as possible (close to
1). A VCS has to satisfy the following three conditions to
keep security and validity:
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(i) For any matrix S0 in C0, H(V)< d − am is satisfied
when overlaying any k of n row vectors in S0

(ii) For any matrix S1 in C1, H(V)≥d is satisfied when
overlaying any k of n row vectors in S1

(iii) For any subset with q, q< k rows, rows overlaying of
q × m matrices are indistinguishable, which implies
the black-and-white pixels in combined shares have
a uniform probability distribution

Conditions (i) and (ii) make images visible when
overlaying. ,e condition (iii) implies that fewer than k

shares cannot gain any information about the secret pixel.
Taking the (2, 2)-VCS with two participants for example,

if the pixel arrangement held by the other participant is
complementary to itself, all black pixels will appear, while if
pixels held by the other are the same as itself, it will generate
half black and half white gray pixels after superimposing. ,e
proportion of black-and-white pixels in each share is fixed, so
it will not reveal any information about a secret image.

,e disadvantage of VC is that generated shares are
meaningless noisy-like images. Although such images will
not reveal any information about secret images, they will
increase the burden of management and pique the interest of
attackers. If these images are tempered by malicious at-
tackers, it is difficult to detect.

,e difference between VCS and EVCS is that EVCS has
to take into account the color of shares besides the secret
image we want to get [27], hence we can see n + 1 meaningful
images in an EVCS. Table 1 shows collections for traditional
(2,2)-EVCS and recovered subpixels, where the gray-level 1(0)
denotes a white (black) pixel (w, b). Each secret pixel is ex-
panded to 4 subpixels in the EVCS (m � 4). Only when
enough participants show held shares can the secret images be
restored. For example, if the pixel is black in the secret image,
black in Share1, andwhite in Share2, the share subpixels will be
selected from the third row and second column of Table 1,
that is, the [0 1 0 0] and [1 0 1 0] subpixel blocks. After
superimposing the two rows, we get a subpixel with four black
pixels. ,e subpixel blocks [0 1 0 0] and [1 0 1 0] may also
appear in other basis matrices (e g., Sbb

b and Sww
w ), hence the

secret information is not exposed in the cover images. When
encrypting a black secret pixel, regardless of which basis
matrix is selected to generate the corresponding subpixels, we
can obtain a whole black subpixel block ([0 0 0 0]), while for
white secret pixel, we can only obtain a subpixel block with
three black pixels and one white pixel ([1 0 0 0]), which is
interpreted as a white pixel in the recovery image, hence the
recovery pixel shows a contrast of 1/4 (three white pixels are
lost). It can also be verified that for the (2,2)-EVCS, the
contrast values of the covers image also are a � 1/4. Nomatter
which basic matrix we choose, the white pixel in Share1 or
Share2 is represented by a subpixel with two black pixels and
two white pixels, while the black pixel is represented by a
subpixel with three black white pixels and one black pixel, so
the contrast in cover images is 2/4 − 1/4 � 1/4.

To eliminate the pixel expansion problem in the tradi-
tional EVCS model, we can use the block-wise operation
instead of pixel-by-pixel encryption [28]. We first divide a

gray-level image into n nonoverlapping black-and-white
pixel blocks Bi, Bi ∩Bj � ∅, for1≤ i≠ j≤ n. Bi and half-
toned blocks Bh are the same in size. ,e number of black
pixels in Bi and Bh must satisfy the following:
bBi � sl/(sb + 1) × (sl − Bi/255), where sl denotes the size
of candidate black levels, bBi denotes the gray-level of cover
blocks, and sb denotes the block size. To meet the security
requirement of VC, the contrast of black-and-white blocks
cannot be any, which results in contrast loss after halftoning.

We reinterpret the image blocks as white and black pixels
based on the original EVCS. For example, for the (2,2)-
EVCS, we will dither a secret gray-level block into the closest
equal-sized pixel block with 3 or 4 black pixels and dither a
cover block into the closest equal-sized pixel block with 2 or
3 black pixels. If the encryption block has three black pixels
(e.g., [1 0 0 0]) and cover blocks have two black (e.g., [0 1 1
0]) and three black pixels, e.g., [0 1 0 0], respectively, then we
will set cs to w and ch1, ch2 to w, b. ,erefore, we will select
Swb

w as the basis matrix and randomly permuting all columns
of Swb

w to obtain the collections C. At last, we select a matrix
Cp from C and dispatch each row of Cp to the corresponding
blocks in sharei, i ∈ [i ∈ 1, . . . , n].

After processing the secret image by the limited half-
toning, we can reuse the underlying EVCS directly to en-
crypt the secret image into meaningful share images without
pixel expansion. Ateni [23] et al. describe a general con-
struction method for EVCS in detail.

3.2. -e Recognition of Face Images Recovered from EVC.
In this section, we will propose a new embedding method for
VC-recovered images to maintain high accuracy in feature
identification. Although the proposed EVCS solves the
problems of size expansion and noise-like shares, it still
cannot achieve perfect image restoration. For existing fea-
ture identification methods, the use of VC can alleviate the
leakage of centralized storage of template data, but it will also
mix noise into sample images, which will reduce the per-
formance of feature recognition.

Witnessing the recent success of DNN, we hope to use
these methods to solve the problem of noise interference
caused by the introduction of VC in feature identification
[6]. Figure 1 shows the flowchart of the proposed approach
for distributing and matching face images. In a high-pre-
cision neural network model for face images, the face data is
converted into the corresponding weights in the network.
Using transfer learning [29], we can extract and transfer
these weights to other neural networks (e.g., reduced images
mixed with noisy signals). Transfer learning allows sharing
the learned model parameters and structures to a new model
in a specific way, thus speeding up and optimizing the
learning efficiency of the model and avoiding learning from
scratch. We first train a softmax classifier on the training
data using a pretrained neural network model and then fine-
tune the weights of the last layer or layers using a dataset
recovered from EVCS. To avoid affecting learned weighted
when training, we freeze the pretrained model and add
multiple fully connected layers at the end of the network.
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After embedding reduced images, we select a loss function to
efficiently obtain a high-precision model. When used as a
classification task, the model selects the most similar image
class ID in the training set to the test image as the output.

In deep learning, many methods use pairs of samples to
compute gradient loss and update model parameters [15].
We use the triplet loss [17] gradient optimization in the face
recognition system. Although center loss [18] may have a
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Figure 1: ,e flowchart of the proposed approach for distributing and matching face images.

Table 1: ,e collections for (2,2)-EVCS example and the recovered subpixels.

Secret pixels Recovery subpixels
White pixel (1) Black pixel (0) White pixel Black pixel

Basis matrix

Sww
w �

0 1 1 0
1 0 1 0 , Sww

b �
0 1 1 0
1 0 0 1 

1 0
0 0 

0 0
0 0 

Swb
w �

0 1 1 0
0 0 1 0 , Swb

b �
0 1 1 0
0 0 0 1 

Sbww �
0 0 1 0
0 1 1 0 , Sbwb �

0 1 0 0
1 0 1 0 

Sbbw �
0 0 1 0
0 0 1 0 , Sbbb �

0 1 0 0
1 0 0 0 

4 Advances in Multimedia



faster convergence rate, triplet loss is more robust for image
quality degradation. ,e basic idea of triplet loss is to make
the distance between negative sample pairs larger than that
between positive sample pairs. In the training process,
positive sample pairs and negative sample pairs are selected
at the same time, and the anchor of the positive and negative
sample pairs is the same. Choosing which triplets to train is
important for achieving good performance. When the dis-
tance between the negative sample and the positive sample
pairs is greater than a threshold, the model sets the loss to 0
and ignores the sample pairs. Because the distance between
positive and negative samples and anchor points is con-
sidered at the same time, the performance using triplet loss is
often better than that of contrastive loss [30].

To protect the privacy of sensitive biometrics, we de-
compose the original image into two or more meaningful
images. ,e similarity calculation of samples is realized as

L � max (d(a, p) − d(a, n) + margin, 0). (1)

,e triplet loss minimizes L, then
d(a, p)⟶ 0, d(a, n)⟶ margin. ,e goal is to shorten the
distance between a and p and lengthen the distance between a

and n. For the case L � 0, that is, d(a, p) + margin< d(a, n),
this is an easily discernible triple and does not need to op-
timize, because a and p and a and n are far apart; for the case
d(a, p)<d(a, n)<d(a, p) + margin, the triples are in the
fuzzy region. ,is case is the focus of our training.

,e same deep neural network is used to extract the
features of these three images to obtain three embedding
vectors, which are input parameters of triple loss.,emodel is
updated by using a backpropagation algorithm according to
loss and iterated until a stable neural network model is ob-
tained. When inferring samples, we first generate triplet

image pairs and then output the distances between anchor,
positive, and negative embedding [31]. After transforming the
distances into probability models, we can get desired results.
During the registration process, we decompose the private
face data into two or more meaningful images. After dis-
patching shares, the system discards the original data. ,e
encrypted face data are stored in two or more database
servers. Unless these servers collude, the private data will not
be revealed to any server. In the authentication stage, the
feature recognition system sends requests to database servers
to transmit corresponding shares to it. Once finishing the
classification recognition or similarity matching task, our
system will discard the reconstructed secret image. In the
whole registration and recognition process, the secret image
will be only recovered in use. Because private biometrics
cannot be extracted from any single database or server, the
whole authentication does not reveal any feature information.

4. Experiments and Results

In this section, we first evaluate the effectiveness of the
proposed method.We select the TensorFlow [32] framework
to develop the Siamese network [31] model and the test
application using Python rapidly.

Table 2 shows a triple example in the IMM dataset [33].
Every embedding has three input images, which are anchor,
positive, and negative images, respectively. ,e proposed
EVCS keeps the image size before and after encryption. All
images are 640 × 480 in size.

Figure 2 shows the encryption time comparison between
our and Lee’s [24] schemes for three images from the IMM
dataset. When encrypting one image, we selected two other
images separately as cover images. It can be seen that Lee’s
method took a lot of time in the encryption process, which

Table 2: ,e decomposed shares and decrypted images for one embedding.

Type Secret image Share1 Share2 Decrypted image

Anchor

Positive

Negative

Advances in Multimedia 5



was 10X that of our method. It is because Lee’s method
developed a complex simulated-annealing-based method to
generate an optimized arrangement when encrypting the
cover images, while our algorithm can directly obtain the
encrypted pixels for each share from the base matrix. So, the
encryption performance of our algorithm is better.

We further test the recognition system on the IMM and
LFW datasets. We choose ResNet18 [14] as the backbone
network and use pretrained weights from the ImageNet [34]
dataset. ,e IMM Face Database comprises 240 still images
of 40 different human faces. LFW (Labeled Faces in the
Wild) [35] is the de-facto benchmark for face verification,
also known as pair matching. ,e dataset contains more
than 13,000 labeled images of faces collected from the web.
1680 of the people pictured have two or more distinct photos
in the dataset.

Table 3 shows the performance including accuracy,
precision, recall, and f1-score of our networks on IMM and
LFW datasets for normal and images recovered from the

proposed EVCS, respectively. Because the normal data is
unencrypted, the recognition performance is higher. For the
dataset recovered from the proposed EVCS, the recognition
performance is lower than that of normal data because the
image is lossy. However, this experiment shows the trained
model can archive results of more than 0.92 on all metrics,
which implies we can still keep the inferred performance of
the trained model when securing face images.,e reason the
metrics on the LFW dataset are lower than IMM is that the
face consists of more complex patterns. ,e proposal pro-
cesses every pixel in the face image one by one while pre-
serving the gray-level density. ,is transformation
corresponds to adding a global white noise to the image,
which does not destroy the features and patterns in face
images, so it does not affect the final prediction accuracy.

5. Conclusions

With the development of next-generation networks and smart
devices with rich sensors, it is convenient to sense and transmit
images anytime and anywhere. ,ere is an urgent need to
protect the security and privacy of easily collected information
and efficiently transfer them in untrusted networks. In this
paper, we propose a novel feature recognition method taking
advantage of VC and use transfer learning to improve the
recognition system. ,is proposed method eliminates the
complex computation in traditional cryptography. To solve the
problems of pixel expansion and noise-like shares in VC, we
propose a novel EVCS to keep the size of recovered images by
block encryption before and after encryption. We further
utilize the strong generalization ability of transfer learning to
eliminate the interference of noise for images recovered from
EVCS.,e experimental results show ourmethod can keep the
high accuracy of feature recognition when preserving privacy.

In future work, we will combine VC with other methods
like QR codes to provide richer forms for the transmission of
private images. We will also test the performance of the
proposed method in other biometrics such as fingerprints
and voiceprints to verify its popularity.
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