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Abstract—Nowadays the booming demand of big data analytics and the constraints of computational ability and network bandwidth

have made it difficult for a stand-alone agent/service provider to provide suitable information for every user from the large volume

online data within the limited time. To handle this challenge, a recommender system (RS) can call in a group of agents to collaborate to

learn users’ preference and taste, which is known as a distributed recommender system (DRS). DRSs can improve the accuracy of a

traditional RS by requesting agents to share information with each other. However, it is challenging for DRSs to make personalized

recommendations for each user due to the large amount of candidates. In addition, information sharing among agents raises a privacy

concern. Thus, we propose a privacy-preserving DRS in this paper, and then model each service provider as a distributed online

learner with context-awareness. Service providers collaborate to make personalized recommendations by learning users’ preferences

according to the user context and users’ history behaviors.We adopt the federated learning framework to help train a high quality

privacy- preserving centralized model over a large number of distributed agents which is probably unreliable with relatively slow

network connections. To handle big data scenario, we build an item-cluster tree to deal with online and increasing datasets from top to

the bottom. We further consider the structure of social network and present an efficient algorithm to avoid more performance loss

adaptively. Theoretical proofs show that our proposed algorithm can achieve sublinear regret and differential privacy protection

simultaneously for service providers and users. Numerical results confirm that our novel framework can handle increasing big datasets

and strike a trade-off between privacy-preserving level and the prediction accuracy.

Index Terms—Recommender system, differential privacy, online learning, federated Learning, big data, distributed and scalable

model, cloud computing, mobile edge computing.

✦

1 INTRODUCTION

1.1 Motivation

A Recommender system (RS) can understand users’ pref-
erences and recommend desirable items to them. As

users’ tastes vary with patterns, humans tend to receive the
items similar to those they have shown interests before as
well as the ones that other similar behavioral person likes
[1]. As a result, the massive increasing data in the form
of remarks, ratings, reviews, ranks, complaints, opinions,
claims, and features about items (product, device, event,
and service) on the web can be used for making correct
decision and recommendation. These information often con-
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tain historical feedbacks from distinct users and the related
similarities between items and users. If published, it is
extremely beneficial for big data analysts to design effective
data mining and machine learning approaches. However,
they are usually sensitive and private, the direct releasing of
which might throw threats on the safety of users and service
providers resided in the RS. To achieve a balance between
the reasonable uses of data information and users’ privacy,
policymakers must apply some of the most fundamental
concepts of privacy law [2], and this is specially important
for the big data technologies upon the development of RSs.

During the big data era, data information is usually
massive, heterogeneous and evolves over time from dif-
ferent sources. The term “Big Data” is usually shown by
4V dimensions: Volume, Variety, Velocity, and Veracity [3].
In a RS, volume is encoded by the massive amount of
data used to generate recommendations. Variety means data
are extracted from different sources (e.g., blogs, Facebook,
Twitter). Velocity stands for the speed of data generated
online. Due to data volume, it becomes gradually hard for
RSs to find useful and suitable information for users, and
so does the other three dimensions. Hence, a RS with big
data support aims to assist users to make beneficial choices
from lots of alternatives is highly desirable. In addition, due
to the variety of big data, it is hard to satisfy the tastes
of all kinds of individuals. Thus, a RS should be able to
provide personalized recommendations to different types
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of individuals. Furthermore, considering the velocity of big
data, the computational and bandwidth constraints caused
by the high volume of data prevent a stand alone service
provider accessible to all the useful information (e.g., the
information possessed by its competitive service providers).
Therefore, to promote total performances, service providers
are more willing to obtain low-rate information shared by
other service providers. We can establish an online social
network of service providers (agents) to achieve this goal,
since online social network can allow a large scale of dif-
ferent agents to cooperate and coordinate [4]. This kind of
RSs are known as distributed recommender systems (DRSs)
[5], where a group of agents cooperate to discover relevant
information and predict user behavior. However, the study
on DRSs is an emerging and immature field. To stimulate
our ideas, we provide a compelling and forthcoming reality
application as follows.

Mobile edge computing (MEC), as an emergent technol-
ogy, allows the computing services to be conveyed to edge
nodes in the mobile social networks controlled by mobile
base stations [6]. The architecture of MEC constitutes geo-
distributed and inter-connected edge nodes that equipped
with servers and storage units. Mobile users will offload
their heavy computation tasks into the edge nodes. Users
mainly send service request encoded as contexts to edge
nodes. Their frequent requests of social and media services
call for caching functionality in the edge nodes. So, a DRS
is inherently necessary. The edge nodes support uploading
new social and media data (items) into its storage units.
Privacy is also a core concern among edge nodes and mobile
users. Plus, much information is shared among edge nodes
controlled by a central trusted system which ensures the
security protection of designed distributed system. To tackle
all these issues, authors in [42] point out that federated learn-
ing can be used as an operating system for edge computing.

In summary, DRS is promising to improve the recom-
mendations performance. However, as we can see in the
related work section that seldom data mining and machine
learning algorithms could fully support the 4V dimensions
of big data. Furthermore, the privacy issue is now becoming
a widely concern for distributed systems (e.g., [7], [8]).
Hence, it is an urgent research topic for DRSs. On the one
hand, agents can share information to get mutual benefits.
An agent in the online social networks can be any individual
or company who can provide a useful service. For example,
in products selling systems (e.g., Amazon and Taobao),
different companies can help each other to sell products.
Agents can obtain much greater rewards through such coop-
eration. On the other hand, directly releasing such sensitive
information raises both agents’ and their users’ privacy con-
cern. Therefore, we are necessary to consider two different
privacy leakages: users’ background information (context)
and agents’ item repository. The challenge herein can be
concluded as: how to build a DRS with big data support
which can make personalized recommendations, and how
to guarantee the utility of information without disclosing
the privacy of individuals and agents.

To solve the aforementioned issues, we design a con-
textual distributed online and privacy-preserving big data
processing framework based on the tree structure, in which
most connected agents can incorporate to make person-

alized predictions on the information sharing network by
deploying privacy-preserving mechanism. Then we let a set
of agents connected mutually by a fixed network. And each
agent experiences inflows of users into its server/platform.
Once the agent receives the arrival of certain user, it will
recommend an item from its own database to the user.
Technically, our proposed social DRS is based on contextual
multi-armed bandit (CMAB) [45]. And CMAB measures the
level of uncertainty and estimated performances of each arm
(or item) by setting a related variable, produced according to
the historical records and updated at every round. Then, it
chooses items with the highest reward at every round based
on historical feedback of selected items.

1.2 Related Work and Technical Comparison

Our work belongs to social recommender systems. Generally
speaking, RSs deploy either content filtering approach [15]
or collaborative filtering approach [16]. The content filtering
approach establishes a profile for each user and item. How-
ever, this kind of profiles might be difficult to collect [14],
[15]. The collaborative filtering approach relies merely on
past user behavior, which results in cold start [21] problems
when there are few historical records [16], [17], [19].

Nowadays, the lack of big data analytic technologies has
become another challenge for RS. Representive traditional
RSs based on users’ social profile and relationship are in
[18], [22]–[24]. However, almost all of them do not support
extremly large datasets in both users’ and items’ categories.
Although a recent such solution is shown in [25], it does not
support dynamic incoming online data and changing users’
contexts. All these challenges make classic recommender
approaches infeasible in many practical scenarios.

The Multi-armed Bandit (MAB) method, as a promis-
ing solution, can achieve the vital exploration-exploitation
trade-off in RS to promote performances. A plethora of
works have been done on MAB algorithms [26]–[29], [53].
Some of them have focused on DRS [27]–[29]. For instance,
Buccapatnam et al [27] present a RS by utilizing an online
learning approach with UCB1, in which agents can share
with each other to improve the accuracy for predicting
on fixed-size and small-scale datasets. The identificaiton of
applying MAB in the big data analytics is originated from
the work [11], where the proposed UCT algorithm is based
on the UCB1 and Monte-Carlo Tree Search (MCTS) and it
can cope with potentially infinite many of arms. Works [12],
[13] are representative progresses. However, all of them are
not context-awareness which limit their applications in RSs.

Lots of previous works [26], [28], [29] have discussed
about CMAB. For example, Cem et al [28], [29] introduce a
DRS to achieve predictions based on personal demands for
with a fixed size of item set. However, the proposed context
partition approach is static that will cause massive compu-
tational complexity if it works in the large-scale dataset.
Therefore, for big data analysis, it is clearly not practical.
So Song et al introduce a RS which can partition context
adaptively [26] for a single agent. However, the item-cluster
tree is built from bottom to the top, that completely restrains
the number of items. Therefore, it can not handle big data
analysis, too. Additionally, the one-agent RS [26] can not
deal with big data from decentralized or multimedia re-
sources.



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2936565, IEEE

Transactions on Knowledge and Data Engineering

3

In our problem, we adopt the basic idea of MCTS,
which can be used to analyze the item subspace rather
than a single item to solve the problem of ever-increasing
(and approaching infinite) item space size. To handle big
data scenario, we propose an item-cluster tree structure
that can expand these item-clusters adaptively from top to
bottom instead of from bottom to up over time [26]. Our
top-to-bottom structure supports recommendation on large-
scale and increasing datasets, since all agents make recom-
mendations on an item-cluster level rather than a single
item level [26]. As a result, the component in the tree is
scalable for all the agents which achieves big data analysis.
Additionally, due to the dynamically expanding item-cluster
tree, our approaches can support increasing datasets in real
applications, while others [18], [22]–[24], [26], [28], [29],
[38] cannot. We can model the selection of a child node in
the cover tree we built every round as an MAB problem
independently. However, comparing to [11]–[13], we have
devised an adaptive context space partition model in our
CMAB model with context-awareness. It evolves over time
to guarantee that agents can explore current arriving user’s
context based on corresponding data of previously arrived
users with the most similar contexts. Thus, it provides up-to-
date personalized item recommendations. Furthermore, we
utilize a threshold technique (detailded in Section 3.1) from
[48] in our CMAB model to obtain the best online learning
regret performance to date. In addition, our algorithm is a
distributed framework that explores the agent cooperation
and network structure (detailded in Section 4) to greatly
improve the learning performance in the DRSs.

When it comes to the privacy-preserving problems in
DRSs, the application of anonymity is wide and useful [34].
But in fact, common anonymity algorithms may impact
potential utility of big data in high dimensions [24], [32],
[33]. Furthermore, because of anonymity, users will be re-
confirmed once adversaries collude mutually or auxiliary
information is accessable [31]. Additionally, some existing
algorithms often utilize cryptography [37] to ensure pri-
vacy not attacked. Although these approaches can guaran-
tee security, they often lead to high communication costs
and computation complexity that affects big data analysis
greatly. Differential privacy (DP), as a promising technology,
can deal with the problems of privacy issues [9], has been
utilized in RSs in several researches. It is not required in DP
for the adversaries’ background information. Then DP only
obtains related query results given by the database manager
are not sensitive to changes (deletions or insertions) of
individual data entries. That is to say when users’ published
data satisfies DP, while other attackers request the database
manager with some tools helping data analysis, and the
request results will be nearly similar even the user’s records
are not stored locally. Therefore, the users’ privacy cannot
be inferred and DP when applied in large-scale datasets [10]
has a slight influence on the prediction accuracy. As a result,
applying DP with BDA methods can guarantee both privacy
and prediction accuracy. In this paper, we adopt DP as
our privacy-preserving strategy. In [38], DP is applied to
recommend tasks in a social graph. But [38] considers the
social connections between agents in the social network and
private information of users’ preference, and we fcous on
the privacy of users’ context and agents’ item repository.

To obtain scalable and reliable distributed solutions, we
adopt the federated learning framework [41] in our setting to
train a centralized model efficiently when the training data
is distributed on lots of agents each with relatively slow
and unreliable network connections. Federated learning is
a very recent and promising research direction in artificial
intelligence research under the “General Data Protection
Regulation” [43], see its detailed concepts and applications
in [42]. It main idea is to keep a centralized model at cloud
or trusted third party (TTP) (or curator), and the changes
are summarized by each local agent as a small focused
update to the curator using privacy-preserving communi-
cation scheme. At the same time, the curator immediately
averages the changes with other agents’ updates to promote
the shared model. All the training data remains on the local
agent, and no updates are stored individually in the curator.

In this paper, we apply DP to provide an overall privacy
guarantee on the model being trained from user data located
at each agent. Using the idea of federated learning, each
agent will deploy a Laplace mechanism to train the histor-
ical records [35] locally. When a query for shared informa-
tion from its one-hop neighbors arrives, the TTP forwards
the request to them and keep the privacy by deploying
an Exponential mechanism [36]. The TTP only keeps an
overall privacy-preserving tree-based learning model, and
the overall prediction on TTP is generated by combining the
individual predictions of this ’ensemble’ of local models.
Hence, it is a scalable solution for large-scale distributed
network scenarios. Different from traditional approaches
by adding noise to each related record, which will lead
to great distortions, we introduce an adaptive binary tree-
based noise aggregation method to guarantee DP and avoid
the performance loss simultaneously. Furthermore, agents
provide online learning results based on users’ preferences
with an Exponential mechanism. Furthermore, our theistical
proofs confirm that our method can ensure DP of users’ sen-
sitive personalized contexts and agents’ shared information.
Additionally, we take the impact of the network structure
into account.

1.3 Contributions

Our contributions are as follows:
1) We propose a privacy-preserving federated online learn-

ing algorithm with context-awareness for DRSs which sup-
ports big data. Specifically, the “Veracity”, “Variety” and
“Velocity” (besides the basic “Volume” features) of the big
data “4V” dimensions and the key issue of “privacy“ in the
social DRSs are well addressed for the first time as a whole
solution in our proposed framework.

2) The DRS partitions users’ context space adaptively
to make personalized recommendations. Numerically ex-
perimental results demonstrate that our proposal can sup-
port real-world increasing big datasets and outperform
other state-of-the-art privacy-preserving schemes and on-
line learning methods.

3) By defining rigorous attack models and the Expo-
nential and Laplace mechanisms into DRSs, our algorithms
can converge to the optimal strategy and guarantee privacy
protection over time.

4) We introduce federated learning in our privacy-
preserving DRSs, which progressively updates only one
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Fig. 1: System Model.

centralized model residing in the TTP. It provides smarter
models, less power consumption and lower latency as well
as ensuring privacy, which is suitable for unreliable and
relatively slow network connections with superb scalability.

5) By exploring the network topology, it is an adaptive
algorithm with the structure of online learning social net-
work, which can accelerate learning speed and reduce the
performance loss extensively.

The paper is organized in the following. Section 2 for-
malizes the problem. In section 3 and 4, we propose our
algorithms and give our detailed theoretical analysis. In
Section, simulation results are showed. Section 6 concludes
the paper.

2 PROBLEM FORMULATION

2.1 System Model

As shown in Fig. 1, our tree-based online learning privacy-
preserving and contextual distributed framework consists
of basic components as follows: agents, items, users, trusted
third party.

Agents. We model the agents as distributed nodes in
a graph firstly. Then we denote the set of agents as W =
{1, 2, · · · , |W |}, connected in a fixed network defined as a
graph G = (W,E). And E represents the set of edges. Then
we denote all the connection between agents as a adjacency
matrix e(x, y)x,y∈W ∈ {0, 1}. If e(x, y) = 1, e(x, y) ∈ E,
x is y’s one-hop neighbor. In Fig. 2, we can observe
e(1, 2) = e(1, 3) = e(3, 4) = 1. An agent can be a service
provider in practice. For instance, a video service provider
could offer more suitable videos to their users by sharing
different video web applications.

Items. Each agent processes massive items in its repos-
itory. Each item is featured as a di-dimensional vector,
and we denote every entry of the vector as one feature
of a certain item. And the item feature vector is extracted
from a di-dimension space I , then each dimension of it
demonstrates one feature of the item.

Item-cluster Tree Structure. To handle big data scenario,
we create a binary item-cluster tree structure SI for item
space I . It can diminish the scale of analyzed items every
round for each agent in the networks. The item-cluster tree
SI can expand infinitely and we denoted the ith node at
depth h as (h, i). Furthermore, we constrict the index i of
nodes at depth h between 1 and 2h. Obviously, (h+1, 2i−1)
and (h+1, 2i+1) are the left child node and right child node

of (h, i), respectively. Then in SI , each node represents an
item-cluster. For instance, as Fig. 2 shows, the root node
(0, 1) covers I , but its right child (1, 2) and left child
(1, 1) cover two different item subspaces of I measured by
dissimilarity function Di with same size. The depth of tree
SI is denoted asH = max(h,i)∈SI h, and we define the area

connected with cluster (h, i) as AI
h,i, which satisfies some

conditions: ∀h ≥ 0,1 ≤ i, i′ ≤ 2h, AI
h,i ∩ A

I
h,i′ = φ,AI

h,i =

AI
h+1,2i−1 ∪A

I
h,2i+1.

Specially, our proposed item-cluster tree structure can
recommend items based on the cluster level, which reduces
the time complexity greatly. Compared to other methods
which recommend items on a single item level, we can
reduce the cost of obtaining appropriate items from O(n)
to O(log n) using our approach.

Users. Considering a time-slotted system, users arrive
sequentially at each agent with his/her context. Each user’s
context in C is featured by the context vector c. Each user
context vector is extracted from a dc-dimensional context
space C, and every dimension of the context vector repre-
sents a related feature.

Adaptive context partition. Each subspace of C is modeled
as a dc-dimensions hypercube whose side length is k−m,
and m means the level of context subspace. Then the depth
of context space is defined as L = maxP∈C mP , where P
is a subspace in C and lP means the level of P . Because of
dynamically increasing online dataset, we define a threshold
for each context subspace to control its partition. When the
number of context exceeds the threshold, we will partition
this context space and the hypercube’s each side is divided
into k uniform parts (more details in next section) after the
partition. Without loss of generality, we normalize k = 2
and C = [0, 1]dc for convenience.

Trusted Third Party (TTP). In order to prevent vulnera-
ble behaviors impacting the DRS, we define the trusted third
party (TTP) to handle it as shown in Fig.1. For example, the
TTP in the MEC should be a selected trusted edge node
(agent) or the main cloud in the hierarchical architecture,
which would meet the latency requirements for mobile
applications. We make training of the DP contextual tree-
based model built at agents’ servers to collaborate at the
server site of TTP to build a global federated learning model.
The training process of such a global federated learning
model at each round usually contain the following four
steps: 1) agents locally compute the contextual tree-based
model and send the DP results to the server in the TTP; 2)
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TTP performs secure aggregation of only models without
learning information about any agent; 3)TTP send back
the aggregated models to agents; 4) agents update their
respective model with the DP results.

As noticed, the only responsibility of TTP is to provide
the privacy-preserving federated learning model. In addi-
tion, when an agent requests information shared by its one-
hop neighbors, the TTP will help add some Laplace noises
on related information, then send the related average value
which are conveyed back to current agent, but TTP does not
store any data in its server. Tasks such as calculating the
Φ-value in the accuracy prediction phase, recommending
items in the item recommendation phase and training the
local DP contextual tree-based model are accomplished in
each agent’s side. When an agent does not share informa-
tion, the circle of executing the online algorithms is solely
completed on itself. Furthermore, we assume that the TTP
is trusted fully, so its privacy leakage is not included in our
model.

Considering a system with the running rounds of our
algorithm n ∈ {1, 2, · · · }, a user with current context infor-
mation arrives at each round. Let tn represent the beginning
time of round n, with the index of the agent, we can
identify each item, user, and user’s context information and
reward uniquely under this absolute time. And at round n,
we introduce ua(tn) and ca(tn) to represent the user and
context information arriving at agent a ∈W . Let ra(tn) and
ia(tn) be the obtained reward and selected item at current
round. In Fig. 1, the workflow of our system consists of four
phases, and which are demonstrated from a single agent’s
perspective as follows.

i) Strategy Adaptation: Initially, our system determines
whether or not an agent needs to tend for other agents
for help based on its prior performance. If agent a has
recommended an item that causes bad reputation (low
empirical reward) for ua(tn−1) in the prior round, then
agent awill request for information sharing with its one-hop
neighbors through TTP. However, these attackers can easily
infer the repositories according to the related information.
Furthermore, each agent manages to protect its repository’s
privacy from other agents (competitors). This is because
some items may bring large benefits but others only cause
serious budget deficit. Therefore, the shared information
is usually released utilizing a Laplace mechanism, which
ensures the privacy of agents’ repositories.

ii) Performance Prediction: In the accuracy prediction
phase, at round n, a user ua(tn) with context ca(tn) arrives
at the agent a; then, the agent learns the preference of ua(tn)
based on some historical data from the users whose context
information is similar to user ua(tn). It computes and learns
the performances of each item cluster in its own item-
cluster tree and predict each cluster’s related performances
according to Assumption 1 in subsection 2.3.

iii) Item Recommendation: In the item recommendation
phase, agent a recommends an item ia(tn) to user ua(tn)
based on the prediction in the accuracy prediction phase.
However, as will be mentioned in next subsection, there
are attackers which tend to expose user’s sensitive context
(e.g. gender, location, income level, etc.), by observing the
recommended item to the user. An individual in the real
world completely can be identified if these sensitive infor-
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(2,1) (2,2) (2,3) (2,4)

(h,i)
Selected item

Item in cluster

Selected item cluster
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h = H(n) 

h = 1 

h = 2 

h = 3 

Fig. 2: Item-cluster Tree.

mation are exposed. Thus, the agent uses an Exponential
mechanism to recommend the suitable item instead of di-
rectly recommending, which may obtain the highest reward.
Then, the TTP obtains a true reward ra(tn) based on the
behaviors/feedbacks of user ua(tn). And the TTP provides
a cloud storing all the records as shown in Fig. 1.

iv) Item-cluster Tree Structure and Context Space Update:
Since the amount of historical data increases quickly over
time and it is impossible to analyze all the historical data to
do the predictions and recommendations, we need to restrict
the size of analyzed component at each round. In addition,
new data arrivals at each round (both side observations
from one-hop neighbors and self-observations) need to be
recorded. Thus, the item-cluster tree structure and context
space are updated after current round. In the update phase,
the context space becomes denser as time goes by and new
leaf nodes is added to the item-cluster tree.

2.2 Adversary Model

There are two different types of adversaries: internal (i.e.,
people such as users and agents participating in this system)
and external adversaries (i.e., people outside this system). In
this paper, we consider one type of the internal attacks from
agents and the external adversaries. The internal attacks
are from the TTP (e.g., the TTP colludes with others to
expose users’ and agents’ sensitive information) and users
(e.g., vicious users ruin an agent’s reputation by offering
unreasonable rewards, and even invite others to give false
high rewards for promoting an agent’s reputation) are not
included in this work. The attack models of two adversaries
are described as follows.

2.2.1 Honest but Cunning Agents

The agents connected via social network G(W,E) collab-
orate to make personalized recommendations of items to
users by sharing information through G. The agents are
totally honest to the TTP about their own information which
can select suitable items based on proposed algorithm. And
we assume that agents will ensure the privacy of any user’s
context information. Then, we discuss the condition with-
out any privacy-preserving mechanism. At each round n,
assuming that ia(tn) ∈ (han, i

a
n) and ca(tn) ∈ Cn for any

agent a ∈ W which requests information sharing, agent
a will send a query to the TTP complying the work flow
of the proposed algorithm. This query will ask the TTP
to let agent a know the number of data arrivals where
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the contextual arrivals are in the same context subspace Cn
when the recommended items are in the same item cluster
(han, i

a
n). In addition, the sum of the rewards based on these

arrived data will be sent to agent a.

2.2.2 Vicious Attackers

Vicious attackers in the real world manage to recognize a
user using some skills. They usually attack based on the
previous records and utilize a data analysis program by
sending similar requests disguised as a normal agent to
obtain the rewards from this current user bypassing the TTP,
then can infer the user’s sensitive context information.

2.3 Performance analysis

In the subsection, we introduce some vital concepts for
clarification.

Dissimilarity Function and Subspace Diameter: We define
the dissimilarity function over item space I as a positive

mapping Di: I
2 → A where Di(i,~i) ≥ 0 and Di(i, i) = 0

for any i,~i ∈ I . And the metric Di in the Euclidean space I
can be any norm. Furthermore, it is similar that we assume
that the user context space C is provided with a function Dc

to show dissimilarity such that Dc(c,~c) ≥ 0 and Dc(c, c) =
0 for any c,~c ∈ C. For ∀i,~i ∈ I and any subspace R ∈
I , then the diameter of subspace is defined as DIAMI

R =
supi,~i∈RDi(i,~i) in subspace R.

Reward Production: At round n, for any agent a ∈ W , a
reward ra(tn) is obtained based on the current contexts and
items from an unknown distribution. Feedbacks are given
according to the users’ behavior interacting with any agent
a. For example, we consider the rewards from an online
media content sharing system (e.g., Youtube), once someone
clicks the content then selects it as one of the favorite
contents, then ra(tn) = 1, ra(tn) = 0 instead. We assume
that the reward is identically distributed with independence
(i.i.d.), because random rewards can be drawn depending
on former context information and items from an unknown
distribution.

Suboptimal Cluster: Denoting the expected reward as
µi,c for item i with context information c, the optimal
reward for the user with context c as expected is defined
as µ∗

c = maxi∈I µi,c, but it is acquired only in hind-
sight. The suboptimal factor of cluster (h, i) in the item-
cluster cover tree is defined by ∆h,i in the following:
∆h,i = maxc∈C µ

∗
c − maxx∈(h,i) µx,c. Once there is an item

i∗ ∈ (h∗, i∗) and context c ∈ C stored in the system, and
µ∗
c − maxx∈(h∗,i∗) µx,c 6= 0, then we denote (h∗, i∗) as a

suboptimal node. If µ∗
c −maxx∈(h∗,i∗) µx,c = 0, it is an optimal

node. As for our system with context-awareness, the reward
of an item from users with similar context information is
assumed to be nearly similar [40], [44]. Like in [26], [45],
[47], we can formalize this assumption as the Lipschitz
conditions as follows:

Assumption 1. (Lipschitz conditions) (a) (Lipschitz con-
dition for contexts) For any context c,~c and item i ∈ I
respectively, it satisfies that | µi,c−µi,~c |≤ LcDc(c,~c), where
Lc is a positive Lipschitz constant.

(b) (Weak Lipschitz condition for items) For ∀ item i,~i ∈
I and context c ∈ C, we assume | µi,c − µ~i,c | ≤

max{Di(i,~i), µ
∗
c − µ~i,c}. And this assumption is fully rea-

sonable in practical scenarios. For instance, assume that
dc = 2, then each context vector represents users’ age
and financial level. A 50-year-old user earning $ 7500 per
month and a 40-year-old user earning $ 7800 per month
may provide the similar low reward for luxuries. Though
the realistic situations might not be always i.i.d., we can
also bound a non-i.i.d. process [28] by utilizing two i.i.d.
processes.

When we explore the item-cluster tree (more details in
next section), the capability of each item node is usually
limited. Therefore, we set an upper dissimilarity bound for
all the items. Additionally, since in the item space I the
items are discretely distributed, for all the items in each
node, so there exists a relatively lower dissimilarity bound.
This assumption is formalized in the following:

Assumption 2. For ∀AI
h,i ∈ A

I
0,1, ∃ψs > ψs1 > 0, γs ∈

(0, 1), and the item-cluster’s diameter at depth h is bounded
as: ψs1γ

h
s ≤ DIAM

I
Ah,i
≤ ψsγ

h
s .

Regret Computation on Performance Analysis: Let µa(tn) be
the expected reward of ia(tn) without using Exponential
mechanism and µaE(tn) is the reward of ia(tn) as expected
when Exponential mechanism is applied. Then we compute
the one step regret for any a ∈ W at time tn, and we denote
it as ∆tn = µ∗

ca(tn)
− ra(tn), to measure the performance

loss for selecting the sub-optimal items. Then we denote
the expectation of cumulative regret based on the network
structure G(W,E) as :

E[R(n)] = E[
∑

a∈W

n
∑

i=1

|∆ti |] =
∑

a∈W

n
∑

i=1

|µ∗

ca(tn) − µaE(ti)|,

where µ∗
ca(tn)

is the optimal expected reward for user

ua(tn) with context ca(tn). If our system can achieve sub-
linear regret (i.e., E[R(n)] = O(nπ), π < 1), we can infer
that the strategy can converge to an optimal strategy (i.e.,

lim
n→∞

R(n)
n
→ 0). Furthermore, our main aim is to minimize

the cumulative regret and protect privacy of users and
agents from attacks in this paper.

3 PROPOSED ALGORITHM

3.1 Algortihm Description of T-PriDO

In this subsection, we propose our Tree-based Privacy Pre-
serving Distributed Online Learning algorithm (T-PriDO).
We define some important notations firstly, and then we
represent the item cluster selected by agent a as (han, i

a
n).

Next, we let Cn be the context subspace ca(tn) at round n
and denote ln as the level of Cn. Furthermore, we introduce
the probability event: Kah,i(τ) in Alg. 1 (Line 6), and IKa

h,i
(τ)

is an indicator function of event Kah,i(τ). Then the depth

of T I
a (n) which is the item-cluster tree of agent a at round

n is denoted as H(n), and we let T ah,i(n) =
∑

τ<n IKa
h,i

(τ).

So we get Qah,i(n) =
∑

b∈Na
T bh,i(n) (Line 6-7), where Na

is a set including agent a and its neighbors. We define the
number of agents in Na as |Na|, then denote the number of
context arriving at certain context subspace Cn until round
n as Na

Cn
(n) for agent a. Finally, we define µ̂ah,i(n) as the

empirical estimated mean reward of all items for agent a in
cluster (h, i).

If a high estimated mean reward is received in a cluster,
which means this cluster has a popular reputation and is
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Algorithm 1: T-PriDO.

1 Input: network structure G(W,E),
dc, di, Lc, ψs, n, γs;

2 Initialization: t = 0, n = 1,Φa1,1(n) = Φa1,2(n) =
infinity, T I

a (n) = {(0, 1), (1, 1), (1, 2)}, Na
Cn
(n) =

0;
3 Auxiliary procedure: TLM;
4 for n = 1, 2, · · · do
5 user ua(tn) with context ca(tn) at time tn arrives

at agent a and searches for the most relevant
context subspace Cn ;

6 Kah,i(τ) = {(h
a
τ , i

a
τ ) = (h, i), τ < n, ca(tτ ) ∈

Cn, a ∈W, (h, i) ∈ T
I
a (n)}, and

Qah,i(n) =
∑

b∈Na
T bh,i(n)

∑

τ<n IKa
h,i

(τ)

7 if µ̂ha
n,i

a
n
(n− 1) ≥ NT then

8 µ̂ha
n,i

a
n
(n) = 1

Qha
n,ian

(n)

∑

τ≤n IKa
h,i

(τ)r
a(tτ );

9 else
10 µ̂a

PC (n)← TLM(Cn, a, (hn, in));
11 µ̂ha

n,i
a
n
(n) =

µ̂a

PC (n)

Qha
n,ian

(n)
;

12 for any leaf node (h, i) ∈ T I
a (n) do

13 Update Φah,i(n);

14 for any leaf node (h, i) ∈ T I
a (n) do

/* P[(han, i
a
n) = (h, i)]: the computed

probability distribution using

Exponential mechanism. */

15 P[(han, i
a
n) = (h, i)] =

exp
ǫ′Φa

h,i
(n)

2∆Φ

∑

(h,i)∈T I
n

exp

(

ǫ′Φa
h,i

(n)

2∆Φ

) ;

16 Select a leaf node (han, i
a
n) ∈ T

I
a (n) based on

computed probability distribution, then
randomly recommend an item ia(tn) ∈ (han, i

a
n)

for user ua(tn) Thus, agent a obtains the reward
ra(tn);

17 Na
Cn
(n)← Na

Cn
(n) + 1;

/* δ′ln: the threshold of partition */

18 if Na
Cn

(n) ≥ δ′ln = λ2plndc lnn then
19 Partition space Cn into some subspaces;

20 if Qhan,ian(n) ≥ δha
n
= ξ lnn

8ψ2
sγ

2ha
n

s

then

21 Φhan+1,2ian−1(n) = Φha
n+1,2ian

(n) = infinity;
22 T I

a (n+ 1) =
T I
a (n) ∪ {(han + 1, 2ian − 1), (han + 1, 2ian)};

suitable for recommendations. However, if we just select
items according to estimated mean rewards, we probably
ignore other items that cannot offer a high reward currently
but will have a good performance in the future. Therefore,
we set a Φ-value for each item cluster to strike a trade-off
between exploitation and exploration. The items in clusters
are more likely to be chosen by agents with a bigger Φ-value
(more details in Alg. 1). For ∀(h, i) ∈ T I

a (n), we denote the
Φ-value of cluster (h, i) as Φah,i(n):

Φah,i(n) =

{

µ̂ah,i(n) +
√

ξ lnn
8Qa

h,i
(n)

+ ψsγ
h
s , Qah,i(n) > 0

infinity, otherwise

Hence, if there is an item cluster seldom selected, its Φ-
value will gradually increase, so we can utilize its possible

future better performance. When ψsγ
h
s >

√

ξ lnn
8Qa

h,i
(n) as

the threshold condition, i.e., Qha
n,i

a
n
(n) ≥ δha

n
= ξ lnn

8ψ2
sγ

2h
s

,

it means that the cluster’s size impacts more than the
uncertainty from the randomness of the rewards on Φ-value.
That is to say, the cluster (h, i) has been explored completely
which represents that the number of data arriving in node
(h, i) is large enough, so we should expand the item-cluster.

Now, we present the above mentioned workflow in
subsection 3.1 phase by phase.

Phase 1: Strategy Adaptation. First, the system should
determine if its strategy should be adopted (Line 7-11). A
threshold NT is set by each agent to determine for shared
information. The higher the NT , then more information
will be shared. Due to the shared information (context,
reward) may expose the repository of service providers,
so we should use a differential private Laplace mechanism
(Line 10) called TLM (described in subsection 4.4) to release
the rewards obtained by each agent.

Phase 2: Performance Prediction. Then, T-PriDO needs to
make predictions for all performances of each item cluster.
And this is evaluated by Φ-values as aforementioned. To
get Φ-values, T-PriDO first searches for the related contexts
subspace ca(tn) belongs to, which is denoted by Cn (Line 5).
Then, in the item-cluster tree, all leaf nodes’ Φ-values will
be updated. Thus, the Φ-values reflect the related expected
reward of items in current item-cluster.

Phase 3: Item Recommendation. Considering the selected
item cluster might be shared with other agents or attacked,
so it is unreasonable to select the item cluster with highest
Φ-value that will expose user’s sensitive context. Therefore,
agent a, using Exponential mechanism (Line 14-15), chooses
an item cluster according to the computed probability distri-
bution. For any leaf node (h, i) ∈ T Ia (n), P[(h

a
n, i

a
n) = (h, i)]

(Line 15) is a score function, then ∆Φ is the l1 sensitivity
of Φ-value. Due to Exponential mechanism, these attackers
cannot infer the users’ context accurately because the items
might not be selected, although with the highest reward.

Phase 4: Item-cluster tree Structure and Context Space Up-
date. The number of context arrivals in subspace Cn is
updated over time in Alg. 1 (Line 17). When it in Cn
exceeds the threshold δ′ln (Line 18-19), which means this
current subspace Cn needs to be partitioned for limiting
the related components’ size. At last, Cn will be divided
into these new built subspaces (e.g., in Fig. 3, dc = 2, Cx
at ty is partitioned into four subspaces of level ly). Finally,
to obtain reward estimation of each item cluster accurately,
we should set a threshold δha

n
for agent a (Line 20-21) to

judge whether (han, i
a
n) has been explored completely. Once

Qha
n,i

a
n
(n) exceeds δha

n
, which means item cluster (han, i

a
n)

has been explored entirely and it will be partitioned uni-
formly then add new nodes to expand the tree (Line 21-22).

In short, our proposed item-cluster tree structure par-
titions the item space into more and more refined cluster
level and the size of items in the child clusters levels will
be smaller and smaller, which have similar rewards under
the Lipschitz conditions. As time goes by, it finally seek out
the last (and the deepest) leaf node that contains only one
optimal item corresponding to a certain user context input.

3.2 Differential Private Framework.

The concepts about DP are available in [51]. Our proposed
differential private framework consists of two privacy-
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Fig. 4: Tree Based Approach of Adding Laplace Noise.

preserving modules: 1) the module for users and 2) the
module for agents. The first module is achieved using an
Exponential mechanism in Alg. 1 (Line 14-15). The second
one is to protect the private information shared by all agents.

3.2.1 The Privacy-preserving Module for Users

When a cunning agent is curious about users’ contexts,
he/she just needs to send a query to the TTP composed of
two pairs (i.e., Cn and (han, i

a
n)). For clarification, we present

an Example 1 of attacks on users’ contexts in [51]. Thus,
we should apply Exponential mechanism to protect the
best performing item cluster (Line 14-15). Theorem 1 below
shows that we can guarantee DP of the context information
from certain user.

Theorem 1. Algorithm 1 can guarantee ε-differential
privacy for user’s sensitive context information.

Proof: Detailed proof of Theorem 1 in [51].
Theorem 1 means that the query results are not sensitive

to the changes of individual user’s records, so users’ sensi-
tive context will not be inferred from the published results.

3.2.2 The Privacy-preserving Module for Agents

When agent a tends to its one-hop neighbors for shared
information, if we do not apply any privacy-preserving
mechanism, a neighboring agent can infer its item reposi-
tories after sending enough queries to the TTP. We present
an Example 2 for attacks on agents’ item repositories in [51].

Since requesting for shared information belongs to nor-
mal legitimate behavior and the level of NT is decided
by the agent itself, the TTP cannot stop an agent to infer
other agents’ repositories. As a result, we should use a
Laplace mechanism to prevent privacy of agents from being
exposed. To ensure the privacy of information shared, we
apply a naive approach in DP by adding noise to each
reward. But this will cause much noise in the big data
system, that causes shared information useless for other
agents. Therefore, according to [49], [50], we present a Noise
Aggregation algorithm by building a binary tree based on
Laplace mechanism (TLM) in Alg. 2 in the next subsection.

3.3 Algorithm Description of TLM

At round n, while agent a asks for information sharing from
its one-hop neighbors (Line 6-8), the binary tree T aCn

(n) that
stores the whole historical data information in the set of
agents Na in context subspace Cn till round n is built (Line
24). In Fig. 4, each leaf node contains a previous reward
by an agent a in Na, and all the related user’s context in the

Algorithm 2: TLM.

23 Input: Cn, agent a, cluster (h, i);
24 Initialization: T aCn

(n) = {(0, 1)};
25 Establish T aCn

(n),ΞaCn
(n);

/* r̂: the sum of rewards of items stored

in node (x, y) ∈ T aCn
(n) and in cluster

(h, i); */

26 µ̂aCn
(n) =

∑

(x,y)∈Ξa
Cn

(n)

(

Lap( lnn|W |
ε

) + r̂
)

;

27 Output: µ̂aCn
(n).

subspace Cn. And the sum of rewards rooted at current node
in all the leaf nodes is stored in each internal node. Based
on the absolute time of storing rewards, the leaf nodes are
ranked from left to right. In Fig. 4, it shows that if b, c ∈ Na
such that r1 = rb(ti), rT = rc(tj), where i and j are r1’s and
rT ’s local arriving round at agent b and c and ti < tj . Then,
the subset ΞaCn

(n) of disjoint nodes in T aCn
(n), which cover

almost all previous data till round n, will be built (Line 24).
Then we choose one node at each depth of T aCn

(n) (e.g., the
green nodes) to obtain the subset Ξa(n)Cn

in Fig. 4. We let q
be the depth of T aCn

(n). To ensure its neighbors’ repository
safe (Line 7, 25-26), each sum of rewards stored in nodes in
ΞaCn

(n) are added Laplace noise, then we send these q sums
to agent a with Laplace noise. For simplicity, we assume
the number of data arriving at round n in subspace Cn as
T = 2ν ≤ n, where ν ∈ Z, ν ≥ 0. We get A,A′ be two
databases that differ in only one entry (i.e., ‖A − A′‖ ≤ 1).
For ∀Cn and Na, the binary tree denoted by TA based on A
(e.g., tree in Fig. 4 on the left) and the binary tree denoted by
TA′ based on A′ (e.g., tree in Fig. 4 on the right), have only
one different leaf node (e.g., in Fig. 4, ri and ri′ ). And it is
obvious that TA and TA′ differ mostly in lnn reward sums.

Furthermore, our TLM compared with traditional LMs,
can obviously reduce Laplace noise from O(n) to O(logn).
Therefore, it simultaneously guarantees to use the aggre-
gated data and protect the privacy of agents. It demonstrates
that T-PriDO can guarantee the privacy of agents’ reposito-
ries in the following:

Theorem 2. Algorithm 1 can guarantee ε-differential
privacy for all agents’ revenue of rewards.

Proof: Detailed proof of Theorem 2 in [51].

Theorem 2 confirms that a service provider cannot draw
anything about item repositories from the shared informa-
tion, because the rewards from two distinct item clusters are
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Fig. 5: (a) 8-agent star network; (b) 8-agent fully connected
network; (c) 8-agent circular network; (d) 8 stand alone
agents without connection.

highly similar. Thus, Theorem 1 and 2 confirm that T-PriDO
can protect the privacy of service providers and users.

3.4 Regret Analysis

In this subsection, we analyze the prediction accuracy of
Alg.1 . And the inaccuracy is from two aspects: 1) the noise
we add which influences optimal selections from the agents,
2) performance losses on the early stage for exploring which
leads to suboptimal predictions. We cannot avoid these in-
accuracies, the expected cumulative regret bound is high in
Alg. 1. Based on TLM, we bound the noise added to each Φ-

value in the following lemma as O
(

(lnn)2

ε
ln(n lnn

ρ
)
)

with

the probability ≥ 1− ρ.

Lemma 1. Given G(W,E), ∀a ∈ W and for ∀(h, i) ∈
T I
a (n), we denote the maximum of Laplace noise added

to Φah,i(n) till round n as Υh,i = |W |(lnn)2

ε
ln(n lnn

ρ
) with

probability ≥ 1− ρ.

Proof: Detailed proof of Lemma 1 in [51].

The lemma demonstrates that we can bound all added
noise to each Φ-value owing to the tree-based noise aggre-
gation mechanism. In addition, the lemma in the following
means that if a suboptimal node only is chosen for several
specific times, it can hardly be chosen by other agents. We
denote the context subspace’s smallest side length at round
n as DCn

= 2−L(n) , where L(n) means the depth level of
related context space.

Lemma 2. Given G(W,E), for ∀a ∈ W and any sub-

optimal node (~h,~i), let ̟a
~h,~i

= min
{

τ ≤ n : Qa~h,~i(τ) ≥

κh,i = ⌈
ξΥ~h,~i

2(∆h,i−ψsγh
s )2

}

⌉, where Υh,i is the same notation as

that in Lemma 1 and ξ > 4 . Letting ∆(h∗,i∗) = 0, we have

P{Φah,i(n) > Φah∗,i∗(n), ∀n ≥ ̟
a
h,i} ≤ 2n−

ξ
4 .

Proof: Detailed proof of Lemma 2 in [51].

According to the above lemmas, we can finally bound
the upper cumulative regret of T-PriDO as follows:

Theorem 3. Given G(W,E), upper expected cumulative
regret of Alg. 1 is

E[R(n)] ≤ 4nLc
√
dc · n

1
dc(1+p) (4λ lnn)

− 1
dc(1+p) (̺+ 1)

+ (
2ξ lnn

3γsψsψ
d0
s1

+
64|W |Guξ lnn

3γs2
)(1 +

1

̺
)(
̺Lc
√
dc

ψs
)−d0 ·

(4λ lnn)
d0

dc(1+p) · n
−d0

dc(1+p)+

24

ε
ξGu|W |

Lc
√
dc

ψ2
sψ

d0
s1

(lnn)
3+

d0+3
(p+1)dc n

−d0+3+2p
p(p+1)dc (

̺Lc
√
dc

ψs
)−ds

+
2|W |Lc

ε
(lnn)3.

(1)

where ξ > 6, ̺ =
ψs1

γĤ

LcDCn
, and ∃η → 0, we have

∆ = (dc − 2)2 − 4dc(d0 − 3) > 0,

p1 =
−(dc − 2) +

√
∆

2dc
< η,

(2)

and Gu is a parameter related to the network structure
G(W,E) among all the agents. κh,i is the same notation
compared to Lemma 2, and Guκh,i means the maximum
number of reward samples at round n in item-cluster (h, i).
Thus, the minimum number of samples each agent can
obtain accessibly is κh,i including the shared information
from the neighbors (i.e., Qah,i(n) ≥ κh,i). In Fig. 5, from (a)-

(d), we have Gu = ⌊ |W |
2 for star network, Gu = |W | for

stand alone agents without connection, Gu = 1 for fully
connected network and Gu = |W | − 1 for circular network.
We denote the nearly optimal dimension of item space I
as d0 (details about Lemma 4 in [51]), and d0 = 0 in most
conditions [48].

Proof: Detailed proof of Theorem 3 in [51].
Remark 1. We can neglect the last term which is the

regret by utilizing Exponential mechanism compared to the
regret caused by inherent gap. Our proposal with Exponen-
tial mechanism cannot select an optimal action each round,
but it selects the optimal action with the highest probability.
And if p gets larger, then the first and second term increase,
and the third added term will decrease. Because the first
term keeps in the highest time order, with p increasing, the
upper expected cumulative regret will also increase . This
fully accords with our expectation and the current context
space will be partitioned more slowly if p gets larger. There-
fore, the overall similarities will decrease between arriving
context ca(tn) and contexts in Cn which may disturb agents
to make personalized predictions accurately. However, if p
decreases to a certain small degree, we cannot ensure the
third term sublinear anymore. This is caused that when p
is too small, it will make the context space be partitioned
quickly, so there are only small amounts of related context
information in Cn. This will cause agents to learn historical
records with a deficiency, which increases unreliable predic-
tions. Additionally, there is a trade-off between prediction
accuracy and the privacy-preserving level (i.e., smaller ε
may lead to bigger upper cumulative regret). And when the
connectivity inG(W,E) (i.e.,Gu decreases) is improved, the
upper expected cumulative regret will decrease. The main
reason is that more historical records are shared then there
will be more sufficient analysis obtained if the network’s
connectivity becomes better.

Time and Space Complexity. We can divide the com-
putational cost of T-PriDO into following parts: i) finding
the context subspace Cn; ii) refresh Φ-values and the item-
cluster structure; and iii) select a leaf node using Exponential
mechanism. For the first part, the computational cost is de-
cided by the level ofCn. And, we can know from the Lemma
3 in [51] that the level of Cn is restricted to O(log2 n). For
the second part, T-PriDO needs to traverse all the historical
records in Cn. Considering the worst case when all the his-
torical results are distributed in Cn, the computational cost
is O(n). In the third part, the computational cost depends
on the number of leaf nodes which is bounded by 2H(n).
Then from the Lemma 8 in [51], we can know that the
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Algorithm 3: DT-PriDO.

28 Input: DG, G(W,E);
29 Initialization: t = 0, n = 1, H(n) = 0; T I

a (n) =
{(0, 1), (1, 1), (1, 2)}; Φa1,1(n) = Φa1,2(n) =
infinity;

30 Further partition G(W,E) based on DG;
31 if agent a ∈ DG then
32 Similar to Alg. 1 (Line 2-22);

33 else
34 Follow the dominator’s selections in its group;

depth is the item-cluster tree for any agent is restricted to
O(lnn). Thus, the computational cost for the third part is
O(2lnn). Updating the model from each agent, hence the
computational cost up to round n in the federated learning
is O(n log2 n + n2 + n2lnn). Since T-PriDO needs to store
all the historical results locally at each agent, so the whole
space complexity is O(n).

4 PROPOSED ADAPTIVE ALGORITHM

In the network some agents are usually named as dominators,
which are centrally located among other agents. The domi-
nators usually have more one-hop neighbors compared to
ordinary agents. Thus, we can get more accurate predic-
tions from dominators, since dominators can observe more
comprehensively with more neighbors. In this section, we
design an adaptive Dominator centered Tree-based Privacy
Preserving Distributed Online Learning Algorithm (DT-
PriDO), that regards the dominators as the major controller
but other agents mainly offer the side information in the
network. Furthermore, the dominator subset DG ∈ W which
consists of dominators in network G(W,E). In this case, for
∀a ∈ W \ DG, agent a will have more than one one-hop
neighbor in subset DG.

DT-PriDO works as follows: There is a dominator subset
DG ∈W , then the networkG(W,E) is partitioned into |DG|
groups, and for each group, it includes one dominator from
the dominator subset DG and its all one-hop neighbors. Fi-
nally, in the dominator subset DG the whole agents entirely
follow the same strategy of T-PriDO, but other agents follow
their own dominators of the groups they belong to.

4.1 Privacy and Regret Bound Analysis

We obtain privacy results of Alg. 1 in the following.

Theorem 4. DT-PriDO can make sure ε-differential pri-
vacy for all the users’ sensitive context information and
service providers’ item repositories.

Proof: DT-PriDO keeps independent of the network
structure, which is similar in Theorem 1 and 2, then we
obtain Theorem 4.

Theorem 4 confirms that DT-PriDO can guarantee ε-
privacy for both service providers and users similar to T-
PriDO. To get upper expected cumulative regret of DT-
PriDO, we can bound the expected number of selections
for suboptimal clusters similar to Lemma 2.

Lemma 3. Given the network structure G(W,E), for any
suboptimal cluster (h, i) and dominator subset DG, we get

E[
∑

a∈W

T
a
h,i(n)] ≤

DGξ|W |(lnn)3
2ε(∆h,i − ψsγhs )2

+ 1 + |W |+ 4|W |
ξ − 4

, (3)

where |DG| means the number of groups in G(W,E) and
ξ > 4.

Proof: Detailed proof of Lemma 3 of [51].
And Lemma 3 limits the expected number of samples

that the agent can access. According to Lemma 3, we can
obtain the upper cumulative regret bound of DT-PriDO.

Theorem 5. Based on the network structure G(W,E)
and a dominator subset DG, we can get upper expected
cumulative regret of DT-PriDO:

E[R(n)] ≤ 4nLc
√
dc · n

1
dc(1+p) (4λ lnn)

− 1
dc(1+p) (̺+ 1)

+ (
2ξ lnn

3γsψsψ
d0
s1

+
64|W |DGξ lnn

3γs2
)(1 +

1

̺
)(
̺Lc
√
dc

ψs
)−d0 ·

(4λ lnn)
d0

dc(1+p) · n
−d0

dc(1+p)+

24

ε
ξGu|W |

Lc
√
dc

ψ2
sψ

d0
s1

(lnn)
3+

d0+3
(p+1)dc n

−d0+3+2p
p(p+1)dc (

̺Lc
√
dc

ψs
)−ds

+
2|W |Lc

ε
(lnn)3,

(4)

where p, ̺ and c are constrained similar to Theorem 3.
Proof: Detailed proof of Theorem 5 in [51].

Remark 2. Based on Theorem 3 and 5, it is evident
that DT-PriDO decreases the second term of upper expected

cumulative regret to |DG|
Gu

that of T-PriDO. Above conditions
are caused by choosing the dominators as the reliable central
makers in the network, which can provide more accurate
predictions. When the connectivity of the network becomes
worse, such as Gu increases, the impact produced will be
obvious. Thus, DT-PriDO can improve the performance of
the network though the connectivity is relatively low.

5 NUMERAL RESULTS

5.1 Dataset Description

We utilize an dataset YFCC100M [52] in the real world, pro-
vided by Yahoo in 2014. There are more than 100 million me-
dia objects in YFCC100M composed of 100.2 million images
and 0.9 million videos. And each entry contains some basic
information including location, owner name, camera, title,
media source, and tags. We utilize 34,8743 photos and 1821
videos annotated with detected concepts visually and some
information of cameras. Then we let di = 5 to represent the
dimension of item features including timestamp, media type
marker (video =0, photo=1), longitude, latitude, and camera
maker. Then the top 30 of 1,580 detected concepts and
cameras in the dataset are utilized in our simulation. And
by using Flickr API, we can obtain the information of user
contexts and user behaviors (e.g., location, time, userID).
For example, when a user adds a video to his/her favorite
list or shares it with others, the reward will equal to 1. And
we calculate the total rewards based on the browsing time.
Let ta(n) be the longitude of time user ua(n) cost brows-
ing ia(n) and t̂ be the average time ua(n) cost browsing
recommendations. Thus, if ta(n) ≤ t̂, ra(n) = 0, otherwise
ra(n) = 1. Then we set dc = 9 as the dimensions of context
features including timestamp, longitude, latitude, ID, age,
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TABLE 1: Average Reward.

Algorithm round ×10
4 Gain1

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Random 0.25 0.27 0.25 0.26 0.26 0.25 0.26 238%
UCB1 0.28 0.30 0.31 0.30 0.28 0.28 0.28 214%
DUCB 0.32 0.31 0.32 0.33 0.33 0.33 0.33 167%

LinUCB 0.45 0.46 0.47 0.47 0.48 0.48 0.48 83%
Gauss-LinUCB 0.46 0.49 0.48 0.48 0.49 0.50 0.51 73%

DSC 0.50 0.51 0.54 0.56 0.57 0.58 0.59 49.2%
ACR 0.56 0.54 0.57 0.57 0.59 0.65 0.62 41.9%

Poo-Loc 0.56 0.56 0.58 0.60 0.61 0.63 0.65 35.4%
T-PriDO (one agent) 0.58 0.62 0.63 0.65 0.67 0.69 0.69 27.5%

T-PriDO 0.57 0.60 0.61 0.70 0.78 0.85 0.88

1 The gain of T-PriDO over other algorithms in average reward.

salary, etc. We perform all experiments on the computing
platform of one of the authors’ university computing center.
SSD cache of it is 1.24 TB and the CPU reach 18.37 TFlops. .

5.2 Comparison With Online Learning Algorithms

We compare our algorithms firstly with other related works
to demonstrate the good performance of our proposed
algorithm. First, we compare our proposed T-PriDO with
those algorithms without context-awareness to show the
importance of user’s context for promoting system perfor-
mance. The results are as follows: 1) Random: This algo-
rithm chooses an item at each round randomly which is
regarded as a benchmark for other related algorithms. 2)
UCB1 [30]: This traditional MAB algorithm performs well
with known fixed item size in advance to recommend the
best items, which does not considers uses’ personalization.

To demonstrate the importance of sharing, then we com-
pare T-PriDO with two distributed online learning systems
as follows: 3) DUCB: As a distributed online learning sys-
tem, it uses UCB1 [27] without context information where
agents share their observations bypassing a social network.
4) Poo-Loc: It is an MCTS distributed online learning system
using POO in [13] without context information that only
requires local smoothness with respect to the chosen parti-
tioning. Furthermore, it is the state-of-the-art and the most
powerful context-free MCTS algorithm, and we implement
the same DP schemes in our setting to make fair com-
parison. In contrast, our T-PriDO also only requires local
smoothness, but we introduced the threshold techniques
(details in Section 3.1) to obtain better performance.

To confirm our algorithm can outperform other context-
aware recommendation systems, we compare T-PriDO with
three context-aware systems as follows: 5) DSC [28]: As
a distributed online learning system, the context space in
it is partitioned previously, and it keeps static over time.

6) ACR [26]: This is a context-aware centralized online
learning system with some fixed item clusters. We utilize
K = 90 item clusters in ACR for simulation. 7) LinUCB
[53]: It is assumed that in contexts the rewards of items are
linear, and this method is based on CMAB algorithm that
is widely used in practical news artical recommendations,
which utilizes the maximum index to recommend the arm.
And we implement all these algorithms under our noising
injecting and DP framework. 8) Gauss-LinUCB [54]: We
also implement the latest DP version of LinUCB, named
as “Gauss-LinUCB”, which could apply either Gaussian
noise or Wishart noise to achieve joint-differentially private
algorithms and bound the regrets. We choose the Gaussian
noise version in comparison. Intuitively, Gauss-LinUCB is
a state-of-the-art and more advanced algorithm when com-
pared with the LinUCB with the default DP framework in
our setting, which should have better learning performance
under the ε-differential privacy notion.

We evaluate the performance by computing the average
reward till round n. It can decrease average reward by using
a privacy-preserving mechanism or an increasing dataset.
However, information sharing among agents can increase
average reward. Therefore, for fair comparisons, we do not
utilize the PPMs of T-PriDO in the comparison experiments
and guarantee a static dataset. We create a 8-agent star
network with one center for DSC, T-PriDO, and DUCB.
Furthermore, all results are performed when NT = 0.5
except that shown in Fig. 14. And we also show the average
reward of T-PriDO with one agent for fair comparisons. The
comparison results are shown in TABLE 1.

Comparison results with context-free algorithms: As TABLE
1 shows, T-PriDO outperforms other algorithms without
context-awareness. The results demonstrate that T-PriDO
obtains a 214% performance gain on average reward, over
UCB1, and it even achieves a 35.4% performance gain over
the state-of-the-art context-free Poo-Loc algorithm. Notice
that UCB1 and Poo-Loc learn faster than T-PriDO (con-
verges faster), because the evaluation of the average reward
on context-free algorithm is acquired from the historical
records of various users, but a context-aware algorithm
obtains the average reward according to users’ certain con-
text information. And it is obvious that context-aware algo-
rithms can predict more accurate items with the number of
users’ arrivals increasing to a specific high degree. And we
can observe that the context-free algorithms can converge
faster than the algorithms with context-awareness before
round n = 4× 104. However, the context-aware algorithms
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can obtain a higher average reward than other context-free
algorithms in a long term.

Comparison results with context-aware algorithms: As the re-
sults show, T-PriDO outperforms completely other context-
aware algorithms. The average reward of T-PriDO up to
n = 7× 104 is 83% over LinUCB, 73% over Gauss-LinUCB,
49.2% over DSC and 41.9% over ACR. Because T-PriDO
aggregates information in the context space adaptively, but
DSC always considers static fixed context subspace that
impacts its online learning performance. As for LinUCB,
the payoff function leads to inaccurate estimation of linear
reward dissimilar to our proposal. In Gauss-LinUCB, the
situation is similar to LinUCB, but Gauss-LinUCB has better
learning performance than that of LinUCB. Note that DSC
has a better learning efficiency that T-PriDO, but it learns
less accurately. And DSC supports information sharing in
online social networks, but it still obtain lower average
reward than that of ACR with shared information. Themain
reason is that T-PriDO and ACR both utilize a dynamic
context partition approach contrary to the static one from
DSC. Therefore, an adaptive method for context partition
can ensure more accurate and reasonable predictions, al-
though it cannot guarantee an optimal learning speed.

Furthermore, we provide the comparison results on cu-
mulative regret and average regret with three most related
algorithms in Fig. 6 and 7. And the results are similar to
TABLE 1 as we expect. For instance, we can see that T-PriDO
decreases in average regret by 24.83%, 27.93%, 47.45%,
61.17% and 76.67% when n = 2 × 104 compared to Poo-
Loc, ACR, DSC, Gauss-LinUCB, and DUCB, respectively.
We can also obtain similar results of cumulative regret in
Fig. 6. Additionally, we observe that teh learning speed of
context-free algorithms is faster than that of context-aware
algorithms, according to the slopes of the curves. The main
example is DSC and the result also accords with the results

TABLE 2: Variance of Average Regret.

Algorithm round×10
4

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

ACR 0.0021 0.0023 0.0022 0.0021 0.0021 0.0024 0.0025 0.0029 0.0032 0.0035
DUCB 0.0037 0.0041 0.0038 0.0035 0.0037 0.0037 0.0040 0.0045 0.0052 0.0055
DSC 0.0011 0.0013 0.0009 0.0010 0.0010 0.0011 0.0011 0.0009 0.0010 0.0009

T-PriDO 0.0010 0.0011 0.0011 0.0010 0.0009 0.0011 0.0011 0.0013 0.0015 0.0017
Gauss-LinUCB 0.0010 0.0009 0.0008 0.0007 0.0008 0.0008 0.0008 0.0007 0.0008 0.0007

in TABLE 1. In addition, we put the variance of average
reward associated with DSC, DUCB, ACR and T-PriDO in
TABLE 1. From TABLE 2, we can find that ACR and DUCB
have higher variance than that of T-PriDO, DSC and Gauss-
LinUCB. The results might result from the randomness of
rewards. ACR and T-PriDO have adaptive context partition
methods, but DSC utilizes a static one. Thus, it might be
possible that as the degree of personalization increases,
variance increases. As noticed, Gauss-LinUCB has the least
variance of average regret. This is because the Gaussian
noise based joint-differentially private algorithms, as a latest
progress in DP, have less noise variance than that of the
classic Laplace noise setting.

5.3 Evaluation Other Performance

Impact of Network Structure: To obtain the influence of net-
work structure, we run our algorithm based on the static
dataset with a network composed of 40 agents which is fully
connected, a star network or a circular network. In Fig. 8
and 9 that T-PriDO will get smaller average regret and cu-
mulative regret if connectivity in the network increases. This
condition accords with our theoretical analysis, because Gl
and Gu will decrease and each agent can obtain more useful
information as the connectivity of network is improved.

Impact of Increasing Dataset: To investigate T-PriDO’s
ability to deal with the increasing dataset, we run DT-
PriDO and T-PriDO on 40-agent star network without any
privacy-preserving mechanism. Thus, we create an increas-
ing dataset by selecting 2,000 videos and 200,000 images
as the initial dataset, and at round n = 4 × 104, add the
rest filtered 80,000 images and 800 videos to the database.
As shown in Fig. 13, the average regret of our proposal
increases at round n = 5 × 104 but it begins to decrease
quickly after round n = 6× 105. We can infer from this that
our proposal can support the increasing dataset adaptively.
As shown in Fig. 12, from n = 1 ∼ 7 × 104, T-PriDO
has a regret gain from 16% to 9% over DT-PriDO on the
cumulative regret. It means that DT-PriDO can recommend
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items more accurately than T-PriDO in a star network, but
the differences between them decrease gradually.

Impact of Privacy-Preserving Mechanism: Using the static
dataset, at different privacy-preserving levels (different ε
values), we measure the average accuracy of our proposals
to demonstrate the impact on prediction accuracy with
different privacy-preserving levels in Fig. 10 and TABLE
3. As shown in Fig. 10 and TABLE 3, we can observe
that it achieves a balance between the privacy-preserving
level and average accuracy. As the privacy-preserving level
increases (ε decreases), each reward sum will be added
more noise, which makes the shared information unreliable.
While the privacy-preserving level exceeds a threshold,
the regret will be so large that it will spend more time
on converging to the optimal strategy, which means the
design of privacy-preserving level is essential. Finally, to
measure the privacy-preserving level, we utilize privacy loss

PL = maxO ln( P[M(D)=O]
P[M(D′)=O] ) [9] to evaluate the privacy-

preserving level of our methods. Based on Definition 1,
PL ≤ ε. And it is shown in Fig. 11 under the same exper-
imental setting of T-PriDO in TABLE 2 that PL of T-PriDO
keeps a low level, which accords with our theoretical results.
Therefore, our approach has a high privacy-preserving level.

Impact ofNT level:NT shows the frequency of communi-
cations among agents. and the higher NT is, more frequent
the communications are. Thus, we evaluate the average
regret at different values of NT in Fig. 14. Then we perform
the experiments under a 40-agent star network. And we
can see from Fig. 14 that average regret is proportional to
the value of NT inversely, which infers that the prediction
accuracy can be promoted based on distributed system.

6 CONCLUSION

We propose a novel distributed federated online learning
algorithm with context-awareness and big data support for
social DRS and design a framework to improve prediction
performance adaptively. Then, we give theoretical analysis
in details. The experimental results demonstrate that our
proposed algorithms can achieve these following goals: suit-
able item recommendations, accurate predictions of users’
preference, differential privacy protection for users’ context,
and differential privacy protection for agents’ repository.
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