
A Privacy-Preserving Index for Range Queries

Bijit Hore, Sharad Mehrotra, Gene Tsudik

University of California, Irvine
Irvine, CA 92697

{bhore,sharad,gts}@ics.uci.edu

Abstract

Database outsourcing is an emerging data
management paradigm which has the poten-
tial to transform the IT operations of corpora-
tions. In this paper we address privacy threats
in database outsourcing scenarios where trust
in the service provider is limited. Specifically,
we analyze the data partitioning (bucketiza-
tion) technique and algorithmically develop
this technique to build privacy-preserving in-
dices on sensitive attributes of a relational ta-
ble. Such indices enable an untrusted server
to evaluate obfuscated range queries with min-
imal information leakage. We analyze the
worst-case scenario of inference attacks that
can potentially lead to breach of privacy (e.g.,
estimating the value of a data element within
a small error margin) and identify statisti-
cal measures of data privacy in the context
of these attacks. We also investigate precise
privacy guarantees of data partitioning which
form the basic building blocks of our index.
We then develop a model for the fundamental
privacy-utility tradeoff and design a novel al-
gorithm for achieving the desired balance be-
tween privacy and utility (accuracy of range
query evaluation) of the index.

1 Introduction

The recent explosive increase in the Internet usage,
coupled with advances in software and networking, has
resulted in organizations being able to easily share data
for a variety of purposes. This has given rise to a set
of new and interesting computing paradigms. In the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

database context, one such paradigm is Database-as-a-
Service (DAS)[4, 6, 7] in which organizations outsource
data management to a service provider.

In the DAS model, since data is stored at the service
provider (that may not be fully trusted) many new se-
curity and privacy challenges arise. Most approaches
to DAS define a notion of a security perimeter around
the data owner. The environment within the perimeter
is trusted whereas the environment outside the perime-
ter is not. For instance, in [4], the client (which is also
the data owner) is trusted, while the server (service
provider) is not. In [6], a smart card solution is consid-
ered in which owners access data using a client terminal
supporting smart card devices. The client’s smart-card
devices and terminals are within the security perime-
ter, whereas the large data store is considered to be
outside. [7] considers a DAS architecture in which a
secure co-processor resides alongside the server. The
secure co-processor is within the perimeter, while the
server which supports a large scale storage is considered
to be outside the perimeter.
Query processing in the DAS model: In each of
the DAS models considered above, data is stored in an
encrypted form outside the security perimeter but ac-
cessed from within. Usually, data is accessed through a
client query Q. A direct way to support Q is to trans-
fer data from the untrusted servers to the trusted en-
vironment within the security perimeter. Once within
the security perimeter, data can be decrypted and the
query predicates evaluated. Such an approach, how-
ever, mitigates many of the primary advantages of DAS
where we are interested in outsourcing not just the stor-
age but also database operations. The alternative ap-
proach is to split the query Q into two components:
Qsec + Qinsec, where Qinsec executes at the server on
the encrypted representation to compute a (superset
of) results for Q and Qsec executes within the security
perimeter to filter out the false positives. The objec-
tive is to push as much work as possible for evaluating
Q to the service provider.

Techniques to split query processing between the
client and server in the context of DAS has been ex-
plored for various classes of queries. For example, buck-
etization (data partitioning) technique [4] to support

720

range queries, deterministic encryption [4, 6] for join
queries, as well as, several other methods [5, 1] have
been proposed. The objective of these are to push as
much work as possible for evaluating the queries to the
service provider.

While techniques to support various types of queries
in the DAS model have been developed, much of this
work is ad-hoc in nature. For instance, it lacks an in-
depth analysis of the level of privacy afforded under
various attack scenarios. This is challenging, specially
given that there is no agreed upon definition or estab-
lished way to reason about privacy. Privacy, in general,
depends upon the user specification, nature of data and
the application context. Existing research also lacks
analysis of the privacy-utility trade-offs inherent to any
privacy-preserving data processing system.

In this paper, we focus on range queries and a buck-
etization based approach proposed in [4] to support
them in the DAS model. In the bucketization ap-
proach, an attribute domain is partitioned into a set
of buckets each of which is identified by a tag. These
bucket tags are maintained as an index (referred to
as crypto-index) and are utilized by the server to
process the queries. Our goal in this paper is to
characterize the privacy threats arising from the cre-
ation of bucketization-based indices to support range
queries. Furthermore, we aim to design algorithms to
explore privacy-efficiency trade-offs for the bucketiza-
tion schemes. Specifically, this paper makes the follow-
ing contributions:

1. Design of an optimal (that maximizes the accuracy
of range queries) solution for data bucketization.

2. Identification of privacy measures most relevant
in the DAS model and analysis of privacy levels
achieved for any instance of bucketized data1.

3. Development of a novel privacy-preserving re-
bucketization technique that yields bounded over-
head (due to commensurately reduced accuracy)
while maximizing the defined notions of privacy.

The rest of this paper is organized as follows. Sec-
tion 2 briefly discusses range queries in [4] and ad-
dresses relevant privacy issues. Section 3 develops an
optimal data bucketization algorithm which maximizes
efficiency of crypto-indices. Section 4 identifies statis-
tical metrics of privacy relevant to the context. Next,
section 5 introduces our new re-bucketization technique
and section 6 discusses privacy issues for the multi-
attribute case. Experimental results are reported in
section 7 and related work is over viewed in section
8. The paper concludes in Section 9 and 10 with the
summary and future work issues.

1In fact, we offer a worst-case analysis where the adversary is
assumed to know the entire bucketization scheme.

2 Preliminaries

We begin with the brief overview of the DAS model
from [4]. This setting involves clients (data owners)
and servers (database service providers). Clients to do
not trust servers with data contents and encrypt the
outsourced data before storing it at the server. Specif-
ically, each data tuple (record or row) of a relational
table is stored at the server as an encrypted unit, the
so-called etuple.

However, since virtually no useful database opera-
tions can be performed over encrypted data, the DAS
model involves creation of crypto-indices over sensitive
attributes2 which are expected to appear in queries.
Multiple crypto-indices may be created over each at-
tribute to support different kinds of SQL queries. The
objective is to maximize the amount of query process-
ing done by the server (without, of course, decrypting
any etuples) while minimizing work for the client. At
query execution time, instead of the actual cleartext
attribute values, crypto indices are used for filtering
out tuples for query predicates that involve sensitive
attributes.

We focus on crypto-indices designed to support
range queries. The technique in [4] involves partition-
ing (bucketizing) each attribute domain into a finite
number of regions (in an equi-depth or equi-width
manner) and assigning each region a unique random
tag (bucket-id). Subsequently, the cleartext of sensitive
attributes of each tuple is essentially suppressed and
only identified by its corresponding bucket-id, for each
crypto-index built upon that attribute. If the original
table was R, this results in a new server-side table RS ,
containing etuples and corresponding bucket-ids. An
example is given below:

Example 1: Consider the tables in figure 1, where
the left side is the original table and the right is its
encrypted version. For each sensitive attribute: X, Y
and Z, a separate crypto-index is created. The client

6347889OceanJerry780

5983460RiverJohn8976

4762258MainMary876

4003254MapleTom345

Test

(Z)

Test

(Y)

Test

(X)

addrenameeid

6347889OceanJerry780

5983460RiverJohn8976

4762258MainMary876

4003254MapleTom345

Test

(Z)

Test

(Y)

Test

(X)

addrenameeid

01111010

00110110

00001110

11000100

etuple

bt.z3bt.y4bt.x4

bt.z2bt.y3bt.x3

bt.z1 bt.y2bt.x2

bt.z1bt.y1bt.x1

ZSYSXS

01111010

00110110

00001110

11000100

etuple

bt.z3bt.y4bt.x4

bt.z2bt.y3bt.x3

bt.z1 bt.y2bt.x2

bt.z1bt.y1bt.x1

ZSYSXS

Client side Data (plain text)
emp(R)

Server side Data (encrypted + indexed)
empS (RS)

bt.z2

bt.z3

bt.z1

Crypto-index

Figure 1: Representation of table on the server

uses meta-data (stored within the secure perimeter)
to translate normal database queries into server-side
queries. The latter can only use indexing information

2Crypto-indices corresponding to non-sensitive attributes are
the same as in any normal index data structure.

721

in RS (i.e., the columns XS, Y S , ZS). For example, an
SQL query:

Select ename, addr from R where R.Z ≥ 450

is translated into:
Select etuple from RS where RS.ZS = bt.z1

∨ bt.z2 ∨ bt.z3

where bt.z1, bt.z2 and bt.z3 refer to bucket-tags of
the buckets created on attribute Z. ♦

It is evident that this approach often results in the
query reply containing a superset of records desired by
the client. To filter out superfluous data, the client
needs to post-process the reply: decrypt each etuple
and apply the original query criteria to the cleartext.
It is easy to make the following observation:

Observation 1 Allocating a large number of buckets
to crypto-indices increases query precision but reduces
privacy. On the other hand, a small number of buckets
increases privacy but adversely affects performance.

The goal of the client is thus twofold:
1) Server Efficiency: maximize the server-side ac-
curacy of range query evaluation. Higher efficiency
results in lower server-client communication overhead
and lower post-processing costs for the client.
2) Maximum Privacy: minimize the information re-
vealed to the server through the crypto-indices. In
other words, maximize data privacy. (What constitutes
“information” in this context is clarified in Section 4)
below).

We now turn to the problem of optimal bucketiza-
tion of an attribute domain.

3 Optimal Buckets for Range Queries

As noted in the previous section, the problem of op-
timal bucketization of attribute domains was not ad-
dressed in [4]. In this section we develop such an algo-
rithm.

For simplicity of analysis, we will restrict our atten-
tion to building crypto-indices over numeric attributes
from a discrete domain like Z (set of non-negative inte-
gers). But the algorithm applies to the real domain as
well. Also we should point out here, that the method
by which crypto-indices are actually implemented, is
immaterial to us. In reality, any simple data structure
that can swiftly retrieve all tuples belonging to any
bucket, will suffice. The notion of efficiency that we
are concerned with, is only dictated by how the data is
partitioned into these buckets.

3.1 Problem Statement

We start by defining the optimal bucketization prob-
lem. (Refer to the table 1 for notations.)

Problem: 3.1 Given an input relation R = (V, F)
(where V is the set of distinct numeric values appearing
at least once in the column and F is the set of corre-
sponding frequencies), a query distribution P (defined

Vmin minimum possible value for a given attribute
Vmax maximum possible value for a given attribute
N number of possible distinct attribute values;

N = Vmax − Vmin + 1
R relation (in cleartext), R = (V, F)
|R| number of tuples in R (i.e. size of table)
V ordered set (increasing order) of all values

from the interval [Vmin, Vmax] that occur
at least once in R; V = {vi | 1 ≤ i ≤ n}

F set of corresponding frequencies (non-zero);
F = {0 < fn ≤ |R| | 1 ≤ i ≤ n}
therefore we have |R| =

∑n

i=1
fi

n n = |V | = |F | (Note: n ≤ N)
RS encrypted and bucketized relation, on server
M maximum number of buckets
Q set of all “legal” range queries over R
q a random range query drawn from Q;

q = [l, h] where l ≤ h and h, l ∈ [Vmin, Vmax]
Q′ set of all bucket-level queries
q′ random bucket-level query drawn from Q′;

basically q′ is a sequence of at least one
and at most M bucket identifiers.

T (q) translation function (on the client side) which,
on input of q ∈ Q, returns q′ ∈ Q′

Rq set of tuples in R satisfying query q

RS
q′

set of tuples in RS satisfying query q′

W query workload, induces probability dist on Q

Table 1: Notations for Buckets

on the set of all range queries, Q) and the maximum
number of buckets M , partition R into at most M buck-
ets such that the total number of false positives over
all possible range queries (weighted by their respective
probabilities) is minimized.

Note that for an ordered domain with N distinct
values, there are N(N + 1)/2 possible range queries in
the query set Q. Before presenting our algorithm, we
would like to point out a couple of things regarding
our query model (i.e. the various query distributions
that we consider). The problem of histogram construc-
tion for summarizing large data, has similarities to the
present problem. Optimal histogram algorithms either
optimize their buckets i) independent of the workload,
by just looking at the data distribution [31] or ii) with
respect to a given workload [32, 33]. In the first ap-
proach, the query distribution is implicitly assumed to
be uniform (i.e. all possible range queries are equi-
probable). We address both the cases, where in the
query distribution is one of the following:

1) Uniform: All queries are equi-probable. Therefore
probability of any query is = 2

N(N+1) .

2) Workload-induced: There is a probability distri-
bution P induced over the set of possible queries Q,
where the probability of a query q is given by the frac-
tion of times it occurs in the workload W (W is a bag
of queries from Q).

We analyze the case of uniform query-distribution
in detail here. We omit the discussion on how the gen-
eral distribution (workload induced) case can be tack-
led due to space restrictions. The interested reader can
refer to [11] for the algorithm.

722

3.2 Uniform query distribution

The total number of false positives (TFP), where all
queries are equiprobable can be expressed as:

TFP =
∑

∀q∈Q

(|RS
T (q)| − |Rq |)

The average query precision (AQP) can be expressed
as (see notation in table 1):

AQP =

∑
q∈Q |Rq |∑

q∈Q |RS
T (q)|

= 1 −
TFP∑

q′∈Q′ |RS
q′ |

where q′ = T (q).
Therefore minimizing the total number of false pos-

itives is equivalent to maximizing average precision of
all queries.

As before, consider a single attribute of a relation
from a totally ordered discrete domain, such as the set
of non-negative integers. For a bucket B, there are
NB = (HB −LB +1) distinct values where LB and HB

denote the low and high bucket boundary, respectively.
Let VB denote the set of all values falling in range B
and let FB = {fB

1 , . . . , fB
NB

} denote the set of corre-
sponding value frequencies. Recall that Q is the set of
all range queries over the given attribute. We need to
consider all queries that involve at least one value in
B and compute the total overhead (false positives) as
follows:

Let the set of all queries of size k be denoted by Qk

and qk = [l, h] denote a random query from Qk where
h − l + 1 = k. Then, the total number of queries from
Qk that overlap with one or more points in bucket B
can be expressed as: NB +k−1. Of these, the number
of queries that overlap with a single point vi within the
bucket is equal to k. The case for k = 2 is illustrated in
figure 2. Therefore, for the remaining NB−1 queries, vi

contributes fi false positives to the returned set (since
the complete bucket needs to be returned). Therefore,
for all NB + k − 1 queries of size k that overlap with
B, the total number of false positives returned can be
written as:

∑

vi∈B

(NB − 1) ∗ fi = (NB − 1) ∗
∑

vi∈B

fi

= (NB − 1) ∗ FB ≈ NB ∗ FB

where FB is the total number of elements that fall in
the bucket (i.e., the sum of the frequencies of the val-
ues that fall in B). We make the following important
observation here:-

Observation 2 For the uniform query distribution,
the total number of false positives contributed by a
bucket B, for set of all queries of size k, is indepen-
dent of k. In effect the total number of false positives
contributed by a bucket (over all query sizes) depends
only on the width of the bucket (i.e. minimum and
maximum values) and sum of their frequencies.

Figure 2: Queries overlapping with bucket

In light of the above observation, we conclude that min-
imizing the expression NB ∗ FB for all buckets would
minimize the total number of false-positives for all val-

ues of k (the complete set of N(N+1)
2 range queries).

3.3 The Query-Optimal-Bucketization Algo-
rithm (uniform distribution case)

As follows from the preceding discussion, our goal is to
minimize the objective function :

∑
Bi

NBi
∗ FBi

. Let

QOB(1, n, M) (Query Optimal Bucketization) refer to
the problem of optimally bucketizing the set of values
V = {v1, . . . , vn}, using at most M buckets (Note that
v1 < . . . < vn, each occurring at least once in the
table). We make the following two key observations:
1) Optimal substructure property: The problem
has the optimal substructure property [34], therefore
allowing one to express the optimum solution of the
original problem as the combination of optimum solu-
tions of two smaller sub-problems such that one con-
tains the leftmost M − 1 buckets covering the (n − i)
smallest points from V and the other contains the ex-
treme right single bucket covering the remaining largest
i points from V :

QOB(1, n, M) = Mini[QOB(1, n − i, M − 1)

+BC(n − i + 1, n)]

where BC(i, j) = (vj − vi + 1) ∗
∑

i≤t≤j

ft

(BC(i, j) is cost of a single bucket covering [vi, vj])

2) Bucket boundary property: It can be intu-
itively seen that for an optimal solution, the bucket
boundaries will always coincide with some value from
the set V (i.e. values with non-zero frequency). There-
fore in our solution space, we need to consider only
buckets whose end points coincide with values in V ,
irrespective of the total size of the domain.

The algorithm solves the problem bottom-up by
solving and storing solutions to the smaller sub-
problems first and using their optimal solutions to solve
the larger problems. All intermediate solutions are
stored in the 2-dimensional matrix H . The rows of
H are indexed from 1, . . . , n denoting the number of
leftmost values from V that are covered by the buck-
ets for the given sub-problem and the columns are
indexed by the number of maximum allowed buckets
(from 1, . . . , M). Also note that the cost of any sin-
gle bucket covering a consecutive set of values from

723

Algorithm: QOB(D, M)
Input: Data set D = (V, F) and max # buckets M

(where |V | = |F | = n)
Output: Cost of optimal bucketization & matrix H
Initialize

(i) matrix H[n][M] to 0
(ii) matrix OPP [n][M] to 0
(iii) compute EndSum(j) = EndSum(j + 1) + fj

for j = 1 . . . n
For k = 1 . . . n // For sub-problems with max 2 buckets

H[k][2] = Min2≤i≤k−1(BC(1, i) + BC(i + 1, K))
Store optimal-partition-point ibest in OPP [k][2]

For l = 3 . . . M // For the max of 3 up to M buckets
For k = l . . . n

H[k][l] = Minl−1≤i≤k−1(H[i][l − 1] + BC(i + 1, k))
Store optimal-partition-point ibest in OPP [k][l]

Output “Min Cost of Bucketization = H[n][M]”
end

Figure 3: Algorithm to compute query optimal buckets

V can be computed in constant time by storing the
cumulative sum of frequencies from the right end of
the domain, call them EndSum (i.e. EndSumn =
fn, EndSumn−1 = fn−1 + fn Storing this infor-
mation uses O(n) space. We also store along with the
optimum cost of a bucketization, the lower end point of
its last bucket in the n×M matrix OPP (Optimal Par-
tition Point) for each sub-problem solved. It is easy to
see that the matrix OPP can be used to reconstruct the
exact bucket boundaries of the optimal partition com-
puted by the algorithm in O(M) time. The dynamic
programming algorithm is shown in figure 33 and an
illustrative example is given below.

Example 2: Assume the input to QOB algorithm
is the following set of (data-value, frequency) pairs:
D = {(1, 4), (2, 4), (3, 4), (4, 10), (5, 10), (6, 4), (7, 6), (8, 2),
(9, 4), (10, 2)} and say the maximum number of buck-
ets allowed is 4, then (figure 4) displays the optimal
histogram that minimizes the cost function. The
resulting partition is {1, 2, 3}, {4, 5}, {6, 7}, {8, 9, 10}.
Note that this histogram is not equidepth (i.e all
bucket need not have the same number of elements).
The minimum value of the cost function comes out to
be = 120. In comparison the approximately equi-depth
partition {1, 2, 3}, {4}, {5, 6}, {7, 8, 9, 10} has a cost
= 130. ♦

3.3.1 Computation and Space Complexity

The complexity of the algorithm is O(n2 ∗ M) which
is dominated by the nested loop step, where the outer
loop runs M times, inner loop runs O(n) times and
computing the minima over i takes another O(n) com-
putations. Computing cost of each bucket, the pro-
cedure BC(i, j) can be done in O(1) time if the se-
quence of numbers EndSum is precomputed, which

3in the workload-induced case, only the EndSum computa-
tion is done differently, the rest of the algorithms remains the
same

Figure 4: Optimum buckets for uniform query distribution

again takes O(n) time. The space complexity of the
algorithm is clearly O(n ∗ M) due to the two matri-
ces H and OPP . Due to lack of space, experimental
observations for the running times of the algorithm is
omitted in this paper and reported only in [11].

Before ending this section, we would like to point
out that our techniques can be utilized to solve multi-
attribute range queries as well. This can be done in
a relatively straightforward manner, by utilizing the
crypto-indices built on each of the query attributes and
then returning the common set of tuples which satisfy
the range constraints for each dimension. We present
some more discussion on multi-attribute range queries
in section 6.

4 Privacy Measures

Here we propose two data-level privacy measures rele-
vant to data bucketization and argue their utility.

4.1 Adversary’s goal

The pillar of the DAS model is the untrusted server. In
the context of our discussion, the adversary (denoted
as A) collectively represents the server as well as any
other malicious entities in the systems.

While A’s possible goals are difficult to enumerate,
we focus on the context of the current application.
In particular, we make the following two assumptions
about A’s goals:
Individual-centric information: A is interested in
determining the precise values of sensitive attributes
of some (all) individuals (records) with high degree of
confidence. Eg: What is the value of salary field for
a specific record. We refer to A’s ability to estimate a
value as Value-Estimation-Power (VEP) of A.
Query-centric information: A is interested in iden-
tifying the exact set of etuples that satisfy any (clear-
text) query q ∈ Q with the highest possible precision
and recall 4. Eg: Which are the records of people who
get salary between 100K and 150K. We denote A’s
ability to identify a set of etuples satisfying a query as
Set-Estimation-Power (SEP).

We point out an important distinction between the
meaning of “precision” for A and for the data owner
(client): We assume that the underlying row-level en-
cryption employed by the client is to the table, is un-

4Precisions and recall refer to accuracy and completeness, re-
spectively, of a set of etuples with respect to a given query

724

breakable (eg. some non-deterministic encryption algo-
rithm). Therefore A never obtains the plaintext value
of a sensitive attribute. Given an etuple, the best A
can do is obtain a probabilistic estimate of the true
value with high degree of confidence. Similarly, given a
cleartext query q and a set S of bucketized etuples, A
can assign a certain probability to whether any etuple
in S satisfies q. On the other hand, there is no notion
of uncertainty involved for the client. After receiving a
set of etuples, he decrypts them and finds out exactly
which tuples satisfy the query q. The overhead or im-
precision for the client is only in terms of the extra
false-positives that need to be decrypted and filtered
out.

The above discussion makes it clear that A has
to reconstruct the whole table by estimating/inferring
the correct values of sensitive attributes. A can only
achieve this by first breaking the bucketization scheme
and using this knowledge to form statistical estimates
of the set (range) of values that the attribute(s) of a
tuple can take. We also assume that A employ statis-
tical techniques that maximize its degree of confidence
and minimize the cardinality (size) of set (range) of
possible values (i.e., maximize his V EP and SEP).

To simplify the analysis, we make the following as-
sumption, which allows us to perform the worst-case
breach of privacy analysis:

Assumption 4.1 A knows the entire bucketization
scheme and the exact probability distribution of the val-
ues within each bucket.

For example, given that bucket B has 10 elements, we
assume A knows that: 3 of them have value 85, 3 have
value 87 and 4 have value 95, say. However, since the
elements within each bucket are indistinguishable, this
does not allow A to map values to elements with ab-
solute certainty. We now propose the two measures of
privacy.

4.2 Variance

We propose the Variance of the distribution of val-
ues within a bucket B as its measure of “Individual-
Centric-Privacy guarantee”. We base our choice of
variance on the theorem (see below), however, we first
define the term Average Squared Error of Estimation
(ASEE) as follows:

Definition 4.1 ASEE: Assume a random variable
XB follows the same distribution as the elements of
bucket B and let PB denote its probability distribution.
For the case of a discrete (continuous) random vari-
able, we can derive the corresponding probability mass
(density) function denoted by pB. Then, the goal of the
adversary is to estimate the true value of a random
element chosen from this bucket. We assume that A
employs a statistical estimator for this purpose which
is, itself a random variable, X ′

B with probability distri-
bution P ′

B.

In other words, A guesses that the value of X ′
B is

xi, with probability p′B(xi). If there are N values in
the domain of B, then we define Average Squared
Error of Estimation (ASEE) as:

ASEE(XB , X ′
B) =

N∑

j=1

N∑

i=1

p′B(xi) ∗ pB(xj) ∗ (xi − xj)
2

Theorem 4.2 ASEE(X,X′) = Var(X) + Var(X′)+
(E(X) −E(X′))2 where X and X ′ are random vari-
ables with probability mass (density) functions p and
p′, respectively. Also Var(X) and E(X) denote vari-
ance and expectation of X respectively.

Proof: See appendix A
It is easy to see that A can minimize

ASEE(XB , X ′
B) for a bucket B in two ways: 1)

by reducing V ar(X ′
B) and 2) by reducing the absolute

value of the difference E(XB) − E(X ′
B). Therefore,

the best estimator of the value of an element from
bucket B that A can get, is the constant estimator
equal to the mean of the distribution of the elements
in B (i.e., E(XB)). For the constant estimator X ′

B ,
V ar(X ′

B) = 0. Also, as follows from basic sampling
theory, the “mean value of the sample-means is a good
estimator of the population (true) mean”. Thus, A
can minimize the last term in the above expression by
drawing increasing number of samples or, equivalently,
obtaining a large sample of plaintext values from B.
However, note that the one factor that A cannot con-
trol (irrespective of the estimator he uses) is the true
variance of the bucket values, V ar(XB). Therefore,
even in the best case scenario (i.e., E(X ′

B) = E(XB)
and V ar(X ′

B) = 0), A still cannot reduce the ASEE
below V ar(XB), which, therefore, forms the lower
bound of the accuracy achievable by A. Hence, we
conclude that the data owner (client) should try to
bucketize data in order to maximize the variance
of the distribution of values within each bucket.

4.3 Entropy

A higher value of variance tends to increase the average
error of estimation for the adversary therefore increas-
ing the individual centric privacy guarantee. Nonethe-
less, variance does not seem to be the appropriate mea-
sure of “query centric privacy guarantee” of a bucket.
We then turn for help to information theory. As noted
above, A’s knowledge of the bucket contents are limited
by the probability distribution, in the worst case (best
case for the A, when he has learnt the complete buck-
etization). It is well-known that entropy of a random
variable X is a measure of its uncertainty [17]. Entropy
of a random variable X taking values xi = 1, . . . , n with
corresponding probabilities pi, i = 1, . . . , n is given by:

Entropy(X) = H(X) = −

n∑

i=1

pi × log2(pi)

725

We propose that the measure of “query-centric privacy
guarantee” given by a bucket B be the entropy of B’s
probability distribution (i.e., the distribution of values
within B, as known to A, which happens to be the
true distribution in the worst case scenario). We argue
that entropy is an appropriate measure of query-centric
privacy, by providing a simple example below. In the
same example, we also show that variance and entropy
are un-related, i.e., they are important and indepen-
dent measures of privacy. A more formal argument for
choosing entropy as the measure for query-centric pri-
vacy is provided in [11].
Example 3: Consider the following data set:
T = {(2, 1), (4, 1), (6, 1), (8, 1)}where each value occurs
with frequency 1.

A) There are 10 distinct range queries (classified by
their solution sets) possible on this attribute. Consider
the case when there are 4 buckets, each containing a
single value. The bucket entropy is 0 if A knows the
contents of the bucket, since A can identify the exact
set of solution tuples for each of the 10 queries. Now
consider only 2 buckets, e.g., as in row 1 of table 2.
Each bucket in this case have entropy = 1. A can
retrieve the precise set of tuples for only 3 of the 10
queries. For the remaining 7 queries, A can only specify
the solution set with some probability. Therefore, we
make the following observation:

Observation 3 Increasing bucket entropy reduces the
adversary’s ability to identify tuples satisfying a query.

B) To distribute the elements of T into two non-
empty buckets, we have the following distinct partitions
to consider (where σ2 denotes variance and H denotes
entropy for the respective buckets):

Partition σ2
B1

σ2
B2

HB1
HB2

1) B1 = {2, 4}; B2 = {6, 8} 1 1 1 1
2) B1 = {2, 6}; B2 = {4, 8} 4 4 1 1
3) B1 = {2, 8}; B2 = {4, 6} 9 1 1 1
4) B1 = {4, 6, 8};B2 = {2} 2.67 0 1.585 0
5) B1 = {2, 6, 8};B2 = {4} 6.22 0 1.585 0
6) B1 = {2, 4, 8};B2 = {6} 6.22 0 1.585 0
7) B1 = {2, 4, 6};B2 = {8} 2.67 0 1.585 0

Table 2: Variance and Entropy of buckets

Obviously, case 2 represents the most desirable buck-
etization since it seems to balance variance as well
as entropy. We note that the entropies of the buck-
ets do not seem to be correlated with the respective
variances.♦

Therefore, as suggested earlier, we treat variance
and entropy of each bucket, as two independent mea-
sures of privacy and try to achieve a partition that
maximizes both simultaneously for every bucket.

5 The Privacy-Performance Trade-off

This section studies the privacy-performance trade-off.
Our goal is to develop a bucketization strategy that

allows for this exploration to be carried out in a con-
trolled manner. Section 3 gave the QOB-algorithm
that computes, for a given number of buckets, the opti-
mum bucketization of data leading to best performance
(i.e. minimize false positives). Of course the optimal
buckets also offer some level of privacy, but in many
cases that might not be good enough (that is buck-
ets might not have a large enough variance and/or en-
tropy). What we now explore is how to re-bucketize the
data, starting with the optimal buckets and allowing a
bounded amount of performance degradation, in order
to maximize the two privacy measures (entropy and
variance) simultaneously. We formalize the problem
being addressed below:

Trade-off Problem: Given a dataset D = (V, F)
and an optimal set of M buckets on the data
{B1, B2, . . . , BM}, re-bucketize the data into M new
buckets, {CB1, CB2, . . . , CBM} such that no more
than a factor K of performance degradation is intro-
duced and the minimum variance and minimum
entropy amongst the M random variables X1, . . . , XM

are simultaneously maximized, where the random
variable Xi follows the distribution of values within
the ith bucket.

Solution approach: The above mentioned prob-
lem can be viewed as a multi-objective constrained op-
timization problem [19], where the entities minimum
entropy and minimum variance amongst the set of
buckets are the two objective functions and the con-
straint is the maximum allowed performance degrada-
tion factor K (we will call it the Quality of Service
or the QoS constraint). Such problems are combinato-
rial in nature and the most popular solution techniques
seem to revolve around the Genetic Algorithm (GA)
framework [20], [21]. GA’s are iterative algorithms and
cannot guarantee termination in polynomial time. Fur-
ther their efficiency degrades rapidly with the increas-
ing size of the data set. Therefore instead of trying
to attain optimality at the cost of efficiency, we design
a novel algorithm which we call the controlled diffu-
sion algorithm (CDf -algorithm). The CDf -algorithm
increases the privacy of buckets substantially while en-
suring that the performance constraint is not violated.

5.1 Controlled Diffusion

We can compute the optimal bucketization for a given
data set using the QOB-algorithm presented in figure
3 of section 3, let us call the resulting optimal buckets
B′

is for i = 1, . . . , M . The controlled diffusion pro-
cess creates a new set of M approximately equidepth
buckets which we call composite buckets (denoted by
CBj , j = 1, . . . , M) by diffusing (i.e. re-distributing)
elements from the Bi’s into the CBj ’s. The diffusion
process is carried out in a controlled manner by restrict-
ing the number of distinct CB’s that the elements from
a particular Bi get diffused into. This resulting set of
composite buckets, the {CB1, . . . , CBM} form the final
bucketized representation of the client data.

726

The M composite buckets need to be approximately
equal in size in order to ensure the QoS constraint, as
will become clear below. The equidepth constraint sets
the target size of each CB to be a constant = fCB =
|D|/M where |D| is size of the dataset (i.e. rows in the
table). (We do not implement the equidepth constraint
rigidly but as our experiments demonstrate, the error
is still quite small). Let us see how the QoS constraint
is actually enforced: If the maximum allowed perfor-
mance degradation = K, then for an optimal bucket
Bi of size |Bi|, we ensure that its elements are diffused

into no more than di = K∗|Bi|
fCB

composite buckets (as

mentioned above fCB = |D|/M). We round-off the
diffusion factor di to the closest integer. Assume that
in response to a range query q, the server using the
set of optimal buckets {B1, . . . , BM}, retrieves a to-
tal of t buckets containing T elements in all. Then
in response to the same query q our scheme guaran-
tees that the server would extract no more than K ∗ T
elements at most, using the set {CB1, . . . , CBM} in-
stead of {B1, . . . , BM}. For example, if the optimal
buckets retrieved in response to a query q were B1 and
B2 (here t = 2 and T = |B1| + |B2|), then to eval-
uate q using the CBj ’s, the server won’t retrieve any
more than K ∗ |B1|+K ∗ |B2| elements, hence ensuring
that precision of the retrieved set does not reduce by
a factor greater than K. An added advantage of the
diffusion method lies in the fact that it guarantees the
QoS lower bound is met not just for the average preci-
sion of queries but for each and every individual query.
The important point to note is that the domains of the
composite buckets overlap where as in the case of the
optimal buckets, they do not. Elements with the same
value can end up going to multiple CB’s as a result of
this diffusion procedure. This is the key characteris-
tic that allows us to tweak the privacy measure while
being able to control the performance degradation, in
other words this scheme lets us explore the “privacy-
performance trade-off curve”. The controlled diffusion
algorithm is given in figure 5. Though our method
does not provably maximize the privacy measures, it is
found to perform very well in practice. We illustrate
the diffusion process by an example below.

Example 4: Let us take the example 3.3 from section
3 and see how it works when we allow a performance
degradation of up to 2 times the optimal (K = 2).
Figure 6 illustrates the procedure. In the figure, the
vertical arrows show which of the composite buckets,
the elements of an optimal bucket gets assigned to (i.e.
diffused to). The final resulting buckets are shown in
the bottom right hand-side of the figure and we can see
that all the 4 CB’s roughly have the same number size
(between 11 and 14). The average entropy of a bucket
increases from 1.264 to 2.052 and standard deviation
increases from 0.628 to 1.875 as one goes from the B’s
to CB’s. In this example the entropy increases since
the number of distinct elements in the CB′s are more

Algorithm : Controlled-Diffusion(D, M, K)
Input : Data set D = (V, F),

M = # of CB′s (usually same as # opt buckets)
K = maximum performance-degradation factor

Output : An M -Partition of the dataset (i.e. M buckets)

Compute optimal buckets {Bi, . . . , BM} using QOB algo
Initialize M empty composite buckets CB1 . . . , CBM

For each Bi

Select di = K∗|Bi|
fCB

distinct CB’s randomly, fCB = |D|
M

Assign elements of Bi equiprobably to the di CB′s
(roughly |Bi|/di elements of Bi go into each CB)

end For

Return the set buckets {CBj |j = 1, . . . , M}.
end

Figure 5: Controlled diffusion algorithm

1 2 3 4 5 6 7 8 9 10

Freq

Values

4 44 4 4

10 10

6

2 2

B1 B2 B3 B4

2 2 2

2 4 2

4 2 2 3

3 4 2 3

2 2 2 3 4

CB1

CB3

CB2

CB4

CB1

CB2

CB3

CB4

Performance
factor k = 2

Query optimal buckets

Composite Buckets

1 2 3 4 5 6 7 8 9 10

Figure 6: controlled diffusion (adhoc version)

than those in the B’s. The variance of the CB’s is
also higher on an average than that of the B’s since
the domain (or spread) of each bucket has increased.
We can also guarantee that the average precision of
the queries does not fall below a factor of 2 from the
optimal, for instance take the range query q = [2, 4],
it would have retrieved the buckets B1 and B2 had
we used the optimal buckets resulting in a precision of
18/32 = 0.5625. Now evaluating the same query using
the composite buckets, we would end up retrieving all
the buckets CB1 through CB4 with the reduced preci-
sion as 18/50 ≈ 0.36 > 1

2 ∗ 0.5625. (Note: Due to the
small error margin allowed in the size of the composite
buckets (i.e. they need not be exactly equal in size),
the precision of few of the queries might reduce by a
factor slightly greater than K). ♦

In the next section we address the case of multiple
attribute range queries and then go on to discuss our
experimental results in the subsequent section.

6 Multi-Attribute Range Queries

We have so far discussed the privacy performance
trade-off in range queries in context of a single parti-
tionable attribute. In reality, range queries might refer
more than one attribute. A straightforward approach
is to apply the privacy enhanced bucketization strategy

727

proposed earlier to each attribute individually. But in
multi-attribute case another problem arises: that of ex-
posure via associations. In such cases, the unique com-
bination of bucket-tags corresponding to the different
attributes in a single tuple might be used to disclose
the identity of the owner or perhaps narrow down the
space of possible values for critical fields. We first ad-
dress the issue of identity disclosure of the owner of a
tuple.

In multi-attribute datasets k-anonymity has been
proposed as a measure of privacy [14]. k-anonymity
is defined as follows:

Definition 6.1 k-anonymity is said to hold, when en-
coding of attribute values in a table are such that for
any row r, we can find at least k−1 other rows with the
same encodings of the corresponding columns. That is
for any row, there are at least k−1 other indistinguish-
able rows.

A goal of adversary A might be to identify the record
corresponding to a certain individual I . If A is able
to learn the encodings for a few of the attributes for
I ′s record (i.e. the bucket-tags) such that these en-
coding, together distinguish I ′s row from any other
row, then disclosure is said to have occurred. There-
fore it becomes critical to ensure a minimum k level of
anonymity for any row of the given table where k is
the desired privacy measure. Obviously a higher level
of anonymity will reduce the chances of disclosure of
any record of interest.

Ensuring k-anonymity in multi-attribute tables can
generally tend to get more difficult with the increasing
number of attributes that have to be indexed and it has
been shown to be NP -Hard in [15]. For tables where
only a single attribute needs to be indexed, the level of
anonymity achieved for any tuple is of course the size of
the bucket it is assigned to. The case where multiple at-
tributes have to be indexed, is a more complicated one.
Let us consider the special case where there is no corre-
lation between the values of the various attributes and
let NA1B1

tuples have bucket-id B1 for the attribute
A1. Then we might expect on an average to be able
to find P − 1 other tuples for a given tuple that are

indistinguishable from it, where P =
NA1B1

k2∗k3∗...∗kM
and

attribute A2 is partitioned into k2 buckets, A3 into k3

buckets and so on to all M attributes. That is we can
expect P -anonymity in general where P is defined as
above. The value of P rapidly decreases with both, the
increasing number of indexed attributes as well as the
number of buckets allowed for each of these attribute
domains.

Another attack that is a possibility in presence of
multiple crypto-indices, is that of prediction through
association. For instance when the adversary A knows
about correlations between different attributes Ai and
Aj say, he might be able to predict with high proba-
bility the value of attribute Aj of a tuple if he knows

the bucketization of the Ai field. Such attack scenarios
have been analyzed previously in [3].

Recently authors in [3] have explored the issue of
exposure and quantified it in a different setting where
hashing has been used instead of bucketization. Based
on their work, one could possibly develop the frame-
work to explore exposure in the bucketization case
as well. However, a novel strategy proposed in [8]
overcomes this problem in a different manner, instead
of bucketizing attributes individually, it is done as
a multidimensional partitioning. The authors show
that the problem of exposure disappears when multi-
dimensional partitioning is used. We feel our proposed
diffusion based approach can be adapted to work in the
case of multi-dimensional partitioning as well. But any
such discussion is out of scope of this paper and will
addressed in future work.

7 Experiments

We start by introducing the datasets we used and our
experimental setup.

7.1 Datasets and experimental setup
The following two dataset and query set were used:
1)Synthetic Data Set: consists of 105 integer val-
ues generated uniformly at random from the domain
[0, 999].
2)Real Data Set: consisted of 104 data points taken
from one of the columns of the “Co-occurrence Tex-
ture” table of the “Corel Image” dataset in UCI-
KDD archive [18]. The readings correspond to the
angular momentum component of some colored im-
ages. The values came from a real domain (roughly
(−0.800000, 8.000000)). The frequency of most values
was equal to 1 (i.e. unique) or some small integer c.
3)Benchmark Query Set: We generated two different
set of queries corresponding to the synthetic and real
datasets, Qsyn and Qreal respectively. Each were of
size 10000 and were generated uniformly at random
from the same ranges as the datasets themselves5.

We carried out all our experiments on a 1G Hz pen-
tium machine, with 512MB RAM.

7.2 Experiments

We carried out four sets of experiments that measured
the following:
1) Decrease in Precision: of evaluating the bench-
mark queries using optimal buckets (QOB-buckets)
and composite buckets (CB’s). Figure 7 (a) plots the
ratio of the average precision using optimal buck-
ets to that using the composite buckets for the bench-
mark query set Qsyn as a function of # of buckets.
Plots are shown for multiple values of the maximum al-
lowed performance degradation factor K = 2, 4, 6, 8, 10.

5though real life datasets and queries rarely come from an
uniform distribution, we feel the results reported here still give
a good indication of the usefulness of our algorithms

728

Ratio of Average Precision (synthetic)
(a)

0

0.5

1

1.5

2

2.5

3

100 150 200 250 300 350 400

Number of Buckets

P
re

c
 (

Q
O

B
)

/
P

re
c
 (

C
B

's
)

k = 2 k = 4 k = 6 k = 8 k = 10

Ratio of Average Precision (real)
(b)

0

0.5

1

1.5

2

2.5

3

100 150 200 250 300 350 400

Number of Buckets

P
re

c
 (

Q
O

B
)

/
P

re
c
 (

C
B

's
)

k = 2 k = 4 k = 6 k = 8 k = 10

Figure 7: Decrease in Precision a)Synthetic b) Real data

Ratio of Average Std Deviation (synthetic)
(a)

0

50

100

150

200

250

300

350

400

450

100 150 200 250 300 350 400

Number of Buckets

S
td

 D
e
v
 (

C
B

)
/
S

td
 D

e
v

(Q
O

B
)

k = 2 k = 4 k = 6 k = 8 k = 10

Ratio of Average Std Deviation (real)
(b)

0

50

100

150

200

250

100 150 200 250 300 350 400

Number of Buckets

S
td

 D
e
v
 (

C
B

)
/
S

td
 D

e
v

(Q
O

B
)

k = 2 k = 4 k = 6 k = 8 k = 10

Figure 8: Increase in Std Dev a)Synthetic b) Real data

Figure 7 (b) shows the corresponding plot for the real
dataset on query set Qreal.

2) Privacy Measure: We plot the ratio of average
standard deviation of the CB’s to that of the QOB-
buckets as a function of # of buckets in figure 8 (a)
for the synthetic dataset and in figure 8 (b) for the real
dataset (for values of K = 2, 4, 6, 8, 10). Figure 9 (a)
plots the ratio of average entropy for the two sets
of buckets, on the synthetic dataset and figures 9 (b)
display the corresponding ratio for the real dataset.

3) Performance-Privacy trade-off: Figure 10 (a)
displays the trade-off between average standard de-
viation of buckets and average precision. We fix 6
values of M , the # of buckets M = 100, 150, . . . , 350)
and for each M , we plot the average standard devia-
tion of the optimal set of buckets (QOB’s) as well as
the average standard deviation for the 5 sets of com-
posite buckets (CB’s) obtained from the QOB’s by ap-
plying the controlled-diffusion algorithm by setting the
degradation factor K = 2, 4, 6, 8, 10. In effect we plot
6 different points for each value of M . Similar plots
of entropy-precision trade-off for the same sets of
buckets are plotted in figure 10 (b).

4) Time taken: to compute the optimal buckets by
the QOB validates the O(N 2M) complexity of the
QOB algorithm. But the figures are excluded from
this paper due to lack of space. The interested reader
can refer to [11] for the plots.

Ratio of Average Entropy (synthetic)
(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

100 150 200 250 300 350 400

Number of Buckets

E
n

tr
o

p
y

 (
C

B
)

/
E

n
tr

o
p

y
 (

Q
O

B
)

k = 2 k = 4 k = 6 k = 8 k = 10

Ratio of Average Entropy (real)
(b)

0

0.2

0.4

0.6

0.8

1

1.2

100 150 200 250 300 350 400

Number of Buckets

E
n

tr
o

p
y

 (
C

B
s

)
 /

 E
n

tr
o

p
y

 (
Q

O
B

)

k = 2 k = 4 k = 6 k = 8 k = 10

Figure 9: Change in Entropy a)Synthetic b) Real data

Trade-off (Precision vs Std. Dev)

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

Average Precision
Av

er
ag

e
St

d.
 D

ev
ia

tio
n

Trade-off (Precision Vs Entropy)

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

Average Precision

Av
er

ag
e

En
tro

py

Opt-Buckts

CB(k=2)

CB (k=4)

CB (k=6)

CB (k=8)

CB (k=10)

(b)

(a)

Figure 10: Privacy-Performance trade-off a)Std Dev vs
Precision b) Entropy vs Precision

7.3 Results

The empirical results on both datasets for the bench-
mark queries are quite positive in most of our exper-
imental runs: the relative precision measurements for
instance show that for most cases, the degradation in
average precision is actually much smaller than the al-
lowed maximum of K. In both the datasets, even when
the maximum degradation factor allowed is 10, the ob-
served decrease in query precision was less than 3. This
is obviously because the controlled-diffusion algorithm
leads to some degree of overlap in range6. This results
in a much smaller drop in the precision than K, for a
majority of the range queries.

Amongst the privacy measures, standard deviation
increases by a large factor in most cases even for a small
value of K. Whereas entropy, being a logarithmic mea-
sure, grows more slowly. Though for some values of K

6where range(B) is the set of CB’s that the elements of B
are diffused into

729

for the real data, average entropy of buckets decreased
slightly as a result of diffusion.

Finally the plots in the performance-privacy trade-
off space display all the design points available to
the data-owner. These plots provide a good estimate
of the degree of privacy available if one is willing to
sacrifice efficiency by a given amount. For e.g, by look-
ing at the plots of figures 10 (a) and 10(b), the data
owner might choose a bucketizaton scheme that uses
100 buckets and sets K = 2 since it provides a high
value for average entropy as well as a sufficiently high
value of standard deviation of the buckets for a small
loss in efficiency (the design-point is circled in both the
figures). One can also use non-integral values of K and
explore more points in the trade-off space that might
meet one’s requirements). The trade-off plots could be
made more accurate by choosing an appropriate set of
benchmark queries for a given application.

8 Related Work

Privacy and security in databases have been a core area
of research for a few decades now. Privacy related prob-
lems spring up in many sub-areas of database research,
for e.g., access control [26], inference control [29],[28],
statistical disclosure control [16], statistical databases
[22], etc. More recently quite a bit of research has been
done in areas such as privacy preserving data mining [9]
[10], DAS oriented work (which we have reviewed ear-
lier) and privacy-preserving information retrieval [30].
We give a brief summary of the research in few of the
areas other than DAS.

Privacy Preserving Data mining: There does
not seem to be any universally acceptable definition of
privacy and the general trend is to define a notion of
privacy that is best suited to the application at hand.
Authors previously have suggested different measures
for various application: Agrawal and Srikant [9] ad-
dress the classification problem and propose the size
l of the interval to which the value of a variable can
be restricted with a confidence c to be the measure of
privacy at c-confidence level. Agrawal and Aggarwal
[10] study distribution reconstruction from randomized
data for which they propose measures based on entropy
and mutual information of random variables. Associa-
tion rule mining in privacy-preserving manner has been
addressed in [2]. [12, 13] take a cryptographic approach
to compute decision trees and do EM-clustering for a
distributed setting, in a privacy-preserving manner.

Statistical Database Protection and Disclo-
sure Control: The central problem addressed in sta-
tistical databases and disclosure control is that of re-
leasing datasets in a manner such that an individual
interested in learning aggregate level measures (mean,
median, frequency) is able to do so with minimum error
and at the same time the data owner is able to secure
the values of records from being disclosed [22], [23],
[24], [25]. Data-perturbation by statistical noise addi-

tion is an important method of enhancing privacy [22],
[24]. The idea is to perturb the true value by a small
amount ε where ε is a random variable with a mean
= 0 and a small variance = σ2. Statistical disclosure
control techniques consist of generalization, suppres-
sion and data swapping amongst others [16]. Another
important privacy-measure, that of k-anonymity [14]
has been introduced earlier in section 6. The literature
in the area is vast and we refer the interested readers
to [23] and [16] for a thorough survey of the field.

Inference Control: The inference problem in
databases occurs when sensitive information can be
disclosed from non-sensitive data and meta-data. A
vast amount of research exists in this area as well
[27]. An inference analysis based on variance of es-
timators has been carried out by the authors in [24]
for randomization. Specifically of interest to us are
the issues of inference control in i) general purpose
databases, ii)statistical databases, iii)data mining and
iv)web-based inferencing. Detection of inference chan-
nels in above scenarios is an important problem and
has been addressed by many researchers. Due to lack
of space, we refer the interested reader to [27],[28] and
[29] for a detailed exposition and pointers to further
literature in the area.

9 Conclusions

In this paper, we investigated “data bucketization” as a
privacy-enhancing technique and highlighted the fun-
damental tradeoff between privacy and performance.
We presented some inferencing and disclosure scenar-
ios (that an adversary, primarily the untrusted server,
might be interested in) and proposed two useful mea-
sures of privacy. We also derived an optimal algorithm
for data partitioning that provably minimizes perfor-
mance overhead in query processing. We presented the
controlled diffusion algorithm that lets the data owner
fine-tune bucketization to achieve the desired level of
data privacy by sacrificing the accuracy (of query eval-
uation) by a small measured amount. The effectiveness
of our proposed algorithms is validated by our exper-
iments that show promising results on both synthetic
and real datasets.

10 Future Work

In the future, we intend to assess the privacy loss in
the case when the adversary has partial information
about buckets (which is a more realistic scenario) in-
stead of the worst case scenario where the adversary
has complete information as considered here. Also, an-
alyzing disclosure risk and privacy guarantee in case
of multi-attribute data is an important goal of our
research. Furthermore, we intend to explore/develop
optimal partitioning algorithms that provably max-
imize privacy within performance constraints set by
the data owner.

We recognize that many other research challenges
would arise if we were to incorporate and deploy a

730

bucketization strategy (such as the one proposed in
this paper) in real systems. For example, in this pa-
per we assumed a static database. Over time, as the
database changes, the bucketization might not remain
optimal and will have to be adapted. One approach is
to construct a new bucketization periodically (on the
fly) and replace the old index with a new one. To make
the scheme more attractive for the on-line setting, it is
interesting to explore incremental construction and mi-
gration schemes. Such incremental schemes have been
developed for B-tree or other indices and some of these
ideas might apply in our context as well.

Finally, we note that our focus has been on range
queries and we showed how bucket content diffusion as
a strategy can offer higher privacy with bounded over-
head. Approaches involving the privacy/performance
tradeoff in the context of other kinds of queries (such
as join queries) remain part of our future work.

References

[1] Domingo-Ferrer, J., Castillo, R., X., S. An implementable
scheme for Secure Delegation of Computing and Data.
ICICS, 1997, pp. 445-451.

[2] Evfimievski, A., Srikant, R., Agrawal, A., Gehrke, J. Privacy
reserving mining of association rules. SIGKDD, 2002.

[3] Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S.,
Samarati, P. Balancing Confidentiality and efficiency in un-
trusted relational DBMSs. In10th ACM CCS, 2003

[4] Hacigumus, H., Iyer, B., Li, C., Mehrotra, S. Executing
SQL over Encrypted Data in the Database Service Provider
Model, SIGMOD 2002, June 4-6, Madison, Wisconsin, USA.

[5] Hacigumus, H., Iyer, B., Mehrotra, S. Efficient Execution of
Aggregation Queries over Encrypted Relational Databases,
In DASFAA, 2004, pp. 125-136.

[6] Bouganim, L., Pucheral, L. Chip-Secured Data Access: Con-
fidential Data on Untrusted Servers, In Proc. of the 28th

VLDB Conference, 2002.
[7] Maheshwari, U., Vingralek, R., Shapiro, W. How to build a

Trusted Database System on Unstrusted Storage OSDI 2000
[8] Jammalamadaka, R., Mehrotra, S. Querying Encrypted

XML document technical report TR-DB-04-03, ww-
db.ics.uci.edu/pages/publications/index.shtml

[9] Agrawal, R., Srikant, R. Privacy-Preserving Data Mining.
ACM SIGMOD 2000

[10] Agrawal, D., Aggarwal, C., C. On the Design and Quan-
tification of Privacy Preserving Data Mining Algorithms.
PODS, 2001

[11] Hore, B., Mehrotra, S., Tsudik, G. A Privacy-Preserving
Index for Range Queries technical report TR-DB-04-04, ww-
db.ics.uci.edu/pages/publications/index.shtml

[12] Lindell, Y., Pinkas, B. Privacy Preserving Data mining. In
Advances in Cryptology-CRYPTO 2000, pp. 36-54.

[13] Lin, x., Clifton, C. Distributed EM clustering without shar-
ing local information. Journal of Information sciences, Feb
2003.

[14] Samarati, P., Sweeney, L. Protecting Privacy when Disclos-
ing Information: k-Anonymity and Its Enforcement through
Generalization and Suppression. Technical Report, SRI In-
ternational 1998.

[15] Meyerson, A., Williams R. General k-anonymization is
Hard. Tech-report CMU-CS-03-113.

[16] Willenborg, L., De Waal, T. Statistical Disclosure control
in Practice. Springer-Verlag, 1996.

[17] Cover, T., M., Thomas, J, A. Elements of Information The-
ory. John Wiley & Sons, Inc., 1991.

[18] Corel Image Features database, UCI-KDD Archive.
[19] Steuer, R., E. Multiple Criteria Optimization - Theory,

Computation and Application, Wiley, 1986.

[20] Goldberg D., E. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley, Reading, Mas-
sachusetts, 1988.

[21] Jones, D.R. and Beltramo, M.A. Solving Partitioning Prob-
lems with Genetic Algorithms, Proc. of the 4th international
conference on Genetic Algorithms, 1991.

[22] Traub, J., F., Yemini, T., and Wozniakowski, H. The Statis-
tical Security of a Statistical Database. TODS 1984, 672-679.

[23] Shoshani, A. Statistical Databases: Characteristics, Prob-
lems, and some Solutions. VLDB 1982, pp.208-222.

[24] Muralidhar, K., Sarathy, R. Security of Random Data Per-
turbation Methods. TODS 2000, 487-493.

[25] Yu, C., T., Chin, F., Y. A study in protection of statistical
databases. SIGMOD 1977, pp. 169-181.

[26] Lunt, T. Access control policies for database systems. In
Database Security II:Status and prospects, pp.41-52.

[27] Farkas, C., Jajodia, S. The Inference Problem: A Survey.
SIGKDD Explorations, Newsletter, Vol 4, 6-11.

[28] Catalytic inference analysis:Detecting inference threats due
to knowledge discovery. In the IEEE Symposium on security
and Privacy, 1997, pp.188-199

[29] Thuraisingham, B. The use of conceptual structures for han-
dling the inference problem. In Database Security V, pp.333-
362

[30] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M. Private
Information Retrieval. Proc of 36th FOCS (1995), pp.41-50.

[31] Gilbert, A., C., Kotidis, Y., Muthukrishnan, S., Strauss,
M.,J. Optimal and Approximate Computation of Summary
Statistics for Range Aggregates PODS, 2001 pp. 227-236.

[32] Gunopulos, D., Kollios, G., Tsotras, V., J. Approximating
Multi-dimensional Aggregate Range Queries over Real At-
tributes ACM-SIMOD, 2000, pp. 463-474.

[33] Bruno, N., Chaudhuri, S., Gravano, L. STHoles: a multi-
dimensional workload aware histogram ACM SIGMOD
2001, pp. 211-222.

[34] Cormen, T., H., Leiserson, C., E., Rivest, R., L. Introdcu-
tion to Algorithms, MIT Press.

A Average Squared Error

Proof: We have from definition 4.1, ASEE(X,X ′) as

=

N∑

i=1

N∑

j=1

p′(xi)p(xj)(xi − xj)
2

=

N∑

i=1

p′(xi)

N∑

j=1

p(xj)(xi − xj)
2

=

N∑

i=1

p′(xi)

N∑

j=1

p(xj)(xi
2 + xj

2 − 2xixj)

=

N∑

i=1

p′(xi)[

N∑

j=1

p(xj)xi
2 +

N∑

j=1

p(xj)xj
2 − 2

N∑

j=1

p(xj)xixj]

Using V ar(X) = σ2 = E(X2) − µ2 we get

=

N∑

i=1

p′(xi)[1.xi
2 + (σ2 + µ2) − 2µxi]

=

N∑

i=1

p′(xi)xi
2 + (σ2 + µ2)

N∑

i=1

p′(xi) − 2µ

N∑

i=1

p′(xi)xi

= (σ′2 + µ′2) + (σ2 + µ2) − 2µµ′

= σ2 + σ′2 + (µ − µ′)
2

= V ar(X) + V ar(X ′) + (E(X) − E(X ′))
2

731

