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SUMMARY A mobile crowdsensing system (MCS) utilizes a crowd
of users to collect large-scale data using their mobile devices efficiently.
The collected data are usually linked with sensitive information, raising the
concerns of user privacy leakage. To date, many approaches have been
proposed to protect the users’ privacy, with the majority relying on a cen-
tralized structure, which poses though attack and intrusion vulnerability.
Some studies build a distributed platform exploiting a blockchain-type so-
lution, which still requires a fully trusted third party (TTP) to manage a
reliable reward distribution in the MCS. Spurred by the deficiencies of cur-
rent methods, we propose a distributed user privacy protection structure
that combines blockchain and a trusted execution environment (TEE). The
proposed architecture successfully manages the users’ privacy protection
and an accurate reward distribution without requiring a TTP. This is be-
cause the encryption algorithms ensure data confidentiality and uncouple
the correlation between the users’ identity and the sensitive information
in the collected data. Accordingly, the smart contract signature is used to
manage the user deposit and verify the data. Extensive comparative ex-
periments verify the efficiency and effectiveness of the proposed combined
blockchain and TEE scheme.
key words: mobile crowdsensing system, blockchain, trusted execution
environment, privacy preservation, encryption

1. Introduction

With the popularization and development of mobile devices,
MCS [1], [2] have received significant attention, as such sys-
tems provide a platform to collect various kinds of data ef-
ficiently. The collected data usually contribute to human-
centric service delivery or public social services, such as
traffic congestion detection, noise detection, and water flow
quality detection. MCS builds an interactive and participa-
tory network without requiring installing any special sen-
sors. The task publisher (TP) in an MCS can publish tasks
to recruit users to collect the required data using mobile ter-
minals. For example, the TP can collect data, analyze their
information content and share knowledge with professionals
or government departments through the MCS applications.
A major advantage of MCS is significantly reducing the cost
of traditional data collection. However, the success of MCS
largely depends on the participating users. Thus, some in-
centive mechanisms [3] have been embedded in MCS to at-
tract more participants with higher enthusiasm, e.g., enter-
tainment, services, and money (usually virtual currency).
Users get rewards from the TP given they provide sensitive
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information, such as a bank card number, shipping address,
or their real name, which affords TP or other malicious at-
tackers tracking users easily [4]–[6]. Nevertheless, informa-
tion leakage exposes the users’ privacy, making them less
active in participating in MCS [7].

Several approaches have been proposed to protect the
users’ privacy [8], [9], i.e., differential privacy [10], [11],
edge of computing [12]–[14], cryptographic methods [15],
[16] and federated learning [8]. Most researches rely on a
centralized structure, which is vulnerable to attacks and in-
trusions [17]. Other studies introduce a blockchain to build
a distributed platform that requires a fully trusted third party
(TTP) to reach a reliable reward distribution in the MCS.
For example, Yang et al. [18] propose a blockchain pri-
vacy protection MCS by introducing a private blockchain
to distribute worker transaction records and prevent at-
tacks through reidentification. Zou et al. [19] suggest a
blockchain-based crowd-sensing model, entitled Crowd-
BLPS, for user location privacy protection. Nevertheless,
most current solutions partially address the privacy concerns
in an MCS and are unable to simultaneously consider the
privacy preservation requirement throughout all the MCS
stages, from data upload to reward distribution.

Spurred by the current research gap, this paper will de-
velop a distributed privacy protection scheme, which is ap-
propriate for an MCS that combines blockchain technology
and a trusted execution environment (TEE) to secure privacy
during data upload and reward distribution. Specifically, we
employ the immutable blockchain modification to facilitate
the data storage and verification and utilize the smart con-
tract to manage the deposit and verify the data. Accordingly,
TEE neglects the TTP dependence and ensures our architec-
ture’s security. Symmetric and asymmetric encryption tech-
nology [20] is exploited to process data and rewards and pre-
vent attackers from tracking the users through the uploaded
data. Our main contributions are as follows:

• Employing the TEE technology to build an isolated and
trusted center and extend the trust feature to the entire
network.

• Utilizing the key signature technology to verify the data
integrity and exploit blockchain technology to achieve
its unified consensus.

• Exploiting encryption algorithms for sensory data can
achieve privacy protection for the entire data life-cycle
and attain a precise reward distribution.

It should be noted that despite several types of MCS
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attacks exist, in this work, we focus on the correlation and
forgery attacks and highlight the effectiveness of our system
to defend against these attacks.

The rest of this paper is structured as follows: In
Sect. 2, we introduce the basic knowledge of blockchain and
TEE. We describe the architecture of our entire system in
the Sect. 3. In Sect. 4, we analyzed several attacks against
our system, we conduct experiments in the Sect. 5. Related
work discussions are in the Sect. 6, and the conclusions are
in Sect. 7.

2. Preliminaries

2.1 Blockchain

Blockchain is a decentralized distributed network proposed
by Nakamoto in 2008 for bitcoin transactions [21]. It in-
tegrates cryptography, consensus algorithm, P2P (peer-to-
peer), linked list structure, and several other technologies.
Blockchain [22], [23] has the characteristics of immutabil-
ity, traceability, and decentralization and can be employed
to solve the trust problem of digital currency under a dis-
tributed structure. In the blockchain, each user, as a net-
work node, holds the transaction information of the entire
network, which will be stored in a block in the form of a
linked sequence list. Each block comprises a block body
and a block header. The block body content is a Merkle tree
composed of the hash value of the transaction information,
and the block header includes a signature, block generation
timestamp, and other information. Additionally to the first
block, the block header of each block also contains the hash
value of the previous block, and all blocks are formed by the
direction of the hash value of the previous block linked list
structure. The newly generated transaction information will
be stored in the new block, and nodes randomly selected by
the consensus algorithm create and merge the created blocks
into the original blockchain.

2.2 TEE

A trusted execution environment (TEE) is a secure,
integrity-protected execution environment consisting of
memory and storage functions, which can ensure that its
computing is not interfered with conventional operating sys-
tems [24]. It is commonly used to calculate and manage
some sensitive data, such as fingerprint verification, mobile
payment, storage of private keys and certificates, and co-
exists on a device with the Rich OS, i.e., the rich text op-
erating system, such as Android. While providing security
services to Rich OS, TEE has its own execution space and
affords a higher level of security than Rich OS [25], [26].
The software and hardware resources accessible by the TEE
are isolated from the Rich OS, providing a secure execution
environment protecting confidentiality, integrity, and access
rights on the resources it accesses. The TEE mainly pro-
vides Application Programming Interfaces (APIs) such as
key management, cryptographic algorithms, secure storage,

and services.

3. Privacy-Preserving Mobile Crowdsensing Scheme
Based on Blockchain and Trusted Execution Envi-
ronment

3.1 Overview

In a traditional MCS, users upload sensory data directly to
the TP. However, sensitive information, e.g., geographic lo-
cation and pictures, implicit in the sensory data may expose
the user’s privacy to the TP or the attacker, allowing both
these parties to track specific users. Additionally, based on
the quality of sensory data, TP distributes incentives, e.g.,
money, and services, to third parties [8], while the user is
rewarded by the TP each time he provides further sensitive
information, such as real name or bank card details. The
summary of notations used in the our scheme is shown in
Table 1.

To contribute towards solving the privacy leakage prob-
lems in an MCS, our method focuses on the privacy leak-
age risks during data uploading and reward distribution and
proposes a user privacy protection scheme based on TEE
and blockchain (Fig. 1). We use TEE to build an isolated
and trusted central environment and extend the credibility
of TEE to the entire system by deploying multiple smart
contracts in the blockchain to verify hash values and signa-
tures. Additionally, we use encryption technology to pro-
cess data and rewards, preventing attackers from tracking
relevant users. Our scheme mainly involves four parties: the
user, TP, TEE, and the blockchain.

• User: The user is responsible for collecting the sen-
sory data required by the TP and pre-processing them.
During the data upload stage, the user first encrypts the
sensory data with his user key, Keyu, and then com-
putes the hash value of the encrypted data, H(CTu). He

Table 1 Summary of notations

Notation Description

Keyu The key customized by the user in
the description file.

H(•) Collision-resistant hash function.

RNu The reward name customized by the
user in the description file.

CTu The result of AES256 encryption
using Keyu on the preprocessed
data.

CTr The result of AES256 encryption of
the reward using Keyu.

PkSC/SkSC Public and Private Key for Smart Contracts.

PkTEE/SkTEE Public and Private Key for TEE.
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Fig. 1 The framework of our proposed scheme

also defines a description file (please refer to Sect. 3.2
for details), which is exploited to decrypt and access
his rewards from the blockchain.

• TP: TP’s objective is to obtain from the users their sen-
sory data with high availability, provide the user some
reward, and further exploit the sensory data.

• TEE: This is an isolated and trusted environment de-
ployed on the TP that is used to calculate and manage
some sensitive data to protect the user’s privacy.

• Blockchain: Blockchain provides reliable verifica-
tion operations. During the data uploading stage, the
blockchain is responsible for storing the hash value of
the encrypted data along with the encrypted description
file that the user uploads. Finally, the smart contract
deployed in the blockchain is responsible for verify-
ing the hash value. Considering the reward distribution
process, the blockchain is responsible for storing the
encrypted data uploaded by TP and exploit the smart
contract to verify the data originality.

3.2 Privacy-Preserving Mobile Crowdsensing Scheme

The proposed privacy protection architecture relying on the
blockchain and TEE is illustrated in Fig. 2. The scheme is
divided into two processes: data upload and reward distri-
bution.

3.2.1 Data Upload

The data upload stage includes four steps: data pre-
processing, deposit payment, smart contract signature, and
signature verification.

Step 1. Pre-processing.
The user conducts sensory data collection as required

from TP. Nevertheless, before the collected data are up-
loaded to the TP, these are first pre-processed as follows:

• To ensure data security and avoid data fraud, the system
will define the size of user data S in each task. The user
compresses the original data or fills it with obfuscated
data in a specific position so as the data size equals S
(Algorithm 1).

• The user encrypts his original data with his key Keyu

and obtains the AES256 encryption output CTu.
• To ensure data integrity, the user performs the SHA256

processing on CTu to get the hash value H(CTu) so that
the TP can verify the data by the hash function when it
receives the data.

• Finally, the user should define a description file, which
includes the Keyu, the obfuscated data, and the reward
name RNu. We use the public key of the TEE to encrypt
the description file, as only the TEE can decrypt the
ciphertext with its private key. Any other nodes in the
blockchain cannot access the file.
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Fig. 2 The implementation process of our proposed scheme

Algorithm 1 DataSizeHandler
Input: The original sense data, Datao; The required data size, S ;
Output: The processed data with required size S , Datap;
1: Datao = NULL;
2: Datat = NULL;
3: S d = S ize(Datap);
4: if S d == S then
5: Datap = Datai

6: else
7: if S d > S then
8: Datat = CompressHandler(Datao)
9: Datap = DataS izeHandler(Datat , S );

10: else
11: S t = S − S d;
12: Datat = Con f useDataGenerator(S t);
13: Datap = Combination(Datap,Datat);
14: end if
15: end if
16: return Datap;

The task type determines the size of CTu, and in case
the data size is relatively large, it is more efficient for
this part of ciphertext data to be transmitted directly to TP
through a centralized network. To ensure data integrity,
we consider using the hash value of CTu stored in the
blockchain for the verification conducted in the TEE. There-
fore, the user uploads CTu directly to TP and uploads the

Algorithm 2 ValidationHandler
Input: The public key of Smart Contract Account, PubKeyS C ; The private

key of Trusted Execution Environment, PriKeyT EE ; The encryption of
processed data, Encdata; The hash of processed data encryption with
signature, HashEncdata ; The encryption of description file with signa-
ture, Encdes;

Output: The result of validation, Result;
1: Result = true;
2: Hashdata = Hash(Encdata);
3: if !Validate(PubKeyS C ,HashEncdata ) then
4: result = f alse;
5: end if
6: if !Validate(PubKeyS C , Encdes) then
7: result = f alse;
8: end if
9: if Hashdata! = HashEncdata then

10: result = f alse;
11: end if
12: return Result;

H(CTu) and the encrypted description file to the blockchain.
Step 2. Deposit payment.
When TP receives CTu from a user, it computes the

hash value and compares it with the value H(CTu) uploaded
by the user in the blockchain. Once they are the same, TP
deposits a certain amount of virtual currency to bind TP to
release rewards in the reward distribution stage. The de-
posits will be transferred from TP’s account to the smart
contract account in the blockchain and are managed by the
smart contract uniformly. When TP completes the reward
upload, the deposit can be refunded. While the TP does not
upload a reward with a TEE signature, the smart contract
will pay a certain amount of the deposit as the base reward
to the user to maintain the system activity.

Step 3. Smart contract signature.
Once TP pays the deposit, the smart contract will sign

H(CTu) the encrypted description file with its private key
S kS C . This signature is used to prove that TP has paid the
deposit and guarantees the CTu and the encrypted descrip-
tion file uploaded by the user have not been tampered. Each
node in the blockchain and TEE can use a public key of
the smart contract PkS C to verify the authenticity. After this
step is completed, TP will have CTu, the signed H(CTu),
and the encrypted description file. All these operations are
performed under TP’s Rich Execution Environment (REE).
Given that TEE is an isolation system created by SGX and
other technologies, the TP also needs to pass the CTu up-
loaded by users to the TEE by calling the interface exposed
by TEE.

Step 4. Signature verification.
Upon receiving the data from TP, TEE first uses the

public key of the smart contract PkS C to verify H(CTu) and
the encrypted description file. Then TP computes the hash
value of CTu and compares it with the received H(CTu).
When either verification fails, TEE considers the data as in-
valid and chooses to ignore it, as shown in Algorithm 2. If
the validation passes, the TEE uses S kT EE to decrypt the en-
crypted description file to obtain confused data, Keyu, RNu.
Now TEE can obtain the original data by decrypting the pre-
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processed data using Keyu.
During the data upload process, TP can track the user

through specific data transfers. For example, within a cer-
tain time, TP only transmits a specific ciphertext of sensory
data and waits for the plaintext of the data to return after the
verification and decryption of the TEE, thereby identifying
the data owner. To this end, we use K-anonymity technology
to address this problem.

When the TEE obtains the original sensory data
through the decryption operation, it will cache the current
data, and the latter will form a freeze queue. K-anonymity
protection is constructed by freezing the K data pieces in the
queue so that TP cannot track the specific data user through
the connection between the data ciphertext and plaintext.
Then TEE performs the following judgments based on the
amount of data in the current frozen queue and the task dead-
line:

• If the amount of data is less than K-1 and the task dead-
line has not been reached, TEE will freeze the sensory
data obtained by the current operation and put it into
the frozen data queue.

• If the amount of data reaches K-1, the sensory data ob-
tained from the current operation is is transmitted to TP
along with the data in the frozen data queue (K pieces
of data in total), and the frozen data queue is cleared.

• If the amount of data is less than K-1, and the task
deadline is reached, TEE generates some obfuscated
data and fills the frozen data queue so that the number
of frozen data queue reaches K-1, and the data obtained
by the current operation along with the obfuscated data
is transmitted to the TP.

In this way, the probability that TP identifies a specific
user from K pieces of sensory data and establishes a correla-
tion between the privacy information in the sensory data and
the user is 1/K. Thus, as the value of parameter K increases,
the probability of user privacy leakage is lower.

3.2.2 Reward Distribution

The reward distribution process includes three stages: qual-
ity evaluation, signature verification and reward collection.

Step 1. Quality evaluation.
The incentive mechanism of MCS is based on data

quality and provides the corresponding rewards to the par-
ticipants. In this work, we consider deploying the data qual-
ity evaluation model in TEE. Since the data quality evalu-
ation model [27] refers to various fields such as efficiency,
fairness, and privacy, the detail of implementation for the
evaluation model is out of the scope of this paper. Here we
assume the data submitted by all users is available, and the
incentive mechanism of MCS includes various rewards such
as service, entertainment, and money. This paper considers
virtual currency as a reward.

Regarding the isolation feature of TEE, the virtual cur-
rency reward is deposited in a blockchain account, which
will be encrypted and transmitted to the users. Each user de-

Algorithm 3 RewardValidationHandler
Input: The public key of Trusted Execution Environment, PubKeyT EE ;

The encryption of reward, CTr; The custom name of reward,
Namereward ; The account of smart contract, S C; The account of task
publisher, T P; The base reward, Rewardbase;

Output: The result of validation, Result;
1: Result = true;
2: if !Validate(PubKeyT EE ,CTr) then
3: result = f alse;
4: else
5: T P← Rewardbase ← S C;
6: BLOCKCHAIN ← (Namereward : CTr);
7: end if
8: return Result;

fines the reward name RNu and the user key Keyu in the up-
loaded description file. Then, TEE encrypts the blockchain
address of virtual currency using AES256 with Keyu, cre-
ates the encrypted reward file CTr, and signs it with S kT EE .
Finally, TEE transmits the signed CTr to TP, which gener-
ates key-value pairs using RNu as the key and the signed CTr

as the value, and uploads them to the blockchain.
Step 2. Signature verification.
After TP finishes the uploading process, the smart con-

tract uses TEE’s public key PkT EE to verify the reliability of
CTr, as presented in Algorithm 3. Then, the deposit will be
returned to TP from the smart contract account. However,
if the verification fails, the reward is considered illegitimate,
and TP will not be able to reclaim the deposit.

Step 3. Reward reception.
Each reward is stored in the distributed blockchain

ledger with RNu being the key and CTr the value. Users can
query the corresponding CTr according to RNu and decrypt
it with Keyu to get the reward.

Due to the distributed ledger feature of the blockchain,
every user can query the encrypted reward files uploaded by
TP, but only the owner who holds the user key can decrypt
the corresponding reward. Neither the TP nor other users
can detect or obtain the rewards in the ciphertext, let alone
track the user’s query or decrypt it. Therefore, the users’
privacy and security can be guaranteed during the process
of reward distribution.

4. Attack Analysis

4.1 Correlation Attack

Correlation attack by the data size. According to the vol-
ume size correlation between the data plaintext and cipher-
text in the AES256 encryption algorithm, the TP can de-
liver to the TEE multiple data ciphertexts with significant
differences in size and establish the correlation between the
data ciphertext and plaintext based on the difference in size
(Fig. 3). As illustrated in this example, by analyzing the data
size of ciphertext and plaintext, the TP can establish the cor-
relation between user identity, ciphertext data, and plaintext
data and identify the user’s identity from the sensitive infor-
mation within the collected data.
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Fig. 3 The correlation attack by the data size

Fig. 4 Time connection between data plaintext and ciphertext

We solve this problem by using a unified data cipher-
text size. In the data uploading stage, users can process the
original data according to the data size required by the TP,
as described in Algorithm 1. However, the size of all cipher-
text data received by the TP is the same, and the transmitted
plaintext data volume from the TEE to the ordinary envi-
ronment cannot reveal the correlation between the cipher-
text and the plaintext. Additionally, the description file that
records the processing method of the sensory data size is en-
crypted by the RSA256 algorithm with the public key of the
TEE. Therefore, the TP and other users cannot obtain the
processing method of the original data from the description
file and use the plaintext of the data to reverse it.

Correlation attack by transmission time. The at-
tacker can establish the correlation among the user identity,
ciphertext data, and plaintext data by analyzing the cipher-
text and plaintext transmission time and identifying the user
from the collected data. For example, the TP can formulate
a data delivery plan, that is, within a specific time only de-
liver a particular piece of ciphertext and wait for the TEE
to return the result, so that TP can establish a correlation
between the encrypted data and the user, leading to privacy
leakage, as shown in Fig. 4.

We use K-anonymity technology to solve this problem,
where TP can not transmit the data to TEE until it collects
K pieces of data. The TEE acts as an agent to decrypt the
sensory data and deliver the original data to the TP. TEE is a
system isolated from the ordinary environment, and the TP
cannot control or monitor its operation. In this way, the TP
can correlate the encrypted data and the user with a proba-
bility not exceeding 1/K.

4.2 Forgery Attack

The TP, as the interaction intermediary between the user and

Fig. 5 The connection between plaintext and encrypted data is obtained
by forging data

the TEE, can obtain the correlation between the specific ci-
phertext and the plaintext data by reducing forged data or
even remove the protection of K-anonymity. As mentioned
earlier, the K-anonymity method can aggregate specific data
with other K-1 copies of frozen data so that the probabil-
ity of TP identifying a particular user is no more than 1/K.
While the aggregated data returned by the TEE contains data
forged by the TP, the latter can identify the specific data. As
illustrated in Fig. 5, if the K-1 copies of frozen data are all
forged by the TP, the probability of TP identifying specific
CTu and data rises from 1/K to 1, and the identity of sensi-
tive information contained in the data refers to the privacy
of the corresponding user.

To address this problem, we employ private key signa-
ture technology to verify data in TEE. Upon receiving CTu

and the signed H(CTu) description file, TEE first uses the
public key of smart contract PkS C to verify the signature in-
cluded in the description file and checks the hash value of
the ciphertext data. Therefore, TP needs to use S kS C to sign
H(CTu) in the blockchain and pay the deposit to obtain the
proof of signature. The data forged locally by TP will fail to
verify the smart contract, and therefore it cannot be verified
by the TEE signature. The verification mechanism based on
private key signature technology can prevent TP from forg-
ing data, thus protecting user privacy.

5. Experiment and Result Analysis

5.1 Comparative Experiment between Common Environ-
ment and TEE

5.1.1 Experimental Environment

In the following simulations, we utilize a MacBook Pro 16
2019 that runs Ubuntu 64-bit version 20.04.1 on a virtual
machine through the VMware Fusion software. The com-
puter’s hardware configuration is: Intel Core i7 2.6GHz
Hexa-core, 1TB solid-state drive, 16GB 2667MHz DDR4
memory, AMD Radeon Pro 5300M 4GB graphics card, and
the corresponding software setup is: macOS Big Sur ver-
sion 11.1 and VMware Fusion 12.0.0. The experimental ma-
chine utilizes eight processor cores, 12GB RAM, and 50GB
disk size for Ubuntu virtual machine. The experiments are
conducted in the virtual machine using GCC version 9.3.0,
SGX-Linux SDK, and Ippcrypto library. The experimental
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Fig. 6 Comparison of RSA256 algorithm encryption execution time be-
tween REE and TEE

Fig. 7 Comparison of RSA256 algorithm decryption execution time be-
tween REE and TEE

data is based on 7,000 pictures from the Yelp dataset [28].

5.1.2 Experimental Result

We employ the SGX-Linux SDK to deploy a TEE in the
experimental virtual machine. We compare the encryption
and decryption efficiency of the RSA256 and AES256 al-
gorithms in the normal environment and the TEE, demon-
strating the impact of exploiting a TEE on the efficiency of
MCS through the comparison of the two experimental data.
The experimental data employs 128KB and 256KB files as
the data source, and the execution time is recorded under
different file numbers.

Figure 6 and Fig. 7 compare the execution time on TEE
and REE using the RSA256 algorithm. Both figures high-
light that as the number of processed files increases, the ris-
ing trend of RSA256 algorithm encryption execution time
in REE becomes slower, and the trend in TEE remains the
same. For the same number of files, the execution time of
the RSA256 algorithm in REE and TEE is proportional to
the file size. As a result, REE has an advantage over TEE in
the execution time of encryption, while the opposite is true

Fig. 8 Comparison of the AES256 algorithm encryption execution time
between REE and TEE

Fig. 9 Comparison of the AES256 algorithm decryption execution time
between REE and TEE

for the decryption time. This shows that for the RSA256
algorithm, TEE handles encryption operations more effi-
ciently, while REE handles decryption more efficiently. On
the decryption operations, the file size and number have
similar effects on REE and TEE, while on encryption op-
erations, REE performance declines faster as the number of
files increases.

Figures 8 and 9 compare the execution time using the
AES256 algorithm between the REE and TEE. The execu-
tion time of the AES256 algorithm in the TEE is more ad-
vantageous than the normal environment both for the en-
cryption and decryption operations.

Figures 8 and 9 illustrate the AES256 algorithm execu-
tion time in REE and TEE, with both figures presenting sim-
ilar curves. The execution time for REE and TEE increases
as the number of files increases, presenting a gentle trend.
The difference is that for the same number of files, the exe-
cution time of REE for 128KB and 256KB file sizes is differ-
ent, while the file size has little effect on TEE. Additionally,
the AES256 algorithm execution time for the TEE is supe-
rior to that of REE for both the encryption and decryption
operations, and this advantage increases as the number of
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Fig. 10 Comparison of the efficiency of the SGX single start and multi-
ple starts under different parameter K values

files increase.
The results in Fig. 8 and Fig. 9 illustrate that TEE is

less appealing compared to REE in the RSA256 decryp-
tion, and the gap becomes more significant as the amount of
data processed by the system increases. In contrast, Fig. 8
and Fig. 9 illustrate that TEE has an advantage over REE in
both AES256 algorithm encryption and decryption, and the
former is less affected by data size. TEE mainly describes
the file decryption, data decryption, and reward encryption
operations in our proposed scheme, i.e., RSA256 decryp-
tion, AES256 decryption, and AES256 encryption. In terms
of data size, the perception data is more extensive, next is
the description file, and the reward is the least. Therefore,
the advantage of TEE utilizing the AES256 algorithm en-
cryption and decryption can balance its disadvantage of the
RSA256 algorithm decryption to a certain extent, and it can
be considered that the introduction of TEE in this paper has
a negligible impact on the overall system performance.

We adopt the K-anonymity method to protect the user’s
privacy, with the degree of privacy protection affected by the
value of K. We test the execution speed of TEE with differ-
ent K values (2 to 1024) using 587byte as the data source
and consider the efficiency of simultaneous transmission of
K pieces of data (SGX single start) and independent trans-
mission (SGX multiple start). As presented in Fig. 10, the
SGX single-start and multiple-start execution speeds both
show a decreasing trend as the K value rises, with the former
having a downward trend with multiple fluctuations, and the
latter being gradually slow. Additionally, SGX single-start
execution speed is more advantageous than SGX multiple-
start for the same K value, but the gap between the two de-
creases as the K fetch value rises.

5.2 Comparative Experiment of Traditional Centralized
Server and Hyperledger Fabric Alliance Chain

5.2.1 Experimental Environment

To test the performance gap between traditional centralized
servers and blockchains, we also use Docker technology to

Fig. 11 Comparison of data write execution speed between a traditional
centralized server and the Hyperledger Fabric alliance chain

build a Hyperledger Fabric alliance chain on an experimen-
tal machine configured with an Intel i7-7700 (Core 3.6GHZ)
CPU, 1TB 7200r/min SATA hard drive, 8GB DDR4 2400
RAM, using Ubuntu 16.04.7 system and Hyperledger Fab-
ric official mirror. The experimental data is obtained with
a certain number of pictures from the Yelp dataset [28] as
the data source, and the execution speed of data transmis-
sion to the Hyperledger Fabric Alliance chain (data writing)
and data acquisition from it (data reading) is recorded under
different numbers of pictures.

5.2.2 Experimental Result

Figure 11 highlights that as the number of images increases,
the data write execution speed of the traditional centralized
server tends to decrease significantly. In contrast, the Hy-
perledger Fabric alliance chain remains stable. Addition-
ally, for the same number of images, the execution speed of
a traditional centralized server data writing is always faster
than that of the Hyperledger Fabric alliance chain, but the
gap between the two is narrowing as the number of images
rises.

Figure 12 illustrates that as the number of images rises,
the data read execution speed of the traditional centralized
server significantly decreases. In contrast, the Hyperledger
Fabric federated chain maintains a slight upward trend. Ad-
ditionally, when the number of images is less than 1500, the
traditional centralized server data read execution speed has
an advantage over the Hyperledger Fabric. However, when
the number of images exceeds 1500, the opposite is true, and
the gap between the two increases as the number of images
rises.

Based on the blockchain’s distributed network struc-
ture, we also challenge the performance of the Hyperledger
Fabric alliance chain under different numbers of nodes. As
illustrated in Fig. 13, as the number of images increases, the
changing trend of the Hyperledger Fabric alliance chain 4-
node and 8-node networks is similar. Moreover, the former
executes faster than the latter with the same number of im-
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Fig. 12 Comparison of data read execution speed between a traditional
centralized server and the Hyperledger Fabric alliance chain

Fig. 13 Hyperledger Fabric Consortium, Chain 4-node and 8-node per-
formance comparison

ages with a difference of about 23.5%.
Figures 11 and 12 illustrate the respective advantages

of traditional centralized servers and Hyperledger Fabric
federated chains in data writing and reading operations. The
difference is that the performance of the former will de-
crease due to increasing the number of pictures, while the
latter tends to be stable. For example, Fig. 13 shows that
the performance of the Hyperledger Fabric alliance chain
is affected more by the number of network nodes than the
number of images.

6. Related Work

Recently several approaches, such as K-anonymity [29],
[30], blockchain [31]–[34], differential privacy [10], feder-
ated learning [8] and edge of computing [35], and crypto-
graphic methods [8], [9], [36]–[38] have been proposed to
protect the users’ privacy in an MCS. For example, Wang et
al. [10], [39] propose a framework for protecting the users’
location privacy during task distribution based on geoloca-
tion obfuscation, and also introduce diferential privacy tech-
niques to protect users’ privacy in an MCS. Shen et al. [40]

consider using edge computing techniques to solve the pri-
vacy leakage problem in the task distribution process. Ac-
cordingly, Zhao et al. [8] propose a mechanism with pri-
vacy protection and quality awareness. Most of these studies
are conducted in centralized servers, such as introducing a
TTP for sensitive operations in K-anonymity and obfusca-
tion techniques, which are almost non-existent in daily life.
Hence, current studies are less usable in real-world applica-
tions.

Many research scholars have suggested blockchain
[18], [41]–[43] to solve privacy problems in MCS. For
example, Zou et al. [19] introduce a blockchain-based
crowd-sensing model of location privacy protection, enti-
tled CrowdBLPS, for handling task publishing, staff selec-
tion, quality assessment, and data upload. Huang et al. [44]
combine blockchain with crowd-sense in an industrial sys-
tem, while Hu et al. [45] propose a crowd-sense incentive
mechanism based on blockchain. An et al. [46] provide a
decentralized crowd-aware model with an anonymity policy
based on an elliptic curve algorithm verification scheme that
is employed to protect the users’ identity privacy. Kadadha
et al. [47] utilize the decentralized characteristics of the
blockchain to enable multitasking and multi-user task as-
signment and to protect user privacy. In our previous
work [48], we proposed an incentive mechanism combining
multiple blockchains for protecting the users’ privacy in an
MCS. Due to the transparency of the blockchain, all users
on the chain can access the data stored on the blockchain,
while malicious users can use these contents to find specific
users. Therefore, even though blockchain has powerful fea-
tures, it still needs to be further considered and studied when
it is directly used for MCS privacy protection.

TEE is another solution to the trust problem [49], [50]
and is widely used in mobile payment and biometrics. Its se-
curity is guaranteed by building a system isolated from the
standard operating environment at the software and hard-
ware levels, and thus scholars have introduced TEE based
on blockchain to accomplish sensitive operations. Specif-
ically, Dai et al. [51] propose a lightweight wallet with an
authentication mechanism to protect the users’ private keys
and wallet addresses based on Hyperledger Fabric. Mad-
dali et al. [25] use TEE to reduce the redundant execution of
smart contracts, while Zhang et al. [52] combine blockchain
and TEE to build an electronic voting system with blind sig-
natures and homomorphic encryption to protect the privacy
of voters and voting results and reduce the blockchain load
by processing cryptographic operations through TEE. Eki-
den is a smart contract confidentiality and performance so-
lution proposed by Cheng et al. [53]. This study concludes
that the public and transparent features of the blockchain
and the performance problems can hinder the development
of smart contracts and move them to an off-chain environ-
ment by introducing TEE to complete smart contract exe-
cution and remotely verify the execution results. Although
various privacy-preserving techniques have shown effective-
ness in MCS research in recent years, these studies still only
address the implementation of privacy protection for task
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distribution or data uploading process, without considering
the impact of the solution on the implementation of incen-
tives or the privacy leakage problem of the reward distribu-
tion process. Opposing to existing methods, our proposed
privacy protection scheme is based on blockchain and TEE
for MCS and realizes privacy preservation both in the pro-
cess of data upload and reward distribution.

7. Conclusion

Aiming at the privacy leakage problems during the MCS
data upload and reward distribution processes, this pa-
per proposes a user privacy protection scheme based on
blockchain and TEE to ensure the integrity of the sensory
data and the reliability of the reward distribution. The char-
acteristics of the blockchain, such as decentralization, im-
mutability, tamper-proof, and transparency, afford a solution
to the trust problem that exists in the centralized system. The
isolation capabilities supported by the TEE in both hardware
and software are sufficient to ensure the security of sensi-
tive information. Combined with the encryption algorithm,
our proposed scheme provides privacy protection, as the TP
and other malicious attackers cannot obtain sensitive infor-
mation about the users through correlating sensory data and
user rewards. Our paper also assumes two attacks that may
lead to privacy disclosure: correlation attack and forgery
attack and analyzes the corresponding solutions based on
the proposed scheme. Finally, two comparative experiments
highlight that introducing blockchain and the trusted execu-
tion environment has little effect on the overall system effi-
ciency. In our scheme, we do not consider the impact of the
users’ data quality on the system. Thus, future work shall
involve research on the quality assessment model for MCS.
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