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Abstract: Consumers in electricity markets are becoming more proactive because of the rapid de-
velopment of demand–response management and distributed energy resources, which boost the
transformation of peer-to-peer (P2P) energy-trading mechanisms. However, in the P2P negotiation
process, it is a challenging task to prevent private information from being attacked by malicious
agents. In this paper, we propose a privacy-preserving, two-party, secure computation mechanism
for consensus-based P2P energy trading. First, a novel P2P negotiation mechanism for energy trading
is proposed based on the consensus + innovation (C + I) method and the power transfer distribution
factor (PTDF), and this mechanism can simultaneously maximize social welfare and maintain physical
network constraints. In addition, the C + I method only requires a minimum set of information to
be exchanged. Then, we analyze the strategy of malicious neighboring agents colluding to attack
in order to steal private information. To defend against this attack, we propose a two-party, secure
computation mechanism in order to realize safe negotiation between each pair of prosumers based
on Paillier homomorphic encryption (HE), a smart contract (SC), and zero-knowledge proof (ZKP).
The energy price is updated in a safe way without leaking any private information. Finally, we
simulate the functionality of the privacy-preserving mechanism in terms of convergence performance,
computational efficiency, scalability, and SC operations.

Keywords: P2P negotiation mechanism; consensus + innovation method; homomorphic encryption;
zero-knowledge proof; two-party; secure computation; blockchain; smart contract

1. Introduction

Recently, renewable distributed energy resources (DERs) [1], electric vehicles (EVs) [2–6],
and energy storage systems (ESSs) have turned traditional consumers into prosumers; there-
fore, they can share energy locally to optimize the load and costs. Many households are
now equipped with renewable generators, such as solar panels or wind turbines, which can
provide energy in order to satisfy their own demand. The use of these DERs can help more
DERs be absorbed into the grid in order to further reduce pollution. However, consumers
who participate in the electricity market are required to behave more proactively and are, thus,
known as prosumers. The increase in the number of prosumers naturally implies the need for
a decentralized energy-trading mechanism that allows prosumers to freely trade with each
other without a central supervising entity. Therefore, the network architecture is also changing
from centralized to decentralized. A fully decentralized network architecture can be defined
as a peer-to-peer (P2P) network in which the participants in the network share a portion of
their own resources with one another. These shared resources can be accessed directly by
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other peers without the intervention of a mediating entity [7]. A formal definition of P2P
networks can be found in [8]. In this context, P2P trading mechanisms have emerged as a
next-generation energy-management technique that enables prosumers to actively participate
in the energy market.

Although the P2P mechanism provides better scalability, reliability, and resilience,
growing privacy concerns are hindering its widespread adoption. In a P2P network, it is
expected that prosumers will trade their energy with each other without any influence from
a central coordinator, which makes P2P platforms a trustless and unreliable system. In
addition, P2P energy trading requires a significant amount of data to be exchanged in order
to compute the optimal energy amounts and prices for all sellers and buyers [9]. Disclosing
such local data for computation would be damaging to their privacy. For instance, local
generation reveals the generation capacities and time series of generation patterns [10], and
the local demand load reveals consumption patterns [11,12].

Therefore, protecting prosumers’ privacy and encouraging them to cooperate are
challenges in such an environment with a lack of trust and security. Different technolo-
gies have been used to solve these problems. Blockchain has emerged as a promising,
user-friendly, and efficient technology for the implementation of secure and reliable P2P
energy-trading mechanisms. Existing studies have exploited a large variety of blockchain-
enabled platforms to ensure secure and transparent P2P energy trading [13–22]. It makes
communication transparent for prosumers and allows them to make decisions about energy
dispatches in a decentralized and untrusted environment. In blockchain, security mainly
means that data are stored on all nodes, are resistant to single points of failure, and are
unalterable. Existing blockchain-based energy-trading studies mainly used blockchain to
store and protect the final trading results. In addition, smart contracts (SCs) play a very
important role in P2P energy trading, as they control the energy transactions between two
peers by following predefined rules [17,19,23].

Homomorphic encryption (HE) is a form of encryption that allows for computations
on ciphertexts, which generate an encrypted result that, when decrypted, matches the
results of the operations as if they had been performed on the plaintext [24]. HE can be
further categorized into two classes: semi-HE and fully HE. Semi-HE methods are schemes
that only support a subset of the encrypted arithmetic. For example, the Paillier algorithm
only supports arithmetic that uses addition; therefore, it is also known as additive semi-HE.
On the contrary, fully HE schemes support all encrypted arithmetic. The main advantage
of HE is that the security is very high, since it is based on cryptographic techniques, while
the most commonly known drawback of HE-based methods is the increased computing
power that is required for their complex encryption and decryption operations. Some
works have studied the application of HE technology to energy systems. A novel private
collaborative distributed energy-management system (P-CoDEMS) was proposed in order
to solve the problem of AC optimal power flow (ACOPF) in a distributed and private
manner in [25]. Yi et al. integrated HE, blockchain, and other technologies to implement
a secure energy trading system [26]. Liu et al. adopted the Paillier method to protect
the privacy of ADMM-based distributed DC optimal power flow in [27]. The Paillier-
based distributed optimization method was generalized for all gradient-based distributed
optimization in [28], and it was reported to be applied to a distributed transactive problem
in [29].

However, to our knowledge, existing works did not adequately consider privacy
issues in the negotiation process for fully decentralized P2P energy-trading mechanisms. In
the P2P energy-trading market, there are multiple agents who negotiate energy trades with
each other, and the objective of the market mechanism is to determine the trading prices
and amounts for each pair of agents. Thus, in this paper, we propose a privacy-preserving,
two-party—instead of multi-party—secure computation mechanism for the negotiation
process for each pair of agents. The novel privacy-preserving P2P energy-trading frame-
work combines the technologies of blockchain, SCs, HE, and zero-knowledge proof (ZKP).
In detail, we first propose a P2P negotiation mechanism that uses a combination of the
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consensus + innovation (C + I) method with a power transfer distribution factor (PTDF)
model. Then, we analyze the privacy disclosure risk of this mechanism in the case of
collusive attacks from neighboring agents. To avoid this risk, a secure, two-party compu-
tation framework is designed for updating the energy price between each pair of agents.
Finally, the simulation results demonstrate the performance of market convergence, and the
line-limit constraints, scalability, and encryption/decryption computation are maintained.
The main contributions are the following:

• We propose a novel P2P negotiation mechanism that incorporates the power transfer
distribution factor (PTDF) model into the consensus + innovation (C + I) method,
which can simultaneously maximize social welfare and comply with physical line
constraints. By introducing line prices into the update process, agents are encouraged
not to transfer power over congested lines.

• Although the C + I method exchanges a minimum amount of information, there
is still a risk of revealing private information. We analyze how individual private
information (e.g., coefficients of generation, utility functions, and power limits) can be
stolen and computed through a collusion attack by a group of collusive neighboring
agents in the context of the P2P negotiation mechanism based on the C + I method.

• The security objective and novelty of this paper are to protect the information ex-
changed between each pair of agents in the energy-trading negotiation process. We
propose a novel, secure, two-party computation mechanism for the energy price up-
date between each pair of agents based on the SC and Paillier encryption algorithm,
which is known as an efficient additive HE method. Moreover, we propose a ZKP
protocol to prove that the decrypted plaintext matches the ciphertext computed by SC.

The rest of the paper is organized as follows: Section 1 presents the formulation of
the P2P energy-trading and social welfare maximization problem. Section 2 proposes the
SC-based P2P negotiation mechanism for energy trading, followed by the two-party, secure
computation framework in Section 3. The numerical results are presented in Section 4.
Finally, in Sections 5 and 6, the discussions, conclusions, and future perspectives are drawn.

2. Problem Formulation

A typical P2P architecture for electricity markets is shown in Figure 1, which consists of
simultaneous negotiation of the price and energy of multilateral trades based on predefined
trading rules. It can be seen that a P2P mechanism for electricity markets is much more
decentralized than existing centralized markets, where all agents must submit all their
information, e.g., cost or utility function, power limits, and uncertainty information, to the
market operator (MO), who centrally determines the dispatches of energy. In contrast, in
P2P markets, all agents can freely negotiate the prices and quantities with each other for
multilateral trading.

Existing
Market

Figure 1. P2P energy-trading market architecture.
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2.1. Peer-to-Peer Trading

In this paper, we build a market with a set Ω of agents defined as either producers or
consumers. The market-clearing mechanism proposed below is for a day-ahead market to
allocate the supply and demand of energy. It is assumed that all agents are supposed to be
rational and truthful, as in [30], which means that they always make decisions to maximize
individual benefits. A similar model of the P2P energy-trading process was proposed in
our previous work [31,32].

First, the power injection En of each agent n ∈ Ω is divided into a sum of bilaterally
traded quantities with a set of neighboring agents m ∈ ωn as

En = ∑
m∈ωn

Enm, ∀n ∈ Ω (1)

A positive value of En represents surplus energy and a negative value means required
energy. Before P2P energy trading, each prosumer will individually calculate the value of
En according to the power generation and consumption and then decide to be a buyer or
seller in the trading. A positive value of Enm represents a sale/production, and a negative
value means a purchase/consumption. To lighten notations, En = {En1, . . . , Enm, m ∈ ωn}
is used to represent the whole set of transactions of agent n. The power of an agent n is
constrained as below:

En ≤ En ≤ En, ∀n ∈ Ω (2)

Each agent is restrained to either producer or consumer (EnEn ≥ 0). Hence, the
decision variables are constrained to be positive (Enm ≥ 0) if it is a producer and negative
(Enm ≤ 0) if it is a consumer, as follows:{

Enm ≥ 0, ∀(n, m) ∈ (Ωp, ωn)

Enm ≤ 0, ∀(n, m) ∈ (Ωc, ωn)
(3)

where Ωp and Ωc are the sets of energy producers and consumers, respectively.
Finally, the market equilibrium between energy production and consumption is repre-

sented by a set of balance constraints of each pair of agents

Enm + Emn = 0, ∀(n, m) ∈ (Ω, ωn) (4)

2.2. Line Flow Constraints of Power Network

In this paper, PTDF is used to compute the power flow of lines and to label the lines
used for power transfer in each transaction [33,34]. The PTDF for line l is denoted by ϕl

ij
and indicates the fraction of the energy generated by the agents on bus i that is transmitted
over line l to the agents on bus j. The PTDF is calculated by ϕl

ij = ψl
i − ψl

j , where ψl
i ,

ψl
j are injection shift factors (ISF) in line l for bus i and j. The ISF is an approximation

of the sensitivity matrix and quantifies the redistribution of power through each branch
after a change in generation or load on a particular bus. The ISF matrix is represented
by Ψ , [ψl

i ] ∈ RL×N , where N is the number of buses and L is the number of lines. This
matrix can be obtained using Ψ , B′AC−1 by a diagonal branch susceptance matrix (B′),
a branch-node incidence matrix (A), and a reduced nodal susceptance matrix (C). In the
matrix A, aT

l is the lth row where a line exists between bus i and j.

A , [a1, a2, . . . , aL] ∈ RL×N , aT
l , [0 · · · 0

i
1 0 · · · 0

j
−1 0 · · · 0] (5a)

B′ , diag[b1, b2, . . . , bL] ∈ RL×L, C , AT B′A ∈ RN×N (5b)

By having PTDF matrix and traded energy between prosumers, the power flow in line
l can be computed by (6)

Pl = ∑
n∈Ωp

∑
m∈Ωc

ϕl
ijEnm (6)
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In the above Equation (6), the producer n is at bus i and the consumer m is at bus j.
Their traded power Enm has an impact on the flow of the line l. If the value is below or
above the boundaries, the line prices (υl , υl) are sent to the agents using that particular line
to transfer power to avoid overflow or congestion.

Since the agents in the power grid use the conventional grid to transmit energy, both
social welfare and line flow constraints should be considered. Here, line flow constraints
are added as a constraint to the objective function to model the physical network in energy
trading. To avoid damage to the transmission lines, the real power flow Pl in each line l is
bounded by the maximum capacity Pmax

l with respect to the heat they can dissipate.

− Pmax
l ≤ Pl ≤ Pmax

l , ∀l ∈ L. (7)

2.3. Social Welfare Maximization Problem

To simplify the formulation of the process, we model the production cost and consumer
utility functions as quadratic functions of the power set-point, as below:

Cn(En) = anE2
n + bnEn + cn, (8)

where an, bn, and cn are predetermined positive constants. From above, the P2P market
has the objective to maximize the social welfare of all agents under the constraints. The
problem can be equivalently formulated as a cost minimization problem, as below:

min ∑
n∈Ω

Cn(En) (9a)

s.t. En ≤ En ≤ En ∀n ∈ Ω (9b)

Enm ≥ 0 ∀(n, m) ∈ (Ωp, ωn) (9c)

Enm ≤ 0 ∀(n, m) ∈ (Ωc, ωn) (9d)

Enm + Emn = 0 ∀(n, m) ∈ (Ω, ωn) (9e)

− Pmax
l ≤ ∑

n∈Ωp

∑
m∈Ωc

ϕl
ijEnm ≤ Pmax

l ∀l ∈ L (9f)

Since the social welfare maximization (or cost minimization) problem is a convex
optimization problem, it has a unique optimum that can be achieved by a plethora of
centralized methods. However, this requires the disclosure of all the agents’ information. It
is better to design a P2P negotiation mechanism that can achieve optimal dispatches of the
above optimization problem (9).

3. Blockchain-Based P2P Negotiation Mechanism for Energy Trading

In this section, we first design a novel P2P negotiation mechanism for energy trad-
ing inspired by the consensus-based approach proposed in [35]. We then present the
implementation of P2P energy trading using blockchain and SC.

3.1. C + I-Based Decentralized Negotiation Mechanism

The decentralized negotiation mechanism for P2P energy trading is based on the
C + I method, which consists of updates to the primary energy quantity variables, updates
to the dual variables, and convergence criteria. The main reason for choosing the C + I
method to design the market-clearing algorithm is that the information exchanged between
agents is minimal compared to other methods, such as the ADMM method [36,37] and the
primal-dual gradient [33]. Since the shared information is very small, the communication
overhead is lower and the risk of leakage of private information is also lower. Compared
with the previous results in [35], the first difference is that the physical line flow constraints
of the power grid are considered in our model. Line prices are introduced to induce agents
to spontaneously adjust their power generation or consumption, as shown in (13). The
second difference is that SC is used to implement the mechanism, including updating the
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energy quantities and prices, calculating the power flows, updating the line prices, conver-
gence checking, storing the transaction results, and querying. Therefore, compared with
previous work, the mechanism we developed is a more realistic and practical decentralized
negotiation algorithm for P2P energy trading.

3.1.1. Local Optimization Problem

For each agent n in bus i, the local optimization problem at a given iteration k is

min Cn(En)− ∑
m∈Ωn

λk
nmEnm + ∑

l∈L

m∈ωn

∑
n,m∈i,j

ϕl
ij

(
υk

l − υk
l

)
Enm (10a)

s.t. En ≤ En ≤ En (10b)

Enm ≥ 0 ∀m ∈ ωn if n ∈ Ωp (10c)

Enm ≤ 0 ∀m ∈ ωn if n ∈ Ωc (10d)

where λnm are the dual variables of the equilibrium conditions (4) and define the traded
energy prices Enm. λn = {λn1, . . . , λnm} is used to represent the total traded energy prices
between neighboring agents.

3.1.2. Primal Variable Updates

Updates to the energy quantities of agent n are based on the Karush–Kuhn–Tucker
(KKT) conditions of the local optimization problem. The relaxed Lagrangian function of
the local optimization problem (10) at iteration k can be expressed as follows:

Lloc
n =Cn(En)− ∑

m∈Ωn

λk
nmEnm + ∑

l∈L

m∈ωn

∑
n,m∈i,j

ϕl
ij

(
υk

l − υk
l

)
Enm

+ µn(En − En)− µn(En − En)

(11)

According to the first-order optimality conditions of the Lagrangian problem, for all
trades between agents n ∈ Ω and m ∈ ωn, we have

anEn + bn − λk
nm +

l∈L
∑

n,m∈i,j
ϕl

ij

(
υk

l − υk
l

)
+ µn

k − µn
k = 0 (12)

Then, we can obtain that

Ek+1
n =

λk
nm −∑l∈L

n,m∈i,j ϕl
ij

(
υk

l − υk
l

)
− µn

k + µn
k − bn

an
(13)

According to the complementary conditions µn × En = µn × En = 0, the above
update (13) can be equivalently transformed to another more concise form, as below:

Ek+1
n = max

min

λk
nm −∑l∈L

n,m∈i,j ϕl
ij

(
υk

l − υk
l

)
− bn

an
, En

, En

 (14)

In this way, the dual variables {υk
l , υk

l } is omitted and the update process is simpler.
Then, the primal variables {Enm, m ∈ ωn} are updated as below (here for a producer):

Ek+1
nm =

[
Ek

nm + f k
nm(E(m),k+1

n − E(m),k
n )

]+
(15)
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where fnm is an asymptotically proportional factor defined as

f k
nm =

∣∣∣Ek
nm

∣∣∣+ δk

∑l∈ωn

(∣∣Ek
nl

∣∣+ δk
) (16)

with δk a positive constant. The operator [·]+ = max(0, ·) in (15) is used to enforce the sign
constraint of the decision variables and is replaced in the case of a consumer by operator
[·]− = min(0, ·).

3.1.3. Dual Variable Updates

The price for a given trade is calculated individually by each agent. After convergence,
a consensus has to be reached on these prices (i.e., λnm = λmn). The energy price λk+1

nm will
be updated in this form:

λk+1
nm = λk

nm − βk(λk
nm − λk

mn)− αk(Ek
nm + Ek

mn). (17)

Price convergence is ensured in the price update by a consensus term. The last term,
the innovation term, ensures energy equilibrium between agents. αk and βk are sequences
of positive factors set by the individuals such that each excitation is persistent so that the
series of each sequence converge. The tuning of these parameters (αk and βk) is key to
the convergence performance of the algorithm and usually requires a trade-off between
convergence speed and adaptation to changes in setting. Performance could be improved
by using an adaptive parameter. The calculations steps (13)–(16) are all performed locally
without communicating with others. Only in step (17) does agent n need to receive
information {Ek

mn, λk
mn} from agent m to update the energy price λk+1

nm .
Finally, the line manager (LM) will be responsible for calculating the power flows in

each line by (6), and the line prices
(

υk+1
l , υk+1

l

)
will be updated as

υk+1
l =

[
υk

l + φk
(

Pk+1
l − Pmax

l

)]+
(18a)

υk+1
l =

[
υk

l − φk
(

Pk+1
l + Pmax

l

)]+
(18b)

where φk is the tuning parameter.

3.1.4. Condition of Convergence

The above decentralized algorithm converges as long as the following conditions are met:

∑
n∈Ω

∑
m∈ωn

∣∣∣Ek+1
nm − Ek

nm

∣∣∣ ≤ χE (19a)

∑
n∈Ω

∑
m∈ωn

∣∣∣λk+1
nm − λk

nm

∣∣∣ ≤ χλ (19b)

∑
l∈L

∣∣∣υk+1
l − υk

l

∣∣∣+ ∣∣∣υk+1
l − υk

l

∣∣∣ ≤ χυ (19c)

where χE, χλ and χυ are stopping criterion predetermined by market operator.

3.2. Implementation of P2P Energy Trading by Smart Contracts

An illustration of the blockchain-based P2P trading architecture is shown in Figure 2.
The process is described below.

• In the first step, all agents initiate a pair of energy prices and quantities in parallel and
send it to neighboring agents. Then, each agent updates its quantities and prices for
its neighbors using (15) and (17), respectively. The update process is automatically
performed by SC, which is installed on each agent.
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• After updating each agent, all agents send their traded energy to LM, which calculates
the power flows and line prices on each line using (6) and (18), also from SC.

• Then, LM sends the line flow prices to the corresponding agents using the particular
line for power transmission. By applying these line usage price signals, the agents will
try to trade energy with nearby ones, which can reduce power losses.

• After each iteration, each agent and LM send the updated results to MO, who will
check if the stopping criteria are met (19).

• Finally, after the market converges, MO collects all transactions and stores them in
the blockchain.

Prosumer agent 1

Share energy quantities 𝑬
and prices 𝝀

Smart

Contract

Prosumer agent 2

Smart

Contract

Prosumer agent 3

Smart

Contract

Line Manager

Market Operator

SC of

LM

SC of 

MO

Line prices 𝝊

𝑬 and 𝝀

Termination signal

Store transactions 

on blockchain

Figure 2. Blockchain-based P2P energy-trading market architecture.

4. Privacy-Friendly P2P Computation Framework

We have formulated a decentralized negotiation algorithm between agents based on
the C + I method, but there are still obvious shortcomings. During the negotiation process,
agents need to share the updated energy and price data with neighboring agents, and
privacy may be lost during the process. Malicious attackers can obtain private information
by studying the updated energy and prices. Therefore, developing a privacy-friendly
information exchange scheme is the prerequisite for P2P energy trading. In this paper,
we propose a privacy-friendly, two-party, secure computation scheme, mainly using HE
technology, SC, and ZKP to realize secure information exchange between agents. To our
knowledge, none of the existing work uses HE for P2P energy trading. Previous works
mainly use HE to solve the AC optimal power flow (ACOPF) problem [25], DC optimal
power flow [27], and gradient-based distributed optimization [28]. Our work is the first
attempt to combine the HE method with a consensus-based approach and to apply it to the
P2P energy-trading mechanism. In the proposed scheme, encryption is implemented by
the Paillier cryptosystem [38].

There are two security goals for the privacy-friendly P2P computational framework.
The first is to protect individual private information Fk

nm =
{

Ek
nm, λk

nm

}
from attacks and

acquisition by malicious neighboring agents. The second task is to guarantee that the third
party (not the agents) follows the energy price update rules (17) during operation.

4.1. Collusion Attack

To perform C + I updates, a minimum amount of information must be exchanged. At
each iteration of the process, the set Fk

nm of information sent from one agent n ∈ Ω to a
neighboring agent m ∈ ωn at iteration k must be the following:

Fk
nm =

{
Ek

nm, λk
nm

}
(20)
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The internal production/consumption parameters (an, bn, En, En) of all agents need not be
shared to achieve optimality.

However, this mechanism cannot protect individual privacy. Consider a specific
scenario in which the neighboring agents of agent n conspire to obtain the internal produc-
tion/consumption parameters of agent n, as shown in Figure 3a. We will introduce two
attack strategies to derive the parameters (En, En) and (an, bn), respectively.

1. If agent n is a producer, all neighboring agents (consumers) can intentionally increase
the purchase price λmn little by little until Enm remains unchanged between two
iterations. In this case, the output of agent n has reached the upper bound En. After
that, all neighboring agents can communicate with each other to sum all Enm and
obtain the private information En. Similarly, a group of malicious neighboring agents
can cooperatively lower the purchase price to obtain the lower bound En.

2. Since the neighboring agents of agent n have received the information about the
power boundaries, the group of neighbors for the power update (13) can construct a
set λn such that the output does not reach (En, En), (means µn = µn = 0 ). Under this
construction, the update (13) can be simplified as follows:

Ek+1
n =

λk
nm −∑l∈L

n,m∈i,j ϕl
ij

(
υk

l − υk
l

)
− bn

an
, ∀m ∈ ωn (21)

By substituting two iteration results
{

λk
n, Ek+1

n

}
,
{

λk+1
n , Ek+2

n

}
(where En can be ob-

tained by summing up all Enm) into (21), an can be solved by randomly choosing a
trade with neighbor m, as below:

an =

(
λk+1

nm − λk
nm

)
−
(

Vk+1
nm −Vk

nm

)
(

Ek+1
n − Ek

n

) (22)

where Vk
nm = ∑l∈L

n,m∈i,j ϕl
ij

(
υk

l − υk
l

)
, and this is all public information. After obtaining

an, bn can be readily calculated by (21).

Thus, although very little information needs to be shared in C + I updates, there is
still the risk of loss of privacy in the event of a clandestine attack by a group of malicious
neighboring agents. There is a need to develop a privacy-protection mechanism for P2P
negotiations between agents.

Agent n

Agent m1 Agent m3Agent m2

{𝑬𝒏𝒎𝟏
, 𝝀𝒏𝒎𝟏

}

{𝑬𝒏𝒎𝟐
, 𝝀𝒏𝒎𝟐

}

{𝑬𝒏𝒎𝟑
, 𝝀𝒏𝒎𝟑

}

Collusion attack

(𝑬𝒏, 𝑬𝒏, 𝒂𝒏, 𝒃𝒏)

a Collusion attack

Agent n Agent m

① send 𝑝𝑘𝑛

③ send 

Enc(𝐼𝑛𝑚, 𝑝𝑘𝑛)

② 𝐼𝑛𝑚 =

1 − 𝛽𝑘 𝜆𝑛𝑚
𝑘

−𝛼𝑘𝐸𝑛𝑚
𝑘

② 𝐼𝑚𝑛 =
𝛽𝑘𝜆𝑚𝑛

𝑘 −
𝛼𝑘𝐸𝑚𝑛

𝑘

③ send 

Enc(𝐼𝑚𝑛, 𝑝𝑘𝑛)

④ Enc 𝜆𝑛𝑚
𝑘+1, 𝑝𝑘𝑛 =

Enc(𝐼𝑛𝑚 , 𝑝𝑘𝑛) ⊕ Enc(𝐼𝑚𝑛, 𝑝𝑘𝑛)

⑤ send Enc(𝜆𝑛𝑚
𝑘+1, 𝑝𝑘𝑛)

⑥𝜆𝑛𝑚
𝑘+1 =

Dec(Enc 𝜆𝑛𝑚
𝑘+1, 𝑝𝑘𝑛 , 𝑠𝑘𝑛)

Attacker

Smart

Contract

⑦ send 𝜆𝑛𝑚
𝑘+1 and a ZKP that proves the 

decrypted result is correct with the ciphertext

b Two-party, secure computation

Figure 3. Collusion attack for malicious neighboring agents and two-party, secure computation
between two agents.
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4.2. Homomorphic Encryption/Decryption Mechanism

The Paillier algorithm implementation scheme is detailed below [39].
Key generation: Two prime numbers p and q are randomly chosen to satisfy gcd(pq, (p−

1)(q− 1)) = 1, where gcd stands for the greatest common divisor. Then, N = p ∗ q and
λ = lcm(p− 1, q− 1) are founded, where lcm stands for the least common multiple. We
randomly pick g ∈ Z∗N2 to satisfy gcd(L(gλ mod N2), N) = 1 and ensure there exists

µ = (L(gλ mod N2))−1mod N (23)

where L(x) = x−1
N . The public key is found as N, g, and the private key is found as λ, µ.

Encryption Function (Enc): Let the plaintext message be m ∈ ZN and the public key be
pk; then, the encrypting function is

Enc(m, pk) = gm · rN mod N2 (24)

where r is a random pad r ∈ Z∗N2 .
Decryption Function (Enc): Let the ciphertext be c and the secret key be sk, the plaintext

can be computed as follows:

m = Dec(c, sk) =
L(cλ mod N2)

L(gλ mod N2)
mod N = L(cλ mod N2) ∗ µ mod N. (25)

Property 1. (Additive Homomorphic): The additive homomorphic property allows the user to
operate the message in its ciphertext directly. Assume the two plaintexts are m1, m2 and the key
pair is ski, pki; then, we have

c1 = Enc(m1, pki) ≡ gm1 · rN
1 mod N2

c2 = Enc(m2, pki) ≡ gm2 · rN
2 mod N2

(26)

Obviously, we have c1 ∗ c2 ≡ gm1+m2 · (r1 · r2)
N mod N2; thus, we can conclude that

m1 + m2 mod N = Dec(Enc(m1, pki)⊕ Enc(m2, pki), ski) = Dec(c1 ∗ c2, ski). (27)

Property 2. (Non-Deterministic): The non-deterministic means that a given plaintext can be
encrypted into a very large set of possible ciphertexts. This property prevents an adversary from
associating ciphertext with observed information.

4.3. Two-Party, Secure Computation

A privacy-preserving, two-party, secure computation framework is designed using
HE, ZKP, and SC, as shown in Figure 3b. Before submitting the transaction data to SC,
the agents use the public keys generated by the Paillier encryption algorithm to encrypt
the aggregated transaction data. The data are in the form of ciphertext, which does not
reveal any private information of the agents even if an attacker obtains it. The result
of the ciphertext operation matches the result of the plaintext operation Compared to
standard public key encryption, it is the simpler method with the same result, but there
is no guarantee that agent n follows the rules to compute λk+1

nm . Agent n can increase
λk+1

nm to make more profit but runs the risk of not offering enough goods in real time. The
combination of HE and SC costs more computational resources but can guarantee the
update of energy prices, fend off privacy attacks, and restore the computation result to the
blockchain for verification.

Looking at the update steps, only the energy price update (17) will use the information
Fk

nm =
{

Ek
nm, λk

nm

}
received from neighbor m. Thus, the energy price update is imple-

mented by the Paillier encryption algorithm since it satisfies additive homomorphic. The
HE- based secure two-party computation algorithm is described below.
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• Agent n generates an individual public key pkn and a secret key skn. The public key is
sent to agent m for encryption.

• Agent n performs an aggregation operation Inm = (1 − βk)λk
nm − αkEk

nm, and an
encryption Enc(Inm, pkn) is sent to SC on Agent n.

• Agent m also first performs an aggregation operation Imn = βkλk
mn − αkEk

mn and an
encryption Enc(Imn, pkn) using agent n’s public key and sends it to SC.

• After collecting the information from two agents, SC computes Enc(Inm, pkn) ⊕
Enc(Imn, pkn). From (17), we have λk+1

nm = Inm + Imn. Thus, according to the ad-
ditive homomorphic encryption property, the result is Enc(λk+1

nm , pkn), which will be
sent to agent n and m.

• Agent n executes Dec
(

Enc(λk+1
nm , pkn), skn

)
to obtain the decryption λk+1

nm and sends
it to Agent m.

• Agent n generates and sends a ZKP to Agent m to prove that the plaintext λk+1
nm is

correct with the ciphertext Enc(λk+1
nm , pkn) computed by SC. Details of the construction

of the ZKP are provided in Appendix A.

Remark 1. Another challenge is to verify the authenticity of the message Enc(Inm, pkn). To solve
this problem, we can take advantage of digital signatures. Agent n first uses a one-way hash function
to obtain a 128-bit digest H(Enc(Inm, pkn)) and then encrypts the digest with its private key to
obtain the encrypted digest Dn = Enc(H(Enc(Inm, pkn)), skn)). The message Enc(Inm, pkn), the
encrypted digest Dn, and the public key pkn are packed and sent to SC. SC verifies the authenticity
of the message by checking that the digest of the message processed by the hash function matches the
decryption of the received encrypted digest with the public key, i.e.,

H(Enc(Inm, pkn))
?
= Dec(Dn, pkn) (28)

4.4. Security and Privacy Analysis

Given the two security goals, to achieve the first goal, we first perform an information
aggregation operation for agent n and m, respectively (Inm = (1− βk)λk

nm − αkEk
nm and

Imn = βkλk
mn − αkEk

mn). By using aggregation operations, even if attackers obtain the
information, they cannot reveal the original information. Then, agent n uses public key pkn
to encrypt Inm and sends pkn to neighboring agent m to encrypt Imn. The information is
encrypted with the public key of agent n, so even if the information is obtained by malicious
attackers, the original data cannot be recovered without the private key. The information
is encrypted with agent n’s public key, so it is undeniable that agent n can recover Imn.
However, agent n can only obtain the value of Imn; there is no way for agent n to recover
the original private information {Ek

mn, λk
mn} from Imn since the aggregation operation is

performed locally in agent m.
To achieve the second goal, the third party is traditionally required to provide zero-

knowledge proof of the additional operation. However, this can lead to a higher computa-
tional cost for generating the proof. In this work, HE ensures that the decryption value of
the result of the ciphertext computation is equal to the result of the plaintext computation,
and we use secure SC to realize the ciphertext computation Enc(Inm, pkn)⊕ Enc(Imn, pkn).
Thus, the combination of SC and HE can ensure the correctness of the result Enc(λk+1

nm , pkn).
Moreover, we design a ZKP protocol to prove that the decrypted result is correct with the
ciphertext computed by SC using Paillier’s algorithm.

Through the above analysis, it is concluded that using a combination of HE, SC, and
ZKP to build the two-party secure operation is a very useful and efficient way to satisfy the
security goals of P2P energy trading.

5. Results

This section presents numerical results for performance evaluation of the proposed
privacy-preserving, P2P negotiation mechanism using different case studies. The case
studies were conducted on a computer with an Intel Core i7 processor running at 2.90 GHz
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and 32 GB RAM. We use Ganache to set up a private Ethereum Homestead blockchain
test network. Remote procedure calls via Web3.py/HTTP allow the Python scripts to
communicate with the SCs. The Solidity language is used to develop the SCs, which is a
special language for SCs on Ethereum.

5.1. Simulation Setup

For illustration and discussion, a small distribution network with seven agents is
considered as in [33]. The convergence performance, line congestion management, and
encryption algorithm performance are shown in Figures 4–6, respectively. Then, we
investigate the impact of the number of agents on convergence performance, as measured
by the number of iterations and computation time, and the results are shown in Figure 7.
The results verify that our proposed mechanism is feasible for networks with a large
number of agents. For line congestion management, the verification results in networks
with 13 nodes are sufficient to prove the feasibility of the proposed mechanism in large
networks. Finally, regarding the performance of the encryption algorithm, increasing the
number of nodes has little impact on the computational performance since the method is
used for the negotiation process between two agents.

Sensors 2022, 0, 0 14 of 22

Table 1. Sellers’ and buyers’ parameters of simple case study

Agent Bus an [$/kW2] bn [$/kW] En [kW] En [kW]

S1 2 0.04 1 1 7
S2 5 0.046 1 1 4
S3 8 0.04 1 1 6
S4 10 0.05 1 1 5
B1 3 0.05 3 -7 -1
B2 4 0.056 3 -6 -1
B3 9 0.05 3 -8 -1

5.2. Convergence performance of the negotiation mechanism

In this case study, the maximum line capacity Pmax
l is set to 10 for all lines. The

convergence process of the algorithm is shown in Figure 5, from which it can be seen that
all trading between sellers and buyers converge after about 160 iterations. Although the
consensus-based algorithm only requires a minimum set of information to be exchanged,
the main drawbacks is the number of iteration for convergence may be higher than other
methods. It can be seen that, the sum of energy amount and energy prices absolute value of
gap keep decreasing with oscillation, while the sum of line prices absolute value of gap is
staying at zero, since no line is congested. The final traded energy quantities and prices are
shown in Figure 2. It is noticed that the results of S1 and S3 are same, since their parameters
an and bn are same. While for B1 and B3, their buying prices are same, but the quantities of
B3 are higher since its demand is higher (−8 < −7).

0 20 40 60 80 100 120 140 160
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2
sum of energy amount absolute value of gap
sum of energy prices absolute value of gap
sum of line prices absolute value of gap

Figure 5. Convergence of the algorithm.Figure 4. Convergence of the algorithm.
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Table 2. Final traded quantities and prices of energy

B1 B2 B3

S1 1.75kW/1.21$/kW 1.50kW/1.19$/kW 2.00kW/1.24$/kW
S2 1.33kW/2.74$/kW 1.27kW/2.72$/kW 1.37kW/2.74$/kW
S3 1.75kW/1.21$/kW 1.50kW/1.19$/kW 2.00kW/1.24$/kW
S4 1.67kW/2.66$/kW 1.50kW/1.24$/kW 1.75kW/2.65$/kW

5.3. Performance of Line congestion management

The impact of line capacity limit on the power flow is investigated. The maximum line
capacity for these lines ranges from 3–8 kW. In the test system, the results are displayed
only for lines with non-zero power flow. The results are displayed in Figure 6, and it is
confirmed that the power flows in these lines are always within the maximum line capacity,
which means the proposed algorithm can maintain line flow constraints in the P2P power
network. If there is a congested line in the network, and agents will avoid trading through
the congested lines because they have to pay additional network fees.
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Figure 6. Power flow in different lines under different line capacities.

5.4. Performance of Scalability

In real world, P2P energy trading mechanism will be deployed on power networks
with a large number of agents, and the amounts of transactions will be substantial. The com-
putation time and number of iteration are two key factors measuring the scalability of
the mechanism. To demonstrate the scalability of our mechanism, we add more agents
on each bus. The agents’ parameter are randomly chosen, while the tuning parameters
(δk, βk, αk) are carefully designed to have tolerable performance. The line capacity is set to
large enough to make no congestion happens. Figure 7 shows the effect of agents’ num-
ber (ranges from 70 to 420) on the two factors. It can be seen that the computation time
and number of iteration both increase approximately linearly with the number of agents.
The performance of computational time is excellent (under 4s for 420 agents), but more

Figure 5. Power flow in different lines under different line capacities.
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Figure 6. Encryption algorithm computation performance. (a) Agent encryption and decryption time.
(b) The size of the public/private keys and ciphertext.
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Figure 7. Impact of number of agents on computation time and number of iterations for convergence.

There are seven agents in the power network, consisting of four sellers and three
buyers. The test system is a 13-node network, as shown in Figure 8. The sellers are located
at buses 2, 5, 8, and 10, and the buyers are located at buses 3, 4, and 9. Bus 1 is the reference
bus. The connections indicate the physical electrical connections, and the communication
network is assumed to have a connected network for the communication of all agents. The
parameters of sellers and buyers are listed in Table 1. We set the susceptance of each branch
to b1 = b2 = . . . = bL = 10s. All stopping criteria χ are set to 10−4. The tuning parameters
are chosen as follows:

δk = 0.1, βk =
0.1
k0.1 , αk =

0.1
k0.01 , φk = 10 (29)

and the stopping criteria are set to

χE = 0.01, χλ = 0.01, χυ = 0.01 (30)
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Figure 8. Test system schematic.

Table 1. Sellers’ and buyers’ parameters of a simple case study.

Agent Bus an (USD/kW2) bn (USD/kW) En (kW) En (kW)

S1 2 0.04 1 1 7
S2 5 0.046 1 1 4
S3 8 0.04 1 1 6
S4 10 0.05 1 1 5
B1 3 0.05 3 −7 −1
B2 4 0.056 3 −6 −1
B3 9 0.05 3 −8 −1

5.2. Convergence Performance of the Negotiation Mechanism

In this case study, the maximum line capacity Pmax
l for all lines is set to 10. The

convergence process of the algorithm is shown in Figure 4, from which it can be seen that
all trading between sellers and buyers converges after about 160 iterations. Although the
consensus-based algorithm requires a minimum amount of information to be exchanged,
the main drawback is that the number of iterations to converge can be higher than other
methods. It can be seen that the sum of the absolute values of the gap of energy quantity
and prices decreases with oscillation, while the sum of the absolute values of the gap of
line prices remains at zero since no line is congested. The final traded energy quantities
and prices are shown in Table 2. It is noticeable that the results of S1 and S3 are the same
because their parameters an and bn are the same. For B1 and B3, the purchase prices are the
same, but the quantities of B3 are higher because the demand of B3 is higher (−8 < −7).

Table 2. Final traded quantities and prices of energy.

B1 B2 B3

S1 1.75 kW/1.21 USD/kW 1.50 kW/1.19 USD/kW 2.00 kW/1.24 USD/kW
S2 1.33 kW/2.74 USD/kW 1.27 kW/2.72 USD/kW 1.37 kW/2.74 USD/kW
S3 1.75 kW/1.21 USD/kW 1.50 kW/1.19 USD/kW 2.00 kW/1.24 USD/kW
S4 1.67 kW/2.66 USD/kW 1.50 kW/1.24 USD/kW 1.75 kW/2.65 USD/kW

5.3. Performance of Line Congestion Management

The impact of line capacity limit on power flow is investigated. The maximum line
capacity for these lines ranges from 3 to 8 kW. In the test system, the results are shown only
for lines with non-zero power flow. The results are shown in Figure 5, and it is confirmed
that the power flows in these lines are always within the maximum line capacity, which
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means that the proposed algorithm can meet the line flow constraints in the P2P power grid.
If there is a congested line in the network, agents will avoid trading over the congested
lines because they have to pay additional network charges

5.4. Performance of Scalability

In the real world, the P2P energy trading mechanism will be used in power networks
with a large number of agents, and the number of transactions will be significant. The
computation time and the number of iterations are two key factors that measure the
scalability of the mechanism. To demonstrate the scalability of our mechanism, we add
more agents to each bus. The parameters of the agents are chosen randomly, while the
tuning parameters (δk, βk, and αk) are carefully designed for tolerable performance. The
line capacity is chosen large enough to make no congestion happens. Figure 7 shows the
effects of the number of agents (between 70 and 420) on the two factors. It can be seen that
both the computation time and the number of iterations increase approximately linearly
with the number of agents. The performance of computational time is excellent (under 4 s
for 420 agents), but more iterations (almost 450) cost. The results show that our proposed
mechanism is feasible for networks with a large number of agents.

5.5. Encryption Algorithm Computation Performance Analysis

In this section, we analyze the trade-off between privacy and computational cost. In
the original decentralized negotiation mechanism, where no homomorphic encryption is
applied, the computation time of each agent for each iteration is so small that it is negligible.
To ensure privacy, a privacy-preserving mechanism based on homomorphic encryption is
proposed to be used at each iteration. Agents need to encrypt their private information and
to submit it to SC to perform ciphertext computation. The Paillier homomorphic encryption
used in the simulation comes from the phe (Partially Homomorphic Encryption) library in
Python. Figure 6a shows the encryption and decryption time of the agents. The encryption
time of agent n and m is close to each other and is about 0.11 s. The decryption time is
much lower compared to the encryption time and is about 0.03 s. Figure 6b shows the
public/private key and the size of the ciphertext. The size of the ciphertext is slightly larger
than 1750, while the public/private keys are much smaller.

5.6. Computational Performance under Different Mechanisms

In this section, we investigate the computational performance under four different
mechanisms. (1) P2P trading is performed without a privacy-preserving mechanism.
(2) P2P trading runs under the Paillier HE mechanism. The agents each encrypt their
bid information {λnm, Enm} and send it to a program to perform cipher computation.
(3) P2P trading runs under the two-party, secure computation mechanism without ZKP.
(4) P2P trading runs under the two-party, secure computation mechanism with ZKP. The
computation time for each agent in one iteration is displayed in Figure 9. It can be seen that
the computation efficiency is very high without any privacy mechanism. The time spent
on the second mechanism is higher than for the third because more information needs
to be encrypted, which is very time-consuming. The efficiency of the third mechanism
is at a medium level and is acceptable. The agents only need to encrypt the aggregated
information {Inm, Imn}, which can greatly reduce the time consumption. Finally, the fourth
mechanism is the most ineffective one because the ZKP protocol is very time-consuming
and, most of the time, is for computing the inverse element by the expand Euclid algorithm
(M = N−1 mod φ(N)). This problem will be studied in our future work.
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Figure 9. Computational time of different P2P negotiation mechanism.

5.7. Blockchain-based P2P Energy Trading Platform

In our simulation, we use Ganache to establish a private Ethereum Homestead
blockchain called “Privacy-Preserving P2P Market”, as shown in Figure 10. The first address
belongs to MO, and the second one is LM’s address. The rest of the addresses are assigned
to each and every agent. The local computation steps are executed by Pythons codes,
and then sending the encrypted information to SC installed on Ganache by Web3.py/HTTP.

Agents have two ways to update the energy prices. First is to run the SC SCAG to
realize automatically energy price update. Second one is submit the encrypted information
to the SC SCAGHE to implement the ciphertexts computation. After updating the energy
quantities and prices, which will be broadcast over the network, LM will updates power
flows and line prices via SC SCLM, while MO will check if the market converges via SCCO.
Finally, after all trading are balanced, MO will store the transaction results on the blockchain
via SCTR, which can be checked by everyone in the network.

Figure 9. Computational time of different P2P negotiation mechanisms.

5.7. Blockchain-Based P2P Energy-Trading Platform

In our simulation, we use Ganache to establish a private Ethereum homestead blockchain
named ”Privacy-Preserving P2P Market”, as shown in Figure 10. The first address belongs
to MO; the second is LM’s address. The remaining addresses are assigned to each agent.
The local computation steps are performed by Python’s codes, and then, the encrypted
information is sent via Web3.py/HTTP to SC installed on Ganache.

The agents have two ways to update the energy prices. The first is to run SC SCAG
to automatically update the energy prices. The second option is to submit the encrypted
information to SC SCAGHE to implement the ciphertext calculation. After updating the
energy quantities and prices disseminated over the network, LM updates the power flows
and line prices via SC SCLM, while MO checks whether the market converges via SCCO.
Finally, after all trades are balanced, MO stores the transaction results on the blockchain
via SCTR, which can be checked by anyone on the network.

a Homestead blockchain b SCAG c SCLM

d SCCO e SCTR f Transactions results

Figure 10. P2P energy-trading blockchain, smart contracts, and transactions results stored on
the blockchain.
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6. Discussion

The most valuable achievement of our proposed mechanism is to provide a privacy-
preserving, two-party, secure computation mechanism for the P2P negotiation mechanism
between each pair of agents. The agents cannot know each other’s actual bidding infor-
mation. However, operational efficiency has been sacrificed for privacy protection. A lot
of time and computing power are spent on encrypting and decrypting information. In
addition, the introduction of SC further extends the time to achieve convergence.

Therefore, our future work will mainly focus on how to increase the computational
efficiency under the privacy-friendly mechanism. The first way is to develop a P2P nego-
tiation mechanism that uses a more efficient decentralized optimization algorithm. For
example, the consensus ADMM algorithm [31,32], which can guarantee convergence with
a smaller number of iterations. The challenge is to combine the consensus ADMM with the
HE mechanism. Another way to increase efficiency is to reduce the amount of information
to be encrypted or protected. As we analyzed in Section 3.1, in the C + I method, private
information is revealed and disclosed only in the collusion attack by all neighboring agents.
If we carefully select a part of the exchanged information to be encrypted, the private
information can also be protected. We can perform the two-party secure computation with
only one neighboring agent, and that is enough to protect private information from attacks.
With this strategy, the computation cost can be reduced from O(N2∆T) to O(N∆T), where
∆T is the sum of the encryption and decryption time of the two-party secure computation.

7. Conclusions

In the P2P energy market, agents must exchange a large amount of information to reach
consensus on the final trade. However, this fully decentralized negotiation may lead to the
disclosure of private information. In this paper, we propose a privacy-preserving, two-party,
secure computation mechanism for P2P energy trading that leverages many technologies.
We first design a P2P negotiation mechanism based on the C + I method and the PTDF
model. This mechanism can maximize social welfare while satisfying the physical line flow
constraints. Then, for this mechanism, we analyze the two collusion attack strategies to
obtain private information from a group of malicious neighboring agents. To protect against
this kind of attacks, a two-party, secure computation mechanism is proposed for each pair
of agents to update the energy prices. The agents first aggregate their bid price and bid
quantity and then encrypt the information with the public key generated by the Paillier
algorithm. Then, the computation of the ciphertext is automatically performed by SC,
and the correctness of the decryption is proved by a ZKP protocol. The simulation results
demonstrate the performance of convergence, line congestion management, scalability,
computation efficiency, and SC operations.
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Nomenclature

Cn(·) Production cost or utility function of agent n
i, j Indices for buses
n, m Indices for agents
l Index for power lines
E, E Boundaries of power
an, bn, cn Coefficients of the quadratic function of agent n
L Set of lines
N Set of buses
Ω Set of agents
Ωp Set of energy producers
Ωc Set of energy consumers
ω Set of neighboring agents
λnm Energy prices provided by n to m
En Power injection or total traded quantity of agent n
Enm Traded energy quantity from n to m
Pl Power flow of line l
ϕij Power transfer distribution factor of line l connecting bus i and j
ψl

i Injection shift factor in line l for bus i
A Branch to node incidence matrix
B′ Diagonal branch susceptance matrix
C Reduced nodal susceptance matrix
Pmax

l Maximum capacity of line l
(υl , υl) Upper bound and lower bound prices of l(

µn, µn
k
)

Dual variables for power boundaries

fnm Asymptotically proportional factor(
αk, βk

)
Sequences of positive factors at iteration k

φk Tuning parameter
χE, χλ, χυ Stopping criterion
Inm Aggregation Information
pkn, skn Public key and secret key of agent n

Appendix A

The problem is how agent n can prove that the decrypted result λk+1
nm is correct with

the ciphertext Enc(λk+1
nm , pkn) computed by SC. This can be carried out using a zero-

knowledge proof to prove that a Paillier ciphertext is an encryption of zero. For sim-
plicity, let c = Enc(λk+1

nm , pkn) be the original ciphertext, and let d be the decryption that
agent n sends to agent m. Then, both n and m can each locally use the homomorphic
property to compute a ciphertext c′ equal to the value of c minus the encrypted d, i.e.,
c′ = c − E(d). Note: If c is an encryption of d; then, c′ is an encryption of zero, since
c′ = E(d)− E(d) = E(d− d) = E(0).

Thus, it suffices for n with zero knowledge to prove that c′ is an encryption of zero
(or, put another way, that c′ = rN mod N2). This can be carried out very efficiently using
an improved method described in Section 5.2 of “A Generalization of Paillier’s Public-
Key System with Applications to Electronic Voting” by Damgard and Jurik [40]. In this
method, the inverse element is computed using the expand Euclid algorithm. The protocol
is described in detail in Algorithm A1, and for a detailed proof, we refer to Lemma 3 in
Section 5.2 of [40].
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Algorithm A1: Protocol for proving c′ is an encryption of zero

Input: N = p ∗ q, c′

1 Prover P calculate: M = N−1 mod φ(N) and r = c′M mod N such that c′ = E(0, r)
2 P chooses v at random in Z∗N2 and sends a = E(0, v) to Verifier V
3 V chooses e, a random t bit number, and sends e to P.
4 P sends z = vre mod N to V.
5 V checks that c′, a, z are prime to N and E(0, z) = ac′e mod N2, and accepts if and

only if this is the case.
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