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Abstract

Privacy issues related to the access of context infor-
mation are becoming increasingly important as we move
toward ubiquitous and mobile computing environments. In
this article, we describe the design and implementation of
a privacy service, called Context Privacy Service (CoPS),
to control how, when and to whom disclose a user’s context
information. Based on the results of an end-user survey
and experience reported by other research groups, we iden-
tified the main service requirements and designed CoPS
aiming flexibility, generality, simplicity and fine-grained
privacy control. CoPS is an optional service of our
context-provisioning middleware MoCA and allows users
of context- and location-aware applications to define and
manage their privacy policies regarding disclosure of their
context information. The main features supported by CoPS
are group-based access control, pessimistic and optimistic
approaches for access control, hierarchical privacy rules,
mixed-initiative interaction, and rule specificity analysis.

Keywords:
Privacy, Context Service, Context-awareness, Middleware,
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1 Introduction

Location-awareness, and context-awareness in general,
have been identified as key elements of the mobile com-
puting paradigm [12]. Consequently, many context-
provisioning middleware infra-structures have been devel-
oped for mobile and wireless networks. But surprisingly
only a few works have dealt with the implications that ac-
cess to context data has for personal information privacy.

In our work, we are particularly interested in middleware
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support for distributed collaborative applications, where ac-
cess to the computational context [13] and location infor-
mation opens a wide range of new forms of end-user com-
munication. For example, location information can be dis-
played by instant communication services, physical prox-
imity among users can be used to select collaborating peers,
and information about the connectivity status can enhance
mutual collaboration awareness. This motivated us to de-
sign and implement a service-oriented middleware archi-
tecture called Mobile Collaboration Architecture - MoCA
[10, 8] for collecting and processing context data from mo-
bile devices in 802.11 networks, and making it available
to applications. We are currently using this middleware to
implement context-aware applications for mobile collabo-
ration.

While some users may want to use such applications to
facilitate group coordination or convey a sense of presence
with friends or co-workers, there are also some serious con-
cerns about the risk of disclosing personal context informa-
tion. Hence, there is a huge demand for tools which provide
end-users with the ability to define specific privacy control
over context data. But since privacy is a very broad concept
that entails very different interpretations and requirements,
a context privacy solution should be flexible and adaptive to
the specific needs of individuals, organizations, user com-
munities, and applications.

In a recent survey we did with approximately 120 stu-
dents we assessed the most frequent privacy concerns re-
lated to context and location data and identified the main
requirements for context privacy [9]. This guided our de-
sign of a flexible and generic privacy control mechanism
for context information, which we named “Context Privacy
Service” (CoPS). This service allows the end-users to share
their context data with the right people, at the right level and
at the right moment through the following features: group-
based access control, hierarchical privacy rules, rule speci-
ficity analysis (based on the requester ID, spacial and tem-
poral precision, and information freshness), optional user
notification, logging, and plausible deniability mechanisms.
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The remainder of this paper is structured as follows. Sec-
tion 2 presents a discussion about some related work. Sec-
tion 3 presents a short overview of MoCA and the type
of context data that it makes available. Section 4 intro-
duces CoPS’ main features and describes the typical pat-
tern of interaction among CoPS, a context service and an
application. Then, Section 5 presents the main components
of CoPS, giving emphasis on the structure of the privacy
rules, the policy hierarchy, group definitions, the algorithm
for rule specificity analysis, and some concrete scenarios il-
lustrating how the algorithm works. We then discuss some
details of our current prototype in Section 6 and show pre-
liminary performance results in Section 7. Finally, in Sec-
tions 8 and 9 we discuss future work and give concluding
remarks.

2 Related Work

Recently, research about mechanisms for privacy of con-
trol of context information has received increased attention.
In the following we discuss the work most related to this
field.

In Confab [4], people, places, things, and services are
assigned to info-spaces, which are tuple-spaces storing sta-
tic or dynamic context data about any of the info-space’s
entities. The context data stored in info-spaces are con-
texts tuples, and are populated by sources of information,
such as sensors. Similar to other tuple spaces, an info-
space supports in- and out-methods. In-methods affect what
data is stored within an info-space, and include add and
remove methods. Out-methods govern any data leaving
an info-space, and include query, subscribe, unsubscribe,
and notify. Privacy mechanisms are enforced through info-
space operators (in- and out-operators), which govern what
data can enter or leave the info-space. In-operators and
out-operators are run on all tuples coming in/out. These
operators can apply, for example, the info-space’s access
control policies to ensure that a tuple is allowed to be
added/removed, or that this tuple should be blocked for
reading or removal.

Project Aware Home [1] focuses only on home envi-
ronments, where a variety of data about home residents
and their activities is captured (by sensors), processed and
stored. The access control mechanism uses an extension
for Role-based Access Control (RBAC) [11]. Similar to
the subject roles of RBAC, the authors defined environment
roles, which can be used to capture security-relevant aspects
of the environment in which an application executes.

In [14] privacy of location information is described and
controlled by simple rules based on set theory. Each rule
establishes a list of users who are allowed (or disallowed)
to know the location of a user for a given period. The rule
specifies the authorizations based on one of four visibility

modes: Visible to All, Invisible to Some, Visible to Some,
and Invisible to All, and using boolean operators AND or
OR. When conflicting rules (e.g. R1 grants but R2 denies
access), are combined using AND, the location information
is not made available, and when using OR, it is made avail-
able to the requester.

Most of the approaches exclusively focus on location
context, and propose specific mechanisms for controlling
access and disclosure of this information. We however, take
a broader approach considering that any context data, spe-
cially computational context that can be automatically col-
lected and which apparently does not reveal relevant infor-
mation, should be subject of access control.

Most of the related work adopts a centralized approach
for storing and controlling access to context data, even
though this surely gives end-users less control of their con-
text information. Only [4] proposes a fully decentralized
approach. Although this seems more reasonable from the
end-user perspective, which does not have to trust a cen-
tralized context-provisioning infrastructure, it entails some
problems when this context information has to be shared
(albeit in a controlled way) among many users. Due to the
huge amount of resources necessary to store, process and
distribute this information, and the intrinsic limitation of
mobile devices, it turns out that, at least with our current
technology, only centralized approaches are feasible from a
software engineering point of view.

Moreover, network use experience of the past decades
has shown that despite the real threats of using unknown and
remote services, users have largely trusted network infra-
structures because of the obvious benefits that they gain.
In fact, in most of our daily activities we, de facto, rely
on social protocols and law enforcement, and expect that
other people will indeed obey the rules and follow the social
norms.

3 MoCA’s Context Provisioning Services

The Mobile Collaboration Architecture (MoCA) [10, 8]
consists of client and server APIs, basic services supporting
context acquisition, storage and processing, and a frame-
work for implementing application proxies (ProxyFrame-
work). The APIs and the basic services have been designed
to be generic and flexible, so as to be useful for different
types of context-aware collaborative applications, e.g. syn-
chronous or asynchronous interaction, message-oriented or
artifact-sharing-oriented. MoCA is intended for use in an
infra-structured wireless LAN (such as 802.11), and the cur-
rent version runs on WinXP/CE and is based on TCP/IP.

In MoCA the following are the core services and com-
ponents responsible for probing, storing and inferring com-
putational and location context.
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• Monitor: is a daemon executing on each mobile device
that is in charge of collecting data concerning the device’s
execution state/connectivity, and sending this data to the
CIS (Context Information Service) executing on one (or
more) node(s) of the wired network. The collected data
includes the quality of the wireless connection, remaining
energy, CPU usage, free memory, current Access Point
(AP), list of all APs and their signal strengths that are
within the range of the mobile device.

• Context Information Service (CIS): is a distributed ser-
vice where each CIS server receives and processes de-
vices’ context data, sent by the corresponding Monitors. It
also receives requests for notifications (aka subscriptions)
with SQL-like, context-based interest expressions from
applications, and delivers notifications to the applications
whenever the corresponding interest expression matches a
new state of the context variables. Alternatively, applica-
tions may also query CIS directly about the current value
of a particular context variable of a specific device.

• Location Inference Service (LIS): infers the approximate
symbolic location of a device. It does this by comparing
the device’s current pattern of RF signals received from
CIS (from all “audible” 802.11 Access Points) with the
signal patterns previously measured at pre-defined Refer-
ence Points in a Building or Campus. For this, LIS pe-
riodically queries CIS to update the device’s pattern of
RF signals. Since the RF signal is subject to much vari-
ation and interference, the location inference is only ap-
proximate: its precision depends on the number of access
points and the number of the reference points. LIS allows
the administrator to define symbolic regions of arbitrary
size and shape, and a hierarchical description of regions
with its nested sub-regions. Similarly to CIS, this service
also supports both direct queries about a device’s location,
and subscriptions for notifications of location changes.

So far, we have used MoCA’s API and services
to develop some context- and location-aware proto-
types of collaborative applications, such as NITA,
WhoAreYou?(WAY), BuddySpaceLive, WirelessMarket-
ingService, and others [7]. When we demonstrated these
applications to other students and faculty, we realized the
importance of privacy issues related to context information,
i.e. while context data is useful for implementing adaptable
and context-aware applications, it can also be used to derive
information of where and how a user is using his device. Ta-
ble 1 shows all computational and location context variables
made available by MoCA’s services, and some privacy risks
of disclosing each such information.

Although our original goal was to develop a privacy
mechanism for MoCA’s context-provisioning services CIS
and LIS, we later realized that it would be better to design

Table 1. Context data collected by MoCA
Context Variable Privacy Risk
CPU usage (%) gives a clue about the device processing load
Free Memory (in kB) gives a clue whether the user’s device is short of

resources
Battery Power (%) gives an estimate for how long the device will be

available
IP Addr/Mask network point of attachment, owner’s network

access rights, and rough information about de-
vice location

Current AP’s MAC-Addr, RSSI connectivity status and rough information about
device location

List of all APs in the range gives a clue about device’s approximate location
LIS’ Symbolic location device’s approximate location

CoPS as an independent and generic service that could be
easily integrated with other context-provisioning services.

4 CoPS Overview

CoPS is in charge of controlling when, how and to
whom context data will be disclosed. This service imple-
ments an engine that evaluates privacy policies and checks
whether access to context data from one subject (i.e. user)
will be granted to a specific requester (i.e. a user or ap-
plication). A privacy policy is set up by a policy maker,
which may or not be the subject himself. By using a pol-
icy management GUI, the policy maker specifies the rules
that dictates the access restrictions to the subject’s context
information.

The proposed service implements fine-grained access
control, feedback and logging mechanisms, which give the
subject different means of avoiding abuse of his context in-
formation usage. For instance, by setting the notification
option in his rules (in addition to the appropriate access
control) Bob would probably prevent others, for example
his boss, from trying to periodically query his location. The
feedback mechanism may use any appropriate form of no-
tification, such as e-mail, SMS, IM, etc. In addition, hav-
ing access to CoPS’ log, Bob would be able to check who
accessed (or could not access) his context data, when and
how many times it occurred, etc. Feedback and logs have
also been identified elsewhere [4] as a simple, yet effective,
means of controlling access abuse through social visibil-
ity. For example, it is less likely that a boss will repeatedly
query an employee’s location if he knows that the employee
gets notified at every request, and moreover can use the log
to prove the abuse, and blame him of this action.

In CoPS, privacy policies are organized in a three-level
hierarchy: organization-specific, individual-specific, and
default policies. In this hierarchy, the organization-specific
policy overrides the individual-specific policy, which in
turn, overrides the default one. Hence, for organization-
specific policies the policy maker may not be the same
as the subject (e.g. the employee). For example, a policy
maker responsible for a university may define that the lo-
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cation of each member of a department staff must be made
available to the director to facilitate delegation of tasks or
finding a nearby member of the network support team to fix
a problem of the secretary’s desktop.

CoPS also supports two general approaches to specify
a default access policy, an optimistic and a pessimistic one.
With the pessimistic approach, by default all requests are
denied, except those that match some rule specified by the
policy maker. In contrast, with the optimistic approach, by
default all requests are granted, except those matching some
rule specified by the policy maker. Thus, end-users need
only define the rules specifying under which circumstances
their personal information should be disclosed or not, de-
pending on default approach used. For example, the user
may define a rule denying access to his location data to any
requester which is not affiliated with his department. Fur-
thermore, end-users could set up rules that define side-effect
actions (e.g. logging, notifying), related to a specific con-
text variable, (group of) requester(s), time of the day, etc.

We believe that most of CoPS users will be interested
in disclose their context information to take off advantage
of applications and services. In this case, the optimistic ap-
proach is easier to use, because the users can hardly predict
all possible scenarios for which he wants to grant access in
the pessimistic default policy.

For each access policy the policy maker can set up a set
of candidate privacy rules to evaluate the requests. Hence,
the set of applicable rules to a given request will be selected
according to the subject’s current access policy. The sub-
ject may change his current access policy through the policy
management GUI.

By supporting these two approaches for default policies
CoPS gives end-users a convenient, simple and flexible
means of defining their rules according to their individual
privacy preferences. Unlike others works [4, 3], CoPS’
dual approach helps to reduce the number of rules neces-
sary to define a privacy policy. After choosing either the
pessimistic or the optimistic approach the policy maker will
have only to specify a few rules, each of them producing the
following results: “Grant” or “Deny” (but not both), “Not
Available” or “Ask Me”.

The policy maker may use the “Not Available” result
when he wants to take advantage of plausible deniability,
since this is also the default result for a request when con-
text information is in fact not available. Returning “Not
Available” as the result of a request thus enables a subject
to make “white lies” where he in fact denies access, but does
not make this explicit to the requester, who will not know
whether the context information could not be obtained due
any technical failure, due to access restriction, or lack of the
data.

The result “Ask Me” is used when the user wants to be
asked, on the fly, about the request. This feature will be

discussed with more detail in Section 4.2.

4.1 Typical Interaction Pattern

The Context Privacy Service comprises a server (CoPS)
and two clients APIs (CoPS Client APIs). The first one,
(Context Access Authorization (CAA) API), is used by the
Context Service to communicating with CoPS server. The
second one, (User and Policy Management (UPM) API), is
used by client applications at the subject’s and requester’s
side for authentication and session token generation, for
checking the consistency of policy rules, for accessing and
analyzing the log, and for receiving queries asking the sub-
ject for a final decision regarding an access request.

Figure 1 illustrates the general architecture, and shows
how its components interact with each other and with the
context provisioning service (Context Service). In the case
of MoCA, both CIS and LIS act as the Context Service,
while the Monitor would be executing on the subject’s de-
vice.

CoPS
Context Privacy Service

Context Service

Subject Requester

1

4

5

2

3

UPM API

CAA API

UPM API

Figure 1. CoPS general Architecture

Initially, (1) the policy maker (e.g. the subject) has to
define the privacy policy to be applied to a subject’s con-
text data: he chooses the default access policy (optimistic or
pessimistic) and uses the policy management GUI to write
the corresponding privacy rules. In parallel, (2) context data
from the subject’s device will be periodically received by
the Context Service but will only be disclosed upon eval-
uation of the appropriate privacy policy. (3) Before a re-
quester is able to submit an access request, he has to au-
thenticate himself with CoPS. This authentication will pro-
duce a session token which will be used to create an User
Identification Token (UIT) for future requests. The UIT is
the hash of the session token. The generation and distri-
bution of user session tokens will be explained in Section
6. (4) When the access request arrives at the Context Ser-
vice, it will forward the request and the UIT to CoPS and
wait for the result. (5) If the requester is successfully au-
thenticated and the request is granted, CoPS replies with a
“Grant”, otherwise with a “Deny” or “Not Available” result.
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4.2 Controllable Properties

According to the results of our survey about require-
ments for privacy control [9] and related work [4], most
users demand means of interactively deciding when re-
quests should be granted or not. In other words, in this
approach of interaction, called mixed-initiative, end-users
are interrupted and are asked on the fly to decide whether to
grant or deny the request. If the policy maker set up the pri-
vacy rule with the result value “Ask Me”, the CoPS server
will forward the request to the subject’s application. The ap-
plication may then present to the user (the subject) a human-
readable representation of the request and ask him for a de-
cision, such as: “Can requester A be granted access to the
context information I?”. And the answer options could be,
for example, “Always allow”, “Just this time”, “Only for the
next 2 hours”, “Never Allow”, etc. The CoPS server waits
some time for the reply, and if no reply is received, CoPS
simply denies access to the context information returning
the default reply value “Not Available”.

CoPS also supports adjusting the precision of the dy-
namic contextual information being disclosed. It does so
by allowing the policy maker to specify a spatial preci-
sion, temporal restriction and freshness of the contextual
information in the privacy rules. For example, consider
a scenario where some service provides location informa-
tion. Alice is sharing her location with classmates, but
maybe does not feel comfortable letting them know pre-
cisely where she is. In this case, she would be able to adjust
the level of disclosure by defining the spatial precision of
her location information (e.g. “PUC-Rio” or “Department
of Computer Science Building” instead of “Room 205”).
She could also set some temporal restriction, by defining,
for example, the time interval (e.g. “9:00 to 11:30 am
AND Monday to Thursday”) when the information should
be made available. Moreover, she could also specify the
freshness of the disclosed information, determining that in-
stead of her current location, only her location 30 minutes
ago shall be disclosed.

5 CoPS’ Architecture

The service has been designed to offer fine-grained and
flexible control over privacy policy evaluation, using the
following components: the Privacy Policy Engine, the Dy-
namic User Management and Access Control (DUMAC), a
notification dispatcher and the client APIs. Figure 2 illus-
trates the main components of the CoPS architecture.

As mentioned in Section 4, the client APIs hides from
the Context Service and application developer many details
related to CoPS-specific interaction and processing. By de-
signing CoPS independently from the Context Service, we
obtain more flexibility and reduced complexity. Flexibility,

in the sense that CoPS becomes independent of a specific
Context Service, and that Privacy Management can be in-
corporated as an optional and complementary feature of a
context provisioning middleware. Thus, the Client API is
very important for enabling a simple and transparent inte-
gration of CoPS with both the Context Service and the ap-
plication clients.

In order to provide support to the mixed-initiative inter-
action, the CoPS server and the application client API use
event-based asynchronous communication. The client API
subscribes itself at the CoPS server informing the address
in which it is supposed to receive requests for the subject’s
final decision (Grant or Deny). After receiving a request
from the CoPS server, the client API forwards it to the ap-
plication client and waits some time interval to send a re-
ply. If the CoPS server receives a reply from the client API
before the timeout, the subject’s decision is sent to the con-
text service, otherwise, the default reply (“Not Available”)
is dispatched.

The Dynamic User Management and Access Control
(DUMAC) component is in charge of implementing user
authentication and management of groups and users. Al-
though CoPS offers its own authentication method, in prin-
ciple it can be integrated with any other similar authenti-
cation system, such as NIS, SAMBA or Windows Domain
Controller, facilitating the deployment in different adminis-
trative domains.

The Policy Evaluation is the central component within
the CoPS server. It processes the access request taking into
account all privacy policies related to a subject. It first se-
lects the rules of the default access policy chosen by the
policy maker, and then evaluates policy specificity, by se-
lecting the most specific rules that match a given request.
Based on the set of selected rules, it then checks and re-
solves possible conflicts in order to compute the final result
(“Not Available”, “Ask Me”,“Grant” or “Deny”). The result
is then returned to the client API at the Context Service.

5.1 Structure of the Privacy Rules

The structure of a CoPS privacy rule is composed of
several fields, which are also present in the requests. Any
privacy rule is associated with a default access policy (op-
timistic or pessimistic). This must be chosen in beforehand
by the policy maker, and it will determine the basic evalu-
ation algorithm for each request. The proposed rule fields
and their semantics are described as follows.

• Policy Maker: Individual who defined/created the pri-
vacy rule (may or may not be the same as the subject).

• Subject: User or entity whose context data is controlled
by this rule.
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Figure 2. CoPS Architecture

• Requester: User or software component requesting ac-
cess the subject’s context data.

• Context Variable: The specific type of context data be-
ing requested (e.g. location, energy level, IP address,
etc.).

• Application: List of application names that can be used
by the requester to access the context variable. The
wildcard ‘*’ represents any application.

• Precision: Specifies the value precision of the context
variable (e.g. for location information, this could be
the spatial precision like state, city, ZIP code, building,
room, etc.).

• Temporal Restriction: Date and time interval re-
strictions for disclosing the context information (e.g.,
weekdays, from 9 am to 6 pm).

• Freshness: Specifies the freshness (in milliseconds)
of the disclosed context information (e.g. location 15
minutes ago, or current location). The default value is
0 ms.

• Timestamp: Specifies the time in which the privacy
rule has been created. This field is used by the re-
sult specificity to resolve possible conflicts among the
rules.

• AccessPolicy: Represents the access policy (Opti-
mistic or Pessimistic) that this privacy rule is associ-
ated with.

• Policy Level: Hierarchy level of this rule. Initially,
CoPS will support only following three possible val-
ues “organization”, “individual” or “default”.

• Result: Outcome of applying this rule to a request.
Possible values: “Not Available”, “Ask Me”, “Grant”
and “Deny”.

• Notify Me: If the policy maker wants to be noti-
fied when the rule is applied. The options available
are “NoNotification”, “E-Mail”, “ICQ”, “MSN” or
“SMS”.

5.2 Group Definitions

Groups provide an additional facility for the manage-
ment of privacy rules and also decrease the processing ef-
fort during evaluation of the requests. The Subject or Re-
quester fields of a privacy rule can be either individual users
or groups.

There are two general categories of groups: adminis-
trator and user-defined groups. The first ones are struc-
tured hierarchically to reflect the organizational structure,
and define the corresponding user roles, similar to RBAC
[11]. Groups in a higher level of the hierarchy include all
of its descendant groups at a lower level, e.g. the group
“puc.employee” comprises the group “puc.employee.prof”,
which in turn comprises the group “puc.employee.prof.cs”.
User-defined groups, are not hierarchical for the sake of ef-
ficient evaluation and maintenance.

Initially, all users in CoPS belong to the group “Anony-
mous”, which facilitates the specification of access rules for
unknown users, i.e. the policy maker is able to set up a pri-
vacy policy for unknown (“Anonymous”) requesters. More-
over, this group can also be used for anonymity, i.e. users
can send a request as an “anonymous user” if they want to
hide their real identity.

5.3 Policy specificity

During the evaluation process, more than one rule may
match the request, for many reasons. For instance, when
the requester belongs to several groups mentioned in field
“Requester” in some rules (e.g. “Alice” belongs to groups
“Coworker” and “MyFriend”), then all these rules match
the request. CoPS’ specificity algorithm aims to determine
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the most specific privacy rule that applies to a request and,
if necessary, resolve possible conflicts among the rules.

The specificity algorithm works as follows: Given a set
of rules previously selected (by the engine) to evaluate a re-
quest, the algorithm identifies the most specific rule of the
set by comparing their structure fields in the following order
of priority: Subject, Requester, Context, Temporal Restric-
tion, Precision, Application and Result. When comparing
rules with respect to a field, only the ones with the most
specific value in this field are selected for the further speci-
ficity analysis, while all other rules are not considered for
selection. This way, even if two or more rules have differ-
ent relative specificity (i.e. they differ in two or more fields)
the algorithm can identify the most specific rule analyzing
these fields according to their priorities. For all fields, wild-
card “*” means least specific.

For the specificity of the Subject and Requester fields,
privacy rules mentioning an individual user (e.g. “Alice”)
are more specific than rules containing a user-defined group
(e.g. “MyFriend”), which in turn is more specific than
the ones mentioning an administrator-defined group. The
administrator-defined group specificity follows the usual
interpretation of a hierarchy: groups at a lower hierar-
chy level are more specific than groups at a higher level
(e.g. “puc.employee.prof.cs” is more specific than group
“puc.employee.prof”).

The same hierarchy-induced specificity applied to the
administrator-defined group is used also for the Precision
field1. For example, when comparing rules concerning lo-
cation information, the most specific ones are those where
field Precision mentions the lowest level in the location-
hierarchy, e.g. “country.state.city.zip” (level 4) is more spe-
cific than “country.state.city” (level 3). Two or more pri-
vacy rules can be at the highest level of specificity with re-
gard to their Precision field if they have the most specific
value, and are at the same level in the hierarchy. When
this happens, the next field (according to the priority) of
these rules is compared to identify the most specific rule.
In order to allow for such specificity analysis the developer
of the Context Service has to define the syntax (e.g. cam-
pus.building.floor.room) of the name hierarchy for this spe-
cific field. It will be a configuration parameter of CoPS.

The field Temporal Restriction represents the time inter-
val and date at which the requester is granted or denied ac-
cess to the context information, depending on the access
policy approach used (optimistic or pessimistic). This field
is very useful when the user wants to restrict the access
in some special situations (e.g. at lunchtime or at working
hours). Even though the policy maker specifies a time in-
terval (e.g. “9:00am-11:30am”), CoPS represents it in mil-

1Although a hierarchy-induced notion of precision is more easily un-
derstood in terms of location information, it can be applied also to other
context information, such as sub-domains of an IP address.

liseconds, to allow for an accurate rule selection. The speci-
ficity for this field is evaluated in three phases: (1) select the
rule(s) that match the time and date of the request; (2) iden-
tify the rule with the largest time interval and check whether
the time interval of the other rules are its proper subsets (e.g.
Temporal Restriction “Feb 5, 10:30am-2:00pm” is a proper
subset of restriction “Feb 5, 10:00am-6:00pm”). Rules are
considered to be at the same level of specificity either if
they have identical time intervals, or if the time interval is
not a proper subset of the largest time interval; (3) select the
rule with the smallest time interval, when they are not at the
same level of specificity.

With regard to the field Application, specificity has only
two possible levels: any application (represented by “*”)
and a list of applications. Finally, if all previously consid-
ered fields are at the same level of specificity, the Result
field is the one used to select the most specific rule to eval-
uate the request. The possible values for this field are: “Not
Available”, “Ask Me” and “Grant” (or “Deny”). The “Not
Available” result has precedence over “Ask Me”, which in
turn has precedence over the others (i.e. result “Not Avail-
able” is more specific than “Ask Me”, which in turn is more
specific than “Grant” and “Deny”). The reason is that “Not
Available” implicitly means “Deny”and “don’t let requester
know it”, while “Ask Me” may be interpreted as “Deny”
or “Grant”, depending on my mood. A conflict is detected
when there is more than one rule with a result “Not Avail-
able” or “Ask Me”, or when all rules have either a “Grant”
or “Deny” result. In this case, the last rule with greatest
specificity created by the policy maker will be selected. It
is necessary to define a deterministic choice for these situ-
ations because the conflicting rules may have different no-
tification methods and only a single rule must be chosen to
evaluate the request.

5.4 Privacy Policy Evaluation Example

In this section, we show an example of possible privacy
rules for user Bob, assuming that the pessimistic default
policy has been chosen, i.e. whenever a request does not
match any rule, it will be denied. These rules (shown in
Table 2) determine how and when Bob’s location and en-
ergy context variables will be disclosed. In this example, we
also assume the existence of some user- and administrator-
defined groups (Bob’s and PUC’s groups are shown in Table
3), which are mentioned in some of the rules.

Table 3. Assumptions about User Groups
Assumptions

Group Members
user-defined Bob.MyFriend Bob, Alice, John

Bob.Coworker Alice, Jane, John
administrator-defined Puc.Student Bob, Alice, Jane, John

Puc.Manager Jane, Paul
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Table 2. Example rules.
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R1 Pessimistic Puc.Student Puc.Manager Location * puc Ap1 G 0 O e-mail
R2 Pessimistic Bob Puc.Student Energy 09:00am to 06:00pm * * G 5 U ICQ
R3 Pessimistic Bob MyFriend Energy 09:30am to 12:30am * * G 0 U ICQ
R4 Pessimistic Bob Coworker Energy 11:00am to 02:00pm * * NA 0 U NoNotify
R5 Pessimistic Bob Coworker Location 09:00am to 12:00am * * G 0 U NoNotify
R6 Pessimistic Bob Alice Location 09:00am to 11:00am campus.building * G 0 U MSN
R7 Pessimistic Bob Alice Location 10:00am to 04:00pm campus.building.floor.room * G 15 U e-mail

Through some scenarios, we will now explain how the
privacy rules are selected and used to evaluate a request,
using the algorithm explained in Section 5.3.

As already mentioned, the rule to be applied to the re-
quest is always the most specific one, and comparison of
the rule’s specificity takes into account the fields Subject,
Requester, Context, Temporal Restriction, Precision, Appli-
cation and Result, in this order. Thus, intuitively, the al-
gorithm compares the values in the corresponding columns
(from left to right), and as soon as one (or several) rules
have a more specific value in one of the columns, they are
candidate for further comparison.

Scenario1: If Jane makes a request for Bob’s location,
both R1 and R5 would apply. However, the request would
be granted by R1, because this rule belongs to a higher level
than rule R5 and, consequently, the first rule overrides the
others.

Scenario2: Consider a request from John to get the en-
ergy level of Bob’s device. In this case, R2, R3 and R4 are
the related rules. But among those, rules R3 and R4 are se-
lected because the user-defined groups mentioned in these
rules are more specific than the administrator-defined group
of R2. Finally, the request will be evaluated by R4 because,
despite their fields Requester, Temporal Restriction, Preci-
sion and Application having the same level of specificity,
their Result value differs, and “Not Available” has prece-
dence over “Granted”.

Scenario3: For Alice’s request to get Bob’s location
rules R5, R6 and R7 should be examined. Among those,
R6 and R7 take precedence over R5 because they apply to
an individual user, “Alice”, rather than to a group, as spec-
ified by R5. Although the R6 and R7 are at the same level
of specificity in the Temporal Restriction field, R7 is more
specific than R6 in the Precision field, and therefore will be
applied to grant the request.

6 Implementation

So far, we have developed a first version of CoPS [6],
which includes the Privacy Policy Engine that implements
the full-featured specificity algorithm, the DUMAC com-

ponent supporting symmetric authentication, administrator-
and user-defined groups, the client APIs and a Policy Man-
agement GUI.

CoPS has been implemented in Java and used MoCA’s
communication API and Event service for the interaction
between the CoPS server and the client APIs. We care-
fully structured and coded the Privacy Policy Engine so as
to maximize the efficiency of the privacy rules evaluation.

6.1 Implementation Issues

CoPS follows the client/server paradigm where the in-
teraction is either through synchronous or asynchronous,
encoded or non-encoded communication. The requester’s
and subject’s applications employ the User and Policy
Management API (UPM) to authenticate the user and
add/remove/query users, groups and privacy rules, while the
context service utilizes the Context Access Authorization
API (CAA) to control access to the context information.
The client APIs also provide interfaces for secure message
exchange with the CoPS server via TLSv1 channels.

Initially, the user authenticates himself with CoPS
through UPM API, which in turn establishes a secure
TLSv1 channel to send the authentication request. This
authentication will produce a session token, which will be
used to create an User Identification Token (UIT) for future
requests. The UIT is a hash2 of the session token shared
among the client and CoPS during authentication. From
this point on, CoPS will perform symmetric authentication
using this token shared with the client, i.e. each client re-
quest must contain the UIT so that CoPS can authenticate
it by comparing the UIT with the hash of the correspond-
ing session token shared with the client. For guaranteeing
the client authenticity, at each request the client increments
the session token by one and regenerates the UIT from the
new value, and the same is done by the server. This proto-
col obviously requires the server and client to be synchro-
nized with regard to the the current session token. If some
synchronization problem occurs (e.g. a message is lost), the
client APIs will try to synchronize the session token such

2Currently, we are using the SHA-1 to generate the hash of the token.
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that the communication is not interrupted by an authentica-
tion failure.

The authentication process is implemented by DU-
MAC, which is responsible for managing all operations
(add/remove/query) concerning users and groups. In or-
der to optimize such group and user management opera-
tions, DUMAC stores the corresponding information both
in memory (as a hash table) and in persistent storage, and
keeps these repositories synchronized.

The Policy Specificity component uses DUMAC for
identifying to which groups created by the subject the re-
quester belongs. This information is necessary to check
which rules match a context access request, as explained
in Section 5.3. To evaluate a request the Policy Evalua-
tion Engine component (illustrated in Figure 2) invokes the
runPrivacyPolicySpecificity() method from
the Policy Specificity component, which in turn returns the
most specific rule which applies to the request, or NULL if
none of the subject’s rules applies. The pseudo-code of the
algorithm used to evaluate the specificity of the rules is out-
lined in Algorithm 1, where variables Xi, i = 2, .., 4 denote
group identifiers, and Ni, i = 1, .., 5 are sets of rules with
increasing specificity.

6.2 Privacy Rules Specificity Algorithm

After receiving a request with the arguments Subject, Re-
quester, Context Variable, Precision and Application, the
specificity algorithm evaluates the rules that apply to the
request and returns either an empty set, or a set with the
most specific rule. An empty set means that no rule applies
to the request, and hence the subject’s default access policy
(Optimistic or Pessimistic) will be used to evaluate the re-
quest. If some rule is returned, the request will be evaluated
according to the value specified in the rule’s result field.

Initially (step 2 in Algorithm 1) the rule specificity is
analyzed at the three policy levels (Organization, Indi-
vidual and Default), in this order. At each policy level,
it will evaluate the matching with respect to the five
possible associations between the Subject and Requester
fields in a privacy rule. For example, in step 2.1 the
method evaluateRulesSpecificity() will evalu-
ate the rules specificity that match the subject and the re-
quester; in the step 2.3 this same method will evaluate
the rules specificity that matches the subject and subject’s
groups to which the requester belongs, and similar evalua-
tion will be done with the other groups in steps 2.5, 2.7 and
2.8.

The evaluateRulesSpecificity() method im-
plements the specificity analysis based on subject and re-
quester sets, and the other request parameters received as
argument. In step 4, it makes a SQL query for retrieving
the applicable privacy rules for a particular request. This

step implements the user and context specificity criteria, by
selecting, for further analysis, all rules that match the sub-
ject or groups in SubjectSet and requester or groups in Re-
questerSet, the Context Variable and the Subject’s Access
Policy. In the following steps, it performs the rule selec-
tion according to the temporal restriction, precision, appli-
cation and result specificity. Every specificity phase returns
an empty set if no rule is selected for the further specificity
analysis. As mentioned in Section 5.3, the specificity analy-
sis of the result field is necessary in the case that at the end
two or more rules remain at the same level of specificity.

Algorithm 1 Privacy Rules Specificity Algorithm
RUNPRIVACYPOLICYSPECIFICITY(Subject S, Requester R,
Context Variable C, Precision P, Application A)
1. Set X1, X2, X3 and X4 = Ø
1.1. Let AP = Subject’s Current Access Policy

2. Loop over the 3 policy levels, starting at the highest level (Organization):

2.1. X1 = evaluateRulesSpecificity (S, R, C,P, A, AP)
if (X1 != Ø) return X1

2.2. Let X2 = subject’s groups which the requester belongs to.
2.3. X1 = evaluateRulesSpecificity (S, X2, C,P, A,AP)

if (X1 != Ø) return X1

2.4. Let X3 = administrator’s groups which the requester belongs to.
2.5. X1 = evaluateRulesSpecificity (S, X3, C,P, A,AP)

if (X1 != Ø) return X1

2.6. Let X4 = administrator’s groups which the subject belongs to.
2.7. X1 = evaluateRulesSpecificity (X4, requester, C,P,A,AP)

if (X1 != Ø) return X1

2.8. X1 = evaluateRulesSpecificity (X3, X4, C,P,A,AP)
2.9. if (X1 = Ø& level != Default) go back to Step 2

else return X1

EVALUATERULESSPECIFICITY(Set SubjectSet, Set RequesterSet,
ContextVariable C, Precision P, Application A, AccessPolicy AP)
3. Set N1,N2, N3, N4 and N5 = Ø

4. Let N1 = all privacy rules for which the subject(s) in SubjectSet is
identical to the Subject field; And for which the requester(s) in RequesterSet
is identical to the Requester field; And the Context Variable C is identical
to the ContextVariable field; And the AccessPolicy AP is identical
to the AccessPolicy Field.
4.1. if (N1 == Ø) return Ø

5. N2 = runTemporalRestrictionSpecificity(N1)
if (N2 == Ø) return Ø

6. N3 = runPrecisionSpecificity(N2, P)
if (N3 == Ø) return Ø

7. N4 = runApplicationSpecificity(N3, A)
if (N4 == Ø) return Ø

8. N5 = runResultSpecificity(N4)
9. return N5 containing one (the most specific) or none rule
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6.3 Access Authorizations Caching

In its usual mode of operation the Context Service for-
wards the request and the UIT to CoPS whenever it re-
ceives an access request for the subject’s context informa-
tion. If the requester is successfully authenticated and the
request is granted, CoPS replies with a “Grant”, otherwise
with a “Deny” or “Not Available” result. In order to reduce
the response time of a context access request, we have im-
plemented a cache holding CoPS’ results of recent requests
in the CAA API. This way, once a request from a requester
R, to a given subject S, concerning a specific context vari-
able C, to an application A with precision P has been eval-
uated, the context service can evaluate subsequent queries
concerning (R,S,C, A, P ) from the local cache.

The local cache managed by the CAA is completely
transparent to the Context Service, and the developer of this
service can decide whether he wants to use it, or not. When
the CAA processes a new access authorization request from
a context service that uses cache, it forwards the request to
CoPS and subscribes itself at CoPS’ event server as inter-
ested in being notified whenever the result of the evaluated
request changes. This way, whenever there is a change of
a privacy rule, the event service will evaluate if this modi-
fication invalidates the result of any of the subscriber’s re-
quest. The event server will only analyze the requests that
match the subject of the updated privacy rule. If the result
value changed, the server will immediately notify the sub-
scriber(s), such that the corresponding CAA’s can update
the cache with the new result of a given request.

After the subject has defined his privacy policy, we be-
lieve that the privacy rules will be updated only sporad-
ically, and consequently, the number of notifications of
cache updates will decrease proportionally. From the re-
sults of preliminary tests we could perceive that caching
significantly reduces the number of queries to CoPS and
also reduces the response time of the context access autho-
rization.

The main problem of using a cache for the access au-
thorization results is that there may be a short time interval
between the update of a specific privacy rule result at CoPS
and the corresponding delivery of an invalidation notifica-
tion at the context service3 leading to a potential breach in
the subject’s access control. However, it seems to us that
the gain in performance of using the cache out-weights the
relatively small risk.

7 Performance Evaluation

In this section, we describe some preliminary perfor-
mance tests that we did with the purpose of measur-
ing CoPS’ scalability and throughput. In these tests,

3In most cases, network latency is less than 2 seconds.

we used two machines for running the CoPS server and
clients respectively, both of which were 2.4Mhz Pentiu-
mIV, 512MB of RAM, running WindowsXP Professional
in a fast-ethernet local network.

In order to facilitate the implementation of our perfor-
mance tests we used AspectJ [5] to instrument CoPS’ code
with instructions for logging the processing time of sev-
eral parts within CoPS. In our experiments, we did not use
CAA caching, and measured the response time of the rules’
evaluation process with and without network latency. In ad-
dition, in our tests we used the symmetric authentication
(using UITs) explained in Section 6 in order to get realistic
performance results.

In essence, we wanted to analyze three questions. First,
we wanted to measure how the response time increases as
a function of the number of applicable privacy rules at all
specificity phases. Second, we wanted to identify how re-
sponse time increases as a function of the number of con-
current clients having a pre-defined amount of privacy rules
analyzed at all specificity phases. Third, we wanted to mea-
sure the latency of specificity evaluation algorithm disre-
garding the network latency.

In our first experiment, we populated the CoPS’ data-
base with a selected set of privacy rules, in such a way that
the same amount of privacy rules would be selected at each
specificity phase. This experiment aimed to identify how
the increase of the most-specific rule set (i.e. applicable
privacy rules analyzed at each specificity phase, including
temporal restriction, precision, application and result) in-
fluences the latency. Figure 3 outlines the results of this
experiment. In this test, we ran one client that made 100
consecutive requests and measured the average elapsed re-
sponse time to evaluate the requests. We carefully set up the
rules’ fields so that each different test could select a specific
amount of most-specific rules to be analyzed at each speci-
ficity phase.

From this test we identified that the total number of rules
in CoPS’ database do not have direct impact on the re-
sponse time latency, because the SQL queries for retriev-
ing the rules depending on the subject, requester, context
variable and access policy already eliminate all the non-
applicable privacy rules with low delay. In addition, the al-
gorithm described in section 6 shows that each phase of the
specificity analysis may eliminate some rules for the fur-
ther analysis. Hence, it is important to note that the main
bottleneck of the specificity evaluation algorithm is not the
amount of applicable privacy rules selected via SQL query,
but the number of privacy rules processed at each speci-
ficity phase. As shown in Figure 3 the response latency
has linear increase with the number of most-specific pri-
vacy rules. From this experiment, we can see that when
the most-specific set is large (about 200 most-specific rules
at all specificity phases for a single request) the response
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time is about 20ms. However, we believe this to be unlikely
scenario, and that in practice, in worst-case, the specificity
algorithm will not select and evaluate, at each specificity
phase, more than 15 privacy rules for each request. Hence,
we realized the following tests (shown in Figure 4) using a
pre-defined set of 15 most-specific applicable rules.
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Figure 3. Response Time versus Number of Ap-
plicable Privacy Rules

Figure 4 shows the results of the second and third ex-
periments, where we analyzed the average response time
varying the number of concurrent clients. For these tests,
we populated CoPS’ user database with 301 users: 300
possible requesters and one subject user ‘S1’. In order to
reduce the amount of privacy rules, we joined the 300 pos-
sible requesters to ‘MyFriend’ group and created 15 privacy
rules with the Subject and Requester fields holding ‘S1’ and
‘MyFriend’ values respectively. All these rules were at the
INDIVIDUAL level and we assumed that the optimistic de-
fault access policy had been chosen. We also carefully set
up the rules’ fields so that all of them would be always se-
lected/analyzed in all specificity phases for each request.
We then ran an increasing number of concurrent requesting
clients, where each client made the same request 100 times.
Next we measured the response times with and without the
network latency.

The only difference between these two experiments is
that the last one evaluate the specificity evaluation algorithm
latency and it do not consider the network latency.

The results (Figure 4) show a linear increase of the re-
sponse time and algorithm latency when the number of con-
current clients is increased. Furthermore, the results show
that the specificity evaluation algorithm latency has little in-
fluence on the total response time of a context access autho-
rization request.

These preliminary tests seem to indicated that the over-
head caused by the access control evaluation via CoPS rep-
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Figure 4. Response Time vs. No. of Concur-
rent Requests

resents only a small portion of the total round-trip-delay of
context data access and processing at a Context Service.

8 Future Work

As a next step, we plan to extend CoPS’ engine to han-
dle also context-dependent privacy policies, allowing the
policy maker to set privacy rules which depend on dynamic
context data. For example, a policy could specify that ac-
cess to some context data is granted only when the requester
is within the university campus, or even in a specific build-
ing. In addition, we plan to develop a privacy policy man-
agement GUI, which supports end-users to define their pri-
vacy rules more intuitively. This GUI ought to be simple
and effective to motivate end-user to adopt CoPS.

Furthermore, we are studying the “Platform for Privacy
Preferences (P3P)” specification [2] with the purposes of
using it to represent the privacy policy structure. P3P
supports the encoding of privacy policies into machine-
readable XML, making it easier to interpret these policies
and execute the corresponding actions.

We also intend to develop a trust model [15, 16] for
context-aware computing, exploring some properties of
trust evaluation (e.g. diversity, transitivity, and combina-
tion), in order to facilitate the definition of privacy policies.
For example, assuming the transitive property of trust we
could have the following scenario “if Alice trusts Bob who
trusts Jane, then Alice will also trust Jane”. This way, Alice
would not need to explicitly set up privacy rules to handle
Jane’s request. Instead, the system could be able to infer the
Alice’s risk level of disclosing her information to Jane, and
it would be able to apply the appropriate privacy policy.
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9 Conclusion

Since context-awareness has been recognized as a key el-
ement for the development of adaptive applications in mo-
bile environments, many efforts have been made to design
and implement context-provisioning middleware infrastruc-
tures. We have implemented such a middleware, called
MoCA which we are now using to implement context-
and location-aware applications for mobile and spontaneous
collaboration.

Results of a recent end-user survey, where we assessed
the acceptance of such applications and privacy concerns,
helped us to identify the main requirements for a context
privacy service. Then we have designed and implemented
the Context Privacy Service (CoPS), trying to address all
these requirements.

CoPS is intended as an optional, generic service to en-
force the controlled access to context information. Prior to
releasing any context information requested by a user or ap-
plication, CoPS would be queried to decide if access to a
subject’s context is granted or denied. One of the most in-
teresting feature of this service is its support for a rich set of
options for privacy policies, such as user and organization-
level rules, both optimistic and pessimistic default access
policy, group-based rules and group management, speci-
ficity analysis considering the subject, the requester, spatial
and temporal restrictions, information freshness, as well as
the allowed applications.
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