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Abstract We study a non-cooperative game for joint replenishment by n firms that
operate under an EOQ-like setting. Each firm decides whether to replenish indepen-
dently or to participate in joint replenishment, and how much to contribute to joint
ordering costs in case of participation. Joint replenishment cycle time is set by an inter-
mediary as the lowest cycle time that can be financed with the private contributions
of participating firms. We characterize the behavior and outcomes under undominated
Nash equilibria.

Keywords Joint replenishment · Economic order quantity ·
Non-cooperative games · Private contributions

1 Introduction

One of the most fundamental trade-offs in operations is between inventory holding
costs and ordering costs as they both change as a function of lot sizes used in pro-
duction, transportation or procurement. Larger lot sizes lead to higher inventory costs,
while smaller lot sizes result in higher ordering costs. Beginning with Harris (1913)
study of classical economic order quantity (EOQ), a vast body of literature examined
these trade-offs. A second major strand in this literature focused on the joint replen-
ishment problem — exploring opportunities to exploit the economies of scale by con-
solidating or coordinating replenishment of different items or locations to minimize
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68 E. Körpeoğlu et al.

total ordering and inventory costs. For recent surveys of these two strands of literature
the reader is referred to the reviews by Jans and Degraeve (2008) on lot sizing, and by
Aksoy and Erengüç (1988) and Khouja and Goyal (2008) on the joint replenishment
problem.

When joint replenishment involves a group of items or locations that are not con-
trolled centrally, issues arise regarding sharing of joint costs among the parties. In a
series of recent papers, Meca et al. (2004), Hartman and Dror (2007), and Anily and
Haviv (2007) analyze cooperative game theory formulations to investigate whether a
fair allocation of total costs is possible and if so, how. Meca et al. (2004) show that
it is possible to obtain the minimum total joint cost when the firms share their order
frequencies. They propose a cost allocation mechanism which distributes the total
replenishment cost in proportion to the square of individual order frequencies and
show that this allocation is in the core of the game, i.e., no coalition can decrease its
costs by defecting from the grand coalition. Minner (2007) studies a similar problem
using a bargaining model which has only two firms, excludes inventory holding costs
and uses net present value rather than average costs.

In this paper, we study joint replenishment in the context of a non-cooperative
game. It is well-known that, in systems where joint decisions have to rely on infor-
mation reported by the participants, firms may act strategically and misreport their
characteristics. In the last two decades, cooperative and non-cooperative game the-
ory have been applied in the analysis of a variety of supply-chain related problems
(see Cachon and Netessine 2004; Leng and Parlar 2005; Chinchuluun et al. 2008
for recent comprehensive surveys). Central question of non-cooperative game the-
ory approach is characterization of equilibrium behavior of self-interested players in
games where each player’s information and strategic options as well as the outcomes
that result from each combination of decisions are explicitly specified. Non-cooper-
ative approach enables analyses of several broad sets of research questions: First set
concerns analysis of equilibrium outcomes. How do equilibrium outcomes for a given
game relate to players’ characteristics and how do they vary across environments with
different player characteristics? How do equilibrium outcomes of two games compare
for a given environment? How do outcomes induced by equilibrium behavior under
various alternative game rules perform with respect to a system-optimal solution?
Second set deals with questions such as how can one design rules of the non-coop-
erative interaction to achieve “better” outcomes where the notion of “better” reflects
concerns related to system-optimality? As observed by Cachon and Netessine (2004),
in decentralized decision making settings obtaining efficiency is the exception rather
than the rule.

Game theoretic formulations of the joint replenishment problem seem to have
adopted almost exclusively the paradigm of cooperative games with transferable util-
ity. Fiestras-Janeiro et al. (2011) and Dror and Hartman (2011) provide excellent
surveys of cooperative game theory applications in centralized inventory manage-
ment. Despite dozens of papers reviewed in Fiestras-Janeiro et al. (2011) and Dror
and Hartman (2011) using cooperative game formulations, non-cooperative analysis
of joint inventory problems is still in its infancy with many interesting problems that
remain to be explored using the machinery of non-cooperative game theory. In fact,
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Bauso et al. (2008) and Meca et al. (2003) are the only two exceptions that look at the
joint replenishment problem from a non-cooperative point of view.

Bauso et al. (2008) study a finite horizon, periodic setting in which multiple firms
need to determine their order quantities in each period to satisfy their deterministic,
time varying customer demands. The fixed order cost is shared among multiple firms
that order in the same period. Bauso et al. (2008) show that this game admits a set
of pure strategy Nash equilibria, one of which is Pareto optimal. The authors present
a consensus protocol that leads the firms converge to one of Nash equilibria, but not
necessarily a Pareto optimal one.

Meca et al. (2003) (MGB in the sequel) is more closely related to our work. MGB
studies a non-cooperative reporting game where stand-alone order frequencies of the
firms are observable but not verifiable. Each firm reports an order frequency (that may
be different from its true order frequency) and the joint order frequency is determined
to minimize the total joint costs based on all reports. Each firm incurs holding cost indi-
vidually and pays a share of the joint replenishment cost in proportion to the squares of
reported order frequencies. MGB shows that, while this rule leads to core allocations
under cooperative formulations, it entails significant misreporting and inefficient joint
decisions in a non-cooperative framework.

We consider n firms with arbitrary inventory holding cost and demand rates. The
firms’ characteristics are common knowledge, but they are not verifiable. Each firm
decides whether to participate in joint replenishment or to replenish independently,
and each participating firm reports the level of his private contribution to the joint
ordering costs. An intermediary determines the joint cycle time. The intermediary
selects the lowest joint cycle time that can be financed with the participating firms’
contributions.

The game we study differs from the one in MGB in several important ways with
respect to messages the firms can use and with respect to the outcome functions that
specify how joint decisions and individual cost shares are determined based on firms’
messages. MGB considers a game where firms’ messages are their stand-alone order
frequencies. We study a game where each firm decides whether to replenish indepen-
dently or to participate in joint replenishment and, if he participates, reports the level
of his private contribution to the joint ordering cost. With respect to the outcomes
functions, while the joint frequency decision in MGB is the efficient joint decision
assuming truthful reporting by the firms, in our game joint replenishment frequency is
determined to cover the replenishment cost based on the private contributions of par-
ticipating firms. A participating firm’s replenishment cost depends on all the reports
through a proportional sharing rule in MGB, whereas, in our setting, it is determined
by his report directly.

We find that equilibrium behavior and outcomes are determined by a simple property
of joint replenishment environment: If there is a single firm with the lowest stand-alone
cycle time, then there is a unique undominated Nash equilibrium. Otherwise, that is, if
there are multiple firms with the lowest stand-alone cycle time, there are multiple equi-
libria. However, the only indeterminacy caused by multiple equilibria concerns how
the firms with the lowest stand-alone cycle time share a given aggregate replenishment
cost (which is unique across all equilibria). Aggregate contributions, joint cycle time,
aggregate cost rates, as well as cost rates for firms whose stand-alone cycle times are
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higher than the lowest stand-alone cycle time are all unique. Furthermore, the unique
equilibrium is such that all firms participate in joint replenishment. Equilibrium joint
cycle time is equal to the lowest stand-alone cycle time. In general, equilibrium contri-
butions involve substantial free-riding as in general public good problems (Bergstrom
et al. 1986).

2 The model and preliminaries

We consider a stylized EOQ environment with a set of firms N = {1, . . . , n}. Demand
rate for firm j is constant and deterministic at β j per unit of time. Time rate of inven-
tory holding cost for firm j is λ j per unit. Major ordering cost is fixed at κ per order
regardless of order size. We assume minor ordering costs (ordering costs associated
with firms included in an order) are zero.1 Although each firm is characterized by two
parameters (λ j , β j ), an alternative representation (α j , β j ), obtained by a re-parametri-
zation where α j = λ jβ j , will be convenient in all the settings that we consider below.
For lack of a more natural term, we refer to the parameter α as the adjusted demand
rate. We assume a strictly positive lower bound, α > 0, for the adjusted demand rates,
so that α j ≥ α for all j ∈ N to rule out trivial replenishment environments where
either the demand rate or the holding cost rate is zero.

For j ∈ N , the ratio

θ j = α j

/ ∑
k∈N

αk, (1)

will prove useful to simplify some comparisons in the sequel.
In a stylized replenishment problem the objective is to minimize the total cost

rate, denoted C , i.e., the sum of replenishment cost rate (R) and holding cost rate
(H): C = R + H . The decision variable can be taken as order cycle time, t , or order
frequency, f = 1/t (number of orders per time unit). We take cycle time as the
decision variable in the sequel.

We use upper-case letters, N , M, L etc., to refer to sets of firms, and use the lower-
case version of the same letter for the cardinality of a set. The letters i, j, k are used
for firm indices. We label the firms so that α1 ≤ α2 ≤ · · · ≤ αn . This ordering of firm
indices is retained for subsets of N . For M ⊆ N , denote the set of firms in M with the
highest values of the parameter α by L(M) = { j ∈ M |α j ≥ αi for all i ∈ M}.

We denote vectors by lower-case letters in bold typeface. For a generic m-tuple
x = (x1, . . . , xm) and j ∈ {1, . . . , m}, the notation (y, x− j ) stands for the vector x

with its j th entry x j replaced by y, and the (m − 1)-tuple x− j stands for the vector x

with its j th entry x j removed.

1 Following a stylized EOQ environment, such as one given in Zipkin (2000, §3.2), it is assumed that the
outside supplier that replenishes the orders has no capacity restrictions, delivers the complete order at once
after a deterministic lead time and has perfect yield. It is also assumed that the outside supplier is not a
strategic player. The firms aim to minimize their long-run average costs over time and backorders are not
allowed.
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For an endogenous variable X , by Xa
M we refer to the value of X when the set

of firms is M and replenishment operations are governed by a ∈ {c, d, g}, where
c stands for centralized, d stands for decentralized (or independent) replenishment,
and g stands for joint replenishment under rules of the non-cooperative game g. For
instance, T c

M is the joint cycle time of the firms in M when replenishment is central-
ized. When the set M is a singleton, e.g., M = { j}, we use Xa

j instead of Xa
{ j}. When

we need to refer to the value of an endogenous variable Xa
M faced by firm j ∈ M

we use Xa
M j . Thus, for instance, Rc

M j is the replenishment cost faced by firm j ∈ M
when the firms in M replenish jointly.

The vector e = (N , κ,α,β) summarizes the essential data of the inventory envi-
ronment.

2.1 Independent (decentralized) replenishment

When the replenishment of the items is controlled by firms operating independently,
firm j’s total cost rate (C j ) is the sum of replenishment cost rate (R j ) and the holding
cost rate (Hj ):

C j (t) = R j (t) + Hj (t) = κ

t
+ t

2
α j . (2)

It is well known that firm j’s optimal cycle time is T d
j = √

2κ/α j . Hence, opti-

mal frequency and optimal order quantity are Fd
j = √

α j/2κ and Qd
j =β j

√
2κ/α j ,

respectively. This leads to a replenishment cost rate of Rd
j = √

κα j/2. Firm j’s hold-

ing cost rate is also Hd
j = √

κα j/2. Thus firm j’s total cost per unit of time is

Cd
j = √

2κα j . The aggregate total cost rates for n firms under independent replen-

ishment are Cd
N = ∑

k∈N
√

2καk , and Rd
N = Hd

N = ∑
k∈N

√
καk/2.

2.2 Joint (centralized) replenishment

Efficient joint replenishment requires the replenishment decisions to be taken centrally
to minimize the aggregate total cost. It is well known that when there are no minor
setup costs, all firms will be replenished in each cycle leading to a common cycle time
(see, for example, Meca et al. 2004). The aggregate cost for n firms as function of the
common cycle time t can be written as

CN (t) = RN (t) + HN (t) = κ

t
+ t

2

∑
k∈N

αk . (3)

The optimal cycle time and the corresponding optimal frequency are T c
N =√

2κ/
∑

k∈N αk and Fc
N = √∑

k∈N αk/2κ , respectively. Then, the optimal cost rates
are Cc

N = √
2κ

∑
k∈N αk , and Rc

N = Hc
N = Cc

N /2. At each cycle, firm j orders
Qc

N j = β j T c
N .
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2.3 Comparing joint and independent replenishment

With θ j = α j/
∑

k∈N αk , optimal cycle times, order frequencies and holding cost
rates under joint and independent ordering are related by:

T c
N = √

θ j T
d
j , Fc

N = Fd
j /

√
θ j and Hc

N j = √
θ j Hd

j .

On the other hand, comparison of replenishment costs, hence of total costs, incurred
by an individual firm under joint replenishment and independent replenishment
depends on how the joint costs are shared. If the joint ordering cost is allocated pro-
portionally so that firm j pays θ j of the order cost, firm j’s replenishment cost rate
and total cost rate under joint ordering and independent ordering are also related by
the factor θ j : Rc

N j = √
θ j Rd

j and Cc
N j = √

θ j Cd
j .

Straightforward comparison of the cycle times under independent and joint replen-
ishment yield:

T d
1 ≥ T d

2 ≥ · · · ≥ T d
n = 1√

θn
T c

N > T c
N .

Similarly, comparing aggregate total costs under independent and joint replenishment
regimes we get:

Cd
N =

(∑
k∈N

√
θk

)
Cc

N > Cc
N .

Potential cost saving from joint replenishment in relative terms is governed by the
vector θ :

Cd
N − Cc

N

Cc
N

=
∑
k∈N

√
θk − 1.

As this measure is strictly concave in θ , it is maximized when θi = 1/n for all i ∈ N
(i.e., when all firms have a common α), and minimized when θn = 1. When θi = 1/n,
the measure simplifies to

√
n − 1.

2.4 MGB: a direct mechanism for joint replenishment

MGB considers a a direct mechanism where the message set of each player coincides
with the set of all possible characteristics a player may have and the outcome function
assigns the core allocation for the environment reported by the players. Specifically, the
firms’ stand-alone order frequencies are used as the message space - each firm reports
an order frequency that may be different from its true order frequency. Each firm j
either reports a positive frequency f j and joins the coalition for joint replenishment or
reports f j = 0 and orders independently. Each firm incurs holding cost individually and
the joint replenishment cost is allocated by a proportional sharing rule whereby firms

123



A private contributions game 73

share the joint ordering cost in proportion to the squares of reported order frequencies.
For any profile of reported frequencies ( f1, . . . , fn), if the number of firms reporting
strictly positive frequencies is two or less, all firms replenish independently. With two
or more firms reporting positive frequencies, the joint frequency is determined as the
efficient frequency for the reported stand-alone frequencies. However, as MGB find,
equilibrium behavior in this game entails significant misreporting. The authors show
that the game has multiple equilibria. The strategy profile ( f1, . . . , fn)= (0, . . . , 0)

is always an equilibrium resulting in all firms replenishing independently. An equilib-
rium (dubbed “constructive equilibrium” by the authors) in which all firms participate
in joint replenishment exists if, and only if, the firms are sufficiently homogeneous,
i.e., if and only if

θn <
2

2n − 1
. (4)

With straightforward translation of MGB’s notation to our setting, when a constructive
equilibrium exists, it yields the following cycle time and aggregate total cost:

T MG B
N =

√
2κ(2n − 1)∑

k∈N αk
= √

2n − 1T c
N , (5)

and

C MG B
N =

√
2κn2

∑
k∈N αk

(2n − 1)
= n√

2n − 1
Cc

N . (6)

Although the rules of the MGB game would give rise to core allocations with desir-
able efficiency and fairness properties under truthful reporting, under non-cooperative
behavior, we get substantial efficiency loss. In the remainder of this paper, we investi-
gate the equilibrium outcomes and whether more efficient outcomes can be achieved
under an alternative set of rules governing the interaction of the potential participants
in joint replenishment.

3 Private contribution games for joint replenishment

The participation-contribution game we consider has the following elements: each firm
makes two decisions: (1) whether to replenish independently or to participate in joint
replenishment, and (2) how much to contribute to joint ordering cost in case of par-
ticipation. We assume a small but strictly positive lower bound δ on the contributions
for participation in joint replenishment.2 Specifically, we assume

0 < δ < δ̄ = √
κα/2/n. (7)

2 The assumed bound on δ is tighter than needed for the characterization results we present to hold. How-
ever, assuming weaker bounds amounts to assuming that the intermediary has more detailed information
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Formally, the strategy set of players is represented by non-negative real numbers,
M = R+. A message r j from player j codes the participation and contribution deci-
sions of firm j as follows: If r j < δ, firm j stays out and replenishes independently,
if r j ≥ δ, it represents time rate of private contribution to the joint ordering cost.

We denote the vector of messages of the n firms r = (r1, . . . , rn). The set of firms
who selected to participate in joint replenishment are denoted by M(r) = {i ∈ N |ri ≥
δ}. For M ⊆ N , the tuple rM collects the components of the vector r that correspond
to the coordinates in M .

Players move simultaneously and each decides his message. For any message pro-
file r , the intermediary selects the lowest cycle time that can be financed with the
aggregate collection from the participating firms

∑
k∈M(r) rk , i.e.,

τ(r) = κ∑
k∈M(r) rk

. (8)

Implicit in the intermediary’s decision rule is an assumption regarding the struc-
ture of information held by the firms and the intermediary. The intermediary cannot
make use of firm-specific information beyond the contribution decisions reported by
individual firms. To be able to decide the joint cycle time, she also needs to know the
fixed ordering cost κ , in addition to the private contributions from the participating
firms (and, hence, the set of participating firms).

Then for given n-tuple of messages r , the outcome is determined as follows: If
r j < δ, firm j replenishes independently, and his cost is Cd

j . All firms in M(r)

replenish together with joint cycle time τ(r) selected by the intermediary, and firm
j ∈ M(r) pays r j per unit of time as his contribution to joint replenishment cost.3 A
participating firm’s replenishment cost rate (R j ) is determined directly by his private
contribution, R j = r j , while his holding cost rate (Hj ) depends on the joint cycle
time, Hj = α jτ(r)/2.

The rules of the private contributions mechanism are common knowledge. The
parameters of the replenishment environment, i.e., the elements of the list (κ,α,β),
are also common knowledge among the firms (but not verifiable).

We can now state the total cost per unit of time for firm j , denoted φ j , as a function
of the firms’ messages:

φ j (r) =
{√

2κα j if r j < δ,

r j + 1
2 α j τ(r) if r j ≥ δ.

(9)

Foonote 2 continued
on the firm-specific details of the replenishment environment, specifically, about the parameter vector α.
The bound δ̄ involves minimal information about the environment, namely, n, κ and α. Furthermore, under
weaker bounds, equilibrium characterization involves complications with many cases and subcases to be
considered. If the minimum contribution δ were to be completely independent of the parameter vector α,
one could always find replenishment environments where, in the unique equilibrium, no firm participates
in joint replenishment.
3 Operationally, the payments for replenishment can be made at the time of the ordering with firm j ∈ M(r)

paying r j τ(r) independent of his order size. Or, firm j can pay a flow of r j per unit of time without any
additional payment at replenishment points.
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Taking other firms’ strategies r− j as given, firm j’s decision problem is

min
r j

φ j (r),

and his best response function, denoted ρ j is

ρ j (r− j ) = arg min
r j

φ j (r j , r− j ).

A Nash equilibrium is a profile r∗ = (r∗
1 , . . . , r∗

n ) such that r∗
j = ρ j (r

∗− j ) for all
j ∈ N . A strategy y is said to strictly dominate strategy x for player j if φ j (y, r− j ) <

φ j (x, r− j ) for all (n − 1)-tuple r− j of other players’ strategies. A strategy y is said
to weakly dominate strategy x for player j if φ j (y, r− j ) ≤ φ j (x, r− j ) for all (n − 1)-
tuple r− j of other players’ strategies, with strict inequality for at least one r− j . A
strategy x is said to be an undominated strategy for player j if there is no other strat-
egy that weakly dominates it. A profile of strategies r∗ = (r∗

1 , . . . , r∗
m) is a Nash

equilibrium in undominated strategies or undominated Nash equilibrium (UNE) if r∗
j

is an undominated strategy for player j .
Substituting the rule that determines the joint cycle time, firm j’s total cost per unit

becomes:

φ j (r) = φ j (r j , r− j ) =
{√

2κα j if r j < δ,

r j + κα j

2(r j +∑
k∈M(r)\{ j} rk )

if r j ≥ δ.
(10)

Before we proceed, we collect several observations each with simple proofs.

Claim 1 For all replenishment environments, any strategy profile r with M(r) = ∅,
that is, r j < δ for all j ∈ N , is a Nash equilibrium.

Proof: Given that other firms are not participating, no strategy r ≥ δ yields a better
cost to a player than the cost he gets from independent replenishment. 	


Claim 2 If r is a Nash equilibrium, then M(r) ∈ {∅, N }. That is, unless r yields full
participation or no participation, it cannot be a Nash equilibrium.

Proof: Suppose M(r) is a non-empty strict subset of N , and consider a firm j ∈
N \ M(r). Since j /∈ M(r) player’s cost is Cd

j . Let w = ∑
k∈M(r) rk . Since

M(r) �= ∅, it must be that w > 0. If player j deviates from r j to Rd
j he

gets

φ j (Rd
j , r− j ) = Rd

j + κα j

2(Rd
j + w)

< Rd
j + κα j

2(Rd
j )

= 2Rd
j = Cd

j = φ j (r j , r− j ). (11)

where the inequality follows from the fact that w > 0, and subsequent
equalities follow from the facts Rd

j = √
κα j/2 and Cd

j = 2Rd
j . 	


Claim 3 Any strategy r̂ j < δ is weakly dominated by the strategy r̃ j = Rd
j .
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Proof: This follows from observing that the cost strategy r̂ j yields is exactly Cd
j =√

2κα j while the strategy r̃ j yields a cost that is equal to Cd
j when other

players all stay out of joint replenishment, and a cost that is strictly better
in all other cases. 	


Claim 4 Any strategy r̂ j > Rd
j is strictly dominated by the strategy r̃ j = Rd

j .

Proof: Let w = ∑
k∈M(r)\{ j} rk . Since φ j (r, r− j ) = � j (r, w) = r + κα j

2(r+w)
is

strictly convex in r , and since the cross-partial
∂2� j
∂r∂w

= κα
(r+w)3 > 0, it fol-

lows from the Implicit Function Theorem that r(w) = arg minr � j (r, w)

is unique and strictly decreasing in w. Thus, for w > 0, we get

r(w) < r(0) = Rd
j < r̂ j ,

which implies, because � j (r, w) is strictly convex in r , that

� j (r(w),w) < � j (Rd
j , w) < � j (r̂ j , w).

Hence Rd
j strictly dominates r̂ j . 	


From Claims 3 and 4 it follows that the set of undominated strategies is the interval
[δ, Rd

j ]. From claims 1 and 3 it follows that if a Nash equilibrium in undominated
strategies exists, it involves full participation in joint replenishment. We record these
observations in the following proposition.

Proposition 1 If r∗ is a Nash equilibrium in undominated strategies, then

1. M(r∗) = N and
2. r∗

j ∈ [δ, Rd
j ].

It remains to characterize the finer details of structure of best response functions
and the equilibrium contribution levels. The foregoing observations greatly simplify
our task in that they allow us to focus on the second-piece of the cost function and
take M(r) = N in the remainder of our investigation. That is,

ρ j (r− j ) = arg min
r j ≥δ

r j + κα j

2(r j + ∑
k∈N\{ j} rk)

.

In order to find the best response of firm j , we take the derivative of φ j (r j , r− j )

with respect to r j and re-arrange terms:

∂φ j

∂r j
= 1 − κα j

2(r j + ∑
k∈N\{ j} rk)2 . (12)

Solving ∂φ j/∂r j = 0, and incorporating the minimum contribution requirement, we
get:

ρ j (r− j ) = max

⎧⎨
⎩δ,

√
κα j

2
−

∑
k∈N\{ j}

rk

⎫⎬
⎭ . (13)
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Rewriting (13), we obtain:

ρ j (r− j ) =
{

Rd
j − ∑

k∈N\{ j} rk, if
∑

k∈N\{ j} rk ≤ Rd
j − δ,

δ, if
∑

k∈N\{ j} rk > Rd
j − δ,

(14)

which states that firm j’s best response is to contribute such that the aggregate
contributions are equal to firm j’s stand-alone ordering cost, if the aggregate con-
tributions of other firms are less than firm j’s stand-alone ordering cost minus the
minimum required amount, and contribute the minimum required amount, otherwise.
If firms in N \ { j} each contributed δ, firm j’s best response would be to contribute
Rd

j − (n − 1)δ leading to an aggregate contribution of Rd
j from n firms and a cycle

time τN = T d
j . Note that Rd

j − (n − 1)δ = √
κα j/2 − (n − 1)δ is strictly larger than δ

since δ <
√

κα/2/n ≤ √
κα/2/n and α ≤ α j . For every dollar of contribution from

firms in N \ { j}, firm j reduces his contribution dollar for dollar until he reaches the
minimum required contribution.

The first pieces of the piecewise-linear best response functions in (14) have the
same slope (i.e., −1) and their intercepts (Rd

j for firm j) are ordered. Equilibrium lies
in the intersection of best response functions (i.e., solution of r j = ρ j (

∑
k∈N\{ j} rk)

for all j).
In equilibrium, aggregate contributions must be Rd

n = max j∈N Rd
j . Otherwise, if

aggregate contributions were such that Rd
n − ∑

j∈N r j = Rd
n − ∑

j∈N\{m} r j − rn =
 > 0, firm n would increase his contribution from rn to rn + , and using (9), this
would lead his total cost to decrease from 2Rd

n + 2/(Rd
n − ) − ∑

j∈N\{n} r j to

2Rd
n − ∑

j∈N\{n} r j .
In the next proposition we provide a complete characterization of the Nash equi-

libria in undominated strategies, followed by a formal proof.

Proposition 2 In the private contributions joint replenishment game with δ <√
κα/2/n:

1. A profile of strategies r∗ = (r∗
1 , . . . , r∗

n−�, r∗
n−�+1, . . . r∗

n ) is a Nash equilibrium
in undominated strategies (UNE) if and only if
(a) r∗

j = δ for all j ∈ N \ L(N ), and
(b) (r∗

n−�+1, . . . r∗
n ) ∈{

x ∈ R
�|xi ≥ δ, for i = 1, . . . , �, and

∑
i∈L(N ) xi = √

καn/2 − (n − �)δ
}

.

2. The equilibrium is unique if and only if L(N ) is a singleton, i.e., if and only
if αn−1 < αn. In the unique equilibrium, r∗

j = δ for j = 1, . . . , n − 1 and

r∗
n = Rd

n − (n − 1)δ.
3. In all equilibria, aggregate contributions and the joint cycle time are unique:

(a) Aggregate contributions:
∑

k∈N r∗
k = √

καn/2 = Rd
n

(b) Cycle time: T g
N = τN (r∗) = √

2κ/αn = T d
n .

4. Equilibrium aggregate cost rates are also unique:
(a) Aggregate replenishment cost: Rg

N = ∑
k∈N r∗

k = √
καn/2 = Rd

n
(b) Aggregate holding cost: H g

N = (
∑

k∈N αk)
√

κ/2αn
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(c) Aggregate total cost: Cg
N = √

κ/2αn
(
αn + ∑

k∈N αk
)
.

5. In equilibrium firm j faces the following cost rates
(a) Replenishment cost: Rg

N j = δ if j ∈ N \L(N ), and Rg
N j ∈ [δ, Rd

n −(n−1)δ]
if j ∈ L(N ).

(b) Holding cost: H g
N j = α j

√
κ/2αn

(c) Total cost: Cg
N j = δ + α j

√
κ

2αn
if j ∈ N \ L(N ), and Cg

N j ∈ [√καn/2 +
δ,

√
καn/2 + Rd

n − (n − 1)δ] if j ∈ L(N ).

Proof For part 1 we provide detailed arguments. Parts 2–5 of the proposition are
obtained by straightforward algebraic manipulations.

1. Given other firms’ contributions, each firm j’s optimization problem is

min
r j

r j + κα j

2
∑

k∈N rk
subject to r j ≥ δ. (15)

Karush–Kuhn–Tucker conditions for optimality are given by

1 − κα j

2(
∑

k∈N rk)2 − μ j = 0, (16)

μ j (r j − δ) = 0, (17)

μ j ≥ 0, (18)

r j ≥ δ. (19)

By definition, any strategy profile r∗ = (r∗
1 , . . . , r∗

n ) is a Nash equilibrium if and
only if it is a solution to (16)–(19) for j = 1, . . . , n. Conditions (16)–(19) ensure
that there is at least one firm i such that r∗

i > δ and μi = 0. Because, if r∗
j = δ for

all j , we would have μ j = 1− κα j

2n2δ2 for all j . Since μ j ≥ 0 for all j , this requires

that δ ≥ √
κα j/2/n for all j , which contradicts with the fact that δ <

√
κα/2/n,

as α ≤ α j for all j . Using (16),

μi = 1 − καi

2(
∑

k∈N r∗
k )2 = 0. (20)

Now firm i that satisfies (20) has to belong to the set L(N ). Otherwise, for any k
with αk > αi , we have μk < 0 violating condition (18). Conditions (20) and (16)
also show that μ j > 0 for all j ∈ N \ L(N ). Therefore, using (17), we have, for
j ∈ N \ L(N ),

r∗
j = δ,

and, for j ∈ L(N ),

r∗
j ≥ δ and

∑
i∈L(N )

r∗
j =

√
καn

2
− (n − �)δ.
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The following chain of inequalities show that the conditions on the vector
(r∗

n−�+1, . . . r∗
n ) are consistent:

δ <

√
κα/2

n
≤

√
κα1/2

n
≤

√
καn/2

n
<

√
καn/2

n − 1
≤

√
καn/2

n − �
. (21)

2. Straightforward from 1.(b).
3. In equilibrium, aggregate contributions from the n firms is

∑
i∈N r∗

i =∑
i∈N\L(N ) r∗

i +∑
i∈L(N ) r∗

i = (n −�)δ+√
καn/2− (n −�)δ = √

καn/2 = Rd
n .

The resulting cycle time is T g
N = τN (r∗) = κ/

∑
i∈N r∗

i = κ
√

καn/2 =√
2κ/αn = T d

n .
4. Since equilibrium total replenishment cost for the n firms is equal to the aggregate

contributions, the claim in 4(a) follows from 3(a) above. The claim in 4(b) results
from straightforward substitution and summing over n firms. Part 4(c) is obtained
by summing the results in parts (a) and (b) and combining terms.

5. Part 5(a) follows from 1(a) directly for j ∈ N \ L(N ). For a firm j ∈ L(N ),
we note that his maximum equilibrium contribution is obtained when other firms
in N each contribute δ. Part 5(b) follows from substituting the equilibrium cycle
time in the expression for j’s holding cost rate. Part 5(c) follows from adding the
replenishment and holding costs in parts 5(a) and 5(b). 	


Equilibrium cycle time depends on the 2n-vector (α1, . . . , αn, λ1, . . . , λn) of the
firms’ characteristics only through αn—it is invariant to the number of firms and to
the finer details of the firms’ characteristics as long as αn remains fixed. Similarly,
equilibrium total cost depends only on two statistics, namely αn and

∑
k∈N αk , of the

firms’ characteristics.
In the absence of a minimum contribution requirement (i.e., if δ = 0), the order

cost is paid by the firms in L(N ). If the set L(N ) is a singleton, i.e., L(N ) = {n},
in the unique Nash equilibrium, firm n (the firm with the highest stand-alone replen-
ishment rate in N ) pays κ per order and incurs a total cost equal to his stand-alone
cost. Other firms ride free and enjoy free deliveries. A free-rider’s equilibrium payoff
is better than his stand-alone payoff since he does not contribute to the ordering cost
and the joint cycle time is strictly better than his stand-alone cycle time. When there
are multiple firms with the highest stand-alone replenishment rate, we have multiple
equilibria. In some of these equilibria, free-riding can be at its extreme–one of the firms
in L(N ) finances the entire replenishment cost and others ride free. In any equilibrium
that involves more than one contributor, all firms are strictly better off compared to
independent replenishment.

4 Comparison of cycle times and aggregate costs

We can now perform a four-way comparison of cycle times and aggregate total costs
under the four modes of joint replenishment: independent, centralized, and non-coop-
erative joint replenishment under the private contribution game and the direct revela-
tion game studied in MGB.
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As noted above, the equilibrium cycle time depends on the details of the replenish-
ment environment only through αn , the maximum of the n αs. Similarly, equilibrium
total cost depends only on two statistics, namely αn and

∑
k∈N αk , of the firms’ char-

acteristics. For comparisons of cycle times and aggregate costs we obtain a further
simplification. Namely, the comparisons depend on the ratios θ j = α j/

∑
k∈N αk ,

rather than the levels of the parameters. Note that the ordering of these n ratios is the
same as that of the α j s, that is, θn = max{θ j : j ∈ N }. Furthermore, θn takes values
in the interval [1/n, 1], and the two limits are obtained for n firms with common αs
and for n = 1, respectively. In particular, θn < 1 for n ≥ 2.

Straightforward algebraic manipulations yield the following ordering of the cycle
times under independent, centralized and non-cooperative replenishment:

T d
1 ≥ T d

2 ≥ · · · ≥ T d
n = T g

N = T c
N /

√
θn > T c

N . (22)

For comparison of aggregate costs, after similar algebraic manipulations, we get

Cd
N >

((√
θn + 1/

√
θn

) /
2

∑
k∈N

√
θk

)
Cd

N = Cg
N (23)

=
(

1

2

) (√
θn + 1/

√
θn

)
Cc

N > Cc
N .

To explore how the degree of dispersion in firm characteristics affects the ratio of
aggregate cost under cooperative replenishment to that under the private contributions
game, we observe that the ratio

Cg
N

Cc
N

=
(

1

2

) (√
θn + 1/

√
θn

)

is strictly decreasing in θn . Thus, for fixed n, the ratio is largest when the firms have
a common α. In this case, the ratio becomes

Cg
N

Cc
N

=
(

1

2

) (√
n + 1/

√
n
)
,

which increases indefinitely with the number of firms.
Finally we compare the equilibrium cycle times and total cost rates under the private

contribution game and the MGB direct revelation game for environments where the
MGB game has an equilibrium with full participation. Recall, from (4) above, that full
participation under the MGB game requires θn < 2/(2n − 1). Under, this restriction,
using (4)

T MG B
N = √

2n − 1T c
N = √

2n − 1
√

θnT g
n > T g

n

123



A private contributions game 81

since θn ≥ 1/n > 1/ (2n − 1) for n > 1. The condition for existence of an equilibrium
with full participation under the MGB game yields the following upper bound:

√
2T g

N > T MG B
N .

To compare the aggregate total cost rates that obtain in the constructive equilibrium
of the MGB game and the undominated Nash equilibrium of the private contributions
game we use (6) and (23) to get

C MG B
N = n√

2n − 1
Cc

N = n√
2n − 1

2√
θn + 1/

√
θn

Cg
N ,

Hence,

C MG B
N

Cg
N

= 2n√
2n − 1

1√
θn + 1/

√
θn

. (24)

For fixed n, the right-hand-side of (24) is strictly increasing in θn , and, it reaches its
minimum and maximum when θn = 1/n and θn = 2/(2n − 1), respectively. Substi-
tuting these values for θn and simplifying we get the following bounds:

2n√
2n − 1

1√
n + 1/

√
n

<
C MG B

N

Cg
N

<
2
√

2n

2n + 1
. (25)

To establish that the lower bound is strictly greater than 1, we note the fact that
x(n) = 2n√

2n−1
1√

n+1/
√

n
is strictly increasing in n and x(2) = 1.0866. Finally, taking

limits of the lower and upper bounds, we find that as n increases indefinitely, the lower
and upper bounds both converge to

√
2. That is, for large n, total cost under the direct

mechanism studied in MGB is more than 40% higher than the total cost under the
private contribution mechanism. We conclude by noting that the comparisons would
be much more dramatic for situations in which the players’ adjusted demand shares
are more dispersed than condition (4) allows.

5 Concluding remarks

A number of important extensions remain to be explored to build an analytical foun-
dation that captures the details of realistic operational management settings. These
extensions fall into two broad categories: explorations of alternative mechanisms and
alternative models of cost and information structures. Some examples for the first cat-
egory are alternative mechanisms with various extensive forms (e.g. multiple stages
with various information rules; sequential contributions), alternative message spaces
(e.g. contribution schedules r(T ) stating a firm’s contribution as a function of joint
cycle time), and alternative outcome functions mapping the firms’ messages to the joint
cycle time and cost allocation decisions. Extensions along the environment dimension
include models that allow minor setup costs, and models that incorporate uncertainty
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and private information on demand and/or holding cost rates or setup costs. In a com-
panion paper, Körpeoğlu et al. (2010), we explore an extension of the current model
to study situations where the firms are asymmetrically informed about each other’s α

values and characterize the Bayesian equilibrium, along with a numerical study that
investigates the impact of information asymmetry on equilibrium contributions.
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